
SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0001 $01.00/0

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE*

OSCAR H. IBARRA+ AND BRIAN S. LEININGER+

Abstract. Let C be the set of all straight-line programs with one input variable, x, using the following
instruction set: y 0, y 1, y y + w, y y w, y y w, and y [y/wJ. We show that two programs ir
C are equivalent over integer inputs if and only if they are equivalent on all inputs x such that x I--< 22r
(A is a fixed positive constant and is the maximum of the lengths of the programs). In contrast, we prqve
that the zero-equivalence problem (deciding whether a program outputs 0 for all inputs) is undecidable
for programs with two input variables. An interesting corollary is the following: Let N be the set of natural
numbers and f be any total one-to-one function from N onto N t (f is called a pair generator. Such
functions are useful in recursive function theory and computability theory.) Then f cannot be computed
by any program in C.

Key words, straight-line program, equivalence, zero-equivalence, decidable, undecidable, Hilbert’s
tenth problem, pair generator

1. Introduction. In this paper, we study the problem of deciding the equivalence
of straight-line programs over integer inputs using the operations +, -,., and /,
where division is [x/yl =the greatest integer <=x/y (e.g., 15/4 1, [-4/3/=-2,
etc.). Two programs are equivalent if they are defined at the same points and equal
wherever they are defined. Our main result is that equivalence is decidable for
straight-line programs with one input variable. (There is no restriction on the number
of auxiliary and output variables.) More precisely, we show that two programs with
one input variable over the instruction set {y 0, y 1, y y + w, y - y w, y y w,
y [y/w]} are equivalent if and only if they are equivalent on all inputs x such that

Ixl_<-2, where A is a fixed positive constant and r is the maximum of the lengths
of the programs. (The length of a program is the number of instructions in it.) The
double exponential bound cannot be reduced substantially since we can show that for
infinitely many r’s there are nonequivalent programs with at most r instructions that
are equivalent on all inputs x such that Ixl--< 22’r (h’ is a fixed positive constant). In
contrast, we can show that the zero-equivalence problem (deciding whether a program
outputs 0 for all inputs) is undecidable for programs with two input variables. An
interesting corollary is that no pair generator can be computed by a program using
the instruction set above. A pair generator is any one-to-one function from t (set of
natural numbers) onto . Such functions are useful in recursive function theory
and computability theory. The undecidability of the zero-equivalence problem for
programs with two input variables should be contrasted with a recent result in [6]. It
was shown in [6] that the zero-equivalence problem for {y 0, y 1, y y + w,
y [y/w] }-programs2 with ten input variables is undecidable. This result does not
use the operations- and ..

There are other types of division: Ix/y] and (x/y). Ix/y] is the least integer
>=x/y (e.g. [5/4] 2, [-4/3] -1, etc.), (x/y) is the integral part of x/y (e.g. (5/4)= 1,
(-4/3)=-1, etc.). Clearly, [x/yJ and (x/y) are identical when xy ->0, but may differ
when xy < 0. The following propositions whose proofs are given in the Appendix
show that [x/yJ, Ix/y], and (x/y) are not independent operations.

* Received by the editors November 28, 1979, and in final form March 31, 1981. This research was
supported by the National Science Foundation under grant MCS78-01736.

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
We assume that division by 0 is undefined. If an instruction attempts to divide by 0, the program

goes into an infinite loop, and its output is undefined.
{il, ", ik }-programs denotes the class of programs using the instruction set {il, , ik}.

2 OSCAR H. IBARRA AND BRIAN S. LEININGER

PROPOSITION 1. The instruction.x (x/y) can be computed by a fixed program
using only instructions oftheform y 0, y 1, y y + w, y y w, y y * w, y [y/w 1.

PROPOSITION 2. The instructions x - [x/yJ and x Ix/y] can be computed by
fixed programs using only instructions of the form y O, y 1, y y + w, y y w,
y -y* w, y - (y/w).

For notational convenience, most of the results in the paper are stated using only
the division [x/yJ. However, it is obvious from Propositions 1 and 2 that the results
remain valid when all types of division are used.

Remark. We could include the construct y -c (c is any positive integer) in our
instruction set. However, it is clear that y -c can be computed by a (y -0, y -1,
y - y 4- w-program with at most O(log c) instructions. Thus, inclusion of the construct
y -c in the instruction set is not necessary.

2. The main result. Our main theorem is a generalization of the fact that two
nth degree polynomials (outputs of programs using only +, -, .) are identical if they
agree on (0, 1,..., n). Division introduces several complications:

(a) division by 0 is possible (so functions become nontotal);
(b) rational functions can be computed instead of polynomials;
(c) truncation permits selective forward conditional branching, by evaluating

different functions for different residue classes.
Nevertheless, it is possible to associate a rational function R of the input variable
with each program statement, such that R(x)([R(x)]) will be the value computed by
the statement. We show in this paper that two such expressions are equivalent if they
are identical for some computable initial segment of the integers. This is so because
rational functions behave asymptotically as polynomials; in particular, they are nonzero
for large values of the input, unless they are identically zero. Thus, (a) and (b) can
be handled. Truncation may introduce branching, but the degree of branching is
bounded by the number of residue classes of the greatest value computed by the
program (relative to all possible moduli, i.e., relative to all possible moduli smaller
than this value). Thus the number of cases is finite for each program, and can be
tested. Our task then is to formally prove that the strategy above can be carried out.
For convenience, we introduce the following notation.

Notation. Let c- m/n be a rational number (positive, negative, or zero), where
m and n are integers with gcd (m, n)- 1. If c -0, take m -0 and n 1. We use the
following notation: Num (c)]m[absolute value of m and Denom (c) -]hi.

Our first lemma concerns polynomial division. It says that, for sufficiently large
values of x, a rational form r(x) behaves like a polynomial. Lemma 1 gives a sufficient
condition on x for a good approximation.

LEMMA 1. Let r(x)=s(x)/z(x)=p(x)/q(x)/z(x), where s(x), z(x), p(x) and
q (x) are polynomials with rational coefficients such that z (x) 0 (p (x) and q (x) are
the polynomials given by the division algorithm). Let

b max 2, Num (c), Denom (c)]c is a rational coefficient in s(x) or z (x)),

d- max (degree (s(x)), degree (z (x)),

O b 2(d+2)3.

Then for all x >=
[p(x)/ i[p(x) is not an integer or i[

[r(x)] [s(x)/z(x)] sign (q()/z(a)) is nonnegative,

p (x) 11 otherwise.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 3

Moreover, if c is a coefficient of p(x), then Num (c), Denom (c)_-< b :z(d+l)2.
Proof. Let h be the least positive integer such that h. s(x) and h. z(x) are

polynomials with integer coefficients. Clearly, the absolute values of the coefficients
of h. s(x) and h z(x) do not exceed the bound b2d+2. So without loss of generality
we may assume that the coefficients of s(x) and z(x) are integers and their absolute
values are bounded by b 2d+2.

Let s(x) slx
k +. + skx +S/landz(x)= ZlX +. + ZlX +Z//lforsomek,/_->0.

Assume similar notation for the other polynomials in this proof. Also, by multiplying
s(x) and z(x) by -1 if necessary, we can assume Z > 0. For convenience, define zj 0
for/" => + 2. Then by the division algorithm

s(x) q(x)
r(x)= -p(x)+

z(x) z(x)"

Since we would like to derive the worst possible bound on c, we assume the following:
(i) k =>l since, otherwise, p(x)= 0 and q(x)= s(x).
(ii) >- 1 (i.e., degree (z(x)) >- 1). Note that this implies that degree (q(x))<l.

One can easily check that these assumptions given rise to a worst-case bound on c.
We can find the coefficients of p(x) by the division algorithm. We have

p(x) plx l-1-1- -[-Pk_lX -[-Pk-l+l, where

s1(1) p =--,
Z1

(2) Pi

i-1
Si--j=l p]Zi+l-] Si--

i-1 i-1
i=1 PiZi+l-i Z1

i-1
Zl Zl Zl

for 2<=i<=k-l+ 1.

Also, by induction on i,

(3) piz is an integer for 1 -_< _-< k + 1.

From (1)-(3) and the fact that s1, Sk+l, Zl, Zl+l are integers with absolute
values bounded by b 2d+2, we have

(4)
Num (pi) <=2i-lb(2U+2)i

Denom (Pi) < b (aa+a)i

and

for 1 <=i <-k-l + l.

Since b >= 2 and d >-k -> _>-1, (4) becomes

(5)
Num (Pi) <- 2’-ab(Za+z)a <- b 2(d+1)

Denom (Pi) <- b (2d+:z)d -<b 2(d+1)
and

for l <-i <-k-l + l.

So

Now q(x)= s(x)-p(x)z(x). Then

l-1
qlx +" q- ql-X q- ql (SiX k -[-" -[- SkX 3c" Sk+l)

--(plX k-I q-" "q-Pk-lX -bPk-l+l)(ZlX h-" q- ZIX "[- ZI+I).

qt-r Sk-r+l- (Pk-l-i+l)(Zl+i-r+l)
/=0

for r =0, 1, , l- 1.

4 OSCAR H. IBARRA AND BRIAN S. LEININGER

Letting r l- i, we have

l--i

(6) qi-- Sk-l+i+l- ’, (Pk-l-i+l)(Zi+j+l) for 1, 2,..., I.
]=0

From (5) and (6), we easily obtain upper and lower bounds on the absolute values
of the nonzero qi’s"

(7) Iqil <- b 2d+2 .+_ lb 2(d+ 1)2b (2d+2) b 2d+2 .+. db 2(d+l)Z+(2d+2) b 2(d+2)2,
1 1 1

(8) Iqil -> (b2(d+l)2)l
>-

b2(d+l)2d b2(d+l)a"

We can write p(x)= u (x)/m, where m is the least positive integer such that u (x)
is a polynomial with integer coefficients. Now choose the least nonnegative integer/
such that

z-x) <--m fr all x >-- B"

The bounds for m and B are found as follows:
From (5),

(9) m < (b2(d+l)2)degree(p(x))+l < b 2(d+1)3.

Now, for all x, Iq(x)/z(x)l<l/m if and only if Iz(x)l-mlq(x)l>O. Hence from
(7) and (9), for sufficiently large x,

[z (x)l- m Iq (x)[_-> x l(b 2a+2 + mb2(d+2)2)xl-1
_>- (x d(b2d+2 + b2(a+l)3b2(d+2)2))xl-1

(x d(b2d+2 + b 2(d+I)3+2<d+2)2))xl-a > O.

Let /3 b 2(d+2). Then / > d(b2a+2+b2a+)’+2{a+2)=) and, for all x ->, Iq(x)/z(x)l<
1/m.

Let a be the least integer such that a ->/3 and sign (q(x)/z(x))=sign (q()/z(a))
for all x _-> c. We consider two cases:

Case 1. sign (q()/z(a)) is nonnegative or p(x) is not an integer. Then clearly
[r(x)J ts(x)/z(x)J [p(x)J.

Case 2. sign (q(o)/z(o)) is negative and p(x) is an integer. Then Jr(x)]
[s(x)/z(x)J [p(x)- lJ p(x)- 1.

The bound on a is derived as follows" Let the degree of q(x) be l-i for some
1 _-<i <_-l- 1. Then from (7) and (8), for sufficiently large x,

l--i
X 2(d+2)2x l-i-1Iq(x)l--> b2a+------(l i)b

x -(l- i)bEd++Ea+22-->
bE(d+l)a jX

l-i-1

__:>
X

,jxl_i_ > xl_i_

and

Z (X)l xl Ib 2a+2xl- >- (x db2d+2)xl-1 " (X b 3<d+ 1))X/-1"

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 5

Let c =max {/, b2a+23, b3d+l} b2a+23. Then for all x_>-c, sign (q(x)/z(x))=
sign (q(a)/z(a)).

It is well known that every nonzero polynomial has a finite number of zeros. The
next proposition bounds the absolute value of a zero.

PROPOSITIOr 3. Let p(x) be a nonzero polynomial with rational coefficients. Let
d degree (p(x)) and b max {Num (c), Denom (c)lc is a rational coefficient in p(x)}.
Let 13 db 2 + 1. Then p (x) 0 for all x >- .

Proof. Clearly, p(x)O for all x such that xa/b-dbxa-l>O.
We will also need the following proposition which is easily verified.
PROPOSITIOr 4. Let (m 1, n 1), ’, (mk, nk) be pairs ofintegers such that 0 <- m < n

]or 1 <-i <-k. Let be a positive integer, ff there exists an integer Xo such that Xo>
+ nine" nk and Xo mod ni m for3 1 <- <-_ k, then there exists another integer X’o

such that <-_ X’o <- + n nk and X’o mod ni mi for 1 <-_ <- k.
Proof. Let X’o xo--rnl’’’nk, where r is the largest positive integer such that

Xo rn nk >- I.
Let P be a {y - 0, y 1, y - y + w, y y w, y y w, y - [y/w }-program with

one input variable x. The next lemma shows that the value of any variable y at the
end of r instructions can be described by a finite nonempty set $(r, y) of congruence
classes of the input. Each congruence class is a pair (p(x), T), where p(x) is a
polynomial in x with rational coefficients and T is a finite nonempty set of pairs of
integers. (p(x), T) in S(r, y) means that the value of y on large enough input x0 at
the end of r instructions (if defined) is equal to p(xo) if and only if x0 mod n m for
each (m, n) in T.

LEMMA 2. Let P be a {y0, yl, yy+w, yy-w, yy.w, y
/y/wJ }-program with one input variable x (but with an arbitrary number of auxiliary
and output variables). Assume without loss ol generality that x does not appear on the
left-hand side (LHS) of any instruction in P. Let y be any variable in P (possibly x),
and r >- 1. Then there is a finite nonempty set S(r, y) with elements o] the lorm (p(x), T),
where p(x) is a polynomial in x with rational coefficients and T is a finite nonempty
set of pairs o] integers. S(r, y) has the following properties:

(1) Let Xo be an input such that Xo >- 22r2. I the value of y is defined at the end
o]r instructions then there is a unique element (p(x), T) inS(r, y) such thatxo mod n m
lor all (m, n) in T, and the value o]’ y on input Xo (at then end o1 r instructions) is given
by p(xo). (We say in this case that (p(x), T) uniquely defines y on input Xo.) Moreover,
if X’o is such that X’o _->22r2 and X’o mod n rn for all (m, n) in T, then (p(x), T) also
uniquely defines y on.input X’o.

23r(2) Let x0-_>2 Suppose y on input Xo is uniquely defined by (p(x), T) in S(r, y)
(at the end of r instructions). If p(x) is not the zero polynomial, then the value of
y p (Xo) O.

(3) IS(r, y)[- cardinality of S(r, y) _<- 22s’+1’2.
(4) If (p(x), T) is in $(r, y), then degree (p(x))<-2r.
(5) If c is a rational coefficient in p(x), then Num (c), Denom (c)=< 22.
(6) If (m, n) is in T, then 0 <- rn < n <= 222.
(7)
Proof. The proof is an induction on r. At the start, all variables except x have

the value 0. Let y be the variable on the LHS of the first instruction. By assumption,

For integers u and v with v > 0, let remainder of lul!v. Then

Jr if r=0or u =>0,
u mod

v-r if r>0and u <0.

6 OSCAR H. IBARRA AND BRIAN S. LEININGER

y x. Then
S(1, x)-- {(x, {(0, 1)})} and

$(1, w) {(0, {(0, 1)})} for all w x, w y.

There are four cases to consider for S(1, y)"
(i) If the first instruction is y c (c 0 or 1), then let S(1, y) {(c, {(0, 1)})}.
(ii) If the first instruction is y y + w or y y- w and w x, then let S(1, y)

{(0, {(0, 1)})}.
(iii) If the first instruction is y y + x or y *- y x, then let $ (1, y) {(x, {(0, 1)})}

or S(1, y)- {(-x, {(0, 1)})}, respectively.
(iv) If the first instruction is y-y,w (w can be x) or y [y/x] then let

$(1, y) {(0, {(0, 1)})}.
Clearly, properties (1)-(7) hold. Assume now that the lemma holds for sequences

of r_-> 1 instructions. We show that it also holds for sequences of r + 1 instructions.
Let y be the variable on the LHS of the (r+ 1)st instruction (note that y#x). Then,
for each variable w # y, define $(r + 1, w) $(r, w). Obviously, properties (1)-(7) hold
for $(r + 1, w). If w y, we consider 3 cases.

Case 1. The (r + 1)st instruction is y-c, where c 0 or 1. Then let $(r + 1, y)=
{(c, {(0, 1)})}. Clearly, properties (1)-(7) hold.

Case 2. The (r + 1)st instruction is yy op w, where op is +, or ,. Let x0 be
23(r+1)2an input such that Xo 2 Suppose that on input Xo, y and w are defined at the

end of r instructions and their values are uniquely defined by (s(x), T1) in S(r, y) and
(z(x), T2) in S(r, w), respectively. Then (s(x) op z(x), T1 t_J T2) uniquely defines y on
input Xo at the end of r + 1 instructions, and (s(x) op z (x), T1 U T2) should be in the
set S(r + 1, y). It is straightforward to verify that properties (1) and (4)-(7) hold for
(s(x) op z(x), T1 U T2). That property (2) is satisfied follows from Proposition 3. The

-23(r+1)2
elements of S(r + 1, y) are obtained by varying the value of Xo -> z Now I-1 u
T21-< 2+2_-<2(r/, and if (m, n) is in T1U T., then 0_-<m <n _--<2a3r2_--<223"/’’2. It
follows from Proposition 4 that there are at most 2

25(r/12
values of Xo giving rise to

distinct elements of S(r + 1, y). Hence, IS(r / 1, y)l < 2v"/’’= showing property (3).
Case 3. The (r+ 1)st instruction is y [y/w]. Let x0 be an input such that

Xo--> 223(r/12. Suppose that on input Xo, y and w are defined at the end of r instructions
and their values are uniquely defined by (s(x), T1) in S(r, y) and (z(x), T2) in S(r, w),
respectively. If z (x) is not the zero polynomial, then the value of y at the end of r + 1
instructions is given by [S(Xo)/Z(Xo)]. Note that by induction hypothesis, Z(Xo) O.

We show how to construct an element (u(x), T) in S(r + 1, y) uniquely defining
y on input Xo. Now,

s(x)| q(x)|

where p (x) and q (x) are obtained from s (x) and z (x) by the division algorithm. By
the induction hypothesis, degree (s(x)), degree (z (x)) <= 2 d. Moreover, if c is a
coefficient in s(x) or z(x) then Num (c), Denom (c)-< 222= b. Let

p(x) cx k +. + CkX + Ck/l, where k -< d.

For 1 _-< <_- k, let cg vg/ng, where vg and ng are integers such that ni > 0 and gcd (vg, hi)
1. (If ci 0, take vi 0 and t/i 1). Then, for 1 -< -< k,

lik-i+l [cixko-i+l _[_,CiX 0

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 7

where li (vixko -i+1) mod hi. Then

l q x0 jz (Xo)J P(X)+z(xo)

[ClXko + +CkXo-II-Ck+I’+
-q(XO) li 1--i]Z (Xo) i=1 ni i=1

ClXo + +(CkXo lk q(xo) li-+- Ck+l + +
n l, nk Z (Xo) i=1

CIXO -- + CkXo-- -- Ck+l "1"
i=1 ni Z(Xo)

+
i=1

NoW.clxo +’’" +CkXo--Eik=l li/ni is an integer Then by Lemma 1, since Xo->223’r+1)2->
(223r")2(2"+2)3 b2(d+2)3 a,

Ck+ -]"
q (Xo)

+
Z (X0) i=1

Ck+l +
i=1

Let u(x) ClX
k .+-. -+- CkX -Jr. C+1, where

--’+" Ck+l +
i=1 ni i=1

Cc+l
’3r- Ck+l +

i=1 Hi i=1

if Ck+l + ’ik=l li/ni is not an integer or
if sign (q(a)/z(a)) is nonnegative,

otherwise.

k
li/ni is not an integer or ifif Ck+a + [i=1

sign (q(a)/z(a)) is nonnegative,

otherwise.

The bounds on the coefficients can be obtained using Lemma 1" For 1 _-< =< k + 1,

Num (Ci), Denom (Ci) b2(Cl+)z<= (223r2)2(2"+1)2 223(+1)2.
It follows that for l<-i <-k, O=li<ni-b2(+ Hence

Denom (c+1)-< (bE(d+)2)k <-b 2(d+)3 <-2

and

Num (c+)kb2(d+1)2k +b2(d+)2k(b2(d+i)2+k + 1)

_-<db 2(d+)2d +

Now let mi =xomodni for l_-<i<_-k. Then li depends only on mi. Define T=
T1 I,.J T2{(ml, hi),""", (mk, nk)}. Clearly, properties (1), (4), (5) and (6) hold. Also
[TI]Tal + IT21+ k _-<2r2+ 2r2+ 2 -<2(r+1)2. Hence property (7) is satisfied. The proof
that property (3) holds is similar to that of case 2. Now u(x) has degree at most d 2,

2(d+2) 23rand if c is a coefficient in u (x) Num (c), Denom (c)= b where b 2 Hence,
t’23(r+l)2._ ,’rzz,"23r2x2(2r+2)3\2

by Propqsition 3, unless u(x)=v, UXo)O Ior an x0=z .z z
2(d+2)" 2d(b Thus, (2) holds.
To handle inputs which cause division by 0, we need the next lemma.
LEMMA 3. Let P and r be as in Lemma 2. There is a (possibly empty) set Z(r)

with elements that are finite nonempty sets of pairs of integers. Z(r) has the following

8 OSCAR H. IBA-RrRA AND BRIAN S. LEININGER

properties"
(1) IZ (r)] =< 22’’+1’2.
(2) If T is in Z(r), then TI--< 2
(3) If (m, n) is in T, then O<-_m <n <-_2z3"2.
(4) A division by 0 on input Xo >= 223r2 occurs during the first r instructions if and

only if there is a T in Z(r) such that Xo mod n rn for all (m, n) in T.
Proof. We describe the construction of Z(r). For convenience, define Z(0)= .

Now assume that Z(r) has been constructed for r >_-0 and it satisfies (1)-(4) of the
lemma. If the (r + 1)st instruction is not a division instruction, let Z(r + 1) Z(r). Now
suppose that (r + 1)st instruction is y [y/w]. Let xo be an input such that Xo_-> 22r2.
The instruction y - [y/w] will contribute to a division by zero on input Xo if and only
if w is defined and is equal to 0 at the end of r instructions. By Lemma 2 (property
(2)), the element (p(x), T) in $(r, w) uniquely defining w (at the end of r instructions)
on input xo must have p(x) identically equal to 0. Add T to Z(r+ 1). Clearly, the
number of r’s added to Z(r + 1) is at most IS(r, w)[<---9-25(’+a’2, and hence, IZ(r + 1)l <
22+). [-]

We are now ready to prove our main theorem.
THEOREM 1. Let P1 and P2 be two {y 0, y 1, y y + w, y - y w, y - y w,

y - Ly/wJ }-programs with one input variable x (but with an aribtrary number ofauxiliary
and output variables). Assume that P1 and P2 have the same number ofoutput variables.
Let r max {rl, rE}, where ri number of instructions in Pi. Then P1 andP2 are equivalent
over nonnegative integer inputs if and only if they are equivalent on all inputs 0 <-_ Xo <-
22x’2, where h is some fixed constant.

Proof. By Lemma 2, the value of any variable y of Pi on input Xo_-> 22r2 at the
end of ri instructions (if defined) is uniquely determined by an element (p(x), T) in
S(ri, y) where p(x) is a polynomial of degree at most 2r’ with rational coefficients, and

23r?T is a set of integers of the form (m, n), 0 _-< m < n <= 2 and TI--< 26. Similarly, by
Lemma 3, the values of Xo _-> 22a’2 which cause program Pi to divide by 0 are determined
by the set Z(r), where an element of Z(r) is a nonempty set T of integers (m, n).
(Again, 0< m < n <_-22’2 and TI-<-2r.) Now two polynomials of degree at most 2
are identical if and only if they agree on 2 + 1 points. It follows from Proposition 4
that P1 and P2 are equivalent if and only if they are equivalent on all inputs

Xo --< (2 + 1)[22’r= + (22a’=)2"= -< 2z’’=.
The double exponential bound of Theorem 1 cannot substantially be reduced

since we can prove the following proposition.
PROPOSITION 5. There are nonequivalent programs P and P2 with at most r >-_ 5

instructions that are equivalent on all inputs _-<22’-’.
Proof. Let P and P2 be the following programs (x is the input/output variable):

y*-I y<--1

y*-y+y y*-y+y

YY*Y}." r-3 Y-Y*Y}."y-y*y y*-y*y

x - [x/y X - Ixy

Clearly, Pa and P2 agree on all inputs x -<_ 22"-’. But P and P2 are not equivalent.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 9

Theorem 1 also holds when the input variable can assume negative values:
COROLLAR’V 1. LetP1, P2, and r be as in Theorem 1. Then P1 andP2 are equivalent

over integer inputs if and only if they are equivalent on all inputs x such that Ix <- 22r2

(h is some fixed constant). Moreover, the upper bound cannot be reduced substantially,
since]’or infinitely many r’s there are nonequivalent programs with at most r instructions
that are equivalent on all inputs x such that Ix I_-< 2 is a fixed constant).

Proof. Let P1 and Pa be two programs. For 1, 2, construct program PI by
inserting the following code at the beginning of Pi (z is a new variable):

Z-’Z--X

XXq-Z.

Then P1 and Pz are equivalent over (positive, negative, or zero) integer inputs if and
only if P1 and Pa are equivalent over nonnegative integer inputs and P and P are
equivalent over nonnegative integer inputs. The result now follows from Theorem 1
and Proposition 5. [3

Our next result shows that Theorem 1 does not hold for programs with two input
variables.

THISOREM 2. The zero-equivalence problem for {y <--0, y <-- 1, y y + w, y <-- y w,
y<--y,w, y [y/w }-prograrns with two input variables (over nonnegative integer
inputs) is undecidable. The result holds for programs with no more than 6 program
variables. Moreover, the programs are total in that no division by 0 occurs.

Proof. The proof uses the undecidability of Hilbert’s tenth problem [3]. Let F
be a Diophantine polynomial with r variables. Let

F V(Xl," ", Xr) CiXI Xr,
i=1

where [ci[> 0 and jk >= 0 for 1 <-- j _--< m and 1 _-< k <_- r. We shall construct a program PF
with input variables x and y and output variable z such that PF outputs 0 for all
nonnegative integer values of x and y if and only if F has no nonnegative integer
solution in x 1, , xr. The result would then follow from the fact that it is undecidable
to determine if an arbitrary Diophantine polynomial has a nonnegative integer solution
[3].

Given a nonnegative integer x and a positive integer y, we can think of x as a

number in base y,

X=X0+Xly l+x2y2+" "+Xry r+l)y r+l,

where x0, xl,’" ,xr, and v are nonnegative integers with 0_-<xi<y. Clearly,
(x1,’", Xr) can be made to assume all possible r-tuples by varying x and y. The
program PF decodes xl," ’, x and computes F(xl," , x). P then outputs 0 if and
only if F(xl,’", Xr) O. The program P is given by the following code, which is

10 OSCAR H. IBARRA AND BRIAN S. LEININGER

easily translated to a program using the instruction set {y @ 0, y @ 1, y @ y + w, y y
w, yy,w, y@ [y/wJ}:

y2y+l (makes y nonzero)

O1o

o11

1(r+1)

O20

021

O2(r+l)

mO

rnl

Om(r+l)

where

(1) For 1 -<_/" -< m, aj0 is the code

wl

(2) For 1 -<_ f <= m and 1 =< k -< r, ajk is the code

At the end of ajk W will contain X X]kk,
(3) For 1 <_- j <= m, aj(r+l) is the code

z -z + cjw

JrClearly, at the end of Om(r+l) Z will contain F(xl,’’’, Xr)= Ej=I CjXI11 Xr.
(4) The code for/3 is

z (- [(z:+ 1)/(2z: + 1)].

Then z =0 if and only if F(xl,...,x,)O. It follows that PF outputs 0 for all
nonnegative integer values of x and y if and only if F has no solution

Theorem 2 remains valid when the input variables can assume negative values:
COROLLARY 2. Same as Theorem 2, but now the input variables can assume all

integer values.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE

Proof. Modify PF by using the following code for/3"

x ,- lx/(x+
y - [y/(y + 1)_1

2
X
2 2z<-z + +y

z .- [(z + 1)/(2z + 1)1.

Call the new program P. Then P outputs 0 for all integer values of x and y if and
only if F has no nonnegative integer solution. [q

Remark. By a slightly more complicated coding the number of program variables
in Theorem 2 and Corollary 2 can be reduced to 5.

3. An application. Let N be the set of natural numbers. It is well known that
there exist effectively computable total one-to-one functions from N onto N x . Such
functions are called pair generators [5]. Pair generators are useful in recursive function
theory and computability theory (see, e.g., [2], [4], [5], [7]). Our next theorem shows
that pair generators are "not easy" to compute.

THEOREM 3. No {y<--0, y<--l, y<--y+w, y<--y-w, y<--y’w, y-Ly/wJ}-
program (with one input variable and two output variables) can compute a pair generator.

Proof. The proof is by contradiction. Suppose that f: N N is a pair generator
which is computed by a program P. Let u be the input variable of P and x, y be its
output variables. For each program PF constructed in the proof of Theorem 2, we
define a new program P"

P

We assume that PF has input variables x and y and these are the only variables that
PF has in common with P. Now, P- has one input variable u, and P outputs 0 for
all nonnegative integer values of u if and only if PF outputs 0 for all nonnegative
integer values of x and y. The result now follows from Theorems 1 and 2.]

Theorem 3 does not hold for inverses of pair generators. (The inverses are called
pairing functions [4], [7].) There are pair generators with easily computable inverses.
For example, consider the pair generator f shown below"

0 1 2 3 4 5 ...x...

0 2
1 4
3 7
6 11
10

5
8
12

9 14
13

12 OSCAR H. IBARRA AND BRIAN S. LEININGER

f-1. N d --> is given by

[(x+y)2+3x+y]f-(x, y)= z
2

f-(x, y) is computable by a {x <-- 1, x <-- x + y, x <-- x y, x <-- Ix/2] }-program (with two
input variables). The function f is defined by two functions g and g2 (see [2]):

2

y
2

where

Ol(Z)= [[/8z + lJ + lJ_ l
2

O(z) 2z-(O(z)).
Hence, there are pair generators that are computable by {y <--0, y <-- 1, y <-- y + w,
y <-- y w, y <-- y w, y <-- [y/w/, y <-- [/J }-programs, and from Theorem 2 we have

COROLLARY 3. The zero-equivalence problem for {y <-- 0, y <-- 1, y <-- y + w, y <-- y
w, y <-- y w, y <-- [y/wJ, y <-- [/J }-programs with one input variable is undecidable.

4. Extension. We can use "forward" if statements in our straight-line programs
and the results of 2 and 3 still apply. Specifically, we can add the following constructs:
skip l, if p(y) then skip (where is a nonnegative integer), and halt. p (y) is a predicate
of the form y > 0, y -> 0, or y 0, and skip causes the (l + 1)st instruction following
the current instruction to be executed next. A program can terminate a computation
in three ways: by executing a halt instruction, by executing a transfer to a nonexistent

4instruction, or by executing the last statement of the program.
The following proposition shows that the if constructs are not independent. (The

proof is given in the Appendix.)
PROPOSITION 6. The instructions if y > 0 then skip and if y _-> 0 then skip can

be expressed in terms of the instruction if y 0 then skip I.
Notation. Let L be the instruction set {y <-- 0, y <-- 1, y <-- y + w, y <-- y w, y <- y w,

y <-- [y/wJ, skip l, if p(y) then skip l, halt}.
Referring now to the proof of Lemma 2, we see that in order to extend the proof

to L-programs, we need only consider (by Proposition 6) two other cases.
Case 4. The (r+ 1)st instruction is skip I. Let S(r+ 1 + l, w)=S(r, w) for each

variable w. Then continue the construction with instruction r + + 2.
Case 5. Tt!e (r + 1)st instruction is if y=0 then skip l. Let Xo be an input such

23(r+1)that x0_>-z Suppose that on input x0, y is defined at the end of r instructions
and its value is uniquely defined by (s(x), T) in $(r, y). If s(x) is not the zero polynomial,
then let S(r+ 1, w)= $(r, w) for each variable w and continue the construction with
instruction r + 2. If s(x) is the zero polynomial, then let $(r + 1 + l, w)= $(r, w) for
each variable w and continue the construction with instruction r + + 2. The construc-
tion is completed when a halt instruction is encountered, or when a transfer to a
nonexistent instruction is executed, or when the last instruction of the program has
been considered.

4 By convention, the program goes into an infinite loop when a division by 0 occurs.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 13

Thus, Lemma 2 holds for the extended language, and all the results of 2 and
3 apply. In particular, we have

THEOREM 4. Let P1 and P2 be two L-programs with one input variable. Then P1
and P2 are equivalent if and only if they are equivalent on all inputs x such that
IX[< 22’r2 (r is the maximum ofthe lengths ofP1 and P2, and A is a fixedpositive constant).

THEOREM 5. No L-program can compute a pair generator.

Appendix. Proofs of Propositions 1, 2, and 6.

Proof of Proposition 1. The following program which can easily be translated to
a program over the instruction set {y 0, y 1, y (-- y + w, y y- w, y y’w, y
[y/w } computes (x/y):

0 ifxy-->O,w[1/(4xy+2)] w=
-1 ifxy<0

v ,- l(x + w)/y1 [x/yl w

"0 if y 0 and w =0,
0 if y 0, w =-1, and

x is a multiple of y
1 if y 0, w =-1, and

x is not a multiple of y
undefined if y=0

ProofofProposition 2. Programs P1 and P2 below (which can easily be transformed
to programs over the instruction set {y 0, y 1, y y + w, y y w, y y w,
y (y/w)}) compute [x/y and [x/y], respectively.

Program PI
O if xy >-0,

w(3xy/(3xy+l)) w=
1 ifxy<0

v ,- ((x- w)/y)-(x/y) + w

"0
0

1

undefined

if y 0 and w =0,
if y 0, w 1, and x
is a multiple of y,
if y 0, w 1, and x
is not a multiple of y,
if y=0.

w (5x/(4x + 1))

v ((xz- w)/y2)-(x2/y2)+ w
x,-lx/yl

0 if x =0,
ifx 0.

xx+v [3

14 OSCAR H. IBARRA AND BRIAN S. LEININGER

Proof of Proposition 6. The constructions are straightforward. For example, if
y > 0 then skip can be coded as

ul

v-v/u v=2

z#z+y z=y

z#z*v z=2y

z#z-u z=2y-1

wO

w-w+z w=2y-1

w,--(w/v)

W-W*V

1 if y>0,
zz-w z=

-1 if y=<0

0 ify>O,
zz-u z=

-2 ify_-<O

if z 0 then skip

where u, v, w, and z are new variables.

Acknowledgment. We would like to thank the referees for their suggestions and
detailed comments which improved the presentation of our results.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. DAVIS, Computability and Unsolvability, McGraw-Hill, New York, 1958.
[3] M. DAVIS, Y. MATIJASEVI, AND J. ROBINSON, Hilbert’s tenth problem. Diophantine equations"

Positive aspects of a negative solution, Proc. Symp. Pure Mathematics, 28 (1976), pp. 323-378.
[4] F. HENNIE, Introduction to Computability, Addison-Wesley, Reading, MA, 1977.
[5] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, MA, 1979.
[6] O. H. IBARRA AND B. S. LEININGER, The complexity of the equivalence problem]:or straight-line

programs, Proc. 12th Annual ACM Symposium on Theory of Computing, 1980, pp. 273-280.
[7] H. ROGERS, Theory ofRecursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0002 $01.00/0

THE COMPLEXITY OF THE EQUIVALENCE
PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS*

OSCAR H. IBARRA* AND BRIAN S. LEININGER*

Abstract. We consider a simple class of loop-free programs whose instruction repertoire consists of
x 0, x c, x cx, x x/c, x x + y, x x y, skip l, if p(x, y) then skip l, and halt. (x and y are integer
variables, c is a positive integer, x/c is integer division, is a nonnegative integer, and p(x, y) is a predicate
of the form x > y, x => y, x y, x y, x-< y, or x < y; skip causes the (l + 1)st instruction following the
current instruction to be executed next.) We show that the equivalence problem for this class is decidable
in 2xr2 time (N sum of the sizes of the programs and A is a fixed positive constant). The bound cannot
be reduced to a polynomial in N unless P NP. In fact, we have the following rather surprising result:
The equivalence problem for programs with one input variable (which also serves as the output variable)
and one auxiliary variable using only instructions x 2x, x x/2, and x x + y is NP-hard.

Key words. Complexity, equivalence, zero-equivalence, loop-free programs, NP-hard

1. Introduction. In an earlier paper [6], we showed that the equivalence problem
for several classes of straight-line programs (over positive, negative, or zero integer
inputs) using only arithmetic operations is undecidable. In particular, we showed the
following"

(a) The one-equivalence problem2 is undecidable for {x 1, x 2x, x -x + y,
x - x/y}-programs3.

(b) The one-equivalence problem is undecidable for {x -1, x -x/2, x x- y,
x x*y}- programs.

In this paper, we study a simple class of straight-line programs with a decidable
equivalence problem. Specifically, we consider the class of loop-free programs whose
instruction repertoire is R {x <-- O, x <- c, x <-- cx, x <- xc, x <-- x + y, x <- x y, skip l, if
p(x, y) then skip l, halt}, x and y are distinct integer variables, c is any positive integer,

is any nonnegative integer, and p(x, y) is a predicate of the form x > y, x >= y, x y,
x # y, x =< y, or x < y. skip causes the (1 + 1)st instruction following the current
instruction to be executed next. A program (which need not contain a halt instruction)
can terminate its computation in three ways" by executing a halt instruction, by
executing a transfer to a nonexistent instruction (via skip or if p(x, y) then skip l),
or by executing the last statement of the program. Two distinguished (not necessarily
disjoint) sets of variables are designated input variables and output variables, respec-
tively. We assume that all noninput variables are initialized to O.

The main results of this paper are the following"
(1) The equivalence problem for R-programs is decidable in 2 time (A is a

fixed positive constant and N is the sum of the sizes of the programs). For programs
with a fixed number of input variables, the bound is 2xn.

(2) The inequivalence problem for R-programs is in NP the class of languages
accepted by nondeterministic polynomial-time bounded Turing machines [3]).

* Received by the editors December 19, 1979. This research was supported by the National Science
Foundation under grant MCS-78-01736.

Computer Science Department, Institute of Technology, University of Minnesota, Minneapolis,
Minnesota 55455.

Given two programs, are they defined at the same points and equal wherever they are defined?
2 Given a program, does it output for all inputs?
{il,’’ ", ik }- programs denotes the class of programs using only instructions of the form il,’" ", ik.

x/y is integer division. (Thus, 4/3 is and -4/3 is -1.)

15

16 O. H. IBARRA AND E. S. LEININGER

(3) The equivalence problem for {x 2x, x x/2, x x + y}-programs with one
input/output variable (i.e., the input variable is also the output variable) and one
auxiliary variable is NP-hard. (The result also holds when x x + y is replaced by
x-x-y.)

(4) The zero-equivalence problem (= does a program output 0 for all inputs?)
for each of the following classes is NP-hard:

(i) {x - O, x 2x, x x/2, x x + y, x x y}-programs with one input/output
variable and one auxiliary variable.

(ii) {x 2x, x x/2, x x y, x y}-programs with one input/output variable
and one auxiliary variable.

(iii) {x O, x x/2, x x y}-programs with one input/output variable and two
auxiliary variables.

(5) The zero-equivalence problem for each of the following classes is decidable
in polynomial time.

(i) {x O, x c, x -c, x cx, x x/c, x x + c, x x c, x x y}-programs
with at most two variables. (This shows that (4) (ii)-(iii) may be the best
possible results.)

(ii) {x0, xc, x-c, xcx, xx/c, xx+c, x,,--x-c, xx+y, x-y}-
programs (with no restriction on the number of input and auxiliary variables).
This contrasts (3) and (4) (ii)-(iii).

2. An upper bound on the complexity of the equivalence problem for R-
programs. In this section we show that the equivalence problem for R-programs is
decidable in 2ar2 time (N -sum of the sizes of the programs and h is a fixed positive
constant). For programs with a fixed number of input variables (but no restriction on
the number of output and auxiliary variables), the bound is 2xv. We begin with the
following lemma.

LEMMA 1. LetP be an R-program. Assume thatP has m input variables x 1, , x,
and one output variable Xl. Let the other variables be x,+l, , xn. Let r be the number
of instructions in P and K product of all positive integer constants (i.e., c’s) appearing
in instructions ofP. Then we can construct a collection D ofsystems of linearDiophantine
equations4 with the following properties"

(1) D has at most 2" 6 systems of equations.
(2) Let S be any system in D. Then
(i) S has at most 2n + 5r equations in at most 3n + 5r + 1 variables.
(ii) Each equation in S has at most 3 variables.

(iii) The maximum of the absolute values of all subdeterminants of the augmented
matrix 5 of S is K242n+Sr.

(iv) S has 2m distinguished variables x, o o, x,, s, , s,, where the pair
(xi, si is associated with the input variable xi of P. s o will always have value
0 or 1. s7 1 is interpreted as x7 being actually negative.

(3) P computes a nonzero function (i.e., a function which is not zero on all inputs)
if and only if one of the systems in D has a nonnegative integer solution. Moreover, if
a system S in D has a nonnegative integer solution, then the values of x, , x o,, with
appropriate signs attached (as given by the values of s,. s,,) when input to P will
make P output a nonzero value.

4 A linear Diophantine equation is an equation of the form alvl +" + akvk b, where al,. ., ak, b
are (positive, negative, or zero) integer constants and v,.. , u are integer variables.

The augmented matrix of a system of equations A)7 =/7 is A augmented by column vector/

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 17

Proof. We describe the construction of a system S in D. In the construction, we
will be introducing new variables" For each 1 < < n, x 2 0 2

i, Xi, Xi, and Si, Si, Si,

are distinct variables associated with P’s input variable xi. For ti _>-0, s[’ denotes the
ti ti =0(1) denotes nonnegative (negative)sign of the value of variable x i, where s

Similarly, new variables u, U 1, b/2, will be used. The construction of S involves
defining for each instruction in P one or more equations describing the change that
occurs in the variable that is modified by the instruction. The algorithm below forms
the system S as a set of equations. The algorithm is nondeterministic with each choice
giving rise to a new system.

ALGORITHM CONSTRUCT

q-0

Add (s o o
m+l --O, Xm+l --0,

0 0s. =O,x. =0)

Add (s 0)or [Add (s 1,
Xl uq + l); qq + l]

Add (s 0) or [Add (s o 1
o =uq+l).q_q+l]Xm

Add to S the equations which initialize
the noninput variables to 0 and
their signs to 0 (i.e., nonnegative)

Nondeterministically choose the
signs of x o 0

1,’’’, x,,. If S is
chosen to be 1, check that x/o > 0

for i 1 to n do
ti-O

end
p-I

while p -< r do
case if pth instruction is

:xi - 0: Add (s t’+li "-0, xiti+l 0); ti " ti -t- 1", p - p + 1
ti+l ti+l C)" ti - ti + 1" p p + l:xi - c" Add (s 0, x

+:xicxi’Add(s+1 =si,xi =cxi);titi+l;p-p+l
:Xi <-" Xi "]- Xj: do (1) or (2) or (3) or (4) or (5)

(1) Add (s t‘ tj t,+l t, t,+l t, tj). ti - ti + 1" p=si, s =s,x =x +x. p+l
t t+ t q t + t. t.(2) Add(s’-si=l, si =O, xi=xi+u xi =xi’-x/);titi+l;

qq+l;pp+l

ti+l q ti+l t.(3) Add (s;.-si 1, si 1, xi + u + 1 xj, xi x) -x[’);
ti - ti q- 1; qq q- 1; p-p + 1

t. + ti q ti + ii(4)Add(si-s-/=l, si =O, xi +u =xi, xi =xj-x),ti-ti+l;
qq+l;pp+l

t, t. ti+l t. t. q ti+l(5)Add(si-si’=l,si =l,xi’=x/+u +l, xi -xi-x ,t-ti+l;
q-q+l;pp+l

18 O. H. IBARRA AND E. S. LEININGER

:Xi <-" Xi X] Same as for Xi<--’XiAf-X except that in (1), (2), (3), (4), (5) the
first equations are replaced, respectively, by"

t.si+s/=l
t.

Si -I-S/ :0
t t.

Si -"S -’0
tj 1Si 1, S
tj 1si 1, s

:Xi <’" Xi/C" do (6) or (7) or (8)
t. + t + q t q(6) Add (s’=0, si’ =0, cx +u =xi, u +u+ =c-l); titi+l;

qq+2;p-p+l
ti+l ti+l q q t.+l(7) Add(si 1, si =l, cxi +u =xi, u +u+ =c-l, xi’

Uq+2+ 1); ti ti+ 1; qq +3; p-p+ 1

(8) Add (s t‘ ti+l ti q ti+l 0); ti -- ti + 1; q q + 1.1, Si -’0, X nt-Ll =c-l, Xi

p-p+l
skip I" p p + + 1
if xi > xi then skip I" do (9) or (10) or (11) or (12) or (13) or (14)

t, t. t.+uq+l).qq+l.pp+l+ 1(9) Add (si =0, s =0, xi =x
t.t=O, xi’+ x)" qq+l" pp+l(10) Add (sl’ O, s,

9=l).pp+l+l(11) Add (sl’ =0, s,
t.(12) Add (S 1, S/ 0); p p + 1

(13)Add(s t, t. t, t). qq+l" pp+l+l=l,s/=l, xi+u +l=x
t=l x t +uO) qq+l" p-p+l(14) Add(s’=l,s, ’=x,

if xi >-_ xi then skip l"
if xi < xi then skip l’

Handled in a similar way as in
if xi <= xi then skip l"

if xi > xi then skip
if xi xi then skip l"
if xi xi then skip l"
halt: p - r + 1

end
end
Add (x [’ u q + 1) Insures that the final value of x 0

end
The algorithm above is nondeterministic. Every choice gives rise to a different

system S. Clearly, there are at most 2" 6 -<_ 2 6 systems S. This proves property
(1). That properties (2) and (3) hold is easily verified.

Next, we state a lemma concerning "small" nonnegative integer solutions to linear
Diophantine equations. The proof of the lemma can be found in [5] (see also [1]).

LEMMA 2. Let S" A:9 b be a system of linear Diophantine equations, where A
is an rn x n integer matrix, 37 (y1,’", Yn) is a column vector of variables, and
b (bx, bin) is a column vector of integer constants. If S has a nonnegative integer
solution then it has a nonnegative integer solution 1, , such that each i <- 3n A,
where A is the maximum of the absolute values of all subdeterminants of the augmented
matrix Ab.

LEMMA 3. Let P, n, r and K be as in Lemma 1. Then P computes a nonzero
function if and only if it outputs a nonzero value for some input (Xx, , x) in which
each Ixi] <- 2N, where N is the size of the program and h is a fixed positive constant.6

[Xil absolute value of xi. The size of a program is the length of its representation.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 19

Proof. From Lemmas 1 and 2, P computes a nonzero function if and only if it
outputs a nonzero value for some input (xl,"’,x,) in which each [xil <-
3(3n + 5r + 1)(K242"/5r)2. Now if N is the size of P then N ->r, N _->n log n, N ->log K.
It follows that Ixil <= 2xN, where A is a fixed positive constant. I3

COROLLARY 1. 2xv" time is sufficient to decide if an arbitrary R-program computes
a nonzero function.

COROLLARY 2. Deciding if an arbitrary R-program computes a nonzero function
can be done in nondeterministic polynomial time (NP).

We are now ready to prove the main result of this section.
THEOREM 1. The equivalence problem for R-programs with m input variables is

decidable in 2xlv" time (N sum of the sizes of the 2 programs under consideration
and A is a fixed positive constant).

Proof. Let P1 and P2 be two R-programs. Assume that they have disjoint sets
of variables. Let their input variables be Xl, , x, and yl, , y,, respectively, and
their output variables be Zl,’’’,Zk and w1,’’’, Wk, respectively. Define a new
program P with input variables xl, , x, and output variable xl as follows"

yl--x1

For 1, 2, PI is Pi with each halt instruction replaced by skip l, where is the number
of instructions after the halt to the end of P. Then P computes a nonzero function
if and only if P1 is not equivalent to P2. The result follows from Corollary 1.

COROLLARY 3. Equivalence ofR-programs is decidable in 21v2 time. Forprograms
with a fixed number of input variables, the bound is 2xv.

From Corollary 2, we also have
COROLLARY 4. The inequivalence problem for R-programs is in NP.
In 3 we will see that (in)equivalence of R-programs is NP-hard. In fact, the

NP-hardness result holds for a very simple subset of R-programs.
For completeness, we mention the following result in [6] which contrasts with

Corollary 3. (The input variables can assume positive, negative, or zero integer values.
However, the result also applies to the case when the inputs are restricted to nonnega-
tive integers.)

20 O. H. IBARRA AND E. S. LEININGER

THEOREM 2.
(i) The zero-equivalence problem/’or {x <- 1, x <- 2x, x <-- x + y, x <-- xy}-programs

is undecidable. The result holds even if we consider only programs that compute total
functions with range {0, 1}.

(ii) The zero-equivalence problem for {x <-- 1, x <- x/2, x <-- x y, x <- x * y}-programs
is undecidable.

Remark. The proof of Theorem 2 in [6] was for the one-equivalence problem
(deciding if a program outputs 1 for all inputs). However, the proof can trivially be
modified to apply to the zero-equivalence problem.

When there is no division, we have the following proposition.
PROPOSITION 1. The equivalence problem for {x <- O, x <-- c, x <-- cx, x <- x + y, x <--

x-y, x <--x *y}-programs (with no restriction on the number of input, output, and
auxiliary variables) is decidable.

Proof. Let P be a program with input variables xI,’", xn. Without loss of
generality assume that the input variables do not appear on the left-hand sides of the
instructions in P. Then the value of each output variable y at the end of the program
can be represented by a polynomial p(xx,"" ,xn) in standard form (i.e., sum of
products). Moreover, p(xx,’", Xn) can be found effectively. Thus, to decide if two
programs are equivalent, we find the polynomials representing their outputs. Then
the programs are equivalent if and only if the polynomials representing their respective
outputs are identical. (Note that this process will, in general, take exponential time
since the sizes of the polynomials may grow exponentially with respect to the lengths
of the programs.) 71

Remark. One can easily check that all the results and proofs in this section remain
valid when the inputs are restricted to nonnegative integers.

3. Two-variable {x<-2x, xx/2, x<-x+y}-programs. It is very unlikely that
equivalence of R-programs can be decided in polynomial time since we can show that
the problem is NP-hard (see [3], [4], [7] for definitions and motivations of the terms
NP-hard, NP-complete, etc.). In fact, we can show something quite surprising: The
equivalence problem for {x <-- 2x, x <-- x/2, x <-- x + y}-programs with one input variable
(which is also the output variable) and one auxiliary variable is NP-hard. This result
is interesting (and counterintuitive) for the following reasons:

(1) The proofs of most NP-hard results concerning equivalence of programs (see,
e.g., [2]) actually show the NP-hardness of the zero-equivalence problem. Thus, for
such proofs only one program is constructed. In the case of {x <-- 2x, x <- x/2, x <- x +
y }- programs, zero-equivalence is clearly decidable in polynomial time. Hence, the
proof that equivalence is NP-hard involves the construction of two programs.

(2) There is no instruction that can set a variable to 0 or 1. Hence, there is no
way to take complements, and a reduction to the satisfiability problem for Boolean
formulas cannot be done directly.

(3) Only two variables (one of which is used for input/output) are needed to
show NP-hardness.

(4) The variables can assume positive, negative, or zero integer values. This
makes the proof harder. Note that there are some number-theoretic problems that
are NP-hard when the variables are restricted to be nonnegative but become poly-
nomial-time solvable when there is no such restriction. For example, deciding if a
system of linear Diophantine equations has a nonnegative integer solution is NP-hard
[9]. However, if we are interested only in any integer solution, the problem is solvable
in polynomial time [8].

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 21

THEOREM 3. The equivalence problem for {x <-- 2x, x <- x/2, x <-- x + y}-programs
with one input variable (which is also the output variable) and one auxiliary variable
is NP-hard.

Proof. The proof uses a well-known result that the satisfiability problem for
Boolean formulas in conjunctive normal form (CNF) with at most three literals per
clause is NP-hard [3]. Let F CIC2"" C,, be a Boolean formula over variables
x1,’’ ", xn, where each Ci is a disjunction (i.e., sum) of at most 3 literals. (A literal
is a variable or a negation of a variable.) We shall construct two programs PF and P-
such that they are equivalent if and only if F is not satisfiable. PF has input/output
variable x and auxiliary variable y, and it has the following form"

Initialization
P1

P.
Adjustment
Q

Q.
Finalization

The input x, which can be positive, negative, or zero, is viewed as a binary number
x xn x b, where b, x 1, ’, x are binary digits and : is some (possibly negative)
finite string of binary digits. (Convention: in this proof, 4 represents any (possibly
negative) finite string of binary digits whose exact composition is not important.) The
construction is such that PF and P agree on all inputs with b 0. They disagree on
some input with b 1 if and only if F is satisfiable. Thus, programs PF and P- will
not be equivalent if and only if F is satisfiable.

Before we write the codes for the different parts of PF, we describe a routine
Z(k, l) which will be used many times. The parameters k and are positive integers.

Code for Z(k, l). Let x # Sk+l’’’Sk+lSk’’’S1, where $1,"’’, Sk+l are binary
digits. The code Z(k, l) sets s,+l,’", s,+l to O’s without changing sl,’", s. We
assume that y 0 or it has the same sign as x at the beginning of Z(k, 1).

y 2k+ly coded: y <-- 2y;. .; y <- 2y (k + l) times

k+l

y=:O...O

y <-- y + x y :: Sk+l Sk+lSk S1

y y/2k coded" y <-- y/2; .; y <-- y/2 (k times)
k

y<--2ky y= #Sk+l’’’s+10’’’0

l-1

X<-’Xnt-y X-" :l-Sk+l-1 Sk+l OSk $1

22 O. H. IBARRA AND E. S. LEININGER

l-1 k+l

y 2y y :: Sk+l-1 Sk+l 0 0

x<--x+y
k+l-1

y2y y= s+O’’’O

I-2

X :: Sk+/-2 Sk+l OOsk Sl

x -x + y y= ::O O Sk S1

We are now ready to write the codes for the different parts of PF.
Code for Initialization.

x 4- 23reX

At the end of Initialization,

3m

3 2 32
alalal x,x x,, xlbd,d,d, .xbO... O.

It will always be the case that at the beginning of code Pk (1--<_ k _-< n), x has the
3 2 A3A2A1form x # X,,-k /1 X bd .,d .,d . . . and y is either 0 or a number with the

same sign as x. (Note that by convention, y is 0 at the beginning of the program since
y is not an input variable.)

Code for Pk, 1 <-- k <-_ n.
3re+n-k+2

Z(3m +n-k +2, 3m +n-k +2) x #0... 0X,-k+l xxbd 3m d
6m+2n+2

y 26m+2n+2y y 0 0

y<-y+x

yy/23m+’-k+
3re+n-k+2

y # 0 OXn-k+l

(Let Ckl, ", Ckr be the clauses in which X,,-k + appears, and assume k <" < kr.)

3re+n-k+2 3(kl-1)

y -- 23(kl-1)y y : 0 OXn-k+l 0 0

x<-x+y d2k, dlkl -- d2k dlkl + Xn-k+l with

d unchanged.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 23

y (- 23(k2-k)y
xx+y

y <-- 2--y
x<--x+y

y <-- 23(’-k)+4y
yy+x

y y/23m

y <--" 23re+n-k+1

x<--x+y

Z(3m +n-k+2, 3m +n-k +2)

y 26m+2"+2y
y (--y +x

y (--- y/23m+,-k+l

3 2y= bdmddm dddl
y=b

3re+n-k+1

y= :b0...0

x 4 (x_/ + b)x._ xbd dl

_+ if b 1

3re+n-k+2

y 0

(Let C1,’" ’, Cks be the clauses in which n-k+ appears, and assume/1 <’" </s.)

y

x<--x+y

y - 23(-)yx<-x+y

xx+y

Clearly, at the end of P,, x # b d3 d d... d31 d d where d 0 for 1 < k < m.
Moreover, if b 1 then d, d > 0 if and only if Ck is satisfied.

Code for Adjustment.
3m

Z(3m+l,3m) x= #O...Obd3m ...d

y # 26m+ly
y <--y +x

y y/23"
3m

y= 4#O...Ob

24 O. H. IBARRA AND E. S. LEININGER

x<-x+y

y2y

xx+y

y22y

x*--x+y

y2y

x-x+y

y22y

xx+y

y-2y

x*-x+y

X 2reX

d d d *-d d2 d +bb

d d d d3 d d-" 2 2+bb

dd2,.d 3 2,--d,.d.d., +bb

At the end of Adjustment,

x ddd’" d d d

Moreover, d3 d d3 1 if and only if b 1 and F C1 C2 Cm is satisfied

Code for Qk, 1 <-- k <- m. When Qk is entered, x always has the form

m-k+l

X = d3m k+l d2m-k+l d d31 d21 dl d3m d3m_l 3
m-k+l din-k+2

Z(m + 3(m k + 1), m + 3(m k + 1))

y 22m+6(m-k+l)y

y*--y +x

y 4- y/2m+3{m-)+2

m+3(m-k+l)

3x 0" 0 d.,-k+l

m-k+l

dd "’’d3
m-k+2 0’’’ 0

m+3(m-k+l)

3y= #O O dm_k+l
m-k+l

3dld din-k+2
m+3(m-k+l)

y= #0’’ "0d 3
m-k+l

m-k

3 dl d3., dm-k+l 0’’" 0x *--x +y x #dm-k

3 d31 and d d d3At the end of 0,,,, x= #d3md,,_l ,,=1 if and only if
b 1 and F is satisfied.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 25

Code for Finalization.

Z(m,m) x # O O d d3m_l d31

y 22my
yy+x

y -- y/2m-1 y= # 0.’-7. 0 d3

xx+y

xx/2 x=

At the end of Finalization, x # h, where h 0 or 1. h I if and only if d d
d 1, i.e., if and only if b 1 and F is satisfied. It follows that Pv outputs an odd
number for some input if and only if F is satisfiable.

Now let P be the program obtained from PF by adding the following instructions
at the end of PF:

XX/2

X2X

Then P is equivalent to PF if and only if F is not satisfiable. One can easily check
that the sum of the sizes (total number of instructions) of PF and P is some fixed
polynomial in m and n (and, therefore, in the size of F). Hence, the construction of
PF and P takes polynomial time in the size of F. Since the satisfiability problem for
Boolean formulas in CNF with at most 3 literals per clause is NP-hard, the result
follows.

In Theorem 3, the instruction x x + y can be replaced by x - x y:
COROLLARY 5. The equivalence problem [or {x 2x, x x/2, x x y}-programs

with one input variable (which is also the output variable) and one auxiliary variable
is NP-hard.

Proofi Replace the occurrences of instructions x x + y and y y + x in Pv by
x x-y and y - y- x, respectively.

When x - 0, x x + y, and x - x y are in the instruction set, we have
THEOREM 4. The zero-equivalence problem for {x O, x 2x, x x/2, x x + y,

x x y}-programs with one input variable and one auxiliary variable is NP-hard. The
result holds even if the instructions x 0 and x x-y are used exactly once in the
programs.

Proof. Let/r be the program obtained from Pv (of Theorem 3) by adding the
following instructions at the end"

y0

yy+x y=x

y-y/2

y-2y

x-x-y

Then/3F outputs 0 for all inputs if and only if F is not satisfiable.

26 O. H. IBARRA AND E. S. LEININGER

COROLLARY 6. The zero-equivalence problem for {x 2x, x - x/2, x x y,
x y}-programs with one input variable and one auxiliary variable is NP-hard. The
result holds even if the instruction x y is used exactly once in the programs.

Proof. Replace the instructions y 0; y y +x in the proof of Theorem 4 by
y x. Then the results follows from Corollary 5. 71

COROLLARY 7. The zero-equivalence problem for {x - O, x x/2, x x y}-
programs with one input variable and two auxiliary variables is NP-hard.

Proof. This follows from Theorem 4 and the observation that x - 2x and x x + y
can be coded as z 0; z - z x x x z and z 0; z z y x - x z, respectively,
z a new variable. 71

Corollaries 6 and 7 may be the best possible results since we can prove the
following theorem.

THEOREM 5. The zero-equivalence problem]:or {x -O, x c, x -c, x cx, x
x/c, x x + c, x x c, x x y}-programs with at most two variables (both may be
input variables) is decidable in polynomial time (c is any positive integer constant).

Proof. Let P be a program with r instructions, and let d max {c’s appearing in
P} + 1. Let x and y be the variables of P. We consider two cases.

Case 1. P has one input variable. Let d3r be the input. Let 0-< k =< r. Then it is
easy to show (by induction on k) that the following are true at the end of k instructions:

(1) Exactly one of (a) or (b) below holds for variable z (z is either x or y):
(a) [value (z)[=< d k and value (z) is independent of the input.
(b) Ivalue (z)] >- d3r-k

(2) If Ivalue (x)l>-d3r- and Ivalue (y)l->d3-, then value (x)and value (y) have
opposite signs.

It follows from (1) and (2) that P computes the zero-function if and only if P
outputs 0 on input d3r.

Case 2. P has two input variables. As in Case 1, P computes the zero-function
if and only if P outputs 0 on inputs (0, d3r) and (d 3r, 0). [-I

If the instruction x x-y is replaced by x x + y in Theorem 5, we can prove
a stronger result.

THEOREM 6. The zero-equivalence problem]:or {x O, x c, x -c, x cx, x
x/c, x x + c, x x c, x x + y, x y}-programs (with no restriction on the number
o] input and auxiliary variables) is decidable in polynomial time.

Proo] Let P be a program with r instructions, and let d max {c’s appearing in
P}+ 1. Then P computes the zero-function if and only if P outputs 0 when all the
input variables are set to d r. 71

For one-variable programs containing only instructions of the form x 0, x - 1,
x - 2x and x x/2, equivalence is decidable in polynomial time"

PROPOSITION 2. The equivalence problem for one-variable {x -O, x 1, x 2x,
x x/2}-programs is decidable in polynomial time.

Proo] This is obvious since any program P can be reduced (in polynomial time)
to one of the following forms (a, k and m are some nonnegative integer constants):

(1) x - a

(2) x 2x
(3) x x/2

(4) x x/2; x 2"x [3

When x is restricted to nonnegative integer inputs, we can prove a stronger result"

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 27

THEOREM 7. The equivalence problem for one-variable {x 0, x # x + 1, x # 2x,
x x/2}-programs over nonnegative integer inputs is decidable in polynomial time.

Proof. Any program P containing only instructions x O, x x + 1,x - 2x, x x/2
can be reduced (in polynomial time) to one of the following forms (a, b, k, and m are
nonnegative integers)’

(1) x a
(2) x - 2kx + a
(3) x x/2k

(4) xx+a;xx/2k

(5) x x/2k x 2"x + b
(6) xx+a;xx/2k;x-2"x+b
The reduction can be accomplished using the following transformations:
(a) x 2kx + a x 2"x + b reduces to x 2 k+’x + (2’a + b)
(b) x x/2k; x x/2" reduces to x
(c) x - 2kx + a x x/2" reduces to x 2k-"x + a/2" if k _-> m
(d) x 2kx + a x - x/2" reduces to x x + a/2k x x/2’-k if k < m
(e) x - x/2k x x + a reduces to x

Remark. Again, all the results in this section remain valid when the inputs are
restricted to nonnegative integers.

REFERENCES

[1] I. BOROSH AND L. B. TREYBIG, Bounds on positive integral solutions of linear Diophantine equations,
Proc. Amer. Math. Soc., 55 (1976), pp. 299-304.

[2] R.L. CONSTABLE, H. B. HUNT AND S. SAHNI, On the computational complexity ofscheme equivalence,
Proc. 8th Annual Princeton Conference on Information Sciences and Systems, 1974, pp. 15-20.

[3] S. A. COOK, The complexity of theorem-proving procedul’es, Proc. 3rd Annual ACM Symposium on
the Theory of Computing, 1971, pp. 151-158.

[4] M. R. GAREY AND D. S. JOHNSON, Computers and IntractabilitymA Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[5] E. M. GURARI AND O. H. IBARRA, An NP-comptete number-theoretic problem, J. Assoc. Comput.
Mach. 26 (1979), pp. 567-581.

[6] O. H. IBARRA AND B. S. LEININGER, On the simplification and equivalence problems for straight-line
programs, submitted to J. Assoc. Comput. Mach. (Available as Univ. of Minnesota, Dept. of
Computer Science Technical Report 79-21, September, 1979.)

[7] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum, New York, pp. 85-104.

[8] D. E. KNUTH, The Art of Computer Programming. Vol. 2wSeminumerical Algorithms, Addison-Wesley,
Reading, MA, 1969.

[9] S. SAHNI, Computationally related problems, this Journal, 3 (1974), pp. 262-279.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0003 $01.00/0

A FAST ALGORITHM FOR THE EUCLIDEAN TRAVELING
SALESMAN PROBLEM, OPTIMAL WITH PROBABILITY ONE*

J. H. HALTONt AND R. TERADA

Abstract. This paper presents an algorithm for the traveling salesman problem in k-dimensional
Euclidean space. For n points independently uniformly distributed in a set :, we show that, for any choice
of a function tr of n increasing to infinity with n more slowly than n, we can adjust the algorithm so that,
in probability, the time taken by the algorithm will be of order less than that of ntr(n) as n-->. The
algorithm puts the n points in a cyclic order, and we also show that, with probability one, the length of the
corresponding tour (that is, the sum of the n distances between adjacent points in the order given) will be
asymptotic to the minimal tour length as n->c. The latter is known (also with probability one) to be
asymptotic to kV(_)Pn q, where /k is a constant depending only on the dimension k, v(:) is the volume of
the set IE, p 1/k, and q 1- p. Our result is stronger, and the algorithm is faster, than any other we have
been able to find in the literature.

Key words, traveling salesman, probabilistic algorithm, operations research, optimization

1. Introduction. Consider a set A of n points in the k-dimensional Euclidean
space R k (with the usual topology). A tour of A is defined to be a cyclically ordered
set containing A (that is, a set q]- such that A

q]- Rk, with an ordering relation r such

that for any finite subset of -!]-, e.g., {A, B, C, D, U, F}, a unique, complete cyclic order
exists, e.g., {ARC, CTB, BrF, FrD, DT:E, :ETA}, which we shall abbreviate to
A rCTBTFTDT:ETA, or just to the string of point-symbols ACBFD:E). Note that a
path, which may be intuitively viewed as a tour which crosses itself, can always be
described as a cyclically ordered set by removing the single point of intersection from
one of the branches. Similarly, a path which is traced more than once may be cyclically
ordered by suitably interlacing the points of each passage. If a metric d is defined in
R (not necessarily consistent with the topology of E), such a tour will have a (possibly
infinite) length I(T, 7) (defined as the suprernum of the sum of the metric distances
between successive points in any finite subcycle in the tour, e.g., d(A, C) + d(C, B) +
d(B,F)+d(F,D)+d(D,:E)+d(:E,A)). Since all tour-lengths are nonnegative, they
are bounded below by zero; so that there will be an infimum for the lengths of all
tours of a given set A. We denote this by I(A).

Given a tour (T, 7) of A, it will uniquely determine a cyclic ordering of A (since
A is a finite subset of), so that (A, 7) is itself a tour of A. If we label the points of
A in such a manner that the tour (T, 7) imposes the cyclic order A0 7A17A2 7 7An
A0, then the triangle inequality for the metric d ensures that the length I(A, 7)=
i= d(Ai_, Ai), and it is clear that this cannot exceed the length I(T, 7). It follows
that the infimum of the lengths of all tours of A is the same as the infimum of the
lengths of all tours (A, 7)" this is the infimurn of I(A, 7) over all (n 1)! cyclic orderings
of A. Since this last infimum is taken over a finite collection of lengths, it is certainly
attained. We thus see that there will always exist at least one cyclic ordering of A,
which we may denote by zr, such that I(A, 7r)= inL I(A, 7)= I(A). Such a tour will be
termed a minimal tour of A. The search for minimal tour-lengths and for minimal
tours in R is called the traveling salesman problem (k-TSP).

* Received by the editors January 23, 1979, and in revised form December 12, 1980.
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.

$ Instituto de Matemfitica e Estatistica, Universidade de Silo Paulo, CEP 05508, Silo Paulo, Brazil.

28

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 29

In this paper, we shall limit ourselves to the problems in which the metric d is
the Euclidean (or Pythagorean or 12) metric, for which d(x,y)-IIx-Yll=-
(k (xi- yi)2)a/2 This is called the Euclidean traveling salesman problem (k-ETSP).i=1

The 2-TSP has been shown to be NP-hard (see Garey, Graham, and Johnson
[1976], Papadimitriou [1977], Garey and Johnson [1979], and this strongly suggests
that there is no polynomial-time algorithm for obtaining the exact solution of this
problem. By natural extension, we believe that the same is true for the k-TSP with
k -> 3. Certainly, no such algorithm has been found so far.

On the other hand, there has been some research on fast heuristic methods for
the solution of the 2-TSP: for example, computer programs to find near-optimal
solutions for sets of up to 300 points in an acceptable amount of time have been
described by Krolak, Felts, and Marble [1970], and by Lin and Kernighan [1973].
Their programs seem to give satisfactory results; but no rigorous analyses of the
algorithms are available.

Bellman [1962] and Held and Karp [1962] describe a dynamic programming
algorithm for the k-TSP, which determines an exactly minimal tour of a set of s points
in a time

(1.1) ts =2A(s- 1)[2s-3(s-2)+l] for s => 1,

where A is a computer-dependent constant (roughly, half the time needed for an
addition). We subsume the use of this algorithm, which we shall refer to as Algorithm
C, in constructing our own, and the estimate (1.1) yields our timing estimate in
Theorem 2. (Should a faster algorithm than the above become available, it will lead
to an increase in the speed of ours also.)

Since many important computational problems are known to be soluble only by
exponential-time algorithms, interest has recently shifted to probabilistic algorithms,
which (with a high degree of probability) will yield accurate answers in acceptably
short times, but for which (with very low probability) either (i) accurate answers may
take very long times to obtain, or (ii) answers obtained may not be accurate.

Beardwood, Halton, and Hammersley [1959] studied the statistical properties of
the solutions of k-ETSP. In particular, they showed that, if : is a bounded, Lebesgue-
measurable subset of R k, with k-dimensional Lebesgue measure (or volume) v(:) > 0,
and if P is an infinite sequence of points independently uniformly distributed in :,
with pn denoting the set consisting of the first n points of P, then there exists a
constant/3k, not dependent on : or P, such that, with probability one,

(1.2) l(Pn).--kv(_)Pn q as n,
where p 1/k and q 1-p. They also showed that, if the points of P are instead
independently distributed in : with any fixed probability distribution and if the
absolutely continuous component of this distribution is represented by a probability-
density function p (whatever the discrete and singular components of the distribution
may be), then, again with probability one,

(1.3) /(Pn)’/3nq fE p" dv as n--).

When the density is constant, p 1/v(:), and (1.3) reverts to (1.2). We take our point
of departure in the above paper, which we shall refer to as BHH. In the course of
reviewing the proofs of various results in BHH, we found that the proof of their
Lemma 7 had to be modified somewhat (the statement of the lemma remains correct).

30 J. H. HALTON AND R. TERADA

This is discussed in Appendix II of Halton and Terada [1978], hereinafter referred
to as HT. The present paper is a revised version of HT.

Karp [1977] has described a probabilistic algorithm for the 2-TSP: it is a recursive
algorithm, for which he claims an expected running-time of the order of n (log n)2 and
an expected resulting tour-length asymptotic to l() as n +. It will be seen below
that the algorithm presented here is proved in probability to run in a time which is
o[ntr(n)] for an arbitrarily chosen function tr satisfying

(n)
(1.4) tr(n)-+oo and -+0 as n-+oo

(see Theorem 2), and it is also proved that the resulting tour-length is asymptotic to
l(A) with probability one (see Theorem 3). Some questions and discussion of Karp’s
paper are given in Appendix III of HT; in any case, our results are stronger. We are
not aware of the existence of any other algorithm comparable to ours.

2. The main algorithm. Given a set of n points in R k, our algorithm covers it
with a cubic lattice of cells, solves the k-ETSP in each cell by Algorithm C, and
prescribes how these partial tours should be connected cell-to-cell to form a tour of
A. The all-important lattice is defined in such a way that the tour generated has the
desirable properties of speed and accuracy claimed in Theorems 2 and 3 below. These
are both statistical and asymptotic properties, derived by embedding the given problem
in a large class of similar problems in two ways. First, the set A is viewed as the first
n points of an infinite sequence of points. Secondly, the points of the sequence are
assumed to be independently uniformly distributed at random in a set E having the
properties:

(a) E is a Lebesgue-measurable set in Rk, with positive volume v(IE).
(b) : is bounded in k: we can find a semi-open hypercube (more briefly, a cube)

(2.1) C={x= (x1, x2,... ,Xk)Ek: bi<=xi<bi+A for i= 1,2,... ,k},

such that :
_
C and C has sides of length A.

(c) If the cube C defined in (b) is divided into a cubic lattice of M m k similarly
semi-open hypercubic cells Cj (f- 1, 2,..., M), each with sides of length A/m, and
if N2 of these cells contain points both of : and of its complement :c, then the boundary
of : is such that, as M+c, N2-O(Mq), where q- 1-1/k; thus, in particular,
NE/M-O. (We see that this property holds whenever the (k-1)-dimensional
Lebesgue measure of the boundary of : is finite.)

It is clear that the given set/_ :_ C; but, beyond this, the choice of : and C is
free and will depend on our knowledge (or hunch) of the class of problems of which
/ is considered to be a sample. In the absence of more precise information, we may
take : C and C to be the smallest cube (2.1) containing/. The determination of C
requires time of the order of kn, which is negligible, in view of Theorem 2.

Underlying the specification of the algorithm is the choice of a function tr of n,
satisfying (1.4) but otherwise at our disposal. Because of Theorem 2 and Karp’s claim
of an expected running time of O[n(log n)2], we will focus our attention on tr(n)
increasing with n no faster than (log n)2. If p 1/k and [. denotes the "roof"
function (the least upper bound among the integers), we can define the even integer

(2.2) m 2
v([E)log tr(n)

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 31

From this, we can derive that, by (1.4),

k 2nh k

(2.3) M m as n o.
v(IE) log or(n)

We also observe that

M
(2.4) m-, M, 0 as n.

n

ALGORITI-IM A. [A1] Given a set / of n points in R, choose the semi-open
hypercube C defined as in (2.1), the set : contained in C and containing/, having
properties (a), (b), and (c) above, and a function tr satisfying (1.4). Hence, determine
the even integer m, by (2.2), and M m.

[A2] Divide each side of C into m equal parts, thus creating a cubic lattice of
M semi-open hypercubic cells C/., with] 1, 2, , M.

[A3] In each cell C/., find by Algorithm C a minimal tour of/C/. (the intersection
of/ and C/., i.e., the set of points of/ falling in C/.). The result is a cyclic ordering
of the points of/C, which may be written as a string of point-symbols

(2.5) where &Ci {A(

and n/. is the number of points of in C/.. We note that

M

(2.6) Y n/. n.
/’=1

Of course, if/C/. for some f the corresponding string . will be null.
[A4] Using Algorithm B (defined below), determine a cyclic ordering of the M

cells, which may, by suitable renumbering, be written as

(2.7) C1C2" CM.

[A5] Applying the ordering (2.7) to the strings ., form a string

(2.8) 5e= Sex02. 5eM.

This represents a cyclic ordering of all the points of / (see Theorem 1 below), to
which corresponds a tour, (/, w), say, of length

M

(2.9) 10(/)
]=1 i=1

where Ao/.) A</.-x) and A<)
hi-1 no tiM

3. The cell-tour algorilhm. The following algorithm obtains the ordering (2.7)
of the cells Ci in a time of the order of M. Denote the set {0, 1, 2, , rn 1} by
and define a lattice of vectors a= (a, az,’", a,) with each a [!_. Then it is easily
seen that there is a one-to-one correspondence between the M vectors a and the M
cells C/., defined by

(3.1) C(a)= xeN’bi+-ai<=xi<bi+-(ai+l) fori=l,2,...,k
m m

Thus, an ordering of the cells will correspond uniquely to an ordering of the lattice
vectors a. We write ei for the unit vector in the ith coordinate direction, and we

32 J. H. HALTON AND R. TERADA

associate with each a the numbers

(3.2) r r(a) (-1) ++’++’-

for 2, 3,. , k. We note that the r take the values +/- 1 only, and that, for any a,
a + r e _, unless either a 0 and r -1 or ai m 1 and r + 1. Therefore, for any
a, there is at most one value of such that

ai+ri__ fori=k,k-1,...,t+l,
(3.3)

at + rt [1_, and _-> 3.

ALGORITHM B. [B1] If there exists an index satisfying (3.3), then the algorithm
identifies the successor of a as the vector

(3.4) a’= a + re,,

that is, the vector with a’ a for all # and with a’ =at+rt.
[B2] If (3.3) does not hold for any t, then the successor of a is determined as

follows:
(i) If a 1 and a 0, or if a > 1 and a is even, a’= a-e.
(ii) If a 0 and a m 1, or if 0 < a < m 1 and a is odd, a’ a + e.
(iii) If a 1, a 0, and a is even, or if a m 1 and a is odd, a’= a-e.
(iv) If a 0 and a < m 1, a’ a + e.
In order to apply Algorithms A and B, we need to show that (1) the algorithms

do indeed generate a uniquely-defined tour of A, (2) the algorithms are fast, and (3)
the tour produced is minimal, or nearly so. These assertions are the burden of Theorems
1, 2, and 3, respectively.

4. The algorithms yield a tour.
THEOREM 1. Algorithms A and B define a tour of the set . The length of this

t
I(ACi) + AM’’,/k + 3tour is less than =Proof. (i) It is clear from (2.1) and (3.1) that

M

(4.1) C U Ci and all Ci are disjoint.
j=l

Since A C, it follows that each point of A occurs in one and only one of the Ci, and
so is mentioned in exactly one of the strings 6e. generated by Algorithm C, in step
[A3]. Therefore, if Algorithm B does indeed yield a cyclic ordering of all M cells Ci,
as is asserted in step [A4], and if the corresponding strings . are combined, as in
step [A5] and (2.8), into a final string if’; then this string will mention each point of
A exactly once, and so will define a tour of A.

(ii) In Algorithm B, either step [B 1] or step [B2] will be executed in finding the
successor of any vector in the lattice _, and the choice is always well defined. If step
[B2] is executed, then it iseasily verified that every possible combination of a and
a2 in _2 occurs in exactly one of the cases (i)-(iv) of [B2]. It is also clear that, in every
case,

(4.2) if a _, then a’ a_ and a’= a+ et for some t,

and the corresponding cells C(a) and C(a’) meet in a face (the face defined by
xt=bt+(A/2m)(at+a’t +1)" see (3.1)); that is, they are adjacent. Thus, any point of
C(a) may be joined to any point of C(a’) by a chord of length less than (A/m)/k + 3
(since two adjacent cubes form a rectangular brick with (k-1) sides of length Aim
and one of length 2A/m, whose diameter is (A/m) [(k-1)(1)2+1(2)2]/2). We have

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 33

demonstrated that every cell has a well-defined successor cell to which it is adjacent.
It remains to be shown that this relationship defines a single cyclic ordering of the
lattice _k. We proceed inductively.

(iii) First, let k 2. Then (3.3) is impossible, and [B2] is always executed. The
rules of succession embodied in cases (i)-(iv) of [B2] generate a tour, which can be
described as follows" Begin at (0, 0); by case (iv), move in the +e2 direction until
(0, m- 1) is reached; by case (ii), move in the +el direction until (m- 1, m- 1) is
reached; thereafter, if a2 is even, we move in the direction of -el from (m 1, a2) to
(1, aj (or to (0, 0), when a2=0) (this is case (i)), and if a is odd, we move in the
direction of +el from (1, a) to (m 1, a) (this is case (ii)); whenever the end of a seg-
ment parallel to the first axis is reached, the tour descends to the next one by moving
in the -e2 direction from (1, a2) to (1, a2-1) or from (m- 1, a2) to (m- 1, a2-1).
Because m is even, what we have described is indeed a tour of I12. (If m were to
be odd, the point (1, m 1) would be the successor of both (0, m 1) and (2, m 1),
while (m 1, m 1) would have no predecessor, and the algorithm would not yield a
tour.) Figs. 1 and 2 illustrate these concepts for the cases of m 8 and 5, respectively.

Now, consider the application of Algorithm B to _k, and suppose that the algorithm
has already been shown to generate a tour of _k-1. Denote the vector, whose first
(k 1) coordinates are the same as those of a, by (al, a2, ak-1). Then we see
that, if a + r _, by (3.3) the successor of a is a + re that is, the path generated by
Algorithm B moves parallel to the kth axis, in the re direction. Indeed, since r
depends only on the coordinates of (which do not change when the path moves
parallel to e), we deduce that, when rk + 1, the path crosses the cube

_
from (, 0)

to (a, m-1) and, when rk---1, the path crosses _k from (, m- 1) to (, 0). On
reaching the end of such a segment parallel to the kth axis, we find that ak + rk : -, SO

that (3.3) cannot hold for k. On perusal of [B1] for < k and of [B2], we see that
the rules of succession in _k are identical with those in the tour 5 of [Lg-. Observing
further that, if a’-a is perpendicular to ek, then rk changes sign (since just one of
a l, a2,’’’, ak-1 changes by +1), we can infer that the new ak + rk fl- and the path
forthwith proceeds to cross [k k again in the reversed direction rkek.

Summing up, we see that, if a tour congruent to 6 is drawn on each of the faces
ak 0 and ak m 1 of _g perpendicular to ek, then the path generated by Algorithm
B in [L k zig-zags alternately between the two face tours, passing from a "zig" whose

122

--
FIG. 1. Tour of _2 by [B2] for the case

when m 8 (even).
FIG. 2. Path generated by [B2] for the

(forbidden) case when m 5 (odd).

34 J. H. HALTON AND R. TERADA

first (k- 1) coordinates are given by to a "zag" whose first (k- 1) coordinates are
given by the successor of in the tour if’. Since 5z passes through every point of Lk-1

the path passes through every point of Lk; and since the number of segments parallel
to ek equals the number of points in Lk-l, namely mk-, which is even (because m is
even), it follows that the number of "zigs" equals the number of "zags", and the path
defined by Algorithm B in k dimensions is closed, and therefore is also a tour.

The form of the inductive step is illustrated in Fig. 3 for the case of k 3 and
m 6. The two extreme tours in two dimensions, congruent to 6e, are seen as alternating

FIG. 3. Tour of L generated by Algorithm B. Follow the arrows on single and double line-segments.
This illustrates the inductive process described in part (iii) of the proof of Theorem 1.

double and dotted line-segments. The "zigs" and "zags" parallel to the third axis are
single lines (most of the interior points of [k3 are omitted to make the path easier to see).

(iv) Having shown that Algorithm B does generate a tour of Lk (in (ii) and (iii)
above), and that therefore Algorithm A does generate a tour of N (in (i)), we are left
with the bound on the length lo(N) of this tour. The tour generated is described by
the string (2.8). Each piece" . of o is shorter by d(A(A) than/(NC) because,
by the definition of the tour-length and (2.5),

(4.3) /(,C) d(A(AI) +d(A(A()

On the other hand (see (2.9)) the "pieces" of are joined by segments A(oi)A]), or
more properly A(-IA(il, joining a point of C_ to a point of C (for each ofn_

/" 1, 2,..., M), and we have shown (in (ii) above) that any such segment cannot be
longer than (I/m)/k + 3. Thus, since M m, if q 1-1/k,

M10(N) < /(NC) + /k + 3

(4.4)
’=1 m

M

Y l(lCj)+,Mqx/k +3.
j=l

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 35

C2 C27 C28 C/’ /’C30

’CI C C34 C33

C3i

C32

FIG. 4. Example of a tour of 53 points in 2 generated by Algorithm A with

_
as shown and m 6,

M 36. Follow single and double segments" omit dotted ones.

Note that the inequality in (4.4) is strict, both because A]i) A (s) (and d is a metric)n1
and because the cubes C are semi-open. Q.E.D.

5. The algorithms are fast.
THEOREM 2. In probability, the time taken to execute Algorithms A and B will

be asymptotic to An/r() log /cr(n) as n -->o; that is, the time will be o[no’(n)].
Proof. The execution time of our algorithm may be divided into several parts.

T1 is the time required to determine , C, A, m, and M; T2 is the time required to
determine which points of A are in each of the cells Cs (] 1, 2,..., M); T3 is the
time required to determine the succession of cells (by Algorithm B); T4 is the time
required to obtain the cyclic order of the points in each individual cell (by Algorithm
C); T5 is the time required to compute the tour-length 10(A). We must prove that
each of these five times is of the order of n x/r-(-i log /(ri or less.

(i) We have already mentioned that : and C will either be known a priori, or
will be determined in time of the order of n. Now, A and v(:) will be obtained in
time independent of n, and generally we would say that tr(n), and hence m and M,
will also be computed (by (2.2) and (2.3)) in constant time. However, if n is really
large, it will run to multiple precision, and tr(n) may take a time O(log n) to compute.
Nevertheless, we see that, at worst,

(5.1) T, O(n) o[n4cr(n) log

It is clear, also, that, given the tour (A, to) generated by our algorithm, its length
/o(A) can be computed in time of the order of n (see (2.9), with (2.6)). Thus,

(5.2) T5 O(n o[n/(n log /o(n)].

(ii) Let us suppose that the coordinates of the n points of A are each directly
addressable in an array Y/’, occupying some kn locations. Define lists 1, 2, , M,
corresponding to the M cells: for instance, the M vectors a s[k k may be lexically
ordered to identify the corresponding cells C(a) and lists (a). In a time of the order
of n, one may make a single pass through Y’, determining for each point the cell C(a)

36 J. H. HALTON AND R. TERADA

in which it lies and entering its address in the corresponding list (a). For each a, the
list (a) of points in AC(a) will have a length 2n(a) (where n(a) is the number of
points in AC(a)): each entry in the list will consist of an address in fit" and a pointer
to the next entry in the list. By (2.6), this will add up to some 2n locations in all.
Thus, with moderate storage capacity, we get

T2 O(n o[n x/cr(n log x/(n)].

The procedure is thus to begin with one cell, say C(0), compute a minimal tour
of the points of AC(0) using the list (0) and Algorithm C, and begin a new list
giving the ordering of the tour (/, to) as a string of addresses in ff{, by enterifg the
string A/(0) of addresses generated by Algorithm C. We now use Algorithm B to
determine the successor cell C(0’) to C(0), and use (0’) and Algorithm C to generate
the next piece J/(0’) of . We repeat, from cell to cell, until all pieces (0Cj) have
been constructed and entered in . The total time needed to compute the cell
succession is then T3, while the time needed to determine all the individual cell-tours
is T4.

It is clear that Algorithm B is independent of n (except through (2.2) and (2.3)),
and that its execution for each cell does not depend on the number of cells. Thus,

(5.4) T3 O(M)= O
log o-(n) o[nx/o-(n) log /o-(n)].

(iii) All that now remains to be estimated is the time T4, and this will be shown
to constitute the major part of the total time, in probability. We know that, if nj points
of A lie in Ci, then, by (1.1), the time needed by Algorithm C to construct a minimal
tour of ACi will be

2A(n 1)[2",-3(ni 2) + 1]
t(Ci) t.

0

if nj>O,

if ni=0,

and

M

(5.6) T4 t(ACi).
=1

At this stage, we introduce the probabilistic structure of our problem. Since the
points of/ are supposed to be independently uniformly distributed at random in the
set [E, it follows that the probability that exactly s points of A fall into the cell C will
be

(5.7) c .(1 c

where

v (C) v(C) ,
(5.8) c <- -a0=,

v (IF_) v (_) My ()

with equality if and only if v(ll:cCi)= 0. Similarly, the probability that exactly r points
of will fall into Ci and exactly s points into Ci, with /’, will be

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 37

(5.9) r+s s

Now partition the index set {1, 2, , M} of the cells into

Ho {j: C
_

tec},

H {j: C
_

E},

Ha {j" CE # & CE # (R)}.

Denote the cardinality of any set : by N(:); and let

(5.11) N(Ho)=No, N([H]I)=N1, N(H2)=N.

Then property (c) postulated for the set : tells us that N2 O(Mq) as n . Thus,
if we write

6(n) log 4(n) or r(n) ea(",
whence, by (1.4),

28(n)

(5 12)
e 6(n)
-0 and 0 asnoo,
n n

then by (2.3), M O[n/8(n)] as n c, and so

(5.13) N2=O 3(n)
and - 0 as n.

We also observe that, by (2.2) and (2.3),

(5.14)

m=h +O(1)= 1+O
v()(n) v(e)(n)

M=m + O[3(n)]’}n a
as

Further, it is clear from (5.10) that

(5.15) U Ci___11:_ UJ C,
jE[HI1 jeH1UH2

whence

(5 16) Nxh ’ (N + N2)A "<_- v (e) _-<
M M

It now follows from (5.13) that, since q 1-p,

(5.17) NI=--- 1+O ’n as n --> c.

38 J. H. HALTON AND R. TERADA

(iv) We now seek to obtain asymptotic forms for the expected value E[T4] and
variance var IT4] of the time T4. By (5.6),

M

(5.18) EET4] Y. EEt(/Cj)]
j=l

and

(5.19)

M 2

Y. Y. E[{t(/Ci)- E[t(/Ci)]}{t(AC)- E[t(ACj)]}].
i=1/=1

Thus E[T4] consists of terms E[t(AC)], and var [T4] consists of products of such terms,
together with E[{t(/Cj)}2] and E[t(/Ci)t(C)] with]. Ifwe adopt the usual notation,
for integers n and positive integers , that

(5.20) (n)o 1, (n)=n(n-1)(n-2)...(n-+l) (=0 for > n_-->O),

we readily verify that, by (1.1), for s ->_ 1,

ts A[2S-2(s)2 2s-l(s)1 + 2(s)1 + z
1- 2s (S)o 2(S)o],

(5.21) t =A2[164s-a(s)4+82s-3(s)3+24s-2(s)2-42s-2(s)2+4(s)2
4s-1 (S)l + 4 2-1(S)l 4(s)1 + 1/4 4 (S)o 2 2 (S)o + 4(S)o];

so that we may write

2 2 4 4
2 2(5.22) t A Y. Y. PoOS-(s)o and ts A , , OoO-(s)o,

=0 e=l =0 O=l

where P22 1, Plz -1, Pll 2, Po. 1/2, Pol -2, Q44 16, Q32 8, Q24 2, Q22
--4, 021=4, 014=--1, I12--4, 011 =--4, io4=41-, 0o2=--2, iOl =4, and all other
coefficients vanish. It follows from (5.7), (5.8), and (5.9) that

2 2

E[t(AC.)] A Y’. Y’. P,oJ(n, O, 4’,
=0 0=1

4 4

(5.23) E[{t(/Cj)}2] A2 Y’. Y. Q,oJ(n, O, O, c),
=0 0=I

2 2 2 2

E[t(AC,)t(AC.I]=A2 Y’. Y’. Y’. E e6o,e,o2K(n; 01, 02; , ; a,, ai),
b=O =0 0=1 t92=1

where we write

(5.24)](n, O, q,,x) . (n) x (l-x) (s),
s=l S

K(n, 01, 0.; , 4; x, y)

r(n (r+s) ryx (1 x--y)n-r-s0r-’(r)0.-+(S),.
r=l s=l-- \]\/r’+’SS

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 39

(The sums are over indices from 1 to n because the time for index 0 is zero, not to:
compare (5.5).) We may evaluate these sums as follows"

(5.26)

J(n, O, 4,,x)=(n)toxto (n-)(xO)-’(1-x)"-
s=l S --I//

(n),xto{1 + x(O 1)}-* 66o(1 x)",

where 8ij is the Kronecker delta (= 1 if j, 0 if # f), and similarly,

K(n; 0, 02; f[, ’ x, y)

(5.27)

u -4 -4)(xO).--,(yO)-+s tl,

=(n)+toxy to (n-b-qt)(1-x-y)n-".=

0 ""--to ,-,t, ,-t0}X {(X01 "1" y 2) --8too(XO1) --4,0(y02)

(n),+tox’’y to{[1 + x(O- 1)+ y(02-1)]"-’’-to 6too[1 + x(Oa- 1)- y]"-’

6,t,o[1 x + y(02- 1)]"-to-6,t,o6too(1-x-y)"}.

a) 0 whenever b < 0 or b > a.)(We note that
b

Now, by a simple inductive argument on m, we observe that, for all nonnegative
integers m, n, and sr, with n -> sr,

(5.28) 0 <= n" (n),,, <= mn"-l[(+ 1/2(m 1)].

Thus, since

(5.29) e -(l+z)"-c n -(n-’),,]z",
rrt=l

we have, for all z -> 0, that

O<=e"Z-(l+z)"-c<=,,,=x (m- 1).+(m-2)!.n z =(srz+1/2nz 2) e",

whence

(5.30) e (1 (z 1/2nz 2) <= (1 + z)"- <- e ".

Thus, for all those J-terms and K-terms in the sums (5.23) for which b -> 1 and 4’ >- 1,

(5.31) (n)toa’e""’(-a{1 4,ai(O 1) 2 2} hal(O-l)-nai(O-1 <-J(n,O,,ai)<-_(n)toae

40 J. H. HALTON AND R. TERADA

and

(5.32)

By (5.8) and (5.14),

(5.33) (n){ [Z(n)] "}ao 1+0 asn and aj<-_ao,
n n

(n), n[1 + O(1/n)], a O[6(n)/n], and z O{[6(n)]2/n},nol

whence, by (5.31),

(5.34) J(n, O, O, a.)= (nai)’ e"’i(-x)(1 + O[[((n)]21,-----j)
and similarly, by (5.32),

(5.35)

We note, further, that the correction terms for 0 and 0 0 in (5.26) and (5.27)
are never of higher asymptotic order than the main terms, found in (5.34) and (5.35).

In calculating E[T4], we may distribute the sum over the cells Cj among the
several J-terms of the corresponding expression of (5.23). For /’ell0, there is no
contribution; for j e H1, each term equals J(n, 0, 0, a0) and there are N1 such terms;
and for/" Ha, when n is sufficiently large, we see by (5.34) that the contributions are
somewhat smaller, since the J-terms are monotonically increasing with aj, and cj -<_ ao,
by (5.33). Thus, by (5.13), (5.17), (5.33), and (5.34),

(5.36)

M

Y’. J(n, O, 4’, ai)= NxJ(n, O, 4’, ao) + ., J(n, O, 4’,
j=l IH2

n[(n)]’- e(-l)(")(1 +
since e (-l)n e (-l)(n) e O{[6(n)]’+l/n’} e (-l)(n) (1 + O{[6(n)]’+/n’}, [6(n)]2/n
o{[6(n)]’+l/n’}, q= l-p, and [6(n)/n]’=o{[6(n)’+l/np}. It follows at once from
(5.18), (5.23), and (5.36) that

(5.37)

E[T4] AP22 E J(n, 2, 2, c.) 1 +
1=1

=An6(n) e("){1 0
1

since the terms in P22 dominate the result, and the terms of next highest order arise from
Plz and are of the order of ne(’) (a factor 1/6(n) lower), and since [6(n)]’+l/n p=

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 41

o[1/8(n)] (because [6(n)]’+’/nV={[6(n)]Z’+l/n}’=o{[eZa(")/n]’}O as n-c, by
(5.12)).

Similarly, by breaking up (5.19) into a single sum Y. and a double sum Y’. Y’.i>, and
calculating the asymptotic form of each term, we can obtain the corresponding form of
var IT4]. By (5.23), we get that

(5.38)

-J(n, 01, c, ai)J(n, 02, , ai)).

By (5.36), we see that the contribution of the terms arising from the E[{t(/Ci)}2] is
dominated by the terms with coefficient Q44" these yield 16A2n[6(n)]3e3()
(1 + O{[(n)]p+l/np}), with the terms of next highest order coming from Q24 and being
of the order of n 6(n) e 3(’). The terms arising from {E[t(/Ci)]}2 are dominated by those
with coefficient p222, and (by an argument analogous to that from (5.34) to (5.36)) these
yield a contribution of the order of n[6(n)]3 e 2(n), which is therefore asymptotically
negligible. Thus, as in going from (5.36) to (5.37), the single sum in (5.38) is asymptotic to
16A2n[3(n)]3 e3(n) (1 + O{1/[6(n)]2}).

Turning to the double sum, we observe by (5.26) and (5.27) that

(5.39)

Note by (5.20), (5.30), and (5.33) that (n)c=nC[l+O(1/n)], {l+O[3(n)/n]}=
l+O[8(n)/n], (l+z)"-C=enZ(l+O{[6(n)]2/n}) if z=O[6(n)/n], for any r
independent of n, and that the residue of greatest order is O{[6(n)]2/n}, while, if
x O[6(n)/n] and y O[6(n)/n], then

(5.40) [l+x+y]"]. { [(n2)] 41(l+x)(l+y) =[1-xy+xy(x+y) 1-nxy+O
n J"

42 J. H. HALTON AND R. TERADA

Thus, so long as -> 1 and 0 => 1,

K(n 01, 02; , ; Oi, aj)-J(n, 01, , ai)J(n, 02, O, aj)

-(nai)4’ (n%.)’[1 + o(nl--)] e"’(-1)+"’(2-1)(1 + O{ [6 (nn !.!.2})
x 0 +

(1 + x)"-+(1 + y)"-- 1 (where x nai(01-1), y not1(02-1))

O{[6(n)]’+U’e(l+2-2)a(")}(l +O{ [3(n)]p+l-- }) O{ [6(nn !]2 }.

The dominant contribution to the double sum thus arises from terms with the coefficient
P2" these are less than M2 in number, so that the contribution will be
O{n[6(n)]4 e2(")}, which is again asymptotically negligible in comparison with the
order of magnitude of the single sum in (5.38). Therefore,

(5.42) var IT4] 16AZn[6(n)]3 e 3(") 1 + O [(n)]2
(v) We may now complete the proof of Theorem 2. First, we note that, for any

e > 0 and all sufficiently large n (say, n >= no(e)), by (5.37)

8 (n)(5.43)]E[Tg]-An6(n) e(")l<--Am3(n) e

Next, we use Chebyshev’s inequality with (5.12), (5.42), and (5.43) to obtain that

(5.44)

Prob (T4
An6(n e(")-

1

=>Prob A-dii ?h,[--<and An,(n) e
a(’’- 1

r_4=gr__ Prob ([n6(n) e
<- for all n >- no(e)

var T4]>-_ 1-[(Ae/2)n6(n) ea(")]2 (Chebyshev)

--1 _(6)8(n)e
(")

n
-+1 as n.

Thus, T4/An6(n) e(")+ 1 in probability as n + oo, or

(5.45) T4---An6(n) e a(") in probability as n

Now, we have already shown that T1, T2, T3, and T5 are all o[nx/r(n)log /tr(n)]
with certainty as nm (see (5.1)-(5.4)). Therefore, since i(n)=log4r(n) and
ea(")=/r(n), by (5.12),’it follows that the total time taken by the algorithms to

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 43

compute a tour of A will be

(5.46) Tr An4r(n) log 4r(n),
r=l

in probability, as n c. Q.E.D.

6. The algorithms are accurate.
THEOREM 3. With probability one (that is, almost surely, a.s.), the length lo() of

the tour of the n points of A generated by Algorithms A and B is asymptotic to the
minimal tour length l(A)--. kv(_)Pn q.

Proof. (i) Since l() is defined to be minimal, and since (by Theorem 1) the
algorithms define a tour of the set A, we have that its length

(6.1) lo(A)>=l(A).

(ii) By (5.14),

(6.2) hMq4k + 3 v.([). 4k +3 o(n) as n -> o,

so that, by (4.4),

M

(6.3) lo(A)< l(ACi)+o(n ’) as n-->.
i=1

Now consider a minimal tour (/, 7r) of/ and let P denote the polygonal path
AxA2"" An (that is, let XP iff (:lj{1, 2,... ,n}) (:Ix) 0_-<x-<l and X=xA/._I+
(1 x)A/.), where the points of A are so numbered that Ao 7rA 17rA2 or. 7rAn Ao.
Let /. be the union of the closures of all connected pieces of zC/. containing at least
one point of/. Then the number of such pieces will be

(6.4) h/. --< n/. N(AC/.),

and the sum, I/., of the lengths of these pieces will satisfy

M

(6.5) E l/. -< l(&).
/’=1

The end-points of the pieces of P/. all lie in the boundary of C/., which consists of 2k
faces :/.t (f 0, 1,..., 2k- 1; with :/.,2k 1/.o); let I!:/.r be the set of end-points in
We shall form a tour (U/., o/.) of all the end-points, consisting of a tour (V/., uff) of
for each f, each connected to the next tour V/.(/x) by a chord whose length cannot
exceed the diameter of

(6.6) A(Ci) hM-"4.

It is proved in BHH, by a nontrivial combinatorial argument, that a tour (T/., /.) of
AC/. may be constructed by alternately traversing parts of U/. and pieces of P/. in such
a way that P/. is traversed just once and .J/. not more than twice. This means that

(6.7) /(AC/.) =< l(q]-i, -/.) -</ + 2/(U/., o/.).

44 J. H. HALTON AND R. TERADA

(The interested reader may find the above-mentioned proof under Lemma 2 in the
appendix of BHH.) We note that

2k

(6.8) /(Us, os)-< 5". l(Vsr, gr)+2kA(Cs).
r=l

(iii) To construct (Vsr, gr), we proceed as follows. First, we dissect the face :sr of
Cs, which is a (k- 1)-dimensional hypercube of side AM-p, into L equal cells of side
,M-PL-’’, where p’= 1/(k-1), just as in applying our algorithms, taking Lp’ to be
an even integer; thus we may construct a tour of the cell-centers of length L,M-’L-’’,
using Algorithm B. Then for each cell we insert any point of :sr therein into the tour,
by connecting it to-and-fro to the nearest point of the tour, thereby increasing the
length of the path by no more than AM-’L-’",/k- 1 for each point of lest. Then

(6.9) /(V/r 9r) <_- hM-[LI-p’ + hsrL-"4k- 1],

where

2k

(6.10) hsr N(:sr), hsr 2hs.
r=l

We now observe that

(6.11) Iio
[L-t"+ hL-,’x/k 13 0

OL
0

if L<L0,

if L L0,
if L > L0,

where

Choose L to be that integer multiple of 2k-1 satisfying

(6.13) Lo <- L < Lo + 2-1"

hence, by (6.9),

(6.14) /(Vsr, ’sr) <-- hM-P hse L hsr + 2

or, more simply,

(6.15) l(Vsr, t.,sr) <-_ AM-P (Rkh’ff + Skh-P’),

where q’= 1-p’ and Rk and Sk are constants depending only on k.
(iv) We may now combine the foregoing results to yield the following (the

subscripts attached to <= and < signs refer to the justifying assertion; e.g., the first

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 45

<-1 refers to (6.1) and the first <3 refers to (6.3))"

(6.16)

M

0_-<t0()-t()< E t(c)+o(n")-t()
j=l

M M

N7 2 /+2 Y’, l(Uboi)+o(nq)-l(g)
=1 =
M

N52 E l(U,o)+o(n q)
j=l

M 2k M

82 E Z l(Vit, uit) +2k E
j=i f=i j=i

=62 2 l(Vm gi) +2k3/2AM +o(no)
/=i f=l

()N xs 2AM- R Z h/+S h}P’ +2ka/AMq +0 (n q).

We must remark that the bound (6.15) becomes infinite if hit 0; but if there are no
end-points in [!:m then there is no need to tour that face, and/(Vit, uit) becomes zero.
Thus not only hit but also h}p should be interpreted as 0 in (6.15) and (6.16), when
hit 0. Therefore, since hit must be a nonnegative integer, we may replace h}p’ in
(6.16) by 1 without decreasing the bound. Further, when 0< q’< 1, we may apply
H61der’s inequality to the sum of hff to yield that, because p’+ q’= 1,

i=l /=i /=I f=l f=l t=l

(2k

it)
q’

(2kM)p’

\i t21= h <=1o.4(2kM)’(2n)q’.

(When k 2, and so p’= 1 and q’=0, the sum on the left of (6.17) becomes 2kM,
and the bound on the right becomes 2kM also; so that (6.17) still holds.) Applying
these results to (6.16), we obtain that

(6.18) 0 <= lo(N) () < 2AM-’[2Rk(kM)P’n q’+ Sk (2kM)] + 2k3/2AMq + o (n q),

and since, by (5.14), M O[n/8(n)]= o(n), we have that Mq o(n q) and M’-n’=
o(nP’-’n q’) o(nq). Thus, finally,

(6.19) O<-_lo(N)-l()<o(n q) as n

(v) To complete the proof of our theorem, we observe that BHH have proved
that (1.2) holds with probability one, when the set , is taken to be pn, the first n points
of the infinite sequence P, distributed independently and uniformly in the set . Since,
under these circumstances,

(6.20) l(/) O(n) as n ,

46 J. H. HALTON AND R. TERADA

we may conclude that

(6.21) lo(&)--- l(/) as n Do. Q.E.D.

Acknowledgment. We are grateful to referees for some helpful suggestions which
have been incorporated in the present version of HT. Our main results are the same;
but we have rearranged the material, made a few changes in the presentation, and,
in reviewing the paper, have taken the opportunity to refine and simplify both the
algorithm and the proofs of its speed and accuracy.

REFERENCES

J. BEARDWOOD, J. H. HALTON, AND J. M. HAMMERSLEY (1959), The shortest path through many
points, Proc. Cambridge Philos. Soc., 55, pp. 299-327.

R. E. BELLMAN (1962), Dynamic programming treatment of the traveling salesman problem, J. Assoc.
Comput. Mach., 9, pp. 61-63.

M. R. GAREY, R. L. GRAHAM, AND D. S. JOHNSON (1976), Some NP-complete geometric problems,
Proc. 8th ACM Symposium on Theory of Computing, pp. 10-22.

M. R. GAREY AND D. S. JOHNSON (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco.

J. H. HALTON AND R. TERADA (1978), An Almost Surely Optimal Algorithm for the Euclidean Traveling
Salesman Problem, Tech. Rep. no. 335, Computer Sciences Dept., University of Wisconsin.

M. HELD AND R. M. KARP (1962), A dynamic programming approach to sequencing problems, SIAM J.
Appl. Math., 10, pp. 196-210.

R. M. KARP (1977), Probabilistic analysis of partitioning algorithms for the traveling salesman problem in
the plane, Math.’Oper. Res., 2, pp. 209-244.

P. D. KROLAK, W. FELTS, AND G. MARBLE (1970), Efficient heuristics for solving large traveling salesman
problems, Proc. 7th Internat. Symposium on Mathematical Programming.

S. LIN AND I. W. KERNIGHAN (1973), An effective heuristic algorithm for the traveling salesman problem,
J. Oper. Res., 21, pp. 498-516.

C. H. PAPADIMITRIOU (1977), The Euclidean traveling salesman problem is NP-complete, Theoret.
Comput. Sci., 4, pp. 237-244.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0004 $01.00/0

DYNAMIC PROGRAMMING IS OPTIMAL FOR
NONSERIAL OPTIMIZATION PROBLEMS*

ARNON ROSENTHALt

Abstract. We consider discrete optimization problems in which the only exploitable feature of the
objective function is a limited form of decomposability. "Nonoverlapping comparison algorithms" are
defined as a model of procedures which decompose the problem and apply Bellman’s principle of optimality.
Nonserial dynamic programming (DP), a simple elimination procedure, is shown to be optimal among all
nonoverlapping comparison algorithms, including nondeterministic algorithms. These results can give an
exponential lower bound on the shortest admissible proof that a solution is optimal. Furthermore, if part
of the search space is ruled out, a subset of the comparisons made by DP optimally searches the remainder.
We suggest that the running time of DP is a useful measure of the "interaction complexity" of a problem,
and that because of its simplicity DP is of practical as well as theoretical interest.

Key words, nonserial dynamic programming, optimal algorithms, lower bound, exponential time,
comparision algorithms, perfect elimination graph, decomposition, complexity, dynamic programming.

1. Introduction. An interesting, very general optimization problem is defined
and extensively explored in [2]. An objective function is defined as a sum of terms,
where each term is a (tabulated) function of only a few of the variables. In the restricted
case where each term shares one variable with its predecessor and one with its
successor, the problem has a serial structure and may be solved by ordinary serial
dynamic programming. The unrestricted case is much harder (in fact, NP-hard), but
problems with a favorable pattern of term interactions may be solved efficiently by
the nonserial dynamic programming algorithm of [2]. Our major result is that nonserial
dynamic programming is, within its class, an optimal algorithm for this problem. [2]
does not define a formal model of computation, and obtains much weaker optimality
results.

Let x l, x2,’", xn be variables, each of which has a finite domain Di. The
optimization problem is to assign values to X l, X2,"" ,xn so as to minimize
f(X1,-2," ", Xn) ".fi(Xi), where X {Xl,’ ", Xn and fi is a function over the vari-
ables of Xi. An example function is [(x 1, x2, x3, x4, xs) 1(x 1, x2, x4) +/C2(x3, x4) +/C3(x3,
xs). The functions [i are called terms. Our theorems assume that domain sizes may
differ, but when giving explicit operation counts, we assume that all variable domains
have the same size, denoted IDI.

2. Instances of the optimization problem. Many important problems are express-
ible as special cases of the optimization problem. Thus, a single optimization technique
and program may be used for all such problems. The optimization problem is a
particularly good model for problems with no apparent exploitable features except
for decomposability. Some possible applications are listed below.

(1) Complex versions of some familiar problems. Set cover, satisfiability, vertex
or edge cover and vertex coloring are classical problems for which sophisticated but
exponential algorithms have been developed. In practice, it is frequently necessary
to solve the problem with special local constraints and extra weights. In these cases
the special purpose techniques may not apply. The optimization model which will be
presented can handle the additional complications.

* Receivedbythe editors April 19,1979, andin finalformMarch 3,1981.Thisworkwaspartiallysupported
by a Rackham grant from the University of Michigan and by the National Science Foundation under grant
MCS77-01753.

" Sperry Research Center, Sudbury, Massachusetts 01776.

47

48 ARNON ROSENTHAL

(2) Routing traffic in communications networks [4].
(3) Many problems can be formulated as: Given a network, assign numbers (e.g.,

potentials) to the vertices so as to minimize the sum of the edges’ costs. The cost of
an edge is an arbitrary function of the potentials of incident vertices. A few examples
are:

(a) The network represents the pattern of city streets, and the vertex numbers
represent the (relative) timing of traffic lights. The cost of an edge is a complex
(queuing-related) function of the difference in timing at the edge’s incident vertices 1].

(b) The vertex labels represent voltages in a circuit, and the edge costs are the
amount of power dissipated as a function of voltage drop.

(c) In a fluid-flow network vertex labels represent pressures, while flow rate and
pumping cost depend on the pressure drops [12].

(d) For task scheduling, the vertices represent tasks to be assigned time slots,
and the edges represent the cost of collisions between tasks, delay between related
tasks, etc. The restriction to only two-way interactions is unnecessarymthe optimiz-
ation model can allow multiway interactions.

(4) Multi-dimensional smoothing for pattern recognition can be formulated as a
discrete optimization problem, even if the loss function which measures the merit of
an approximation is quite complicated [2].

(5) Some algorithms for analyzing probabilistic networks and combinational
circuits are very similar to the nonserial dynamic programming algorithm considered
here [9], [10].

The optimization problem is NP-hard, even if each term is required to be a 0-1
function of two 0-1 variables. (The reduction from max 2-satisfiability is immediate.)

3. Nonserial dynamic programming. In this section we present the nonserial
dynamic programming algorithm (denoted DP) for the optimization problem. Let f
be the objective function. Suppose f(.)= ,fi(’); the dot represents the arguments
which we prefer not to list explicitly. Renumber the terms so that the terms involving
x are numbered fp, fp/l, "’, fn. Let y l, "’’, yq denote the variables appearing
in terms {fgli>=p}, not including xl. Now consider i>-_pfg(’) to be a single
term h(xx, yl," Yq)--E(i>_.p}fi, SO f(")--’{i<p}fi)+h(Xl, y,"’, yq). In this
expression, x appears only in h. Given any assignment of values for y,. , yq, it is
optimal to use the value of xx which will minimize h. (This is Bellman’s principle of
optimality.) To eliminate X from the objective function, we replace h (i.e., all the
terms involving Xl) by

h*(yl,’", yq):= min h(x, Yl," Yq).
{values of

DP now eliminates the remaining variables one at a time in an analogous manner.
We shall always assume that the variables have been renumbered so that the order
of elimination is x,..., xn. The elimination of xj will henceforth be called "stage/"’,
and the terms (tables) computed at that stage will be denoted hi(’) and h (.). The
computational cost is the time to compute h*, namely (ID[- 1) comparisons for each
of IDl**q entries in h*. There may be some fill (i.e., variables together in h* which
were not previously together in any term).

The ordering of the variable elimination will affect the running time of the
nonserial dynamic programming algorithm, because fill is order dependent. DP (Q)
shall refer to the nonserial dynamic programming algorithm with the variables num-
bered according to Q.

NONSERIAL DYNAMIC PROGRAMMING 49

The process may be summarized as:
ALGORITHM DP (Q)

1. Renumber the variables according to ordering Q.
2. For 1 until n eliminate xi.

The appendix explores the properties of DP.

4. Graph-theoretic definitions. Considerable development is needed before we
define our class of algorithms. We adopt the interaction graph of [2] as a natural way
to exhibit the interaction pattern of variables in the objective function. Figure 1 will
illustrate the definitions. The graph is denoted G- (V, E). It has a vertex for each
variable; vertices x and y are adjacent (denoted x---y) if and only if they appear
together in a term of f (see Fig. 1). G, D1,"’, Dn and Q determine the number of
comparisons performed by DP(Q). The actual values of fi are irrelevant.

Henceforth, "sets" will refer to sets of variables, and the words "vertex" and
"variable" will be used interchangeably. Let S1, $2 and S be sets of vertices, and let
v be a vertex.

$1---Sz (read "S is adjacent to $2") if there exists a vertex Vl in $1, and a vertex
v2 in $2, such that Vl-’-v2. v S means (v---S. By convention, v---v.

Nb (S) (read "the neighbors of S") (v Sly S). (In Fig. 1, Nb ((Xl,
and Nb(x2, x3)) {xx, x4, Xs).)

Int (S) (read "the interior of S") {v S all vertices adjacent to v are in
Bo (S) read "the boundary of S") S Int (S).
S’ (vlv S S U Nb(S). Sets created by the prime operator are called "primed"

(e.g., S’).
Sx and $2 are nested if and only if one is a subset of the other.
Consider the subgraph of the interaction graph induced by the vertices

{x, x2,’" ", xj}. The subgraph’s connected component which contains x. is denoted
"Ci." In Fig. 1, C2 {Xl, x2} and Ca {x3}. The variables in hf are exactly the variables
in Nb (Ci). (This result appears in [2, p. 33], in a different notation.)

X2

X X5

FIG. 1. Interaction graph off =fx(Xl, x2, x4)+ f2(x3, x4)+ f3(x3, x5).
Int ({xl, x2, x4})= {Xl, x2};
Bo ({x1, x2, x4})-
Nb ({xx, x2, x4})= {x3};
{X1, X2, X4}’ {X1, X2, X3,

C1 {x1} C2-- {x1, x2}, C3 {x3} C4-- {x1, x2, x3,

C= {x , x, x3, x,, x}.

5. Comparison algorithms. An assignment to a set S assigns a value to each
variable in S, and may be denoted A(S). Two assignments A I(S) and A2(S) are
comparable if identical values are assigned to all vertices in Bo (S), i.e., to all variables
which appear in a term containing unassigned variables. A I(S1) extends A2($2) if
$2
_
S and A agrees with A2 at each variable in $2.
Given an assignment A (S), define the objective-value of A (S), [denoted f(A (S))]

as (fi(A(Xi))), where the sum is over terms satisfying:

50 ARNON ROSENTHAL

(i) X

S (i.e., every variable in Xi is assigned a value).

(ii) Xi-Bo (S). (Terms using only boundary variables are omitted because for
comparable assignments, these variables will be assigned identical values, and hence
will not affect the outcome of the comparison.)

Comparisons. Given a set of variables and an objective function f, a comparison
compares the objective-values of two "comparable" assignments. The loser of a
comparison is the assignment with the inferior (numerically higher) objective-value.
Ties are broken lexicographically. For comparable assignments, Bellman’s principle
of optimality implies that any extension of the loser will be inferior to the corresponding
extension of the winner. The optimum of each variable assignment cannot extend the
loser of any comparison. A comparison of assignments to S will be denoted
AI(S):A2(S), or Awin(S):Aose(S). S is called the carrier of the comparison. Int (S),
the set where comparable assignments may differ, will be called the arena.

The decision tree model will be used to decide "comparison algorithms." A
comparison algorithm is designed for a fixed set of variables, with fixed domains, and
a fixed interaction graph. The input consists of the term domains X (consistent with
the interaction graph) and a term value for each assignment to the variables.

A comparison algorithm is a rule for choosing comparisons to perform. As a
result of each comparison, all extensions of the loser are struck from a (conceptual)
list of {all total assignments}. (Our model ignores the actual bookkeeping for strikeoffs.)
The algorithm halts when only the optimal assignment survives all strikeotts. For a
fixed objective function, a collection of comparisons which strikes off every suboptimal
total assignment is called a verification; it verifies the optimality of the survivor.

Henceforth, collection shall mean "collection of comparisions." The cost of any
collection a is the number of comparisons. The cost of an algorithm on a function f
is the cost of the verification produced for f. The appropriateness of this cost measure
is addressed in later sections.

Formally, given an interaction graph G and the domain a comparison algorithm
is a binary decision tree such that"

(i) The two edges descending from each internal node of the tree represent two
assignments which are comparable for functions with graph G. The node itself rep-
resents a comparison whose result determines the choice of downward edge.

(ii) The comparisons along any root-leaf path supply a verification.
DP actually refers to a class of algorithms; to define a specific algorithm it is

necessary to specify the variable ordering, interaction graph and domains of the
variables. DP algorithms may be identified with comparison algorithms as follows"
DP eliminates variables and compensates by altering terms of the objective function.
[2, p. 33] shows that the value for hf on an assignment to {xj} t_J Nb (Cj) is equal to
the original objective f on the best extension of A to C. In this sense, the operation
of DP on any problem is isomorphic to a comparison algorithm.

6. Main results.
DEFINIa’ION. The sets $1 and $2 are said to overlap if (i) $1 and $2 are not nested,

and (ii) some term fi(X) is included in the calculations of objective-values for both
$1 and $2.

LEMMA 1.1. T’I and T’ overlap if and only if they are not nested, and TI T2.
Lemma 1.1 and many other simple results about graphs and overlap will be

needed. Notation like G1 or O2(i), refers to a list of such results at the start of the
appendix. Lemma 1.1 appears there as property O2(i).

We are principally concerned with nonoverlapping algorithms.

NONSERIAL DYNAMIC PROGRAMMING 51

DEFINITION. TWO comparisons overlap if their carriers overlap. A collection of
comparisons, (also a comparison algorithm or a verification) is called overlapping if
two of the comparisons overlap. Otherwise the collection, algorithm or verification is
called nonoverlapping.

Consider a family of sets {T1, T2," ’} such that any two sets are nested or disjoint
(see Fig. 2). We define "innermost-out" orderings on the variables, as follows:
Reordering if necessary, assume T c T. only if </’. Now choose any ordering of
{Xl,’’ ’, xn} such that for every i, variables of T1," ", T/-1 precede variables of T
not in the previous sets. If the family is {the arenas of a nonoverlapping collection
K}, the ordering will be denoted Q(K).

FIG. 2. Suppose T1 {xl}, Tz {x3}, T3 {xx, X2}, T4-" {x1, x2, x3, x4, x5}. Two acceptable orderings
are [xx, Xz, x3, x4, xs] and [x, x3, xz, xs, x4].

LEMMA 1.2. Suppose C---Q, where i<L Then C
_
C.

Proof. Recall that Ci denotes the connected component of {x1,’", xi} which
includes xi. If Cj---C, then Cj I.J C is a connected subset of {x l,’’’, xi}. Since Ci is a
connected component of {x 1,’’’, xi}, Ci c Ci. By G2 (in appendix), CI C. QED

DEFINITION. A carrier S is reduced if every vertex of S is in a term with an
interior vertex, and Int (S) is connected. ([11] shows that there is no benefit to using
nonreduced carriers.)

THEOREM 1 (Nonoverlapping sets theorem).
I(A). DP is nonoverlapping, for every ordering (i.e., no verification produced by

DP has overlapping carriers).
1 (B). Let K denote a collection with reduced carriers. K is nonoverlapping if and

only if each carrier ofK is a carrier of DP (Q(K)).
Proofi The carriers of DP are the sets C. Lemma 1.2 and O2(i) imply that C

does not overlap C, so I(A) is proved. If a collection has no pair of overlapping
carriers, all subcollections are nonoverlapping. Thus 1 (A) implies the (<(=) direction
of I(B).

The other direction is proved in the appendix.
Consider any objective function f with graph G and variable domains D1, , Dn.

Let Q* denote the DP elimination ordering which minimizes the number of com-
parisons performed. (Recall that the number of comparisons performed by DP for a
function f depends only on G, [Dll,..., [D[and Q*.) This leads to the following
result, proved in the appendix.

THEOREM 2 (Optimality theorem). For every such function f, De (Q*) makes the
fewest comparisons of any nonoverlapping comparison algorithm. (Q* denotes the
optimal elimination ordering.)

52 ARNON ROSENTHAL

DP seems to be the most useful nonoverlapping algorithm for the general optimiz-
ation problem. The bookkeeping overhead for each comparison is reasonable. There
is no known efficient algorithm to find the optimal DP ordering Q*, but [2] gives
heuristics which seem to find near optimal orderings. For the other algorithms presen-
ted in [2], the variable ordering problem seems even less tractable.

7. Other implications.
(1) Adaptive (i.e., nonoblivious) and nondeterministic nonoverlapping algorithms

have no advantage over DP. A nondeterministic comparison algorithm nondeter-
ministically chooses comparisons to perform until a verification is produced. Each node
of a nondeterministic decision tree has several pairs of downward edges; one of these
pairs is chosen. The cost on f is the length of the best verification obtainable (i.e., the
tree’s shortest root-leaf path which verifies f). Nonadaptive algorithms are "oblivious"
to the exact values of the functions. (See R4 in 8.)

Such algorithms must still produce a proof of optimality, i.e., a nonoverlapping
verification (denoted VER) and VER must include as many comparisons as
DP (O(VER)).

(2) The efficiency of DP for a particular problem can measure the complexity of
the problem’s interaction graph. If all variables have the same size domain, a good
measure of structural complexity is loglo (running time), which is nearly independent
of IDI, but depends on the interaction graph and the elimination ordering [2]. Loosely,
if the system consists of local clusters of interacting variables, connected in a skinny,
nearly treelike pattern, then DP will perform very well. A ladder network or star
network is appropriately skinny; a square grid is not.

(3) On some interaction graphs, an exponential lower bound can be obtained for
{all nonoverlapping comparison algorithms}. [5] shows that ID[" operations are required
by DP on any function whose interaction graph is an (n n) square grid. Such functions
take O(2n2[DI2) space to specify, assuming one location is used for each value of
each term f.. Hence any nonoverlapping comparison algorithm must take time
exponential in problem size, for any problem on such a graph. A complete graph
derived from 2-variable terms fj also yields an exponential bound.

(4) Familiar problems. Many of the familiar NP-complete problems (e.g.,
satisfiability or set cover) can be formulated as instances of our optimization problem.
Our theorem then provides a lower bound on nonoverlapping comparison algorithms
for those problems.

8. Overlapping and nonoverlapping algorithms. This section provides a qualita-
tive framework for comparing nonoverlapping algorithms, and compares out results
with the results in [2]. One reason to restrict consideration to nonoverlapping
algorithms is that they are easier to implement. We first consider two typical bookkeep-
ing operations"

(a) Determine whether AI(T and A2(T agree on T (3 T.
Assuming the test at (a) was positive, let Anion denote the natural union of A1

and A2.
(b) Determine f(aunion(T I,,l T;)).
These operations are easy if T and T. do not overlap. For operation (a),

A (Bo (T)) and Az(Bo (T)) are sufficient information if and only if T and T; do
not overlap (by O2(iv)). These boundary assignments will generally be available, as
they are also needed to determine comparability. Similarly, to compute the objective

NONSERIAL DYNAMIC PROGRAMMING 53

value of the union, one adds the two constituents’ objective values plus perhaps some
additional terms defined on Bo ($1) Bo ($2).

In contrast, if T and T overlap, (a) requires that variables not on the boundary
be checked. The value assigned a boundary variable is fixed over all assignments in
each equivalence class of the comparability relation; nonboundary variables must be
explicitly checked. Operation (b) requires that terms using these additional variables
be computed, and also that terms duplicated in the objective values on T and T
be subtracted from the sum. Thus, considerable additional information must be
retained from "solved" subproblems if later assignments may overlap.

DP verifications constitute a small subset of all nonoverlapping verifications. To
illustrate this, we will consider restrictions R0-R4 obeyed by verifications produced
by DP:

R0. The carriers are exactly the sets C (where the variables have been numbered
according to some ordering O).

R1. The carriers are a subcollection of the sets C. for some ordering O. (For
reduced carriers, Theorem 1B implies that R1 is equivalent to "nonoverlapping".)

A key feature of DP is that it does all possible useful comparisons for Nb (Cj)
before moving to the next stage assignments at stage/’. It is difficult to express this
restriction for arbitrary comparison algorithms, since stages (and hence the sets Nb (Cj))
are not defined. We define a comparison AI(Z):A2(Z) to be local to S if Z

S. Only

comparisons local to S can strike off assignments to S. Define Fixed (S)= {v SI for
every comparison Aa :A2 local to $, A(v)=A2(v)}. (Undefined values are taken to
be equal.) An assignment A(S) is called a bearable extension of A(Z) if some other
extension to S has a better objective value.

R2. If VER includes AI(S):A2(S), all beatable extensions of A (Fixed (S)) are
struck off. That is, VER finds the optimal extension of A (Fixed (S)) to S.

R3. If $ is a carrier in VER, then all beatable extensions of A (Fixed (S)) are
struck off, and this is done for every assignment to Fixed (S).

R4. The algorithm is nonadaptive; i.e., for each fixed interaction graph, it is
oblivious to the numerical values of the terms. Its comparison strategy can be represen-
ted by a circuit with comparator units and fixed interconnections. See [13] for other
information on nonadaptive algorithms.

Verifications produced by DP can be shown to obey restrictions R0-R4. The
optimality theorem implies that DP (O*) produces a verification which is optimal
among the class of all verifications obeying R1.

[2] defines two generalizations of DP, "elimination in blocks", which eliminates
several vertices at once, and a complex scheme called "regular multilevel elimination."
Both generalizations obey R1-R4. (Nonregular elimination violates R1, but [2, Thm.
5.7.4] (or our Lemma A2) implies that nonregular schemes are no better than regular
ones.) Theorems in [2] show that there is a DP ordering which is only slightly higher
in (number of objective function evaluations) than elimination in blocks or multilevel
elimination.

Our optimality results are cleaner and stronger. First, by using (number of
comparisons) as our measure of work, we can show that DP is absolutely optimal
among our class of algorithms. (The difference between the measures is small; it stems
from the fact that finding the best of IDI assignments requires IDI evaluations and
IDI-1 comparisons.) More important, our class of algorithms is far wider" we have
shown DP to be optimal among comparison algorithms obeying just restriction R1
(i.e., nonoverlapping).

54 ARNON ROSENTHAL

9. Overlapping algorithms, DP and perfect elimination graphs. Elimination of
a vertex x causes fill in the interaction graph if two of the neighbors of x were
nonadjacent before the elimination. (They will be adjacent after the elimination.) An
ordering C) is called a perfect elimination ordering if DP (O) causes no fill. (Perfect
elimination orderings were originally defined for elimination in systems of linear
equations.) We will now compare DP with verifications which may include overlap.
Let G denote any interaction graph.

TI-IEORE 3 (Perfect elimination theorem).
3(A). If Q is a perfect elimination ordering for G, then]:or every function with

graph G, DP (Q) produces a shortest verification.
3(B). If ordering Q is not perfect elimination for G, then for some function fo with

graph G, there exists an overlapping verification shorter than DP (Q).
The theorem is proved in the appendix. The function f0 shown there for 3(B) is

degenerate in a way which can be exploited only if overlap is used. When the graph
is a square grid with n vertices on a side, DP must make O(IDI) comparisons [5],
but there will be an overlapping verification whose length is polynomial, O(n2lDl4).
Hence overlap can make a dramatic difference.

10. Remarks, open questions and future work. We conjecture that for every
interaction graph, there are some hard functions whose best overlapping verifications
are as long as those produced by DP. If this conjecture is true, then on most graphs,
none of our comparison algorithms can run in less than exponential worst-case time.

Many problems have additional structure (e.g., feasibility constraints) which rule
out many possible assignments. A generalization of the optimality theorem provides
some insight. Among nonoverlapping collections which strike off all remaining sub-
optimal assignments, some subcollection of the comparisons made by DP is smallest.
The dominance theorem in the appendix coatains more details.

The practical meaning of this optimality result is not clear. DP is fairly easy to
implement, while it may be impractical to determine the appropriate subcollection,
or to bookkeep the strikeoffs. [2] suggests one way of extending DP to handle feasibility
constraints.

A decomposition procedure can be loosely defined as an algorithm which works
by "solving" subsystems containing only a subset of the variables, and replacing these
subsystems by an equivalent but simpler black box. To forbid later computations from
looking inside this box, we require that solved subsystems be nested or effectively
disjoint (here, nonoverlapping) and general properties applicable to other nonoverlap-
ping "disjoint decomposition" algorithms (e.g., [3], [6]).

It would also be interesting to abstract properties of subsystems, boundaries and
overlap. Perhaps our detailed arguments about overlap would be clearer in a setting
more general than graphs (just as greedy arguments are simpler in matroids).

Some technical improvements might be made in the model 15] shows fully solving
is always optimal if we measure (number of comparisons) + (number of concatenations
of partial assignments), a more natural complexity measure than (number of com-
parisons).

We ruled out combining information from several comparisons to strike off
assignments not struck off by any single comparison. Such combinations can give
additional strikeoffs, but it is not known whether such operations can improve on DP.
However, lower bounds for algorithm classes much larger than {comparison algorithms}
will not be exponential. [7] and [8] show that for every objective function there exists
"a linear proof" (i.e., a verification in a broader proof system) which uses only O

NONSERIAL DYNAMIC PROGRAMMING 55

(number of term entries) comparisons. These short linear proofs cannot be found in
polynomial time unless P NP.

Appendix.
Notation.___

m"is a subset of"; c m"proper subset".
$1 I $2"$1 and $2 have nonempty intersection".
$10 $2"$1 overlaps $2".
"is a member of".
A slash through I or O will denote negation.
{xl} and {x 1}’ will often be written without set brackets (e.g., x).

A brief review of definitions follows.
A loser is a partial assignment which loses a comparison in the collection K being

considered. A set is called a carrier or arena (in K) if it is the carrier (arena) of a
comparison in K. Generally, T and T/will be used to denote potential arenas; S, Si,
T’ and T will denote potential carriers. Z will denote any kind of set. Cj denotes
the connected component of the induced subgraph on {xl,’’’, xj} which includes xi.
The connected components of Ci-{xi} will be denoted {Cil, C.2.’’’ }. Renumbering
if necessary, we assume DP always eliminates variables in the order xl, , xn.

We hope to clarify our proofs by gathering all the graph-theoretic results here.
G1, etc. refer to simple graph theoretic facts, and O1, etc. refer to facts concerning
overlap. All these facts are proved in [11].

Graph theoretic facts.
G1. For any j, let C1, C2," ", Cji denote the connected components of Ci-{xj}.

Then ([-Jli Nb (Cii))
_
Nb (C.) [.J {xi}.

G2. TI
_
T2 T’I

_
T’2.

G3. Suppose T11 T2, T1 T, and T1 is connected. Then there is a vertex
x s T1- Tz such that x s Nb (T).

Overlap rules.
O1. The following are all equivalent: (i) T1--T2; (ii) T[I T2; (iii) T11 T; (iv)

T fq T Bo (T)fq Bo (T); (v) some term is duplicated in objective values com-
puted on T and T.

DZFINrrION. T and T[are said to collide if the above conditions hold"
02. T overlaps T[if and only if T T[and T[T and T collides with T[.
("O2(iii)" shall mean 02 with case (iii) from O1.)
03. Let {T, T,...} be a family of (distinct) nonoverlapping sets, such that

every vertex is in some T/, and T/= Int (TI). Then, for each v, there is a unique
smallest T/which contains v.

04. If Slc S2 and Sl O Z and S2 Z then Z S2.
THEOREM 1 (Nonoverlapping sets theorem).
I(A). DP is nonoverlapping, for every ordering.
I(B). Let K denote a collection with reduced carriers. K is nonoverlapping if and

only if each carrier ofK is a carrier of DP (Q(K)).
Proof. I(A) and the ((=) direction of I(B) were proved in the text. We prove

(::), for 1 (B).
Let T denote an arena in K and T’ a carrier, xn will denote the highest numbered

vertex in T. T is a connected subset of {x 1, , xn}, and Cn is defined as the connected
component of {xl, ’, x/} containing xn, so T

_
Cn. To prove the theorem we need

only show Cn T.
If CuE T, then let xp be the vertex (existent by G3) which is simultaneously in

Nb (T) and in Cn. Let T1 denote the unique (03) smallest arena of K containing Xp.

56 ARNON ROSENTHAL

T’ and T[are both carriers and thus do not overlap, but are adjacent (at xp); since
xp T, by O2(i), we get T c T1. Hence T1 must have followed T in the ordering of
sets which produced the variable ordering. No smaller arena contained x,, so all
vertices of T must have preceded xp. Hence/4 < p, which contradicts the definition
of H. QED

We now consider the properties of the comparisons associated with DP for some
fixed function f and the elimination ordering 1, 2, , n. We say an assignment A(C)
is beatable at stage if A(C) is a beatable extension of A(Nb (Ci)). This definition
is consistent with the use of "beatable" in R2 of 8.

We now assume DP uses ordering x l, xn, and let f denote an arbitrary stage,
A an arbitrary assignment.

THEOREM A1 (Properties of DP).
DP1 (Strikes off all losers). Stages 1 through f of DP strike off all assignments

beatable at stage f.
DP2 (Acts at first opportunity). 1] A(C; is compared at stage], then it was not

bearable at any earlier stage. Equivalently, if A(C;) is bearable at stage f, then no
extension ofA(C is compared at any later stage.

Let *Alose denote the best total assignment extending mlose(C.).
DP3 (Nonredundant). Suppose some comparison Alose(C)’Awin(C) is omitted

from DP. Then A*lose is not struck off by any remaining comparisons.
Proof of DP1 and DP2. Inductive hypothesis: Every assignment A beatable at

stages before/’ has been struck off at some stage 1, 2, , or/’- 1.
Now at stage], for eachA(Nb (Ci)), DP compares the assignments Av C obtained

as follows: For each v Domain (xi), extend A(Nb (C.)) to {Nb (Ci)(_J {xi}} by assigning
value v to xi. Let C1, C2, , C.t denote the connected components of C.-{x.}. By
G1, all vertices of ((Att Nb (Cit)) have been assigned values. By the inductive hypothesis,
all beatable assignments to each Ct have been struck off, and only the single optimal
extension to Ct survives. Using the surviving assignment for each Cit, we can assign
values to all the vertices of C-{x}. Denote this assignment Av(C). Clearly, no
assignments so formed could be struck off at an earlier stage, so DP2 holds.

DP compares the assignments A (v domain (x.)). To show DP1, consider any
assignment A (C.) which is beatable at stage f, but is not struck off at stages 1, , 1.
Let z denote A(xi). A must be the assignment Az, since by the inductive hypothesis
and the assumption that A was unbeaten at previous stages, A agrees on each Ct
with the optimal extension of A(Nb (Cit)) to Ct. But then A Az was compared with
the best extension of A(Nb (C)) (which must have been A for some other v). Hence
A(C.) was struck off at stage j. DP1 is proved.

LEMMA A1. Given a set T1 and assignment A(T’I), let A* denote the best total
assignment which extends A(T’). For a comparison with arena T2 to strike off A*, it
is necessary that T’I and T’2 collide.

Proof. Take the assignments Awin(T which beat A*, and form a total assignment
A from Awin(T) and A*({v[v T’ }). If T and T do not collide, then T f) T B
Bo (T) (by 02 (iv)). But for comparability, Awin and A* must assign the same values
to Bo (T) so A(T’I)= A(T’I). Thus A is an extension of A(T’I) which is superior
to A*, a contradiction.

Aoe were struck off by a remaining comparison on a setProof of DP3 Suppose *
denoted T’. It is clear from the definition of DP that T’ C.. By Lemma A1, T’
collides with C;. Now if C; and T’ were nested and unequal, by DP2, the comparison
on the larger set would not take place. Hence, T’ and C must overlap. This contradicts
the fact that DP is nonoverlapping. QED

NONSERIAL DYNAMIC PROGRAMMING 57

DEFINITION. Given 2 collections Knew and K, Knew dominates K if IKnew[--<]KI,
and Knew strikes off every assignment which K strikes off. (IK[is the number of
comparisons in K.)

DEFINITION. A comparison (or subcollection) kl is replaceable by k2 in a collection
K if K LI {kz}-{kl} dominates K. kl is uniformly replaceable by k2 if it is replaceable
by k2 in every collection K.

Dominance, "replaceable in K" and "uniformly replaceable" are transitive.
LEMMA A2. Suppose A(S) extends A(Z), and that ks and kz denote comparisons

lost by A (S) and A(Z) respectively. Then ks is uniforenly replaceable by kz.
Proof. Every assignment struck off as an extension of the loser A(S) is also an

extension of the new loser A(T).
An assignment A(S) is 1-0primal if either Xl is unassigned, or A(x) is an

unbeatable extension of A(Nb (x 1)). DP1 implies that the first stage of DP strikes off
exactly those assignments to x which are not 1-0ptimal. A collection is 1-0ptimal if
every assignment evaluated is 1-0ptimal.

LEMMA A3. Any collection such that no comparison overlaps x is dominated by
a collection Knew KxK2 such that K includes only comparisons from stage 1 of
DP, and K2 is 1-optimal.

Proof. Knew is obtained by the following algorithm:
For each comparison Aoe "Awin
If Awin is not 1-optimal then reassign x as the best value to extend A(Nb (x 1)).
If Alose is not 1-optimal then replace this comparison by the DP comparison
which strikes off Alose.

The replacement of Awin makes all winners 1-optimal, but does not change the
identity of losers. The next replacement removes comparisons whose losers are not
1-optimal, and in place leaves comparisons from stage 1 of DP. By Lemma A2, the
new collection dominates the old. QED

1-optimal assignments correspond to assignments for the objective function
(denoted rE) obtained by eliminating xl. The elimination replaces h by h 1" h 1" simply
assumes that the 1-optimal value of X is used. In this way, K2 is isomorphic to a
collection (denoted K2(f2)) of comparisons for f2. Similarly, stages 2, 3,.. n of DP
may be identified with the DP algorithm of f2 (denoted DP (f2)). The following
lemma now follows from the definitions.

LEMMA A4. (i) If g2 strikes off all 1-optimal assignments for f then g2(f2) is a

verification for f.
(ii) (x i,""", x, is an admissible ordering for the original collection)(x,. ., x

is an admissible ordering for K).
THEOREM A2 (Optimality theorem). For every function f, DP (Q*) makes the

fewest comparisons of any nonoverlapping comparison algorithm. (O* denotes the
optimal elimination ordering.)

Proof. We use induction on the number n of variables. The result clearly holds
for n 1. For larger n, consider any nonoverlapping verification VER. Assume without
loss of generality that generality that (O(VR) Xl, , x, Perform the construction
of Lemma A3. K will include all stage 1 comparisons. By the inductive hypothesis,
K2(f2) is dominated by Dp2(f2), which corresponds 1-1 with the comparisons of
stages 2,. , n. Thus]DP (xa,..., x,)[_-< [K1U Kzl, which was constructed to dominate
VER. Hence DP can provide a shortest nonoverlapping verification for functions of
n variables, and the induction is completed. QED.

The dominance theorem below is a stronger form of the optimality theorem. We
have not yet found a simple proof; a long proof is given in [11].

58 ARNON ROSENTHAL

THEOREM A2’ (Dominance theorem). For every nonoverlapping collection K, them
is a subcollection of DP (Q(K)) which dominates K.

THEOREM A3. The verification produced by DP ((2*) is a shortest verification
(overlap permitted) if and only if Q* is a perfect elimination ordering.

Proof of Theorem 3. ((9) Consider the following function and the following
(overlapping) sequence of comparisons. We shall show that the comparisons form a
verification which is shorter than DP.

The function: Suppose each variable’s domain consists of {1, 2,..., ID[}, where
[D[>-2. Suppose the interaction graph was obtained from functions denoted f.(X.),

Z0/" 1, 2,. .. For each/’, define a term of fo to be 7 xjxjXj, is degenerate in that
for each], the optimal value of xj is 1, regardless of the assignment to any other
variables.

The verification. As usual, assume the ordering is (xl, x2," "). Define Nb/ (])
(Nb- (])) to be the neighbors of xj which follow (precede) xi in the elimination ordering.
The comparisons at stage j are formed as follows: For each assignment to Nb/ (j),
keeping Nb-(j) assigned 1, compare all values for xi. xi 1 will always win. Given
an assignment A, let p be the lowest index such that xp is assigned a value other than
1. Then A will be struck off at stage p, when A(C’p) loses to the assignment obtained
from A by assigning 1 to xp. Hence the collection is a verification.

Efficiency. For all i, Nb+ (i) Nb ({xi})-Nb- (i)_ Nb (Ci). Now suppose O is not
perfect elimination, so some fill edge (xi, Xw) is added during the elimination. Assume
j < w. Thenby [2, p. 33],Xw Nb (Ci) andxw Nb+ (j),so INb+ (j)[< INb (Q)[. Thework
at any stage of the overlapping scheme is (ID[- a)*IDI**INb/ (i)l comparisons, while
DP performs (IDI-a)*(IDI**INb<C)I), Thus at no stage does the overlapping
verification do more comparisons than DP, and at stage j it does less.

Proof of 3(B). First we need a lemma.
LZMMA A5. Suppose xl can be eliminated with no fill. Then no set S"can overlap

x.
Proof. If x collides with $’, then by O1 (ii), x is adjacent to some vertex v S.

Now since x may be eliminated with no fill, all vertices of x’ must be mutually
adjacent, and hence x v’. But v’ S’, so x

S’, and there is no overlap. The

lemma is proved.
Now apply the construction and inductive proof from the optimality theorem.

That is, produce K and K2 and invoke the inductive hypothesis to replace K2 by
stages 2,. ., n of DP. We omit the details. QED

Conjecture. For every function, the best overlapping verification requires at least
as many comparisons as the scheme described in 3(A) (which is a verification only
because x 1 is always the winner for the degenerate function fo). That is, overlap
will do no better than remove the cost due to fill.

REFERENCES

[1] R. E. ALLSOP, Selection of offsets to minimize delay to traffic in a network controlled by fixed-time
signals, Transportation Sci., 2 (1968), pp. 1-13.

[2] U. BERTELE AND F. BRIOSCHI, Nonserial Dynamic Programming, Academic Press, New York, 1972.
[3] R. M. KARP, Functional decomposition and switching circuit design, J. Soc. Ind. Appl. Math, 11 (1963),

pp. 693-718.
[4] A. KORSAK, A proposed algorithm for globally optimal nonlinear-costmultidimensionalflows in networks

and some special applications, presented at Fifth International Symposium on Traffic and Trans-
portation, Berkeley, CA, June, 1971.

NONSERIAL DYNAMIC PROGRAMMING 59

[5] A. MARTELLI AND U. MONTANARI, Dynamic programming schemata in Automata, Language and
Programming, 2nd Colloquium, University of Saarbruecken, Lecture Notes on Computer Science,
14, Springer-Verlag, New York, 1974.

[6] H. MINE, K. OHNO AND M. FUKISHIMA, Multilevel decomposition of nonlinear programming by
dynamic programming, J. Math. Anal. Appl., 53 (1976), pp. 7-32.

[7] J. MORAVEK, A note upon minimal path problem, J. Math. Anal. Appl., 30 (1970), pp. 702-717.
[8] M. RABIN, Proving simultaneous positivity.of linear forms, JCCS, 6 (1972), pp. 639-650.
[9] A ROSENTHAL, Computing the reliability of complex networks, SIAM J. Appl. Math., 32 (1977)

pp. 384-393.
[10] A. ROSENTHAL, Decomposition algorithms]:or probabilistic circuits and fault trees, submitted for

publication.
11] A. ROSENTHAL AND V. JECZEN, Additional proofs for dynamic programming is optimal for nonserial

optimization problems, working paper, available from the authors.
[12] B. ROTHFARB, H. FRANK, D. ROSENBAUM, K. STEIGLITZ AND D. KLEITMAN, Optimal design

of offshore natural-gas pipeline systems, Oper. Res. 6 (1970), pp. 992-1020.
[13] A. BORODIN, M. J. FISCHER, D. G. KIRKPATRICK, N. A. LYNCH AND M. TOMPA, A time-space

tradeoff for sorting and related non-oblivious computations, Proc. 20th IEEE Symposium on
Foundations of Computer Science, 1979, pp. 312-318.

[14] A. ROSENTHAL AND P. HELMAN, A general theory of discrete dynamic programming, in preparation.
[15] P. HELMAN, A new theory of dynamic programming, Ph.D. Thesis, University of Michigan, Ann.

Arbor, 1981.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0005 $01.00/0

ON THE EXPECTED PERFORMANCE OF SCANNING DISKS*

E. G. COFFMAN, JR." AND MICHA HOFRI$

Abstract. This paper describes and analyzes the SCAN policy, used to schedule read/write requests
at a moving-arm disk device, when fast response over the entire disk area is at a premium. An analysis is
presented which handles precisely the dependence structure between queues accumulated at different
cylinders. The arrival process of requests to each cylinder is assumed Poisson and homogeneous in time.
A relatively efficient algorithm for evaluating numerically the mean waiting time at each cylinder is presented
and its complexity analyzed. We discuss further extensions intended to capture additional details of realistic
situations. These include distributed record lengths, skipping unreferenced cylinders and letting successive
arrivals’ target cylinders be dependent variables.

Key words, disk system performance evaluation, disk SCAN policy analysis, movable-arm disk system
analysis

1. Introduction. The quality of service provided by a computing system depends
largely, if not critically, on the techniques it uses to handle its secondary memory
requirements. Thus, it is important to obtain a precise account of the performance of
these memory devices, and its dependence on the physical characteristics and methods
of operation. This paper presents such an account for a specific case--a disk-like
device used under the so-called SCAN policy.

The term "disk-like device" is intended to aggregate semirandom access devices,
on which the recording/reading mechanism can assume a limited number of positions.
From each position, only a section of the device can be serviced continuously without
further mechanical motion, excluding the rotation of surfaces. The following analysis
is expressed in disk terminology, which we assume is familiar. If further specification
of these devices is desired, references [7]-[8] may be consulted.

A disk is a nonrandom access device in the sense that it must perform a relatively
long operation, called a seek, between accesses to distinct cylinders. Thus the time
to process a batch of requests may depend on the order of service. The purpose of a
scheduling policy is to devise a processing order which optimizes a suitable measure
of performance. It is natural that the waiting time of a request is the variable most
often chosen as the basis of such measures, and thus its calculation is the main objective
of the analyses we present.

The simplest scheduling policy to implement, in terms of the required data
structures and hardware, is a linear first-come-first-served (FCFS) queue. It is easily
shown and intuitively clear that this results in many more, and relatively longer seeks
than alternatives require. Any improvement over FCFS requires keeping track of the
requests according to their target cylinders. Due to the relatively long time required
to perform a seek, most of the improved policies schedule all the requests for the
cylinder currently under the read/write heads before all other pending requests. Under
these conditions the scheduling of requests reduces to selection of cylinders. Scheduling
to reduce rotational delays, in the manner that is done for drums, is outside the scope
of this paper.

* Received by the editors September 29, 1978, and in final revised form February 18, 1981. This
paper is a revision of an earlier paper presented at the International Symposium on Performance Evaluation,
Stresa, Italy, 1977.

5" Bell Laboratories, Murray Hill, New Jersey 07974.
The Technion, Haifa, Israel.

6O

EXPECTED PERFORMANCE OF SCANNING DISKS 61

There are two basic policies that have been adopted for the solution of this
decision problem. The first is SSTF, an acronym for shortest-seek-time-first. Under
this policy, after all the requests to the current cylinder are served, the arm performs
a seek to the nearest cylinder that has a waiting request. Under certain conditions
this policy is credited with achieving the shortest overall mean waiting time, although
no successful analysis has yet appeared. At the same time, however, the variance of
this time may be undesirably large when the input of requests is inhomogeneous in
time. These issues are further discussed in [4].

The second is SCAN. Under this policy the motion of the arm is organized so
as to reduce the variance of the waiting time when compared with SSTF. The sacrifice
made for this improvement is an increase in the mean waiting time. More specifically,
at any given time instant the arm is in one of two modes, "in", or "out". When a
seek is required in the first mode, the arm moves toward the disk spindle until a
cylinder with pending requests is encountered. When no such cylinder exists, the mode
of the arm is changed and its direction of motion reversed. Arm movement in the
out mode is similar; thus the arm performs a shuttle service across the disk.

The SCAN policy and certain of its variants have been studied extensively in the
literature. Analyses based on approximations have been presented in [2], [7], [8] and
exact analyses of idealized models have been attempted in [1], [5]. However, in both
of [1], I-5] errors have been found which also render these results approximate at best.

In the sequel we shall provide an exact analysis of the basic SCAN policy which
is based on results of Eisenberg [3]. This paper improves on the analysis in [3] in two
important respects" The derivation of all the major equations is via probabilistic
reasoning, and we propose a computational procedure to evaluate the quantities of
interest which is a major improvement over the one outlined in [3]. The next section
describes the mathematical model along with the necessary background results, and
in 3 expressions for mean waiting times are derived. In 4 a procedure for computing
numerical results is presented and its complexity analyzed. In the final section con-
clusions are drawn and a number of open problems outlined. In the Appendix we
collect the notation used in the paper.

2. The mathematical model and preliminary results. The scanning-disk model
developed below is the appropriate specialization of a model [3] in which multiple
queues receive periodic service in fixed but arbitrary cycles. In particular, the disk is
viewed as comprising M service points (cylinders) arranged along a line. At any point
in time the server (arm) is either located at one of these points (possibly performing
an I/O operation) or it is in motion between them (seeking). In this model, seeks are
done to adjacent cylinders only and require a time units. Each I/O operation requires
a constant, fixed amount of time, T, to complete. Note that we make no distinction
here between reads and writes. Request arrivals for the mth cylinder constitute a
homogeneous Poisson process with rate A,. The arrival processes to distinct cylinders
are assumed independent of each other and the state of the system. The order of
service at each cylinder is FCFS. Transition times between seek termination and
beginning of service, as well as between services are assumed to be zero.

Elements of the model. We describe arm motion in terms of stages. The arm
moves in cycles of stages numbered 1 to 2M-2; the correspondence between the ith
stage and cylinder mi is given by

l<-i<M,
(1) mi--

2M-i, M<=i<=2M-2.

62 E. G. COFFMAN JR. AND M. HOFRI

Note that only one stage corresponds to each of cylinders 1 and M. Otherwise, stages
and 2M- correspond to the servicing of requests at cylinder mi, and a cycle through

the 2M- 2 stages corresponds to a complete scan of the arm across the disk and back.
The main process we investigate is N(t), the occupancies of the cylinder queues.

The state of the disk and the collection of queues is observed at instants when a
specification of the value of N(t) and the position of the arm gives a complete (i.e.,
Markovian) description of the disk facility. A value of N(. is denoted by an M-vector
ti (nl, ’, riM). The specification of the position of the arm is explicit: We observe
the state of the system at stage terminations and define /3 n as the probability that
immediately after a stage-/termination the queues are in state ti. These states describe
an irreducible aperiodic Markov chain.

We state without proof the intuitive claim that the chain is recurrent when,-,.--1 h,. < l/T, which is the same as requiring Y.p,. < 1, where p,. A,.T is the
traffic intensity of queue m. Consequently, the states of the system at stage terminations
may be assumed to have the stationary probabilities fin. Note that the recurrence
condition depends only on h and T, and not on a. Indeed, the fraction of time the
arm spends seeking vanishes in the limit p,. 1. At the end of this section we will
be able to comment further on this point, following (16).

In order to calculate the probabilities we find it expedient to consider an additional
set of regeneration points, viz. stage beginnings, and define o n as the probability that
immediately before a stage-/ beginning the system is in state ri. The computational
tools are probability generating functions (pgf’s), e.g.,

(2) i(5) E E E z?lz22 ZM,
nl=0 n2=0 nM=O

with a (Y) similarly defined. Note that in (2) the sum over n,., contributes only when
n,., 0 by virtue of its being a stage-/termiration state, and thus could be suppressed.

The probability distribution function (pdf) of the numbers of arrivals
(n 1, n2, , riM) to the M cylinders during a period with a pdf F(. is given by

(,.lt)" (AMt)"__(3) p(F; nl, riM)= ---; e -at dF(t).
=o n 1! riM.

If L(.) is the Laplace-Stieltjes transform (LST) corresponding to F(.) then the pgf
of p(. ;. is given by

(4)
p(F;)-L(hl-/lZ1""

L(5).

Note that L(. has a vector argument.
Let A(s) and C(s) denote the LSTs of the seek and service periods, respectively,

with ,(5) and () defined in analogy with L(Y). Since these periods are in fact
constants we have

(5) A(5) exp (-a h"(1- z,.)), (z-) exp (-T h"(1- z")).
Calculation Of[(if), Since the queues at stage beginnings comprise those requests

that were there at the last stage termination plus those that arrived during the seek,

EXPECTED PERFORMANCE OF SCANNING DISKS 63

and since these two components are independent, we have

{i-1()2(’), > 1,
(6) a (zT)= -f12M-2(zT)(zT), i= 1,

relating states "across" a seek.
To obtain an equation satisfied by the/3 (.) alone we need to relate the states of

the system "across" a complete servicing of a stage. Let stage of queue rni start with
kin, requests in the queue. If we restrict our view to this queue until it empties, the
analysis of a standard M/G/1 system applies. Denote by Gin,(’) the pdf of a busy
period in such a queue and by Bin, its LST. Then Bin,(" satisfies the equation

(7) Bm,(S) C(s + a,.,.,, am,Bm,(S)).
We use this relation later in 4.

A "compound" busy period, which begins with k, customers present, is the sum
of kin, i.i.d, such "simple" busy periods. Thus it has the pdf .kG m, ("). Observing queue
occupancies when this stage terminates we find for the number, hi, of requests in
queue m at stage-/termination

0, m mi,
(8) h,

k,, + c (am, G rn 7 m

On the right-hand side, for tn # mi, km is the number of customers at queue tn when
stage-/started, and is distributed according to a ; c(a; F) is a variable distributed as
the number of events counted by a homogeneous Poisson process with rate a during
a period with the pdf F(.). Adapting (3) we may write p(im),(G*k’m,’;" for the joint pgf
of this last variable over M-1 queues, excluding mi; the superscript signifies the
suppression. Thus

_(i)(9t fl, E a rp,.,.,,(G *kin ;ff (),
k

where the sum is over all k such that tT->k componentwise (excepting the mith
component), and r =/ when kin, O. Substituting for p(i)(. ;.).

where k -< ei should be construed as above. Multiplying by Hrrni Z 7 on both sides we
obtain, summing on all

rmi

k f -Ca-X.,) (AmZmt)n"
L

dG*k(t)Zr e E (n kin)’rmi =0 m#mi

k ta Zr exp (- (a-am.), + AmZmt) dGm.t.()
r#mi =0 m#mi

Performing the integration and noting that a -Am, Ym*m, Am, one gets

fli(5)=Ya [I zr’B,,7, Y ,m(1--Zm
ff

64 E. G. COFFMAN JR. AND M. HOFRI

and summing over k we obtain

(10)

where the superscript over Y means that the mith component is replaced by
B,,(2k,,, hk--hZ). Combining (6) with (10) we finally obtain

(11) fli(i) =/3i-l(Y(g))(Y(g),
which is the basis for the numerical calculations we shall develop. This equation could
also be used, as in [3], for the basis of a formal solution for the/3 functions, but as
this solution is of limited utility for us, it will not be presented here.

Refining the chains. The chain embedded at stage terminations gives a description
of the evolution of N(t) that is too "coarse" to define the waiting times of individual
requests. To evaluate these, we embed in N(t) a finer chain defined at service beginning
and completion epochs. These epochs are regeneration points for N(t), and thus its
values there also constitute an ergodic Markov chain. Let zrg, be the probability that
a service termination occurs in stage-i, and the value of N just after the termination

---1is n. Following the relation between /3 a and a , we may relate zri, to the joint
probability o)i,, of observing the system just before a service initiation in stage-/and
at state ti. A relation similar to (6) between the pgf’s of zri, and toi, is simple, since
they are related "across" a single service duration. Hence

(12) 71"i ()
oJi()C()

Zm

The remainder of this section is devoted to finding a relation between the
and fl,. The analytical development in [3] will be replaced here by one that exploits
somewhat more intuitive arguments.

We focus on the ith stage and consider observations made just after completions
of stage-/services and seeks from stage i- 1 to stage i, i.e., the union of those epochs
that define transitions of the chains described by zrg. and a,. Next, suppose there
have been K requests served by the system. For large K, the number of epochs at
which state ti occurred is approximately a (K)a +K,, where a (K) was the number
of stage-/beginnings.

Now consider the epochs just after the beginnings of stage-/services and seeks
from stage to stage + 1. These have a one-to-one correspondence with the set of
epochs defined above, and correspond also to the union of the set of epochs of
transition of the chains described by wi,e and fl . But from the point of view of these
latter epochs we have fli(K)i +Kw, as the expected number of epochs at which
state B occurred, where fig(K) was the number of stage-/completions. Thus, dividing
by K and taking the limit K , we have by the law of large numbers

where r lim Bi(K)/K lim i(K)/K is the limiting ratio of the number of
stage-/visits to the number of requests served, and must be the same for all i, since
each stage occurs once per cycle. In terms of generating functions

(14) i() + i() T/() + i().
Substituting for wi(Y) from (12) we obtain

The difference in notation between Ba and ri, reflects a difference in definition" in B, specifies a

conditioning event, but in i,a, is a part of the state descriptor.

EXPECTED PERFORMANCE OF SCANNING DISKS 65

.i(e)_i()
(15) zr,(_) yC(Y)

z,-c(.)

which, in conjunction with (6), gives us the desired relation between the zri(-) and
/3 (.). To evaluate 3’ we may proceed by the following brief expected-value argument.

In equilibrium, the average number served per cycle is given by AD where D is
the average cycle length. Since for each there is exactly one stage-/visit per cycle,
we have y 1/AD. Since the total seek time per cycle is 2(M-1)a, we have for the
average cycle time D aDT + 2(M- 1)a. Hence,

2(M- 1)a l-AT
(16) D

1 AT
and 3/=2(M-1)aa"

The linear dependence of the average cycle duration D on the seek time a may
seem strange when the limit a - 0 is considered, as it would predict the vanishing of
D regardless of p. This however merely represents the ability of the arm to make, in
the limit a 0, an unbounded number of cycles during each "idle period" (idle in the
sense that no requests are available); since the time between idle periods has a finite
mean, D would be "biased away". The unboundedness of y is then self-evident.

This effect also makes the term "utilization" a rather inappropriate term for
p AT. In queueing models, one associates high or low values of with sluggish or
prompt response. Here, AT merely denotes the fraction of the cycle time used for
actual transmission. The responsiveness of the device depends upon the cycle duration
and hence on a. For low values of a the mean response time is essentially determined
by a.

3. Calculation of waiting times. Let W,, and W denote respectively the waiting
times of a request at queue m and one which is served during stage i. Consider for
the moment one queue in isolation. We observe that since the service order is FCFS,
the requests queued at service termination must have arrived during the waiting or
service time of the request Just completed. Now let 77"i, 2e{6lmi=]} "l’l’i, be the marginal
queue-length distribution of queue mi at stage-/ service completions. Define zri

7ri, e Yj 7ri,i rr;(1). Then from the above observation we have for the probability
that queue mi holds n,,] customers at service completion epochs

(1 7) 7"l’i’--i- Io --Am.t
"17"i j!

E d{Fwi , FT(t)}

where Fw, * F(t) corresponds to the convolution of the distributions for stage-/waiting
times and service times. FT-(" is the distribution of a constant T; therefore, calculating
the generating functions of both sides of (17) we obtain for the LST of Fw,

(18) Lwi(S)
77"i(1, 1 S/a,,,,’’’, 1)

7ri exp (-Ts)

Denoting the pgf of 7"gi, by 7ri(z) gives the numerator of (18) as "rri(1-S/am,). For the
distribution Fw,,(" of waiting time at cylinder m, we average over the stages where
mi m and get

(19)
Fwl(t)=Fwl(t),

7r,Fw., + Tr2M mFwFw(t)
"lT"m -- 7"l’2M

l<m<=M.

66 E. G. COFFMAN JR. AND M. HOFRI

Next, from (6) and (15) we can express 7/’i 7/’i() in terms of first derivatives of i-1()
at i=l,

(20) 7T (/3 m, + ahm,),

where [,i =_oi()/Oz,,,] and p, TA.. Finally we differentiate (18) at s =0 using
(15) and then again (6) to eliminate a(.). In the resulting expression we substitute
for y and r from (16) and (20) and obtain

i-1 i-1 2h2i mi(21) E(W) ’’ +2ah +a Tp,
2,(ah, +fl, 2(1-p,)’

where ., 02 (Y)/OZmOZnI=. From (19) the desired mean waiting time is

E(w1) E(w),
(22) E(W +2M-mE W2M-m)

E(W) l<mM.
m + 2M-m

The lengths, N, of queues accumulated at the individual cylinders are of practical
interest as well. From Little’s theorem, the mean value, E(Nm), at request completion
epochs is given by hE(W). To obtain higher moments one needs only to differentiate
(15) further, and accumulate contributions as in (19). However, the complexity of
these calculations can be expected to increase significantly.

4. Numerical calculations. The expressions we derived for E(Wi) and higher
moments include the partial derivatives of the functions i(y) at Y . We show here
how these can be calculated based on (11). We shall also use the following values and
notation"

T
(23) -B’ (0) T,,

(24) B" T2 3..(0)

(25)

(26)

Oz(i) []’=(’(Y.)=-(1-8.,.,.)A.,B’m, Y’. A’(1-z’)
OZm jmi

(2’(i)=-(2’ =(1-&,,.m,)O,,Y.,,.

We get by straightforward calculation

OA (Y’)) a(1 m,mi)Z ((i))[/ -- Aii()].OZm

At the right-hand side becomes (1-6,.,,.,,)ah,,,h,,,,.
Proceeding from (11) we get

i () OZm
(27) i-1(1 &.,,,){/3 i-1 (y(i)),(y(i))+ ,,, ((,)) (z(i))sr, (.) + a/3i (g)[A, + A,isr,; ()]}.

At 1 these derivatives yield

(28) 1 <_i_<_2M-2, l<=m<_M.

EXPECTED PERFORMANCE OF SCANNING DISKS 67

Differentiating i, () with respect to zn, and evaluating at z , we find

(29) i-1 i-1+/,,.,,(m’sr, +/ ,- a,,y,, + fl,,, srm’aX,y,,,
i--l,?,mi,t,m,4- B . ")" 4- [3 ah y + aA (m’("Y }

Higher derivatives are readily formed in this manner.
Equation (28) can be used to calculate all im. These equations, while quite

cumbersome for symbolic manipulation, are very well suited to numerical solution by
computer. Equation (28) is applied 2M-2 times (each time for all values of m) in
order to collect coefficients for a set of M equations, linear in (say) /1,,. These are
straightforward to solve; re-applying (28) yields us the first derivatives that we need.

A very similar procedure for (29) is used to determine values for the second
order derivatives. We note in passing that although the calculation of the mean waiting
time required the values of only a small fraction of these derivatives, the form of the
only expression we found that was relatively convenient to solve required the evalu-
ation of many more in the process.

The regularity of the system of equations (29) suggests that the corresponding
matrices might be explicitly inverted. This does not seem to be the case; they can be
inverted in terms of suitably defined M xM blocks, but inverting these blocks results
in an overall effort of the same complexity.

i-1Since/3 m, as required in (21), has the value of the expected queue size at queue
may be determined in the following moremi when stage i-1 is terminated, the/,,

direct way.
Define
gi expected time between end of stage and the last time

at which the head departed from queue mi.

di expected time between end of stage i- 1 and end of stage i.
We state without proof the following mean-value relationships. They should be obvious
on inspection.

i+1 lm.di+l,

d Am,giT + a Pm,gi + a,

2M--2

gl=gM=D di,
i=1

g2 dl + d2 (d + a)/(1 P,2),

gi gi-1 + di 4- d2M-i+l, 3 <-_ <-_M- 1,

gi D g2M-i, 2 <-- <=M 1,

1
+ a 1 < < 2M 2gi

1 p,,,

The last equation results first from breaking gi down into the time interval beginning
with the departure of the arm from queue m and ending with the termination of stage

-I/A plus the time interval during which queue m served.i- 1, with mean length/3,,,, m,,

Next, we observe that if the load at queue mi is A when its processing begins, the
arm’s expected stay there is A/(1-pm,). This is also obtainable by differentiating (9)

68 E. G. COFFMAN JR. AND M. HOFRI

in [3] at Y 1. Finally, then

i--1A,,dl O,,, A.m,(d2M-i+l + gi-1), 3 <_- <-- M 1.

i-1Thus, the/3,,, may be obtained recursively, beginning with (16). Unfortunately, no
such procedure was discovered for the second derivatives.

It is remarkable that a very similar, though slightly simpler, queueing model
treated by Konheim and Swartz [5] requires substantially fewer calculations to find
E(Wg), precisely because a "direct" approach to the evaluation of the second order
derivatives can be implemented there. Higher moments seem to be equally hard to
calculate in both cases.

The calculations we have outlined were performed for a number of input rates
and distributions (across the disk). The following characterizes the results"

Total input rate (A) and cylinder number (m) are the main determinants of
E(W,). It is quite robust under changes in the distribution of
This mean was also only very slightly influenced by relative changes in A and
T, so long as p was not affected.
"Popular" cylinders require shorter waiting times than those with low
When all A,,, are equal, the graph of E(W,,) versus rn is parabolic. This is not
true for any non-uniform distribution.

Complexity of the calculations. Each application of (28) uses O(M2) operations
(the number of substitutions per line of the equations increasing from 3 to M), for a
total of O(M3). This is also the time complexity of the solution of the resultant set
of M- 1 equations and the back substitution through (28); the total is then still O(M3).

Similarly, each application of (29) requires O(M3) operations; here the solution
of the final set of equations dominates, with O(M6) operations required. Thus, the
numerical evaluation of these equations for realistic devices, where M assumes values
in the low hundreds, is too expensive for most purposes. One should use it, however,
to investigate qualitative features, such as"

Dependence of performance measures on hardware parameters, and on details
of the algorithms used for scheduling, as well as for comparison with other
scheduling methods on the same hardware.
Evaluation of the quality of various approximations to the above analysis before
their application to a full-fledged system.

It is of interest to note that the above described scheme of calculations is very
much cheaper than the one suggested in [3], since the repeated (chain) differentiations
used there are not required in our method, and the subsequent calculations are fewer
in number (e.g., O(M4) are required in [3] to calculate all the first order derivatives).

5. Elaborations of the model. The model, as presented in 2, captures a number
of the features and properties of a disk system which are critical to its performance. For
the sake of simplicity, however, it does contain a good many assumptions that would
seem at once to be both arbitrary and at variance with the real state of affairs in such
systems. We discuss here a number of these assumptions and what their removal or
modification entails, mainly in terms of model tractability.

Request service duration. This quantity was assumed constant and equal for all
cylinders simply to keep down the level of detail of the model (and use somewhat
less storage during numerical calculations). Since these properties are not used
explicitly in the procedures we developed, there is absolutely no effect on the analysis
when we assume that the time to service a request has a general distribution function,
which may indeed be cylinder-specific. Let $,, be the variable representing the service

EXPECTED PERFORMANCE OF SCANNING DISKS 69

duration at cylinder m, with distribution function and LST, Fs. (’) and ,(.), respec-
tively; the LST of the busy period distribution is then the solution of the equation
Bin(s)--qbm(S + Am-AmBm(S)). qbm(" itself should also be substituted for exp (-Ts) in
the various equations in 2 and 3. No essential change need be made, and the
calculations proceed in precisely the same manner.

Meaningful seeks. By this rather fanciful name we refer to the incorporation into
the model of the following modification: At stage completion a seek is initiated to
the next nonempty cylinder queue in the cycle, as given in (1). We recognize here
the fact that, due to acceleration effects, the time to traverse k cylinders in a single
seek is appreciably less than k times the duration of a single-cylinder seek. This
certainly represents better the way a disk facility is managed, but it also introduces a
number of complicating factors:

Instead of a single seek time, we have now a multitude; this may be as high
as M(M-1), but it can be reduced to M-1 by assumptions that are quite
borne out in practice.
The movements of the arm are not prescribed as before, but rather depend on
the state of the system, a feature that has been the undoing of many queueing-
theoretical models.
As a consequence, the key relations of 3 do not hold, and a new approach
must be found.

Nevertheless, the authors believe that this modification still yields a tractable
situation, and are preparing an analysis of its main features.

Dependent arrivals. The model as described in 2 can be rephrased to postulate
a single Poisson stream of arrivals, at rate ,, with each request destined to cylinder
m with fixed probability p, ,,/, independently of the state of the system and, in
particular, of the history of the arrival process itself. We propose in this paragraph a
modification which deviates from this last assumption. In particular, we wish to consider
the situation where the destinations of successive arrivals form a first order Markov
chain.

Thus, to the description of the state of the system a further index has to be
addedmthe identity of the last cylinder addressed by the arrival process. This is a
major departure from the model analyzed above, and the methods used there would
be ineffective in handling it. Still, its analysis would be desirable, inasmuch as it
represents many common situations better than the simpler version, in particular when
one considers systems that employ a large number of disk drives (i.e., there are fewer
tasks active at each drive at any time).

Appendix. Notation. We collect below the notation used in the paper.
amseek time between adjacent cylinders.
A(s)mLST of the (point) distribution of the seek time, A(s)=exp (-as).
A(z:), C()--cf. (5).
B,(s)mLST of the distribution G,.
C(s)LST of the (point) distribution of the service time =exp (-Ts).
Dduration of a cycle (time to complete 2M-2 stages).
Fgeneric probability distribution function (pdf).
G,the pdf of a busy period in cylinder m. Eq. (7).
igeneric stage index.
Lgeneric LST.
L(f)cf. (4).
mgeneric queue index.

70 E. G. COFFMAN JR. AND M. HOFRI

M--number of cylinders (queues).
mi--the cylinder served at stage (cf. (1)).
tT--state of the queues; n,, requests for cylinder m.
N(t)--the process of cylinder-queue occupancies.
p(F; k)--the probability of k arrivals during a period with pdf F (cf. (3)).
c(A;F)--a variable, equal to the number of counts of a Poisson process of rate

during a period with the pdf F(.).
T--duration of I/O request execution.
wi--the waiting time of a request processed at stage i.
W,,--the waiting time of a request addressed to cylinder m.
cf. (10).
a ;,--the probability that at the beginning of stage the queues are at state
a (Y)pgf for
the probability that just after stage-/termination the queues are at state
e(Y)pgf for
()--’()/0z.

0,.--a’()/azaz.[=.
ycf. (13).
r--l/(1-o), cf. (23).
6,.--Kronecker’s delta.
(’ (5)--cf. (25).

--iut rate to cylinder m.

the probability that a service completion occurs at stage i.
,a--the probability that just after a service termination the system is at stage and

the queues are at state
(ff)pgf for

w,a--the probability that a service beginning is at stage and the state of the queues
is ft.

wi(Y)pgf for wi,.

Acknowledgments. Comments of the referees helped in organizing the paper.
Dr. Kimming So (IBM Research, Yorktown Heights, NY) performed the numerical
calculations and suggested the direct evaluation of the first order derivatives.

REFERENCES

[1] E. G. COFFMAN, JR., L. A. KLIMKO AND B. RYAN, Analysis o[scanning policies [or reducing disk
seek times, this Journal, (1972), pp. 269-279.

[2] P. J. DENNING, Effects o]scheduling on file memory operations, Proc. AFIPS SJCC, 31 (1967), pp. 9-21.
[3] M. EISEN3ERG, Queues with periodic service and changeover time, Oper. Res., 20 (1972), pp. 440-451.
[4] M. HOFII, Disk scheduling: FCFS vs. SSTF revisited, Comm. ACM, 23 (1980), p. 11.
[5] C. W. ONEY, Oueueing analysis o]: the scan policy ’or moving-head disks, J. Assoc. Comput. Mach.,

22 (1975), pp. 397-412.
[6] A. KONHEIM AND G. B. SWARTZ, Polling in a LOOP system, J. Assoc. Comput. Mach., 27 (1980),

pp. 42-59.
[7] T. J. TEOREY, Properties o]" disk scheduling policies in multiprogrammed computer systems, Proc. AFIPS

FJCC 41 (1972), pp. 1-14.
[8] T. J. TEOREY AND B. T. PINKERTON, A comparative analysis o]" disk scheduling policies, Comm.

ACM, 15 (1972), pp. 177-184.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

982 Society for Industrial and Applied Mathematics
0097-5397/82/1101-0006 $01.00/0

A HIDDEN-LINE ALGORITHM FOR HYPERSPACE*

ROBERT P. BURTONS" AND DAVID R. SMITHS

Abstract. An object-space hidden-line algorithm for higher-dimensional scenes has been designed and
implemented. Scenes consist of convex hulls of any dimension, each of which is compared against the edges of
all convex hulls not eliminated by a hyperdimensional clipper, a depth test after sorting and a minimax text.

Hidden and visible elements are determined in accordance with the dimensionality of the selected
viewing hyperspace. When shape alone is the attribute of interest, hidden-line elimination need be performed
only in that hyperspace.

The algorithm is of value in the production of shadows of hyperdimensional models, including but not
limited to four-dimensional space-time models, the hyperdimensional elementary catastrophe models and
multivariate statistical models.

Key words, hyperspace, hidden-line elimination

Introduction. This paper describes an algorithm for solving the hidden-line prob-
lem in hyperspace. The lines are edges of convex hulls approximating the surfaces of
hyperdimensional objects. The algorithm removes edges which would be invisible in a
hyperdimensional scene. The scene may then be projected to lower dimensions. The
development of a hidden-line eliminator for hyperspace is part of an ongoing effort to
display and gain insight into the structures of higher-dimensional space. Of particular
interest are four-dimensional space-time models, the seven elementary catastrophe
models, of which five are hyperdimensional [1] and multivariate statistical models.
While these models are numerically useful to some extent, they are of limited general
utility in the absence of adequate tiyperdimensional presentation techniques. Without
an ability to present visible lines only, the four- (and higher-) dimensional analogues of
front, rear and depth become hopelessly garbled in the generalized view.

Previous efforts to display hyperobjects [2], 3] have employed techniques which
either discard one or more variables or hold them constant so as to restrict structures to
three dimensions. Such techniques impose unacceptable constraints. To illustrate by
analogy, consider a cube aligned with x-, y- and z-axes. The cube can be restricted to
two dimensions by either eliminating or holding constant one of the coordinates. The
cube then appears to be nothing more than a square (see Fig. l a). A generalized
technique, which permits the cube to be viewed from any position, with any orientation
and in stereo, provides substantially more information, especially when hidden ele-
ments of the cube are removed (see Fig. lb). Similarly, views of hyperobjects are
significantly enriched when a generalized viewing capability is combined with a
hyperdimensional hidden-line eliminator such as the one described in this paper.

(a) (b)

FIG. 1. (a) A restricted view of a cube" (b) A generalized stereo-pair view of the cube with hidden lines
removed.

* Received by the editors November 6, 1979, and in final form March, 1981.

" Computer Science Department, Brigham Young University, Provo, Utah 84602.
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.

71

72 ROBERT P. BURTON AND DAVID R. SMITH

The meanings of visible and hidden. The development of an algorithm for
removing hidden lines is necessarily preceded by a determination of the meanings of
visible and hidden. The definitions offered here accommodate the geometry of space
and are hypothesized to accommodate the geometry of hyperspace.

An object J is defined to be visible in a viewing space of dimension m to the extent
that the points P constituting J or any section(s) of J intersected with the viewing space
collectively extend at least into the m 1 dimensions of the viewing space orthogonal to
the ray of vision and are not hidden. A point P on an object J is defined to be hidden
from view at V by an objectH if and only if a neighborhood of at least dimension m 1
exists about an intersection of the line segment VP and H, completely contained in H
and extending into each of the m 1 dimensions orthogonal to VP (see Fig. 2). Opacity
of objects is assumed.

v

(a)

v

(b)

FIG. 2. Hidden and visible. (a) An obscuring intervening obiect; (b) A nonobscuring intervening object.

Each snapshot of the viewing space involves the viewer at V, the object(s) J which
may be partially or completely hidden and the potential hider(s) H. Vision is limited to,
but always includes, the m 1 dimensions which can be perceived plus depth which can
be inferred, which together span the viewing space. Objects possessing additional
dimensions become part of the scene to the extent that they intersect it or are projected
into it.

Surface approximation. Being piecewise smooth, the surfaces of n-dimensional
forms intended for graphic presentation are topologically equivalent to segments of
(n 1)-space. Thus, the surface of a form in n-space can be approximated by polyhedra
of dimension n- 1. This is an extension of the practice of approximating surfaces of
three-dimensional forms with polygonal patches.

Simplification. Both the initial absence of an intuitive feeling and a lack of
experience in four and higher dimensions encouraged conceptual simplicity in the
design of algorithms for producing, transforming and presenting hyperdimensional
scenes. With this in mind, the initial hidden-element algorithms required all surfaces to

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 73

be approximated by simplices. The final algorithm was extended to accommodate
general convek hulls. The representation of objects as convex hulls provides both a
disadvantage and an advantage. The advantage is robustness. Consider a patch in
three-dimensional space, supposed to be a quadrilateral, but which actually consists of
four nonplanar points. Its manifests itself as a tetrahedron, but nevertheless hides points
in a predictable manner. The disadvantage is that concave objects must be built from
multiple convex objects. Restriction of the effort to the development of a hidden-line
algorithm was another obvious step. Attributes other than shape, such as color, for
example, were ignored. These restrictions were easily accepted in part because the
graphics equipment on which the algorithm was to be implemented was monochromatic
and vector oriented.

Simplification was also achieved by collapsing successively from n dimensions to
n 1 dimensions, and so on, resulting ultimately, for our inspection, in a stereo pair or a
single two-dimensional image. The several levels of computation implied by these
stages of collapse suggested an object-space algorithm rather than a screen-space
algorithm [4]. Furthermore, the algorithm needed to provide output of the same form as
its input. After some experience with the algorithm, however, we observed and were
able to establish that hidden lines need be eliminated at only one dimensional level prior
to projection into R 3 or R 2, making successive application of the algorithm unneces-
sary. Repeated viewing transformations are still required, nevertheless. Finally, the
hidden-line algorithm was simplified by preprocessing the scene with a viewing trans-
formation which can include perspective. The effect of this transformation is to place
the viewer at infinity looking in the negative direction along the mth axis with the rays of
vision parallel to the ruth axis.

The viewing transformation. A generalized viewing transformation in R (m => 2)
includes’

(1) translation of the scene so that the point to be lookedfrom is at the origin 0o of
object coordinates; and

(2) rotation through the appropriate angles in the planes determined by the axis
pairs (1, m), (2, m),.. , (m 1, m). Rotation in the (i, m)-plane directs the gaze so as
to ultimately place the point to be looked at on the viewing axis. Rotation in.planes
where the axis pair does not include m is implicitly restricted. Simply specifying look at
and look from positions without an order for rotations leaves the scene free to tumble
with (,-1) unrestricted degrees of freedom. While this would not affect spatial relation-
ships or the visibleness of elements of the scene, it would significantly affect the
orientation of the scene relative to the viewer as well as subsequent projections to lower
dimensions.

The rotation scheme based on lexicographic ordering of axis pairs accommodates
the human habit of keeping the eyes parallel to the horizon in three-dimensional space;
if this third degree of rotational freedom were unrestricted the gaze would remain fixed,
but the scene would be free to rotate about the viewing axis. Lexicographic ordering
also facilitates easy calculation of the Euler angles. Corresponding advantages are
experienced in higher dimensions.

Scenes are projected orthogonally to lower dimensions except possibly during the
final projection.

Hidden-line elimination. Hidden-line elimination is carried out by comparing
each convex hull H against each edge E to determine which portion of the edge, if any,

An n-simplex is a convex hull of n + affinely independent points. A set of points {xi} is affinely
independent if and only if for some fixed/" the set of points {(xi- xi)]i /’} is linearly independent.

74 ROBERT P. BURTON AND DAVID R. SMITH

infinity

FIG. 3. A partially obscured edge.

is hidden by the convex hull. Requiring the hull H to be convex assures that all points of
E which H hides are contained in a connected interval.

An edge E with endpoints A (al, a2, ", am) and B (b l, b2, , bin) may be
hidden at least partially by a convex hull H if H intersects the partial plane of view Q
(see Fig. 3). From the criterion of Carath6odory,

X convex hull of a finite set A {Xi[i 1, 2,. ., m}

if and only if

X-- Y cixi, where ci -> 0, i=l,...,m, ci=l.
i=1 i=1

The definition of a convex hull is less restrictive than the definition of an n-simplex.
The edge U can be expressed parametrically as

(1) E= {X RmIX=A +(B-A)t, O<=t<= 1}.

The partial plane of view Q can be expressed as the directed sum

(2)
Q=E+emS, O<-s

{X R"IX A +(B -A)t + e.s, O-< <- 1, O<=s},

where e,, is the mth vector in the natural basis of R m. Letting Xi (xl, X2i, Xmi) T

be the ith vertex of the convex hull, we have

(3) H X R X ai, 0 Ol, i, E Ogi 1
i=1 i=1

[XmQ.]

Intersecting Q and H yields

(4a)

Xl Xln

l_Xmn

an A + (B -A)t + e,s

al bl-al 0

b. a

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 75

Rearranging, we get

(4b) + c1 +" +

Lain b.,J Lx., 1J Lx.,-,J

0 al

s= aim
Incorporating the restriction Yi=l ai 1 yields

(4c) t+ eel+’’’ +

which corresponds to

(4d)

al-ba xl

am-bin Xm
0 1

Xln 0 al

-1 am
0 1

or, as the adjoint matrix

(4e)
al-b Xll xln 0 al

0.
bm Xml Xmn 1

0 1 1 0

still restricted by 0 _-< _-< 1, 0 _-< s and 0 -< ai.

The portion of E hidden by H can be determined by finding the values of for
which the adjoint matrix has a solution. Since H is convex the solution will be a
connected interval.

A problem arises in the elimination process when all convex hulls are compared
against all edges. If s is allowed to be zero, a convex hull will eliminate its own edges.
One solution might be to avoid testing a convex hull against the edges which bound it.
However, convex hulls may hide some of their own edges. Furthermore, an edge may be
shared by two or more convex hulls; the task of remembering all the convex hulls which
a given edge bounds is cumbersome. A simple solution to the problem requires only
slight modification of the adjoint matrix. By adding a small number e > 0 to the ruth
coordinates of the endpoints A and B, the edge is moved a distance e closer to the
viewer. The visible or hidden status of the edge is easily determined now because it no
longer lies on the surface of the convex hull from which it arose. The. modification

76 ROBERT P. BURTON AND DAVID R. SMITH

appears in the (m, n + 3) element of the adjoint matrix’

(4f)

--b Xll X In 0 al

;bm Xml Xmn am +
0 1 1 -1 1

0

The value of e is suggested by the depth sort information. Experience has indicated
that a value of 10-5 times the maximum depth works well.

The adjoint matrix is transformed to permit solution for train and tmax by the simplex
method of linear programming [5]. The adjoint matrix is modified to yield as a function
of s and ci. One step of Gauss elimination suffices, using an element of column 1 as the
pivot for partial pivoting. Row independence is assured by completing the forward
Gauss elimination process on the adjoint matrix and ignoring the zero rows remaining
at the bottom. If after elimination the last nonzero row has a nonzero element in the
adjoint (n + 3) column only, the system is inconsistent and there is no solution for t, in
which case H does not hide any portion of E.

The adjoint matrix is now in tableau form for the simplex method, except that
column 1 is superfluous and can be ignored. The value of is the element (1, n + 3) of the
adjoint matrix. The simplex method transforms the matrix to yield the values of tmin and
tmax. Although details of the procedure are not presented here, it should be noted that
the initial basic feasible solution is found using artificial variables. A special loop in
effect accomplishes Gauss elimination by pivoting on the artificial variables without
expanding the matrix to contain them explicitly. A value for Big M [6, p. 63], the
arbitrary large number needed for the initial basic feasible solution, can be determined
during the depth sort which is discussed below. Experience indicates that good results
can be obtained with Big M equal to 102 times the maximum depth. Although the
simplex method enforces the restrictions 0 _-< s and 0 <_- ai, it does not restrict the range of
t. Therefore, the interval [tmin, tmax] must be intersected with the interval [0, 1]. If is
unbounded, then E is parallel to e, the projected image of E is a single point and can
be ignored.

Depth and minimax tests. By performing a depth test and a minimax test, the
situation can often be resolved without employing the adjoint matrix described above.
Edges determined from coordinates of vertices and lists of vertices comprising convex
hulls are entered into a hash table which is heap sorted into a linear table implicitly
eliminating shared or otherwise redundant edges. Edges are sorted according to depth
so that the edge with the greatest depth appears first in the list. The depth of each convex
hull is compared against the depth of each edge. If both endpoints of the edge are closer
than the convex hull to the viewer, the convex hull cannot possibly obscure any part of
the edge. Furthermore, it cannot obscure any of the subsequent edges since edges are
listed in order of decreasing depth. When the depth test fails, a minimax test is applied
to the other m 1 dimensions to identify cases where the convex hull cannot hide the
edge, i.e., cases where the ith coordinate values of the edge entirely exceed or entirely
fall short of the ith coordinate values of the convex hull.

Partially obscured edges. If a convex hull hides a middle portion of an edge, the
edge is divided into two segments. To avoid entering the resultant new endpoints into
the vertex array and to avoid additional edge definitions, the hidden intervals of an edge

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 77

are placed in a singly-linked list. Each node in this list gives the minimum and maximum
values of (0 -< -< 1) in (1) for which part of the edge is obscured. The use of linked lists
saves computer time since all separate, visible segments of an edge can be checked
simultaneously against possible obscuring convex hulls. This would be impossible if new
endpoints were calculated and additional edges generated. Within the list, obscured
portions of an edge which are found to overlap or nearly abut are combined to minimize
the number of linked nodes. If the combined interval is [0, 1], the edge is completely
hidden; the associated node is subsequently returned to the pool of available storage.

Clipping. Clipping in hyperspace is conceptually simple, being an extension of
three-dimensional clipping [7]. Similar to its analogue in three dimensions, the hyper-
pyramid of vision in R 4, for example, imposes the following constraints:

--W <= CxX <= W,

-w _-< cyy _<-- w,

--W <- CzZ <= W,
where each of the Cx, cy and cz represents the cotangent of half the angle of vision in the
given direction.

Even though the introduction of new points into the point array should be avoided,
a new endpoint must be generated for an edge which lies partly within the field of vision,
but crosses the zero-depth plane. In other cases it is sufficient to treat a clipped edge as a
partially obscured edge, using the linked list. While this approach saves storage, it
necessitates modification by the perspective routine of the t-parameters in the hidden-
segment linked list [7].

The convex hulls should be processed by an object clipper. However, a convex hull
totally within or outside the field of vision poses no problems. Even if a convex hull lies
partly within the field of vision it need not be clipped in most cases; only the edges, not
the convex hull itself, are ever visible. However, when a partially visible convex hull
crosses the zero-depth hyperplane, division by depth in the perspective transformation
becomes troublesome [7]. In such cases the convex hull must be clipped to a hyperplane
slightly in front of the viewer. The convex hull is clipped by regenerating the edges and
clipping them against this limiting hyperplane. Intersection points are entered into the
hash table. The description of the convex hull now includes the hyperplane intersection
points, but excludes vertices on the viewer’s side of the clipping hyperplane. The hash
table is placed in vacated storage locations in the vertex array, permitting all points to be
treated uniformly.

The key to the hash table can be the sum of the vertex’s first m- 1 (for
coordinates, multiplied by a constant [8]. Even though most transformations will cause
a vertex to generate a key which differs from the one by which it was entered into the
table, the objective of avoiding redundant points is realized at each dimensional level of
clipping.

Classification and performance. The hidden-line algorithm presented in this paper
is an object-space algorithm. The algorithm is closely related to Roberts’ algorithm [9],
particularly because it sweeps the area from an edge out to infinity. Basic relationships
are formulated as matrix systems which are solved by standard methods.

As is true for Roberts’ algorithm, computation required is roughly proportional to
the square of the complexity of the scene. Minimization of computation is heavily
dependent upon the ability of the preliminary tests to resolve the situation, thereby
avoiding the need for the matrix solution. Experience with three-dimensional scenes

78 ROBERT P. BURTON AND DAVID R. SMITH

having from 400 to 1400 triangles with 700 to 2150 edges yields execution times
(transformation, clipping, sorting, hidden-line elimination and plot file generation all
divided by the product of the number of edges and triangles) of 83/.sec to 130 sec to
test one triangle against one edge, running on a DECsystem- 1070. Failures of the depth
test and minimax test result in higher execution times.

Discussion. The algorithm presented in this paper performs hidden-line elimina-
tion in R (n _-> 3) and differs from conventional hidden-line elimination algorithms in
its hyperdimensional capabilities. When an image is projected into R 3 or R 2 after
hyperdimensional hidden-line elimination, information is preserved which would be
lost if hidden-line elimination were performed in R 3 using conventional algorithms.

(a) (b)

(c) (d)

FIG. 4. A generalized view o[tesseracts (hypercubes) on each o1: the eight hyper]:aces o] a central tesseract.
(a) No hidden-line elimination. (b) Four-dimensional hidden-line elimination. (c) Four-dimensional hidden-
line elimination followed by three-dimensional hidden-line elimination. (d) Three-dimensional hidden-line
elimination only.

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 79

The information which is preserved is that which would be visible from hyperspace in a
three- or two-dimensional projection of hyperspace.2 Figure 4a shows a generalized
view of a four-dimensional object with no hidden lines removed, projected into R2; Fig.
4b shows the same object after four-dimensional hidden-line elimination and
subsequent projection into R 2. Information is preserved in Fig. 4b which would have
been lost had the object first been projected into R 3, followed by hidden-line elimina-
tion, followed by projection into R 2, as in Fig. 4d.

Hidden-line elimination need be performed only once when shape alone is the
attribute of interest. Any subsequent hidden-line elimination would obliterate the
results of all previous hidden-line elimination and alone would yield a shape equivalent
to the aggregate shape that would result from successive applications of the algorithm
from higher dimensions. By way of illustration, consider Fig. 4c, which shows the results
of four-dimensional hidden-line elimination followed by three-dimensional hidden-
line elimination. Figure 4d shows the results of three-dimensional hidden-line elimina-
tion alone.3 The apparent equivalence of Figs. 4c and 4d can be explained as follows.

Assume that a point P is hidden from a viewer at V by a hypervolume H in
four-dimensional space (see Fig. 5). The line segment VP intersects H in one point R
provided only that VP and H are not contained in the same three-dimensional

P

H

FIG. 5. A point hidden in R is hidden in R 3.

hyperplane. Since the collapse from four to three dimensions takes place along the axis
which contains V, R and P, the points R and P coincide after projection into R 3. P is
simply absorbed into H. The shape of H is unchanged. In the case under consideration
here, three-dimensional hidden-element elimination leaves no clue that four-dimen-
sional hidden-element elimination took place previously. Attributes such as color
would persist, however, unless hidden-element elimination took place in each suc-
cessive dimension. When shape is the only attribute of interest, a significant savings is
realized because the costly process of removing hidden lines need be performed only
once. Computation is also minimized because the space in which hidden-line elimina-
tion is performed is dimensionally the least of all the spaces in which hidden-line
elimination would be performed if successive application of the algorithm were
necessary.

Acknowledgments. The authors gratefully acknowledge the consultation and
contributions of other members of the Hyperspace Research Group. Appreciation for
their support is extended to Brigham Young University and Eyring Research Institute.

In the same sense, a photograph represents hidden-element elimination performed in R and
subsequent projection to R to be viewed from R 3.

The algorithm would never be used in R3; a variety of superior algorithms could be summoned for that
purpose. An illustration involving R is chosen to simplify the presentation of the concept.

80 ROBERT P. BURTON AND DAVID R. SMITH

REFERENCES

[1] E. ZEEMAN, Catastrophe theory, Scientific American, 234 (April, 1976), pp. 65-83.
[2] C. PANATI, Catastrophe theory, Newsweek, 83 (January 19, 1976), p. 55.
[3] J. GORMAN, The shape of change, The Sciences, (September/October 1976), p. 21.
[4] I. SUTHERLAND, R. SPROULL AND R. SCHUMACKER, A characterization of ten hidden-surface

algorithms, ACM Computing Surveys, 6 (1974), pp. 1-55.
[5] D. STEINBERG, Computational Matrix Algebra, McGraw-Hill, New York, 1974.
[6] F. HILLIER AND G. LIEBERMAN, Operations Research, Holden-Day, San Francisco, 1974.
[7] W. NEWMAN AND R. SPROULL, Principles of Interactive Computer Graphics, 2nd ed., McGraw-Hill,

New York, 1979.
[8] M. STEPHENSON AND H. CHRISTIANSEN, A polyhedron clipping and capping algorithm and a display

system]’or three-dimensional finite element models, Computer Graphics, 9 (Fall 1975), pp. 1-16.
[9] L. ROBERTS, Machine perception of three dimensional solids, MIT Lincoln Laboratory TR 315, 1963.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1981

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1101-0007 $01.00/0

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME*

JOHN H. REIF" AND ROBERT E. TARJAN

Abstract. This paper describes an algorithm to construct, for each expression in a given program text, a
symbolic expression whose value is equal to the value of the text expression for all executions of the program.
We call such a mapping from text expressions to symbolic expressions a cover. Covers are useful in such
program optimization techniques as constant propagation and code motion. The particular cover constructed
by our methods is in general weaker than the covers obtainable by the methods of [Ki], [FKU], [RL], [R2] but
our method has the advantage of being very efficient. It requires O(ma(m, n)+ l) operations if extended bit
vector operations have unit cost, where n is the number of vertices in the control flow graph of the program, m
is the number of edges, is the length of the program text, and a is related to a functional inverse of
Ackermann’s function IT2]. Our method does not require that the program be well-structured nor that the
flow graph be reducible.

Key words, code movement, code optimization, constant propagation, data flow analysis, symbolic
evaluation.

1. Introduction. Let be an expression which appears somewhere in a computer
program. If ge evaluates to a constant independent of the particular execution of the
program, then the program can be improved by substituting the appropriate constant
for in the program text. The systematic application of this technique is called constant
propagation. Another kind of improvement is possible if ’ occurs within a loop but has
the same value for every execution of the loop; in this case the program may be
improved by moving the computation of outside the loop. (Note that this is not an
improvement if the loop is executed less than twice.) Constant propagation and code
motion require for their application a mapping from text expressions to symbolic
expressions such that in any program execution every symbolic expression has the same
value as its corresponding text expression. We call such a mapping a cover. We desire a
cover which is as simple as possible in some appropriately defined sense, but even
determining whether a given text expression always evaluates to a constant is an
undecidable problem. In this paper we describe an algorithm for efficiently computing a
reasonably good cover.

In order to address this problem, we need some definitions. We represent the flow
of control through a program 7r by a flow graph G (V, E, r) where each vertex v
represents a consecutive block of assignment statements and each edge (u, v)E
specifies a possible flow of control caused by a branch from a test statement. An
execution of zr induces a path in G beginning at the start vertex r. We shall denote the
number of vertices in G by n and the number of edges in G by m.

Let ,E {X, Y, Z,...} be the set of program variables occurring within 7r. A
program variable X Y_, is defined at v V if X occurs on the left-hand side of an
assignment statment of v. For each program variable X .E and vertex v V, we let the
entry variable X denote the value of X on entry to v.

* Received by the editors June 5, 1979, and in final form March 2, 1981.

" Aiken Computer Laboratory, Harvard University, Cambridge, Massachusetts 02138. The work of this
author was supported by Naval Electronics System Command contract N00039-76-C-0168 and Rome Air
Development Center contract F30602-76-C-0032.

t Department of Computer Science, Stanford University, Stanford, California 94305. Present address:
Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974. The work of this author was
supported by National Science Foundation grant MCS-75-22870 A02, by Office of Naval Research contract
N00014-76-C-0330, by a Guggenheim fellowship, and by Bell Laboratories.

The appendix contains the graph-theoretic terminology we employ.

81

82 J. H. REIF AND R. E. TARJAN

Let 0 be the set of function signs occurring in the program. For simplicity, we
assume a domain D such that every k-ary function represented by a sign in 0 has the
same domain Z) k. Let C be a set of constant signs containing a unique sign for every
element in D. Let EXP be the set of expressions built from entry variables, constant
signs in C, and function signs in 0. To each expression g’ e EXP corresponds a unique
reduced expression R formed by repeatedly substituting the appropriate constant sign
for each subexpression of g’ consisting of a function sign applied to constant signs.

For any expression g" EXP and any execution of the program r, the value of g" on
exit from a vertex v is defined as follows’ If f(contains an entry variable X" such that
control has never entered u, then the value of g’ is undefined. Otherwise the value of g’ is
computed by substituting for each entry variable X" the value of X when control last
entered u, and evaluating the resulting expression.

For each vertex v V and program variable X Y_, defined at v, the exit expression
g’(X, v)e EXP is formed as follows. Begin by letting the expression g" be X. Process
each assignment statement of v, starting from the last assignment defining X and
working backwards to the first assignment in v. To process an assignment Y:-g",
replace each occurrence of Y in g’ by g". After all assignments are processed, reduce g’

and replace each occurrence of a variable Y by the corresponding entry variable Y.
The resulting exit expression g’(X, v) represents the value of X on exit from v in terms
of constants and values of variables on entry to v. For example, g’(Z, v2)
Z2 + (X2 Y:) represents the value of Z on exit from vertex/-)2 in the flow graph of
Fig. 1.

A text expression is any subexpression of an exit expression g’(X, v) (including the
expression itself); we say the text expression occurs at v. An expression g’ EXP covers
a text expression occurring at v if for any execution of program r, g" and have the

Y:=X+Y

Z:: Z+(X*Y)

X:--Z

FIG. 1. A program flow graph.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 83

same value on any exit from v. See Fig. 1. This definition implies that if X appears in
then u dominates v. Thus there is a unique vertex v which is minimal (i.e., closest to the
start vertex) with respect to the dominator relation and such that for all entry variables
X in q, u dominates v. We call such a vertex the origin of ; it is the earliest point.in the
program at which can be computed.

A cover of 7r is a mapping from all text expressions to reduced expressions in
EXP, such that, for each text expression t, (t) covers t. We would like to construct a
cover whose origins are minimal with respect to the dominator relation. We can use
such a cover for constant propagation" if a constant sign c covers a text expression t, we
may substitute c in line in the program text for the computation associated with c.

We can also use a cover in code motion. If we define the birthpoint of a text
expression to be the minimal vertex to which the computation of may be moved, then
the birthpoint of is precisely the origin of a minimal cover of t. For example, in Fig. 1
the birthpoint of text expression Xv2 yv2 is v,; X (X + yvl) covers t. Code

Text expression

yv2

g(z, v2) Z2 + (x Y)

Covering expressions

X
X + y,
ZU
Z’, + (X , (X + Y’,))

FIG. 2. Symbolic analysis of the progra’m in Fig. 1.

motion requires approximations to.birthpoints (i.e., vertices which are dominated by
the true birthpoints) and other knowledge including knowledge of the cycle structure of
the flow graph of 7r. (We may not wish to move code as far as the birthpoint since the
birthpoint may be contained in control cycles avoiding the original location of the c.ode.)
[R1] presents efficient algorithms which utilize approximate birthpoints for code
motion optimization. See [AU], [CA], [E], [G] for further discussion of code motion
optimizations. Other practical uses of covers have been made by [FK] in their
optimizing Pascal compiler.

Unfortunately, for programs which manipulate the natural numbers using ordinary
arithmetic the problem of computing a minimal cover is recursively unsolvable JR2].
The usual approach in program optimization is to trade accuracy for speed; [FKU], [Ki],
[RL], JR2] present fast algorithms which compute reasonably good covers whose
origins yield approximate birthpoints. The fastest of these [RL], JR2] has a time bound
almost linear in m. lY_,I + l, where is the length of the program text.

In this paper we describe a very fast algorithm for computing a rather weak cover.
This simple cover can be used directly for code optimization, or it can serve as input to a
more powerful method for symbolic evaluation presented in [RL], [R2]. From a data
structure called a global value graph (which is related to the use-definition chains of
[AU], [Sc] used to represent the flow of values through a program), the algorithm
of [RL], JR2] constructs a cover which yields better approximate birthpoints than does
the simple cover. This algorithm runs in time almost linear in the size of the input global
value graph, which is very compact when constructed from the simple cover [RL], [R2].

In order to define the simple cover we need one more concept. A variable X is

definition-free between distinct vertices u and v if no u-avoiding path from a successor
of u to a predecessor of v contains a definition of X. By convention any program
variable X is definition-free between v and v for any vertex v. For any entry variable X
which is a text expression, the simple origin of X is the minimal vertex u (with respect

84 J. H. REIF AND R. E. TARJAN

to the dominator relation) such that X is definition-free between u and v. In the
example of Fig. 1, X2 has a simple origin r, and Yo2 and Z: have simple origin Vl. IfX
has simple origin u v, then on any execution of rr the program variableX has the same
value on entry to v as it did after the most recent execution of u; we take the simple
origin as an approximation to the birthpoint of X.

We recursively define the simple cover using simple origins. If contains no entry
variables then (t)= t. Otherwise we form (t) from by applying the following
transformation.

(i) Repeat the following step for all entry variables X occurring in t: Let u be the
simple origin of X. If u v do nothing. Otherwise replace X in by
((X, u)) if X is defined at u or by X if X is not defined at u.

(ii) Reduce the resulting expression.
Our algorithm for computing the simple cover consists of three parts, described in

2-4 of this paper. First, we determine for each vertex v the set of program variables
defined between the immediate dominator of v and v itself. We call this set of variables
idef (v). The idef computation can be regarded as a path problem of the kind studied in
[GW], IT3], but another approach is more fruitful: a straightforward modification of the
dominator-finding algorithm of [LT] computes idef in O(ma(m, n)+ l) time, assum-
ing that logical bit vector operations on vectors of length IEI have unit cost, where

is the length of the program text and a is related to an inverse of Ackermann’s
function IT2].

Second, we use idef to compute the simple origins of all entry variables appearing
as text expressions. This computation requires a variable-length shift operation on bit
vectors (shift left to the first nonzero bit) and requires O(n + l) time. Third, we construct
a directed acyclic graph representing the simple cover (we save space by combining
common subexpressions). This algorithm also requires O(n + l) time but uses no bit
vector operations. The total running time of our algorithm is thus O(ma(m, n) + l) if
extended bit vector operations require constant time.

2. An algorithm for computing idef based on finding dominators. In this section
we shall describe an algorithm for computing idef (v) for all vertices v V in the flow
graph G (V, E, r) of a computer program. We obtain the algorithm by adding
appropriate extra steps to the dominators algorithm of [LT], and we shall assume that
the reader is familiar with [LT]. Our algorithm requires def (w) {XIX is defined at w}
for each vertex w V as input and uses set union as a basic operation. If each subset of
is represented as a bit vector of length]l, then a set union is equivalent to an "or"
operation on bit vectors; we shall assume each set union requires constant time.
Construction of def (w) for all vertices w is easy and requires time proportional to the
length of the program text.

Properties of idef. For any vertex w r, let idom (w) be the immediate dominator of
w in G. For w r, we define idef(w) {def (v)l there is a nonempty path from v to w
which avoids idom (w)}. Note that def (w) is a term in the union defining idef (w) if and
only if there is a cycle containing w but avoiding idom(w). To compute idom and idef,
we first perform a depth-first search on G, starting from vertex r and numbering the
vertices from 1 to n as they are reached during the search. The search generates a
spanning tree T rooted at r, with vertices numbered in preorder IT1]. For convenience
in stating our results, we shall assume in this subsection that all vertices are identified by

: +number, and we shall use -->, , --> to denote ancestor-descendant relationships in T
(see the appendix).

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 85

FIG. 3. Depth-first search of the flow graph given in Fig. 1. Solid edges denote tree edges and dotted edges denote
nontree edges. The depth-first search number is given to the right of each vertex.

vertex number idom sdom def idef sdef

vl 2 {Y} {Y,Z} {Y,Z}
v2 3 vl Vx {Z} Q

v3 4 Y, Z} 3
v4 5 vt {X} {Y,Z}
vs 6 v v 3

FIG. 4. Tabulation of information calculated]’or the program flow graph given in Fig. 1.

The following paths lemma is an important property of depth-first search and is
crucial to the correctness of our algorithm.

LEMMA 2.1 [T1]. Ifv and w are vertices ofGsuch that v <- w, then any pathfrom v to
w must contain a common ancestor of v and w in T.

As an intermediate step, the dominators algorithm computes a value for each
vertex w # r called its semi-dominator, denoted sdom (w) and defined by

()

(2)

sdom (w) min {vlthere is a path v Vo, vl, , vk w

such that vi > w for 1 -< < k}.

We shall in addition compute a value sdef (w) for each vertex w # r defined by

sdef (w) U {def (v)[there is a nonempty path v v0, vl,. , vk w

such that vi >= w for 0 <- <= k}.

The following properties of semi-dominators and dominators justify the domina-
tors algorithm.

q-
LEMMA 2.2 [LT]. Let w r. Then idom (w)*-> sdom (w)--> w.
THEOREM 2.1 [LT]. For any vertex w r,

(3)

sdom (w) min ({vl(v, w) E and v < w}

U {sdom (u)lu > w and there is an edge (v, w) such thatu v}).

86 J.H. REIF AND R. E. TARJAN

THEOREM 2.2 [LT]. Let w r and let u be a vertex]:or which sdom (u is minimum
among vertices u satisfying sdom (w)L u w. Then

sdom (w) ifsdom (w)=sdom (u),
(4) idom (w)=

tidom (u) otherwise.

The dominators algorithm uses Theorem 2.1 to efficiently compute semi-domina-
tors and Theorem 2.2 to efficiently compute immediate dominators. We shall use two
analogous results to efficiently compute sdef and idef.

THEOREM 2.3. Let w r and let

adef (w) {def (u) sdef (u)[u > w
and there is an edge (v, w) such that v}.

Then

def (w) U adef (w)
sdef (w)

adef (w)
i] there is an edge (v, w) such that w v,
otherwise.

Proof. First we show that the right side of (5) contains sdef (w). Let v
Vo, Vl, , vk w be a nonempty path such that vi >= w for 0 =< =< k. We can assume
without loss of generality that the path Vo, Vl,’", Vk-1 is simple and vi w for
1 -< <- k 1. Let j be minimum such that v. Vk-1. By Lemma 2.1, vi > v. for 0 =< -<_
j- 1. We consider three cases. If j 0, then vj w, and def (v)

_
sdef (v.)

_
adef (w). If

j 0 and v w, then def (v)
_
adef (w). If j 0 and v w, then the edge (vk-1, w) must

satisfy w Vk-1, and the right side of (5) explicitly contains def (v). Thus in any case the
right side of (5) contains def (v). Since this is true for any appropriate v, the right side of
(5) contains sdef (w).

Now we show that sde (w) contains the right side of (5). Suppose there is an edge
(v, w) such that w v. Then the path consisting of the tree path from w to v followed by
the edge (v, w) contains no vertices smaller than w, and def (w)_ sdef (w). Let u be a
vertex such that u > w and there is an edge (v, w) such that u v. Let x be any vertex for
which there is a nonempty path x Vo, Vl,""", Vk "--U such that Vi U for 0_--< <= k.
Then this path, followed by the tree path from u to v, followed by the edge (v, w),
contains no vertices smaller than w. Thus def (x) sdef (w). Since this is true for any
such x, sdef (u)_ sdef (w). Furthermore def (u)_sdef (w). It follows that adef (w)_
sdef (w), and the theorem is true. 71

THEOREM 2.4. Let w r. Let u be a vertex for which sdom (u) is minimum
among vertices u satisfying sdom (w) + *u- w. Let tdef (w)= U{def (x)(.J
sdef (x)lsdom (w) x - w}. Then

tdef w U sdef w i]" sdom w sdom (u),
(6) idef (w)=

idef (u)(.Jtdef (w)Usdef (w) otherwise.

Proof. First we show that the right side of (6) contains idef(w). Let v=
v0, v l, ., vg w be a nonempty path which avoids idom (w). Let vi be the minimum
vertex on this path such that -< k 1. If vi >= w, then def (v)

_
sdef (w) by the definition

of sdef.
Suppose on the other hand that vi < w. By Lemma 2.1, there is some/" in the range

=</’-< k such that v. is an ancestor of both v; and w. This means vi <= vi. But by the
definition of vi, vi <= vi. Thus, vi vi and vi- w. We must consider three cases.

(i) Suppose sdom (w)- vi and =0. Then def (v) def (v/)_ tdef.
(ii) Suppose sdom (w)- vi and 0. Then def (v)

_
sdef (re) tdef.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 87

(iii) Suppose vi sdom (w). The path from r to w consisting of the tree path from r
to v,. followed bythe path vi, Vi+l, , w must contain idom (w); thus idom (w) vi. By
Theorem 2.2, sdom (w) sdom (u) (which means the second half of (6) applies) and
idom (w) idom (u). The path from v to u consisting of v Vo, vl, , vi followed by
the tree path from vi to u avoids idom (u), which means def (v)_ idef (u).

In all cases def (v) is contained in the right side of (6); since this is true for any
appropriate v, idef (w) is contained in the right side of (6) by the definition of idef.

It remains to show that idef (w) contains the right side of (6). Let x be any vertex
such that sdom (w) + x w, and let v v0, Vl, l)k X be any path such that /)i X

for 0--< =< k. Since idom (w) sdom (w), the path from v to w consisting of the path
v Vo, Vl, , Vk X followed by the tree path from x to w avoids idom (w). It follows
that tdef

idef (w). Since idom (w) < w, it is immediate that sdef (w)

idef (w). If

sdom (w) sdom (u), then idom (w)= idom (u) u, and any idom (u)- avoiding path to
u can be extended to an idom (w)-avoiding path to w by adding the tree path from u to
w. Thus in this case idef (u)_ idef (w) [q

Details of the algorithm. The algorithm for computing immediate dominators and
idef consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph. Number the vertices
from 1 to n as they are reached during the search. Initialize the variables used in
succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem 2.1 and
the sdef values by applying Theorem 2.3. Carry out the computation vertex-by-vertex
in decreasing order by number.

Step 3. Implicitly define the immediate dominator of each vertex by applying
Theorem 2.2 and partially compute idef values by applying Theorem 2.4.

Step 4. Explicitly define the immediate dominator of each vertex and finish
computing idef. Carry out the computation vertex-by-vertex in increasing order by
number.

The dominators algorithm used the following arrays.
Input

succ (v)" The set of vertices w such that (v, w) is an edge of the graph.
Computed

parent (w)’ The vertex which is the parent of vertex w in the spanning tree
generated by the search.

pred (w)" The set of vertices v such that (v, w) is an edge of the graph.
semi (w)" A number defined as follows"

(i) Before vertex w is numbered, semi (v)= 0.
(ii) After w is numbered but before its semi-dominator is

computed, semi (w) is the number of w.
(iii) After the semi-dominator of w is computed, semi (w) is the

number of the semi-dominator of w.
vertex (i)" The vertex whose number is i.
bucket (w)" A set of vertices whose semi-dominator is w.
dom (w)" A vertex defined as follows:

(i) After Step 3, if the semi-dominator of w is its immediate
dominator, then dom (w) is the immediate dominator of w.
Otherwise dom (w) is a vertex v whose number is smaller
than that of w and whose immediate dominator is also the
immediate dominator of w.

(ii) After Step 4, dom (w) is the immediate dominator of w.

88 J. H. REIF AND R. E. TARJAN

In addition, our algorithm uses def (w) as input and computes sdef (w) and
idef (w).

Rather than converting vertex names to numbers during Step 1 and converting
numbers back to names at the end of the computation, the dominators algorithm refers
to vertices as much as possible by name. Arrays semi and vertex include all necessary
information about vertex numbers. Array semi serves a dual purpose, representing
(though not simultaneously) both the number of a vertex and its semi-dominator.

During Step 1, our algorithm initializes parent, pred, semi, vertex, and sdef. When
a vertex w receives a number i, the algorithm assigns semi (w)- and vertex (i)- w.
Step 1 also initializes sdef (w)- and updates sdef (w)= def (w) if it finds an edge
(v, w) such that w v. Implementation of Step 1 is straightforward, and we omit the
details.

The algorithm carries out Steps 2 and 3 simultaneously, processing the vertices
w r in decreasing order by number. During this computation the algorithm maintains
an auxiliary data structure that represents a forest contained in the depth-first spanning
tree. More precisely, the forest consists of vertex set V and edge set
{(parent (w), w)lvertex w has been processed}. The algorithm uses one procedure to
construct the forest and two procedures to extract information from it.

LINK (v, w):
EVAL (v):

EVALDEF (v):

Add edge (v, w) to the forest.
If v is the root of a tree in the forest, return v. Otherwise, let r
be the root of the tree in the forest which contains v. Return
any vertex u r of minimum semi (u) on the path r v.
If v is a tree root, return . Otherwise, let r Vo Vl v2-

Vk =V be the tree path from the root of the tree
containing v to v. Return U{def (vi) U sdef (v)ll -<i -<k}.

Reference [LT] explains how to use EVAL to compute semi-dominators and
dominators; we shall describe how to use EVALDEF analogously to compute sdef and
idef. When a vertex w is processed, the algorithm examines each edge (v, w)e E and
updates sdef by assigning sdef (w) := sdef (w)U EVALDEF (v). After w is processed,
sdef (w) has the proper value by Theorem 2.3. To verify this claim, consider any edge
(v, w)e E. If v is numbered no greater than w, then v is unprocessed when (v, w) is
examined, which means v is the root of a tree in the forest and EVALDEF (v) returns. If v is numbered greater than w, then EVALDEF returns Ll{def(u)U
sdef (u)lu > w and u *v}. Thus the algorithm computes sdef exactly as specified in
Theorem 2.3.

After processing w to compute semi (w) and sdef (w), the algorithm adds w to
bucket (vertex (semi(w))) and adds a new edge to the forest using LINK
(parent (w), w). This completes Step 2 for w. The algorithm then empties bucket
(parent (w)), carrying out Step 3 for each vertex v in the bucket. By applying EVAL (v),
the algorithm obtains a vertex u satisfying the condition in Theorem 2.2 and 2.4. Using
this u, the algorithm implicitly computes the immediate dominator of v. The-algorithm
also partially computes idef(v) by assigning idef(v):=sdef(v)LIEVALDEF
(parent (v)). (EVALDEF (parent (v)) tdef (v) as defined in Theorem 2.4.) In Step 4,
the algorithm examines vertices in increasing order by number, filling in the immediate
dominators not explicitly computed by Step 3 and completing the computation of idef.
Here is an Algol-like version of Steps 2-4. The bracketed statements are those added to
the original dominators algorithm to compute sdef and idef.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 89

Step 2:

Step 3:

Step 4:

comment initialize variables;
for := n by- 1 until 2 do

w := vertex (i);
for each v s pred (w) do

u := EVAL (v);
if semi (u) <semi (w) then semi (w):= semi (u) fi;
[sdef (w):= sdef (w) [_J EVALDEF (v)] od;

add w to bucket (vertex (semi (w)));
LINK (parent (w), w);
for each v s bucket (parent (w)) do

delete v from bucket (parent (w));
u := EVAL (v);
dom (v):= if semi (u) < semi (v)then u

else parent (w) fi;
[idef (v) := sdef (v) (.J EVALDEF (parent (v))] od od;

for := 2 until n do
w := vertex (i);
if dom (w) vertex (semi (w)) then

[idef (w):= idef (dom) (w))(_J idef (w);]
dom (w):= dom (dom (w))li od;

Reference IT2] offers two ways to implement LINK, EVAL, and EVALDEF. The
simpler method has an O(m log n) time bound and the more complicated one has an
O(ma(m, n)) time bound. Farrow IF] provides another O(ma(m, n)) method. If we
include the O(l) time required to construct def from the program text, then the entire
algorithm for computing idef requires O(ma(m, n)+ l) time, assuming that each set
union requires constant time.

3. Computing simple origins. Once we know def and idef, we can employ the
following theorem to compute simple origins. It is convenient for us to assume that
idef (r) .

THEOREM 3.1. LetX be an entry variable which is a text expression. Then

(7)
[v if X idef (v),

simple origin (X) u if X_ idef (v) and u is the maximal proper dominator of
v such that X def (u)LI idef (u).

Proof. Recall thatX occurs at v. The theorem is immediate from the definitions of
simple origin, def, and idef, using the fact that idef (r) . [3

In order to use Theorem 3.1 efficiently, we need to compute two additional subsets
of variables for each vertex. For any vertex v V, text (v) is the set of variables X such
that X is a text expression. We can compute text in O(1) time by scanning the program
text. For any vertex v V, relevant (v) is the set of variables X such that, for some
vertex w properly dominated by v, X is a text expression and X is definition-free
between v and w.

THEOREM 3.2. For any vertex v,

relevant (v)= U {(text (w) Llrelevant (w))-idef (w)lw V and idom (w)= v}.

Proof. Immediate. [3
We can compute relevant in O(n) time by carrying out a depth-first traversal of the

dominator tree and processing the vertices in postorder. Note that, for any vertex v, the

90 J. H. REIF AND R. E. TARJAN

set relevant (v) f3 (def (v) (_J idef (v)) contains exactly the variablesX such that, for some
vertex w, v is the simple origin of the text expression Xw.

Given text and relevant, we compute simple origins in another depth-first traversal
of the dominator tree. During the traversal, we maintain a stack for each variable X.
When the traversal reaches a vertex v r, stack (X) contains (in dominator order) all
proper dominators u of v such that Xrelevant (u)f’l(def(u)Uidef(u)). These
vertices are all the candidates (other than v) for the simple origin of Xv. If X e idef (v),
then the simple origin of X is v; otherwise the simple origin of X is the top vertex on
stack (X) when v is reached during the traversal. The following algorithm computes
simple origins using this method.

procedure TRAVERSE (v);
begin

for each X test(v) do
simple origin (X) := if X idef (v) then v

else top of stack (X) fi od;
for each X relevant (v) (-I (def (v) (idef.(v)) do

push v on stack (X)od;
for each w in {w[idom (w) v} do TRAVERSE (w) od;
for each X relevant (v)(-I (def (v) idef (v))do

pop v from stack (X) od
end TRAVERSE;

for each X do stack (X) od;
TRAVERSE (r);

The correctness of the algorithm is immediate. To get the algorithm to run fast, we
need a method to convert a bit vector representing a set into a list of elements of the set.
We can do this in time proportional to the size of the set if we have a variable-length
shift operation which shifts a bit vector left to the first nonzero bit and returns the length
of the shift. Since such an operation is required to normalize floating-point numbers, it
is a machine-language instruction on many computers. Assuming that a variable-length
shift requires constant time, the time required to compute simple origins is

O(n + Y, ([text (v)[+ [relevant (v)(-I (def (v)I,.Jidef (v))[)] O(n + l)
\ /

since each variable X e text (v) corresponds to an appearance of X in the program text
at vertex v, and each variable X e relevant (v) f’l (def (v) Uidef (v)) corresponds to a text
expression X for which v is the simple origin.

4. Computing the simple cover and approximate birthpoints. From the simple
origins, it is easy to construct the simple cover and an approximate birthpoint for each
text expression. We begin by constructing a directed acyclic graph (dag) to represent all
text expressions in the program. We shall call the vertices in this dag nodes to distinguish
them from the vertices of the control flow graph. The dag has one node representing
each text expression. An expression which is a constant sign or an entry variable X is
represented by a sink labeled by the appropriate constant sign or entry variable; an
expression of the form O(E1, E2,’", Ek) is represented by a node labeled with 0
having k (ordered) successors representing the expressions El, E2,’ , Ek. An exam-
ple appears in Fig. 5. See [AU], [FKU] for further discussion of this representation. It is
easy to construct a dag representing the text expressions in O(1) time.

We convert the dag representing the text expressions into a dag representing the
simple cover as follows. We process the sinks of the dag labeled by entry variables X in

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 91

t2

t4

t tt9

FIG. 5. Dags representing the text expression of the program in Fig. 1.

an order consistent with the dominator order; i.e., if v dominates w, we process sinks
labeled X before sinks labeled XTM. We process sinks labeled X as follows. Let u be
the simple origin ofX. If u v we do nothing. Ifu # v andX is defined at u, we replace
all edges leading to sinks labeled X by edges leading to the node corresponding to exit
expression (X, u). (This node now represents ((S, u)).) If u # v and X is not
defined at u, we replace the labels X by labels X". This method requires O(l) time.

We apply two more steps to simplify the resulting dag. First we replace each node
all of whose successors represent constants by a sink representing an appropriate
Constant. We repeat this transformation until it is no longer applicable. This requires
O(1) time and produces a dag representing a set of reduced expressions. Next, we merge

,t8

FIG. 6. Dag representing the simple cover of the program in Fig. 1.

92 J. H. REIF AND R. E. TARJAN

all nodes representing common subexpressions. This can be done in O(l) time using the
acyclic congruence closure algorithm described in [DST]. The result is a dag represent-
ing the simple cover. See Fig. 6.

We can compute an approximate birthpoint for each text expression by processing
the nodes of the dag representing the simple cover in reverse topological order. Each
sink labeled by a constant has approximate birthpoint r. Each sink labeled X has
approximate birthpoint v. Each node with successors has an approximate birthpoint
which is the maximal vertex (with respect to the dominator relation) of the approximate
birthpoints of its successors. The approximate birthpoint of a text expression is the
approximate birthpoint of the corresponding node in the simple cover dag. (Thus our
birthpoints are approximated in part by the simple origins which we computed in 3.)
This computation also requires O(1) time, giving a total of O(1) time to compute both a
simple cover and approximate birthpoints.

By combining the algorithms of 2, 3, and 4, we obtain a symbolic evaluation
method which requires O(ma(m, n)+ l) time if extended bit vector operations require
constant time.

Appendix. Graph-theoretic terminology. A directed graph G V, E) consists of
a finite set V of vertices and a set E of ordered pairs (v, w) of vertices, called edges. If
(v, w) is an edge, w is a successor of v and v is a predecessor of w. A sink is a vertex with
no successors. A graph G1 (V1, El) is a subgraph of G if V1 V and E1

_
E. A path p

of length k from v to w in G is a sequence of vertices p (v Vo, Vl, , Vk W) such
that (vi, Vi/l)E for 0<=i <k. The path is simple if Vo,’", vk are distinct (except
possibly Vo Vk) and the path is a cycle if v0 Vk. By convention there is a path of no
edges from every vertex to itself but a cycle must contain at least one edge. If
pl (u Uo, Ul, , Uk V) is a path from u to v andp2 (v Vo, vl, , vt w) is a
path from v to w, the path pl followed by p2 is p=(u Uo, ux,..., uk =v Vo,

v 1," ", Vl w). A directed graph is acyclic’ if it contains no cycles. A topological order
on an acyclic graph is a total ordering of the vertices such that, for each edge (v, w), v is
ordered before w.

A flow graph G (V, E, r) is a directed graph (V, E) with a distinguished start
vertex r such that for any vertex v V there is a path from r to v. A (directed, rooted) tree
T (V, E, r) is a flow graph such that IEI Vl- 1. The start vertex r is the root of the
tree. Any tree is acyclic, and if v is any vertex in a tree T, there is a unique path from r to
v. If v and w are vertices in a tree T and there is a tree path from v to w, then v is an
ancestor of w and w is a descendant of v (denoted by v w). If in addition v # w, then v
is a proper ancestor of w and w is a proper descendant of v (denoted by v - w). If v w
and (v, w) is an edge of T (denoted by v w), then v is the parent of w and w is a child of
v. In a tree each vertex has a unique parent (except the root, which has no parent). If
G (V, E) is a graph and T (V’, E’, r) is a tree such that (V’, E’) is a subgraph of G
and V’= V, then T is a spanning tree of G.

FIG. 7. Dominator tree o]: the [tow graph given in Fig. 1. The symbol : leads [rom idom (v) to vertex v.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 93

If G V, E, r) is a flow graph and u, v e V, then u dominates v if all paths from r to
v contain u. The dominator relation is a partial ordering with minimal element r. If u
dominates v and u # v, then u properly dominates v. It can be shown that, for each vertex
v # r, there is a unique vertex u called the immediate dominator of v which properly
dominates v and is dominated by all other dominators of v. We denote the immediate
dominator of v by idom (v). The tree T (V, E’, r) with E’ {(idom (v), v)lv r} is the
dominator tree of G.

[AU]

[CA]

[DST]

[E]
IF]

[FK]

[FKU]

[G]

[GW]

[HU]
[Ki]

[LT]

[R1]
[R2]

[RL]

[Sc]

[T1]
IT2]

IT3]

REFERENCES

A. V. AHO AND J. D. ULLMAN, Introduction to CompilerDesign, Addison-Wesley, Reading, MA,
1977, pp. 441-477.

J. COCKE AND F. E. ALLEN, A catalogue of optimization transformations, Design and Optimiza-
tion of Computers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1971, pp. 1-31.

P. J. DOWNEY, R. SETHI AND R. E. TARJAN, Variations on the common subexpression problem, J.
Assoc. Comput. Mach., 27 (1980), pp. 758-771.

C. EARNEST, Some topics in code optimization, J. Assoc. Comput. Mach., 21 (1974), pp. 76-102.
R. FARROW, Efficient variants of path compression in unbalanced trees, unpublished manuscript

(1978).
R. N. FAIMAN AND A. A. KORTESOJA, An optimizing Pascal compiler, IEEE Trans. Software

Engineering, SE-6 (1980), pp. 512-519.
E. A. FONG, J. B. KAM AND J. D. ULLMAN, Application of lattice algebra to loop optimization,

Conf. Record Second ACM Symposium on Principles of Programming Languages,
January, 1975, pp. 1-9.

C. M. GESCHKE, Global program optimizations, Ph.D. thesis, Computer Science Dept., Carnegie-
Mellon University, Pittsburgh, PA, 1972.

S. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analysis, J.
Assoc. Comput. Mach., 23 (1976), pp. 172-202.

M. S. HECHTAND J. D. ULLMAN, FIow graph reducibility, this Journal, 2 (1972), pp. 188-202.
G. A. KILDALL, A unified approach to global prod,ram optimization, Proc. ACM Symposium on

Principles of Programming Languages, Boston, 1973, pp. 194-206.
R. LENGAUER AND R. E. TARJAN, A fast algorithm forfinding dominators in a flow graph, ACM

Trans. Programming Languages and Systems, (1979), pp. 121-141.
J. H. REIF, Code motion, this Journal, 9 (1980), pp. 375-395.
,Combinatorial aspects ofsymbolic program analysis, Ph.D. thesis, Division of Engineering

and Applied Physics, Harvard University, Cambridge, MA, 1977.
J. H. REIF AND H. R. LEWIS, Symbolic evaluation and the global value graph, Proc. 4th ACM

Symposium on Principles of Programming Languages, 1977.
J. T. SCHWARTZ, Optimization of very high level languages--value transmission and its corollaries,

Computer Languages, (1975), pp. 161-194.
R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.

Applications of path compression on balanced trees, J. Assoc. Comput. Mach., 26 (1979),
pp. 690-715.
A unified approach to path problems, J. Assoc. Comput. Mach., 22 (1981), to appear.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0008 $01.00/0

ANALYSIS OF A GENERAL MASS STORAGE SYSTEM*

D. COPPERSMITH," D. S. PARKER,$ AND C. K. WONGt

Abstract. A model of a general mass storage system is presented and its performance analyzed. The

system is composed of a square two-dimensional grid of storage cells over which a single read/write head
moves freely. The head can contain at most some fixed number b of cell contents. Algorithms for realizing
an arbitrary permutation of the memory contents are presented for all ranges of b, particularly the important
case b in each case the algorithms’ performances are explicitly characterized. Open problems, especially
regarding the development of good heuristics, are then discussed.

Key words, memory systems, mass storage systems, permutations, Lp-metrics

1. Introduction. With the explosive development of new technologies in the past
few years, the design and analysis of memory systems has become more and more
complicated. As the shapes of cost-benefit curves have changed and more alternatives
have become available in all ranges of memory performance, the task of producing
a design for a mass storage system has expanded to require many complex decisions
on the nature of the system (whether a homogeneous or hierarchical structure is to
be used, which technologies provide the cheapest solution within a given performance
range of each part of the system, etc.). Since there are so many possible memory
structures, little has been written about the analysis of memory systems in general;
this situation has no doubt been exacerbated by the rapidity with which technological
advances are being made and the state of flux of the spectrum of design tradeoffs,
which can only have intimidated researchers from making general analyses.

This paper is concerned with the analysis of the general mass storage system
shown in Fig. 1. The system is composed of a square n n grid of memory "cells",
on which a single read/write head is permitted to move to and fro. Each cell contains,
uniformly, some memory subsystem with a given capacity; and it is assumed that the
read/write head, or its controller, has a fixed number b of "registers" which are each
large enough to contain a cell’s contents. (Hence we are concerned with the range of
values 1 =< b =< n 2, and the limits b 1 and b n 2 are of particular interest.) In addition
to this, the movement of the read/write head is restricted in ways so that the distance
between points on the grid (i.e., the amount of time required by the head to move
from one point to another) is reflected by the L1, L2 or L-metric on the grid. That
is, the head can either move"

(a) horizontally or vertically, but not both simultaneously, at uniform speed (in
which case distance between two points is given by the Ll-metric);

(b) horizontally or vertically or both at uniform speed (L-metric);
(c) in any direction at uniform speed (Lz-metric).

Note that with b 1 and the L-metric the memory system can be made to model
an elaborate bubble memory of the type discussed in [1], and with b 1 and the
L-metric a tape mass storage system like the IBM 3850 can be modelled. (See, for
example, [2], [11], [15].) For most applications a small value of b, like one, seems
reasonable.

In addition to the grid and read/write head, we assume the existence of a control
unit, and some control memory, connected to the head and to the channel making

* Received by the editors November 6, 1979, and in revised form February 9, 1981.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
$ Department of Computer Science, University of California, Los Angeles, California 90024.

94

A GENERAL MASS STORAGE SYSTEM 95

MOVABLE
READ/WRITE

HEAD---
-I
3[3[3

n-I n

E] E]

E]

E]

FIG. 1. General mass storage system on n n grid.

requests on the memory. In the "online" mode, requests on the memory are accepted
by the control unit and serviced by scheduling a tour for the head (which might be
dynamically modified as new requests come in). One problem that might be addressed
here is therefore the development of good online scheduling algorithms; if requests
are scattered randomly about the grid then possible solutions might resemble the
algorithms already developed for disk-like units (see, e.g., [3], [13]). In fact the memory
system here can be regarded as a "four-dimensional drum"--a drum with two seek
dimensions (each cell containing a track of information).

We will be concerned here with what we call the "offtine", or stand-alone use
of this memory, however. Note that, if requests are not randomly distributed on the
grid but instead favor given cells over others with a definite probability distribution,
then memory performance will be enhanced when all the "popular" cells are located
close to one another. With a given access probability distribution, in fact, the best
arrangement of the cells for the minimization of average access time is a sort of spiral,
with the most popular cells in the center and least popular on the fringes. (This has
been discussed in [4] and [2], [5]; the exact nature of the spiral depends on the metric
being used, i.e., the restrictions on head movement.) The idea here is that statistics
on access frequency might be collected for all the cells while the system is run in
online mode; subsequently the memory system could then be switched offtine and the
cell contents permuted to realize the spiral organization. In this way average access
time in online operation can be reduced, even without a sophisticated scheduling
algorithm.

The problem we are addressing is therefore: What is a good way to realize a
permutation o] the cell contents in the offline mode ? A solution will permit us to operate
the storage system efficiently in the online/ofttine manner just described, and has
independent interest as well (it is the two-dimensional generalization of the elevator

96 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

scheduling problem solved by Karp [6, pp. 358-361]). Due to some symmetry consider-
ations the solution of the problem is somewhat more difficult than might be expected.
Below, after suitable definitions and machinery are set up, the average and worst case
costs (i.e., time required to realize a permutation oftline, average implying that all
permutations are assumed equally likely) are derived for b 1, then b n 2 and finally
for intermediate values of b. The "cycle algorithm" analyzed for the b 1 case is
asymptotically optimal, so this case may be viewed as resolved (asymptotically at
least). For larger b, unfortunately, currently only good algorithms are provided, but
these algorithms are shown to give performance within a small constant factor of
optimal.

2. Definitions and general considerations. As just indicated, we are given a
square grid G, of size n n, and are concerned with realizing a permutation Iz selected
from P, the set of all permutations of grid points. Thus P is the symmetric group on
2 objects. The permutation/z indicates how the memory’s contents are to be moved:
if/x(i) =/’, then the contents of cell are to be moved to cell . (Cells in the grid may
be indexed in any convenient way.) Thus our problem is to produce an optimal, or
near-optimal, schedule of head movements and reads or writes (or exchanges) which
realize a given permutation/z. The number of head movements is assumed to be the
dominating cost factor, and we will concentrate all of our efforts below on analyzing
the movements required by different schedules. Since each head movement takes, as
assumed above, a fixed amount of time determined by an Lp metric, we will therefore
also be studying time requirements of schedules. Below we will use the terms "head
movements" and "time" interchangeably.

Because of the symmetries of the square grid, certain permutations may be
effectively realized using fewer head movements than might initially seem necessary.
Consider the realization of the 180 rotation permutation pictured in Fig. 2. When
b 1, if we naively go ahead and move th’e grid contents around as indicated then it
turns out that we require time of at least cn 3 q- O(n2), where c is the metric-determined
constant

inL1,
c 6519572 1/3 [ln (l+x/)+x/] inL2,

2/3 inL.

(The time required is reflected directly by distance under a metric. Although the L2
read/write head may seem more powerful than the L head since it can move in any
direction, it really is not, since the Lo head moves simultaneously at uniform speed
horizontally and vertically. Thus to move from (0, 0) to (1, 1) the L head takes time
1, while the L2 head takes time x/.) In all three cases this is a great deal of time
when one considers that one can get away with zero time’ if the controller simply
remembers that the memory is in the -180 rotated "state", it can translate all future
requests on the memory with negligible overhead--and the offiine rearrangement
never need be made.

We generalize the above idea as follows. Suppose that

Cost (zr)

denotes the least possible cost in time required to (naively) realize the permutation
7r P. Suppose further that a user requests the memory be permuted according to
/x P. Instead of just taking Cost (/z) time, we employ the following more clever
approach.

A GENERAL MASS STORAGE SYSTEM 97

2 4 n
(n+l) (n+2) 2n

(n?-,.n+l) (n2_l) n2

n2 (n?-,-l) (n2_n+O

2n (n+2) (n+l)
n 4 2 I

2 3 4 n

(n+l)(n+2) 2n

(n?-,.n+l) (n2-1) n2

ORIGINAL CONFIGURATION
(GRID INDEXING)

DESIRED CONFIGURATION (p.)
(180 ROTATION OF GRID)

RESULTING CONFIGURATION
(SAME AS ORIGINAL)

FIG. 2. Taking advantage of grid symmetry.

The group S of symmetry operations on the square consists of 8 elements

S={1 p, p2 3 :z 3
,p ,z, pz, p ’,p ’}P,

where p represents a 90 clockwise rotation and - a flip about the square’s horizontal
axis of symmetry, so p4= 1, z-= 1, p- .p3, etc. When we say that the grid is in state
r we mean the user must apply cr to his conception of the grid’s contents to get the
actual grid’s contents. The grid/state pair (G, or) is equivalent to the pair (tr’(G),
(r’otr) for all (r’e $, denoting composition of permutations; the user always thinks
of (tr-’(G), 1). Note that before Fig. 2 the memory’s state tr is 1, since the user’s

-1conception of the memory is correct, whereas after Fig. 2 the state becomes tr =/x
180 rotation =p-2.
We may solve the problem posed in 1 in three steps. Assume that the grid is

in state o- and that the user requests a permutation /x be realized (relative to his
perception of the grid’s contents), then

(1) Determine which state o"E S minimizes Cost ((r’o/x (r-t).

98 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

-1(2) Realize 7r tr’o r directly on the grid.
(3) Mark the grid’s state to be
Note that when the user is kind enough to choose /z as an element of S, this

-1process is trivial, since then one can always find cr’ S such that r’o/.t or 1,
and with any reasonable permuting algorithm, we have

Cost (1) 0.

In other words when e $ there is no work to be done except change the grid’s state,
as was shown in Fig. 2. The point is, however, that even when/ is not in $ significant
savings in time can result by using this approach of choosing the cheapest grid state.
We will quantify this statement in the following section.

Now, the only remaining difficulty is to exhibit an optimal algorithm which
produces head movement schedules for realizing a given permutation rr (for example,
7r r’o tr-1) directly/naively on the grid. Unfortunately this is not so simple, if
one wants the algorithm to terminate quickly. Here we want the time to produce a
schedule for realizing 7r to be significantly less than the time actually needed to execute
the schedule by the read/write head. We are assuming that algorithms of moderate
time complexity (say, between O(n 2) and O(n 4) steps, where again there are n 2 grid
elements) will have this property. Much of the rest of this paper concerns itself with
finding algorithms of moderate complexity for various values of b which produce
near-optimal schedules.

It can be shown that the problem of producing an optimal schedule of head
operations is NP-hard, no matter how large b is (i.e., no matter how many registers
the head has), by reducing the following path travelling salesman problem (PTSP)
[7], [8] to it" given a set of m city coordinates {ci (xi, yi)[i 1,..., m}, where xg, y
are integers between 1 and m, find an optimal path through all the cities, i.e., the
travelling salesman is not constrained to return to his starting city, he merely is required
to visit each city once. Note that, except for the La-metric, we can easily show that
the problem is in NP [8]. The reduction is as follows" we construct a set of 2m points
{p, qli 1,..., m} on a suitably large grid, namely,

Pi (4xi, 4yi), qi (4Xi + 1, 4yi)

so n, the grid size, is actually 4m’.
Note that if we can produce an optimal read/write head tour for the permutation

(Plqx)(PEq2)’’" (P,,,q,,,)

expressed in cycle notationmso/z (pi)= q,/x (q)= p for all and/x(x) x otherwisem
then an optimal tour for the original PTSP can be easily extracted. This reduction
works no matter how large b is (since the optimal head tour will always just exchange
p and qi before moving on to another pair, so b 1 will always suffice) and no matter
which Lp metric is used (the reduction of the L2 PTSP to the planar Hamiltonian path
problem given in [7] generalizes for L and L as well; see also [8].)

It is therefore clear that the best we can probably do here is produce a heuristic
polynomial algorithm that finds near-optimal tours. Fortunately this is not hard for
most permutations, as we shall see. The permutation produced in the above reduction
is very sparse as a permutation, since it leaves most of the grid undisturbed. We shall
see that "good" tours for nonsparse permutations can always be found quickly.
Interestingly, it is a very rare occurrence for a randomly selected permutation to be

A GENERAL MASS STORAGE SYSTEM 99

sparse; for example, [14] shows

1
lim Pr [random P does not satisfy/x (x) x for any x G] =-.

3. The case b 1. The case b 1, that is, the case that the read/write head
contains only one register, is probably the most important for practical applications
and will correspondingly be given most of the attention of this paper. In this case the
contention for the use of the head is extreme, in fact, so extreme that as we will see
the cost of realizing a permutation is determined almost wholly by the contention and
not very much by the precise form of the scheduling algorithm. This simplification
permits a thorough analysis of this case, a task which becomes more difficult as b
grows large.

We present first a simple but effective algorithm for generating a read/write head
schedule in realizing a permutation 7rP. (Here 7r is viewed as an "absolute"
permutation--symmetry operations on the grid are not taken into consideration.)

Cycle algorithm. Given b 1, permutation r to be realized, head initially in any
location x on grid.

Step 1. Determine cycles (orbits) of permutation
Step 2. Repeatedly:

(a) schedule the head to permute all the elements in the cycle of its
current grid location, in the obvious way (i.e., move x to 7r(x), 7r(x)
to 7r(r(x)), etc., until the head returns to point x).

(b) schedule the head to go to the nearest location whose contents have
yet to be moved.

Although this algorithm is extremely simple-minded, it is clear that the only
possible waste in time it might make would com. from Step 2(b), since all the moves
made in Step 2(a) are necessary when b 1. Let CACost (Tr) denote the cost of
realizing rr with the cycle algorithm;

CACost (Tr)= d(i, 7r(i))+ (Cost of Step 2(b) for 7r),
iG

where d is the Lp-metric under consideration. The contribution to the total cost from
Step 2(a) is directly related to the intrinsic difficulty of the permutation, while that
from Step 2(b) is directly dependent on the algorithm. Fortunately, as will be derived
below, for most permutations 7r

Y d(i, 7r(i))=O(n3),

whereas we can show
Pol,osI:IOy 1. (Cost of Step (2b) for 7r)= O(n2).
Proo]. This is easy to show; in fact, the coefficient of n 2 will be less than one.

The only observation that need be made is that, in moving from cycle to nearest cycle,
the head will traverse the entire grid less than once. And traversing the entire n x n
grid takes time n2+ O(n).]

Thus the cycle algorithm is asymptotically optimal for most permutations, although
it could conceivably perform badly for "sparse" permutations. As an example of how

0(n 3) means exactly order n 3.

100 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

bad it can get, consider the permutation 7r of 4 cycles illustrated in Fig. 3, given that
the head starts at point a and the L1-metric is being used. The cycle algorithm
processes 7r as (abc); (de); (/g); (hi) requiring 8n +O(1) head motions. (From a to
b to c and back to a, we need 4n; from a to d, we need n; from d to f, another n;
and finally from f to h, we need 2n.) However the optimal method is to process the
small cycles while working on the large one, i.e.,

(a b (hi) (de) (fg) c),

which takes 4n + O(1) head motions. It therefore may be worthwhile to consider
refinements of the cycle algorithm, particularly if head movements are much slower
than the computation speed of the control unit (which is devising the head’s schedule),
as we assume here. One good alternative is the following:

Minimal spanning tree/Euler circuit/cycle algorithm.
Step 1. Determine cycles of permutation zr.
Step 2. Derive distances between cycles of 7r (i.e., for each pair of cycles C1, C2

in 7r derive minxclyc2 d(x, y) and record this in a matrix as the distance between
C1 and C2).

Step 3. Form a minimal spanning tree for the cycles. This tree corresponds very
closely to a "Euler circuit" for

Step 4. Traverse the minimal spanning tree (Euler circuit) in the obvious way.
Effectively this changes 7r to look like one enormous cycle, but a cycle which touches
itself.

Note that this algorithm is fairly effective in reducing obvious waste" for the
permutation in Fig. 3 it produces the schedule

(a b (hi) c (fg)) (de)

with a cost of 5n + O(1) steps if cycles are joined in one way, and

(a (hi)b (fg)c (de))

with the same cost if they are joined in another (note that this latter schedule is better
under the L2 and Lo metrics than the former). However, Step 2 can be extremely
expensive, requiring as much as O(n 4) time or O(r/2) words of memory depending
on 7r’s cycle structure. If the cost of Step 2 is not felt to be exorbitant, however, the
user may consider enlarging it to capitalize on the fact that the distance between two
cycles is often less than the minimum distance between their elements; this was shown
in Fig. 3 with the cycles (abc) and (de).

For the rest of this section we will assume that the read/write head control unit
uses something like the cycle algorithm so that the dominant term in the cost of
realizing a permutation depends solely on the permutation. In fact we define

Cost (rr)= Y d(i, rr(i)),
iG

d being again the metric under consideration, since then CACost asymptotically
approaches Cost as n grows large, and since this simplification permits us to ignore
algorithm structure in the following analyses of costs.

Ignoring for the moment the symmetry operations S mentioned in 2, we ask
the average and worst-case values of Cost (Tr), where average means that all permuta-
tions 7r are considered equally likely. Essentially then we are asking how much time
we would require to realize permutations offline if we did not worry about "grid

A GENERAL MASS STORAGE SYSTEM 101

FIG. 3. Permutation for which cycle algorithm is poor.

states"; this will serve as a basis for comparison when the analysis with grid states is
made below.

THEOREM 1.

2/3n3 + O(n),
Average [Cost (zr)] (.5214)n 3 + O(n2),

"rrP 7/15n3+O(n,),

L metric,

L2 metric,

L metric.

Proof. For all three metrics we have

1
Average=p [Cost (rr)] (n2) =PY" i2 d(i, 7r(i))

1
(n2)I. ;2 ,ee2 d(i, 7r(i))

1
Y Z N(i, j) d(i, j),(n2)! iG

where

N(i, j) [number of permutations 7r e P such that 7r(i) =/’]

(n2-1)!,
SO

Average [Cost (Tr)] 1__ 2 2 d(i, j).
H ieG iG

This sum must now be analyzed independently for each of the three metrics. In all
three cases we represent grid points with the matrix-like indexing i:(il, i2), where
il and i_ have values between 1 and n.

102 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

In the L1 case we have

n iG]G n i1=1 i2=1 h=l]2=1

H i1=1 h=l i2=1 j2=l

=2
k,/=l

Let A denote the multiset {Ik-ll, k 1,..., n, != 1,..., n}. Then it is easy to verify
that A contains (n) zeros, 2(n 1) ones, 2(n -2) twos,..., and 2(1) n l’s. Concisely,
if 8 is a positive integer less than n, there are 2(n 8) copies of 8 in A. Thus, continuing,

=2 E 2(n-8)8
8=1

2/3(n 3-n) 2/3n 3+ O(n) as stated.

In the Lo case we find

1 1=-- ., , d(i,])=-- ,
Fl iG jG n i1,i2=1 jl,j2=l

max

1=-- E max (81, 82),

By carefully manipulating this sum we can show this is

15n 2 7ns 5n3 2n)

7 3n + O(n as stated.
15

The constant has been independently verified in [10], where it was shown the
average L distance in a square with edge 2 is 14 (implying the average distance in a

square of edge 1 is).
The L2 derivation is, not surprisingly, more complicated. By appealing to the

Euler-Maclaurin summation theorem we have

1 12-- ., ., d(i,j)=--
H iG jG H i1,i2=1 jl,J2=l

1

=-- Z Z 2(n-81)2(n-82)x/82+8+O(n)
F/ 81-----1 32=1

Iolo4 (n_x)(n_y)x/x2+y2dxdy+O(n2).=7

A GENERAL MASS STORAGE SYSTEM 103

The double integral can be evaluated as (4/n 2) (n -x)F(x, n) dx, where

F(x,n)= (n -y) 4x2+y2 dy

2 3

2
x arcsinh +-- x/n 2 + x - (n z + x +--

(fudging at the boundary x 0 is harmless), and by taking the asymptotic behavior
of this integral we find that, since arcsinh (z)= In (z +x/z2+ 1), we have in closed form- d i,] ln(l+/-)+ n + O n

H i,jG

=[.52140 54331 64720 67833...In 3 +O(rt 2)
as claimed. This asymptotic form of the average cost agrees well with the exact values
or moderate n. For several values the r/3 coefficient

81,82

is tabulated in Table 1, and a polynomial regression on the table shows

Average L2 cost (.52140)n3-(.66319)nZ-(2.98662)n + (476.07),

with small residuals and enormous F-statistics.

TABLE
Asymptotic behavior of average L2 cost.

n Average L2 cost/n

100 0.51471 44257
200 0.51806 59602
300 0.51918 04742
400 0.52007 11123
500 0.52073 85192
1000 0.52096 08787
1500 0.52107 20379

Frequently the evaluation of average complexity is of limited use, since the
standard deviation can be large, suggesting that behavior much less and much greater
than the average will occur reasonably often. It is interesting to note that this is not
the case here.

THEOREM 2. Standard Deviation [Cost (7r)] O(n 2) in all 3 metrics.

Proof. Recall that standard deviation=x/variance, and if we let A=
Average [Cost (r)] then

Variance, [Cost (Tr)] =--2)’tn.2 Y" d(i, r(i)) -A2

(1 1)(n2), E E d(i, 7r(i))2+(n2) E d(i, 7r(i)) d(], "n’(j)) -A2

i]

1
E d(i, /)2 + E d(i, k) d(], l) -A2.
i,i n (n 1)

k#l

104 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

It can be shown that the second term in this expression is

2

n2(n 2- 1)
n --2 k d(i, k) +

i.k
y" d(i, k)2

and since we can put

A:Z Cln6 + o(n6),

d(i,]):z c2n
6 + 0 (rt 6),

i,i

2

(i d(i, k)) =c3nS+o(n 8)

in all 3 metrics, we find

Variance [Cost (r)] 1__ (2H 6__ 0(/76)

2 2n (n -1)
(n4m2- 2(c3n 8 + 0 (n 8)) + (c2n 6 + 0 (n 6)))-A2

n4(c2-2c3)/A2 (1-11/nE-1)+o(n 4)

4 6 2=n (c:--2c3)+(cln +o(n6))(1/n +l/n4+...)+o(n 4)
4

H (el d- 2-- 2C3) + o(n4).

Thus, by taking the square root, we find that the standard deviation of the average
cost is O(n 2) in all three metrics. Actually evaluating the leading coefficient
x/c1 + c2-2c3 is tedious, but, for example, in the L1 case (in which case the coefficient
is larger than in L2 or Lo since L1 costs vary more than do the others) we can determine
that

Standard Deviation [Cost (rr)] /4--n 4 + O(n 2)
-n-P

n + 0(1)

(.29814)n2 + O(1).

It is thus apparent that the average cost figures given by Theorem 1 are very good
predictors of the running time of a read/write head schedule for a random permutation,
especially as n gets large. We can also get precise bounds on the worst-case running
time for any permutation.

THEOREM 3.
3n n, n odd, L metric,
3

Worst Case [Cost (zr)]
n n even, LI metric,

7rP 1/2 [ln(1 + x/-) + /-]n3 + O(n2), L2 metric,
2/3(n 3- n), L metric.

A GENERAL MASS STORAGE SYSTEM 105

Proof. Letting 7r be any permutation and p be any point on the grid G, we apply
the triangle inequality for the metric d to get the upper bound

Cost (Tr)= d(i, 7r(i))
leg

<= Z (d(i, p)+ d(p, 7r(i)) 2 Y’. d(i, p).

This right-hand expression is maximized when p is the center of the grid (when
n is even p is not actually a cell location). This gives us the upper bounds stated in
the theorem, because we can actually find a permutation which attains this upper
bound: Note that the 180-rotation permutation 7r shown in Fig. 2 is a worst-case
permutation since it satisfies

d(i, 7r(i))=d(i,p)+d(p, 7r(i))

for all e G. Any permutation satisfying this equality for all must necessarily be a
worst-case permutation; also a simple symmetry argument shows that the only way
a permutation r can satisfy this equality is for p to be the grid center. The values
stated in the theorem reflect the cost of this permutation in each of the metrics. [3

Up to this point we have ignored the possible savings that are made by taking
advantage of the symmetry of the grid, as discussed in 2. For the rest of this section
we examine how the symmetry operations affect the average and worst-case cost
statistics derived above.

We begin first by studying the relative costs of the symmetry permutations
themselves. All the necessary information is listed in Fig. 4 and Table 2, derived in
the same manner as in Theorems 1 and 2, using the matrix notation

p((i, i2)) (iz, n + 1 ia),

’r((i, iz))= (n + 1 i, i2),

and so forth for the other members of the group S. The only expressions that present

a b a c d c do
o a b d c dc

o o c d c"d
o d c c

o a b a
o ..b-o

0

COST (o’2"1 o o-i)
MATRIX IS SYMMETRIC

FIG. 4. Distance matrix]:or grid symmetry operations.

106 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

TABLE 2
Values of distances in Fig. 4

a b c d

(n n), n odd 21-(n n), n odd (n n)d L1 distance (n3- n) (n3), n even 1/2(n3), n even

d =Lz distance
(’54107)n3 1/2[ln (1 +4) +4]n 1/2(n3-n),n odd (x/-)/3(n3_n)+ O(n 2) + O(n 2) 1/2(n 3), n even

21-(n n), n odd1/2(n n), n odd 32_(na_n) 1/2(na_nd Lo distance 1/2(n3), n even 1/2(ha), n even

any difficulty are the values of a and b under the L2-metric, for which we have

a , d(i,p(i))= 4lk-tl+ln + 1-(k +/)l2,
iG k,l=l

2(b d(i,p i))= . 4In +-2kl=+ln + 1-2/I
iG k,l=l

in the latter case, the techniques of Theorem 1 can be applied directly, but a closed
form has not yet been derived for a.

We now examine the effect on cost of the symmetry group S. It turns out that
symmetry operations do not significantly reduce the average running time, but they
reduce the worst-case running time significantly. We formalize this as follows’ given
a permutation rr P, define the symmetrized cost SCost by

def
SCost (r) min Cost

It follows obviously that SCost (r)-< Cost (zr) for all permutations 7r. Nevertheless we
have the surprising result of Theorem 4.

THEOREM 4.

Average [SCost (Tr)] Average [Cost (Tr)]-O(n2).

Proof. Let f(x) =[Number of permutations 7r such that Cost (r)= x]/(n2)! for
any integer x be the "probability density" for Cost (zr), with corresponding distribution
F(y) Yx<__yf(x). The point is that f looks very much like a "spike". If A denotes the
average cost as in Theorem 2, then

A 2 xf(x),
x=0

and the variance B2 is given by

B2 Y (x A)2f(x).
x=0

A GENERAL MASS STORAGE SYSTEM 107

Using a Chebyshev inequality process we have for each positive integer C <A
c

B2 Y’. (x A)2f(x)
x=0

C
>_- (A C)2 2 f(x) (A C)2F(C).

x=0

Thus (A C) <- B/x/F(C) for 0< C <A. Now note that, for every permutation r,
SCost (r) is the minimum Cost of the eight translates o-o 7r, with cre $, and of course
all of these translates are again permutations. Thus the distribution function Fs, giving
this distribution of costs with $, is at best the left-hand of F (renormalized by a
factor of 8). That is, if A =max {xlF(x)<=} then Fs(x)<=G(x), where

8F(x), x<,
G(x)=

1, x->.

Correspondingly, if

then we have the bound

x <
g(x) 1 8F(x), x A,

0, x > A,

A’= E xg(x)<=Average[SCost(zr)] < Y. xf(x)=A.
x>0 x>0

Now it is clear that A’=Yx>0 xg(x)=F-l(6), since we are finding the average (or
midpoint) of the left-hand of F. Then applying the Chebyshev bound derived above
for C A’we find

B
’_-<=4B,A -A

4(1/16)
so A’ is within 4 standard deviations of A; however from Theorem 2 we know that
B is only of order O(n2). Thus

A O(n 2) <- Average [SCost (Tr)] < A,

which is what was to be proved. [q

Theorem 4 suggests that using the symmetry operations S will not significantly
reduce execution time, on the average. However, we now show that using S does
reduce considerably the worst-case time. To do this, we establish first the following
lemma.

LEMMA. Given 7r P, we can construct 7r’ P such that

SCost (r’) Average [Cost (r zr)] + O(n2).
o’S

Proof. This statement can be proved, but instead we show the simpler result that
we can construct a permutation 7r’ of the 4n x4n grid having the corresponding
property

1
(4)3 SCost (Tr’) Averages [Cost (o-o r)] + O(n2).

108 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

Since we are not really concerned about the size of n, only the form of the worst case
permutation, this shift of grid size is not important.

We construct or’ from or by "interleaving" 2 copies of each of the 8 translates
troor of or. We do this by dividing the 4n 4n grid G’ into 16 n n subgrids Gpq,
with p and q being integers between 1 and 4, defined by

Gpq {(4kl + p, 4kz + q)10 -< kl, kz -< n 1}.

or’ is then constructed as being a permutation mapping each Gp, into Gpct for all p, q.
For each point (il, i2)=(4k1+p, 4kz+q) in G’, if crpq(1 <-p, q<_-4) constitutes an
enumeration of S such that each element of S appears twice, and if o-pq oor(kl, k2)
(/1,/2), then we define

or’((il, i2)) (411 + p, 4/2 + q).

In other words, or’ is O-pq or when restricted to Gpq. From this it follows immediately
that

Cost (or’)= Y. 4 Cost (trpq or)
P,q

2 Z 4 Cost (cr or)

64 Average [Cost (tro or)],
o’S

where the factor 4 comes from the fact that the grids Gpq have a distance of 4 between
cells. Moreover, since tro S S for all tr S, we know

Cost (o’oor’)=Cost (or’)+O(n 2) forallo’S

(where it is understood now that by tr we mean the symmetry operations on the
4n x 4n grid G’), the O(n 2) term resulting from the minor rotations of each of the
4 x 4 chunks {(4k1 + p, 4k2 + q)ll _-< p, q <_- 4} of G’ under o-. From this we get

SCost (or’) Cost (or’)- O(n z)
and the lemma follows. 71

COROLLARY.

Worst Case [SCost (or)] Worst Case [Average [Cost (or or)I] + O(n2).
-rrP -trP o’S

Proof. Suppose or is the worst case, i.e., or maximizes SCost (or). Then by the
above lemma there exists or’ such that

SCost (or’) Average [Cost (tr or)] + O(n)

->_ SCost (or) + O(n2).

Thus or’ is essentially a worst-case too. However,

SCost (or’) Average [Cost (tro or’)] + O(n2);

so the corollary is proved. 71
THEOREM 5.

Worst Case [SCost (or)] an 3
/ O(H3),

7rP

A GENERAL MASS STORAGE SYSTEM 109

where a 0.72096 forthe Lx-metric, a .4387826 forthe L-metric and 0.53956 =< a =<
0.6202 for Lz-metric.

Proof. By the above corollary it suffices to consider

A Worst Case [Average [Cost (ro 7r)]].
"rrP o’S

We study the Lx-metric first.
For convenience of later discussion, we identify the n n grid G with the square

with vertices (1, 1), (1,-1), (-1,-1), (-1, 1). Since

1
Average [Cost (rozr)] d(x, rozr(x)),

o-S S

clearly, we can assume without loss of generality that x and 7r(x) are in the same
quadrant, i.e., 7r maps a quadrant into itself. Let x (a, b) be a point in the first
quadrant Gx and let zr(x) (u, v) be its image. Then, a, b, u, v =>0;

2 d(x, or(x))= 2(lu-al+l-bl+lu
o’S

+[-al +(u + a)+(u + b)+(u + b)+(u + a))

2(d(x, ,r(x)) + d(x, r/o ,r(x))) + 4(u + u + a + b),

where r/(u, u)= (u, u). Thus

Y. , d(x, trozr(x))=4 E (u+v+a+b)+2 Y’. d(x, zr(x))+d(x,,ln’(x)).
x6G1 r6S xG1 xG1

Note that xl (u + u + a + b) is the same fqr all 7r. Hence if we can construct a
permutation zr from Gx onto Gx such that Yxl d(x, 7r(x))+ d(x, rt oft(x)) is maxim-
ized, then we can extend it to G by reflection to obtain the worst-case permutation.

Since we are interested in the coefficient of the n 3 term in A only, we need only
consider continuous transformations from Gx onto Gx with Jacobians equal to +1.
(An area-preserving continuous map is roughly the limit of one-one permutations.)

Divide G1 into 10 regions as in Fig. 5, where e=(1/2, 1/2), t=((3-/g)/2, 1-
(3-x/g)/2) such that area Bx=area B3, area Bz =area B4, area A =area C, area
D1 area D3, area D2 area D4.

Next we define a real-valued function f on G as follows, where d is again the
L metric:

f(x)

2 d (x, e) for x s A, C,
d (x, e) + d (x, t) for x E B2, B3, B4,

d (x, e) + d (x, t’) for x D2, D3, D4,

d(e,t) forxsB1, Dx.

By direct verification, we have for the Ll-metric

(i)

(ii)

d(x, y)+ d(x, rt(y))= f(x)+f(y)

for x cA, y C; x 6Bx, y B3; x B2, y B4; x Dx, y O3; x D2, y D4.

d(x, y)+d(x, rl(y))<=f(x)+f(y) forx, y6Gx.

110 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

(0,0)

B3 B4

p

DI

D3

e=(,), t=(5-.2 I-:’2)
FIG. 5. Worst-case permutation for the Lx-meo:ic.

(I O)

Inequality (ii) implies that, for any transformation zr,

d(x, zr(x)) + d(x, nzr(x))<-f(x)+f(r(x)).

On the other hand, for any transformation ,r0 such that it maps A onto C, B
onto B, B2 onto B4, D1 onto D and D2 onto D4, by (i)

d(x, ,ro(x))+ d(x, no(X))= f(x)+f(o(X)).

It follows that zro maximizes Y-xG1 d(x, zr(x)) + d(x, qzr(x)).
Direct calculation of Average.s [Cost (ror0)] yields the result stated in the

theorem.
To achieve the worst case for the Loo-metric, we note that the mapping g(x, y)=

((y + x)/2, (y-x)/2) is an isometry between the plane with Loo-metric and that with
the L1 metric. Thus, instead of working with Gx (with the L-metric), it suffices to
consider the triangle T1 with vertices (0, 0), (x/, 0), (0, x/) (with the Ll-metrie).
In other words, we have to construct a transformation form T1 onto T1 such that,. d(x, zr(x))+d(x, qzr(x)) is maximized, where d corresponds to the Lx-metric.

For convenience, we normalize T1 to a triangle with vertices (0, 0), (1, 0), (0, 1).
As before, we divide T into 10 regions, such that area B --area B3, area B2 area
B4, area A area C, area D area D3, area O2 area D4. (See Fig. 6.) To do this,
X, Y, Z must satisfy the equations:

2X2- 2XY 2XZ y2_ 3Z2 +4Z 0,

X2 2X +2XY 2XZ Z2 + 2Z O,

2X2-4X +2XY-2XZ y2 +Z2 + 1 O.

which means X 0.27677, Y 0.531439 and Z 0.139882. Again, any transforma-
tion mapping A onto C, Bx onto B3, B2 onto B4, O1 onto D3 and D2 onto D4 will

A GENERAL MASS STORAGE SYSTEM 111

(o I)

B

Y

B2

X-

D,

Z C

(0,0) Z X " (I,0)

FIG. 6. Worst-case permutation for the Loo-metric.

maximize the desired sum and will be our solution. We compute, as before, that the
mean distance is-X + 3X2 X3 + y3 +Z2 1/2g 3 X2 y+ 3XY.

2XY + 2X2Z 5XZ2 Y2Z + YZ2 + 2XYZ 0.43878265158.

The case of the L2-metric seems to be much more difficult, and we are unable
to obtain the coefficient of//3 exactly. Only some simple bounds are presented here.

Consider the triangle T with vertices (0, 0), (1, 0), (1, 1). Let w be an arbitrary
but fixed point in T. Then, assuming that zr maps all triangles in the grid onto
themselves,

11 rd(x, cr rr(x))<--Y’.[d(x, cr(w))+d(o’(w),cr rr(x))]
8 S

1 1

1

X X d(x, o-(w))+ Xx a(w, x).

Let T’=o-’(T) denote the translate of T by r’S and w’=r’(w). Then we have
exactly the same inequality"

1 1
,)

8 E E d(x,,,or(x))<--Y. E [a(x,(w)+cl((w’),, r(x))]
SXeT xT’

Thus,

1
8 E E d(x, (w))+ E d(w, x).

xT xT

8 E Y. d(x,o’rr(x)) <--min Y d(x,o’(w))+8 E d(w,x)
o’S xG weT o’S x.T

112 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

For the Ll-metric, the minimization point turns out to be w0 (1/2, (5-x/-i-)/4).
While we are unable to determine the minimization point for either the L or
L2-metric, we can use w0 to obtain an upper bound"

_1 , ., d(x, troTr(x))<0.6202n3=
8 o’S xG

To obtain a lower bound, let G1, G2, G3, G4 be the four quadrants of G and define
a permutation ro mapping Gi onto itself, for 1, 2, 3, 4:

03 in G1,

Or in G2,
3
7p in G3,

07- in G4,

where by p, 7- we mean the symmetry operations on the appropriate quadrants. Direct
computation shows that

SCost (Tr0) 0.53956n 3.

Therefore a is between 0.53956 and 0.6202.
To summarize, when a user gives us a permutation while the memory is in

state tr, we form otr determine SCost (tztr- =Cost (’oo- and realize
-1the permutation ’oo using "cycle algorithm or some other similar algorithm.

Theorems 4 and 1 give the average cost, and Theorem 5 gives the worst-case cost.

The ease b = n 2. In the case b n 2, the read/write head contains enough memory
to save the entire contents of the mass storage device. The possibility could arise, for
example, if some large random-access devic were available during the oine permut-
ing period. The value b n 2 is perhaps exorbitant, but it serves a useful limiting value
with which performance for smaller values of b may be compared.

Below we produce a straightforward algorithm for generating any permutation
P, always taking time 2n 2. Although this algorithm is very suboptimal for some

permutations, it is not bad in the general case. As before, is viewed here as an
"absolute" permutation, and symmetry operations of the grid are ignored. In fact, no
benefit whatsoever is gained by considering symmetry translates of a permutation if
the final permutation is to be realized with the following algorithm.

Two-pass algorithm.
Given b n 2, permutation to be realized, head initially in any location x on

the grid.
Step 1. Read in entire contents of grid in a single pass across all n 2 cells.
Step 2. Write out the cell contents in their target locations in a second pass across

the grid.
It is obvious that this algorithm always takes 2n 2 steps, which is suboptimal for

most permutations. However we claim the algorithm is within a factor of optimal for
almost all permutations.

Note first of all that any algorithm for realizing permutations with b n 2 will
usually take at least n 2 steps. To see this, note that

2

Pr[random r has at least k unit cycles] N ()(n2-k)/(n2)
=l/k!.

A GENERAL MASS STORAGE SYSTEM 113

(This probability may be evaluated precisely using the principle of inclusion and
exclusion; see Liu [9].) Now the algorithm must visit every point x on the grid for
which zr(x) x, i.e., for which zr is not a unit cycle. However, as the above inequality
shows, the number of permutations having many unit cycles is a very small percentage
of the total set (asymptotically negligible). So n 2 steps are necessary almost all the
time, and the two-pass algorithm is at worst a factor of two away from optimal.

The two-pass algorithm can be improved upon somewhat. Observe that if we
can devise a schedule for the read/write head which reads in many cells’ contents

before the head moves to the permutation targets for these contents during the initial
read-in pass, then these contents can be dropped off when the target contents are
read in. If enough contents can be dropped off in this manner, then the second
write-out pass will only require the read/write head to visit some fraction p(0< p < 1)
of the grid locations. The whole process might only take time (1 + p)n .

In fact we can guarantee p _-<1/2. Consider any pass over the grid. Then either (1)
at least half the points x in the pass are visited before zr(x) is visited in the pass, or
else (2) this statement is true if the pass is reversed (done backwards). This observation
leads to the following algorithm"

More intelligent two-pass algorithm.
Step 1. Make a read-in pass over the grid, which has the property that at least

half of the points x on the grid are passed over before zr(x) is passed
over. For each such point x, drop off its contents when or(x) is passed
over and the zr(x) contents are read in.

Step 2. Make a write-out pass over the grid which visits those points where
contents must still be dropped off, and as few other points as possible.

This algorithm requires at most as much time as its predecessor, and has the additional
benefit that it only uses n2/2 registers at any given time. Hence" b n2/2 is the most
registers we could ever need, and b n is waste(ul.

We leave the precise analysis of this latter algorithm as an interesting open
question. Is it possible to always choose a read-in pass schedule that guarantees p
smaller than 1/2, thereby improving Step 1? What algorithms may be used to generate
efficient schedules for Step 2? etc.

5. The case l<b <n. We have now established that, when b 1, 0(/’/3) time
is necessary to realize the average permutation, while when b n 2 only O(n 2) time
is necessary. It is interesting to ask what sort of behavior we get if we choose some
intermediate value of b. It is obvious that

(Time required (b 1))=< k (Time required (b k))

for any k between 1 and n 2, but it is not obvious whether the inequality can be
replaced by equality. We show that, modulo constant factors, it can. That is, for
1 <b <-n only O(n3/b) time is necessary. This suggests that having a large number
of registers may not be cost effective.

We give an algorithm for b n which uses time 6n 2 (in any metric) to realize
any permutation. The algorithm is based on the operation of the three-stage rearrange-
able switching network studied by Bene [12] and others. It comprises three passes,
each taking time 2n 2 and modelling one stage of the three-stage network.

Permutation Algorithm for b n.
Step 1. For each of the n rows of the grid;

(a) read the row in,
(b) write the row back out such that, at the end of Step 1, each column
contains n items whose destinations are all in different rows.

114 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

Step 2. For each of the n columns of the grid;
(a) read the column in,
(b) write the column back out so that, at the end of Step 2, every item
in the grid is in the same row as its destination.

Step 3. For each of the n rows of the grid;
(a) read the row in,
(b) write the row back out in permuted order.

It is obvious that the algorithm works if Step 1 can be made to do what it says it does.
That it can is a consequence of the Slepian-Duguid theorem ([12], p. 86), the details
of which are omitted here. An example is given in Fig. 7. The algorithm makes

(3 steps) x (n rows/cols per step) x (2n head movements per row/col)

6n 2 head movements

as claimed.

II 7 19 25 24
6 I0 12 25
16 4 18 15 17
22 2 5 9 21
14 13 20 "5 8

INITIAL CONFIGURATION
INUMBERS INDICATE ROW-
MAdOR ORDERED
DESTINATIONS

II 7 19 23 24
6 25 12 I0

18 15 4 17 16

22 21 9 2 5
3 20 14 8 I;5

(b) AFTER FIRST STEP: EACH
COLUMN NOW CONTAINS 5
ITEMS WHOSE DESTINATIONS
ARE IN DIFFERENT ROWS.

3 4 2 5
6 7 9 8 I0

II 15 14 12 13

18 20 19 17 16
22 21 25 23 20

2 3 4 5
6 7 8 9 I0
II 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(c) AFTER SECOND STEP: (d) AFTER THIRD STEP:
COLUMNS HAVE BEEN GRID IS IN SORTED
PERMUTED SO EACH ORDER.
ITEM IS IN CORRECT
ROW.
FIG. 7. Examples of b n permutation algorithm execution (for case n 5).

This algorithm may be used recursively to derive interesting algorithms for b < n.
Note that to permute a row (or column) of n cells using b x/n registers using the
same basic algorithm can be done by breaking the row (column) into x/ pieces of
length x/. These pieces are then thought of as for_rning a x/nx x/ grid, except
here moving from one piece to the next takes time x/n instead of 1. Permuting one
row of the grid using the algorithm then requires essentially.

(24+4) x4 + 2(n 4) x n + (24+ 4;) x4
Step 1 (subrows) Step 2 ("cols") Step 3 (subrows)

2n 3/2 + 4n head movements.

A GENERAL MASS STORAGE SYSTEM 115

Therefore to permute the entire grid with b / we make

(3 steps) (n rows/cols per step) (2n 3/2 / 4n head movements/row or col)

=6n 5/2 + O(n 2) head movements.

In general, recursive application of this algorithm with b n 1/2j for integral
produces an algorithm requiring on the order of

6n3/b head movements,

so, for at least the values k r/1/2j, the inequality at the beginning of this section can
be replaced by equality (within a constant factor near 6).

For really small values of b this approach will be inefficient. It would seem better
in this situation to develop heuristics extending the basic cycle algorithm of 3. One
possible extension is a "greedy" heuristic which reads in the contents of b cells and
then proceeds to drop off the item whose destination is closest. A new item is read
in when the old item is dropped off, again the head moves to drop off the item whose
destination is closest, and so forth. However we do not elaborate any further on this
subject, leaving the development of algorithms for very small b as an interesting open
problem.

One final comment should be made on the b n algorithm. Namely, it may be
generalized immediately to an algorithm for a system with n read/write heads, which
only takes O(n) time. Assuming each head has b n registers, each pass over a row
or column in each of the three steps may be handled by a single head. Obviously the
heads can be coordinated so that they do not conflict with one another’s movement.
This approach may be used when the grid may be read both horizontally and vertically
(a mild generalization of the scheme in [1]): in "effect the grid becomes a "torus" with
a set of 2n read/write heads permanently fixed on the torus axes.

6. Conclusions. A model of a general mass storage system was assumed, in which
a single read/write head moves freely across a two-dimensional n n grid of storage
cells. Head motions were assumed to take time proportional to one of the L1, L2 or
L-metrics, and the head was capable of holding some fixed number b of cell values.
The problem of finding efficient algorithms for rearranging the grid’s contents according
to some permutation/z was addressed.

For the important case b- 1, a near-optimal algorithm (the "cycle algorithm")
was presented and analyzed at length. Average and worst-case performance were
determined for all three metrics, even under the complicating assumption that sym-
metry operations of the grid be used to reduce permuting cost. The performance
figures given are excellent estimates of behavior since the corresponding standard
deviations are asymptotically negligible.

For the cases b n 2 and 1 < b < n 2 good permuting algorithms were presented
and shown to be within a constant factor of optimal, but not analyzed in detail. The
general behavior of algorithms for b in these ranges was.determined, but it remains
open to develop the optimal such algorithms, or good heuristics, especially for the
case where b is very small but greater than one.

Acknowledgment. The authors are grateful to the referee, whose comments have
made the presentation of this paper much clearer.

116 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

REFERENCES

[1] A. K. CHANDRA, Hsu CHANG AND C. K. WONG, Two-dimensional bubble domain memory, U.S.
Patent No. 4,174,538, Nov. 13, 1979.

[2] P. C. YUE AND C. K. WONG, Near-optimal heuristics for an assignment problem in mass storage,
Internat. J. Comp. Inform. Sci., 4 (1975), pp. 281-294.

[3] S. H. FULLER, Analysis of drum and disk storage units, Lecture Notes in Computer Science, 31,
Springer-Verlag, N.Y. 1975.

[4] P. P. BERGMANS, Minimizing expected travel time on geometrical patterns by optimal probability
rearrangements, Inf. Cont., 20 (1972), pp. 331-350.

[5] R. M. KARP, A. C. MCKELLAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional
placement problem, this Journal, 4 (1975), pp. 271-286.

[6] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Addison-Wesley Publishing Co., Reading,
MA, 1973.

[7] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Some complexity results for the traveling salesman problem,
Proc. 8th ACM Symposium on Theory of Computing, Hershey, PA, May 3-5, 1976, pp. 1-9.

[8] M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON, Some NP-complete geometric problems, Proc.
8th ACM Symposium on Theory of Computing, Hershey, PA, May 3-5, 1976, pp. 10-22.

[9] C. L. LIu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968, pp. 106-7.
[10] C. K. WONG AND K. C. CHU, Average distances in Lp disks, SIAM Rev., 19 (1977), pp. 320-324.
[11] D. T. LEE AND C. K. WONG, Voronoi diagrams in Lx(L) metrics with 2-dimensional storage

applications, this Journal, 9 (1980), pp. 200-211.
[12] V. BENE$, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press,

New York, 1965.
[13] C. K. WONG, C. L. LIu AND J. APTER, A drum scheduling algorithm, Lecture Notes in Computer

Science, 2, Springer-Verlag, New York, 1973, pp. 267-275.
[14] J. RIORDAN, An Introduction to Combinatorial Analysis, John Wiley, New York, 1958.
[15] C. K. WONG, Minimizing expected head movement in one-dimensional and two-dimensional mass

storage systems, Comp. Surv., 12 (1980), pp. 167-178.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

() 1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0009 $01.00/0

ALGORITHMS FOR EDGE COLORING BIPARTITE GRAPHS
AND MULTIGRAPHS*

HAROLD N. GABOWt AND ODED KARIV

Abstract. A minimum edge coloring of a bipartite graph is a partition of the edges into A matchings,
where A is the maximum degree in the graph. Coloring algorithms that run in time
O(min (re(log n)2, n log n)) are presented. The algorithms rely on an efficient procedure for the special
case of A an exact power of two. The coloring algorithms can be used to find maximum cardinality matchings
on regular bipartite graphs in the above time bound. An algorithm for coloring multigraphs with large
multiplicities is also presented.

Key words, edge coloring, matching, bipartite graph, multigraph, open shop scheduling, euler partition

1. Introduction. Given a bipartite graph or multigraph, we seek a minimum edge
coloring. An (edge) coloring is an assignment of a color to each edge of the graph so
the edges incident to any vertex have distinct colors; equivalently, each color forms
a matching. A minimum coloring uses as few colors as possible.

This problem arises in a number of settings. Examples are routing in a permutation
network [LPV], preemptive scheduling of an open shop [GS], preemptive scheduling
of unrelated parallel processors ILL], and the class-teacher timetable problem [Got].
For instance, in the last of these we are given a collection of classes and teachers.
Certain meetings must take place between classes and teachers; each meeting is
specified by the class, the teacher and the number of periods the meeting lasts. A
teacher can meet only one class at a time; a class can be taught by only one teacher
at a time. A meeting that lasts more than one period can be scheduled as a number
of one-period meetings, not necessarily consecutive in time. The problem is to schedule
all meetings in as few periods as possible.

In the corresponding coloring problem, the bipartite multigraph has a vertex for
each class and for each teacher. There is an edge joining a class and a teacher if they
meet; the edge’s multiplicity is the length of the meeting. A matching corresponds to
meetings that can be scheduled in the same period. A coloring is a schedule (the
colors, i.e., periods, can be ordered arbitrarily); a minimum coloring is a schedule
using the fewest periods.

In practice, the timetable problem has additional constraints that make it difficult.
For instance, if some teachers are available only during a restricted set of periods, it
is NP-complete [E].

In contrast, the basic problem of finding a minimum edge coloring can be solved
efficiently. Section 3 presents two algorithms that color graphs. The time bounds are
O(m(log n)2) and O(n 2 log n), where n and m are the number of vertices and edges,
respectively. The first algorithm is superior to the second for nondense graphs
(m --O(n2/log n)); it is also superior to previous coloring algorithms [Ga] [GK], the
best of which is O(m/n log n). A preliminary version of the second algorithm appears
in [GK]. Both algorithms are based on the fact that graphs with maximum degree a
power of two can be colored rapidly.

* Received by the editors August 16, 1979, and in final form January 13, 1981.
t Computer Science Department, University of Colorado, Boulder, Colorado 80309. The work of this

author was supported in part by the National Science Foundation under grant NSF78-18909.
$ Computer Science Department, Technion, Haifa, Israel. This work was done while O. Kariv was

with the Department of Computer Science of State University of New York, Albany, and his work was
supported in part by that department.

117

118 HAROLD N. GABOW AND ODED KARIV

Section 3 includes an application to matching. "High-low" bipartite graphs are
defined; this class includes the regular graphs. A maximum cardinality matching on
a high-low graph can be found in time O(min (m(log n)2, n 2 log n)). This improves
on the bound of O(m/-) for general bipartite graphs [HK].

The algorithms of 3 also work on multigraphs. However they become less
efficient as edge multiplicities increase. Section 4 discusses coloring multigraphs with
large multiplicities. An algorithm using time O(nmg log K) is presented. Here mg is
the number of edges (not counting multiplicities) and K is the maximum edge
multiplicity. The algorithm uses augmenting paths for colorings. A previous algorithm,
based on matching theory, uses time O(m2g) [GS]. For a large class of graphs (i.e.,
n log K o(mg)), our algorithm is faster.

2. Preliminaries. This section introduces terminology and reviews previous color-
ing algorithms as a basis for the algorithms of 3 and 4.

Throughout the paper, G denotes a given bipartite graph, n is the number of
vertices, m the number of edges, and A the maximum degree. In 4, G is a bipartite
multigraph containing duplicate edges but no self-loops. We make a convention to
distinguish between a multigraph and its underlying graph, in which edge multiplicities
are ignored" The prefix "multi" indicates a reference to the multigraph; its absence
indicates a reference to the underlying graph. For example, rnn denotes the number
of multiedges (i.e., edges are counted according to their multiplicity), and mg denotes
the number of edges (in the underlying graph). So, m => m.

A coloring that uses exactly k-colors is a k-coloring. It is well known that a
minimum coloring (in a bipartite graph) is a A-coloring. (This follows from the fact
that, by the K6nig-Hall theorem, a graph has a matching that covers all vertices of
degree A B].) So, our problem is to find a A-coloring. We denote the colors as
1,..., A. A partial coloring is a coloring of a subset of the edges. Figures 1 and 2
illustrate these terms (edge labels specify colors).

FIG. A 4-colored graph. FIG. 2. A partial coloring.

A well-known approach to coloring [O] uses the method of augmenting paths.
As such it resembles algorithms for network flows and matchings I-L]. We begin with
some definitions. Consider a partial A-coloring. Vertex v misses color if no edge
colored a is incident to v. Uncolored edge vw misses color pair [3 if v misses a and
w misses/3. If vw misses aft, an a path (from vw) is a path P that starts at v or w,
has edges that are colored alternately a and/, and has maximal length. P is also
called an alternating path. Note an alternating path can have no edges, if a =/, or
more generally, if v (or w) misses both a and/.

An alternating path can be used to color an uncolored edge. The following
algorithm does this in linear space; the more direct approach of [GK] does not.

procedure augment (vw) comment vw is an uncolored edge in a partial A-coloring.
vw gets colored;

begin
let vw miss color pair

EDGE COLORING BIPARTITE GRAPHS 119

2. let S be the subgraph of edges colored a or /3 comment the connected
components of S are paths and cycles;

3. let P be a connected component of $ incident to v or w (P can be if no
edge of S meets v, or w) comment P is an a/3 path from vw;

4. interchange colors a and/3 on the edges of P comment now a color y, 3’ a

or/3, is missing at both v and w;
5. color edge vw comment use 3";

end augment;

As an example, consider the uncolored edge 12 in Fig. 2. For a/3 13, subgraph
S contains two paths; augmenting on 254 gives Fig. 1.

LEMMA 1. "Augment" colors an uncolored edge in time O(n). A graph can thus
be colored in time O(nm); the space is O(n + m).

Proof. First note augment works correctly. In line 1, colors c and/3 exist (there
are A colors, and since vw is uncolored, both v and w miss a color). In line 2, the
comment is true since a and/3 are matchings. Thus in line 3, P is in fact an a/3 path
from vw. The comment in line 4 relies on the fact that P, if nonnull, does not end at
v or w. (If it did, there would be an odd cycle in the graph). So in line 5, vw is colored
correctly.

An appropriate data structure allows the time and space bounds to be achieved.
One possibility is to represent the graph by adjacency lists; each edge in an adjacency
list indicates its color; also, each color has a list of all edges with that color. Note line
1 is O(n), if we bucket sort the colors occurring at v and at w. Further details are
left to the reader. I-1

Another approach to edge coloring [Ga] uses divide-and-conquer. An euler
partition is a partition of the edges of G into open and closed paths, so that each
vertex of odd (even) degree is the end of exactly one (zero) open path. Any graph
has an euler partition, which can be found in time O(n + m) [B], [Ga]. The partition
can be used to divide G into two edge-disjoint subgraphs G1 and G2. Traverse each
path of the partition, placing edges alternately in G1 and G2. Then Ga and G2 both
have maximum degree [A/2I or [A/2]. (Since if uv and vw are consecutive edges in
the partition, one is placed in Gx and the other in G2; thus v’s degree gets halved.)
This suggests the following recursive algorithm"

lroeedure euler-color (G) comment G is a bipartite graph with all edges uncolored.
A 2 rlgal-coloring of G is found;

begin
1. let A be the maximum degree in G;
2. if A 1 then color all edges in G, using a new color else begin
3. divide G into edge-disjoint subgraphs G1, G2, each with maximum degree at

most [A/2] (use an euler partition);
4. euler-color
5. euler-color G2)

end end euler-color;

For example, consider Fig. 1. Using three open paths, 12, 3254365 and 768, we
get G and G2 of Fig. 3. The final coloring obtained is Fig. 1.1

Euler-color does not necessarily find a A-coloring. Suppose A is odd and both G
and G2 have maximum degree [A/2]. Even if the recursive calls of lines 4-5 find

In all examples of this paper the algorithms make choices. For convenience we do not point out that
different results are possible if different choices are made.

120 HAROLD N. GABOW AND ODED KARIV

FIG. 3. Dividing the graph by an euler partition.

minimum colorings, these colorings combine to give a (A + 1)-coloring of G, i.e., an
extra color is used. However, the coloring uses at most twice the minimum number
of colors.

LEMMA 2. "Euler-color" finds a 2[lgA]-coloring.2 The time is O(m log n) and the
space is O(n + m).

Proof. Correctness follows from a simple induction: Ga and G2 have maximum
degree [A/2]. So euler-color finds (2 aga3-1)-colorings of these graphs, which combine
to give the desired coloring. A similar induction shows the time is O(m log A). The
space bound follows from careful programming of the recursion. Further details are
in [Ga]. [q

Note if A is an exact power of two, euler-color finds a minimum coloring. This is
the basis of our algorithms.

3. Algorithms for graphs. This section presents two edge coloring algorithms,
with time bounds O(m(logn)2) and O(n21ogn). On nondense graphs (m=
O(n2/log n)) the first algorithm is faster. Both algorithms are based on the fact that
graphs with A an exact power of two can be colored fast.

The first algorithm works by repeatedly enlarging a partial A-coloring. Each
iteration constructs a subgraph S of maximum degree 2 rig, containing a large number
of uncolored edges (and possibly some colored edges). S is colored, by erasing all its
colors and using euler-color. This gives G more colored edges. The process is repeated
until all edges are colored.

S is constructed by assigning color pairs to the uncolored edges. If edge vw is
assigned the pair aft, we say a(fl) occurs at v(w). Color pairs are assigned in such a
way that a color a occurs at most once at a vertex vin an edge colored a or in an
edge assigned a pair with a at v. The exact role of the pairs in forming S will become
clearer as the discussion proceeds.

procedure color-by-pairs; comment given is a bipartite graph G with maximum
degree A, and all edges uncolored. A minimum coloring (using colors
1,..., A) is found;

begin
1. while G has uncolored edges do

begin
2. assign a color pair c/3 to each uncolored edge, so any color occurs at most

once at any vertex;
3. find a set of 2 tga colors C, such that > 41- the uncolored edges are assigned

a color pair a/ with both a,/3 C;
4. let S contain all edges whose colors are in C, i.e., edges colored a with a C

and edges assigned a/ with both a, fl C;
5. color the edges of S, using the colors C comment erase all colors in S and

use euler-color
end end color-by-pairs;

Throughout this paper "lg" denotes logarithm base 2.

EDGE COLORING BIPARTITE GRAPHS 121

Consider the graph of Fig. 4. Figure 5 gives an assignment of color pairs. Choosing
C {1, 2, 3, 4}, S is the graph of Fig. 1, and it gets the coloring shown (see 2). The
5-coloring of Fig. 4 results if the next iteration chooses C {2, 3, 4, 5}.

FIG. 4. A 5-colored graph. FIG. 5. A color pair assignment.

Now we analyze the algorithm. It is not obvious that line 3 can be done. For
clarity of presentation we assume this; i.e., Lemmas 3 and 4 explicitly assume the
following:

LEMMA 6. Line 3 of "color-by-pairs" can be done, using time O(m log n) and
space 0 m + n).

Of course, the proof of Lemma 6 (see below) is independent of Lemmas 3 and 4.
LEMMA 3. "Color-by-pairs" finds a minimum coloring (if we assume Lemma 6).
Proof. It is easy to see that lines 1-4 can be done, assuming Lemma 6. Note S

has maximum degree -<-IcI-2 tgaj. So Lemma 2 shows euler-color can be used to
color S, as claimed in line 5.

After line 5, G still has a valid partial coloring. This follows because there are
no edges colored a C that are not in $.

Finally note that the while loop of line 1 eventually halts. In fact, the algorithm
loops O(log m) times. For by line 3, after iterations of the loop there are <(1/4)im
uncolored edges. So there are <= [1og4/3 m] iterations.

Now it is clear that color-by-pairs halts with a valid A-coloring. (This is true even
if G is a multigraph). [3

To analyze the timing, we start with a detailed implementation of line 2.

comment this code implements line 2 of color-by-pairs;
2.1 sort the adjacency lists of G in order of increasing color, using the order

"uncolored" < 1 < 2 < A;
2.2 for each uncolored edge vw do

begin let a(/3) be the next largest color missing at v(w) comment c is
missing at v if no edge incident to a is colored a or assigned a pair with a
at v;
assign c/3 to vw;
end;

Lines 2.1-2 use time O(m + n). Line 2.1 is a bucket sort: The edges of G are
placed into buckets, one for each color; then the edges of each bucket are placed on
the appropriate adjacency list. Line 2.2 uses pointers that scan down every adjacency
list. To find the next color missing at. v, advance v’s pointer until it reaches the next
gap in the color sequence.

LEMMA 4. "Color-by-pairs" uses time O(m(log n)2) and space O(m + n) (if we
assume Lemma 6).

Proof. The proof of Lemma 3 shows the while loop does O(log n) iterations. So
it suffices to show each of lines 2-5 is O(m log n). Line 2 is O(m + n), as indicated
above. Line 4 is clearly linear. Lines 3 and 5 are O(m log n) by Lemmas 6 and 2,
respectively.

122 HAROLD N. GABOW AND ODED KARIV

Now we discuss line 3. It is convenient to restate line 3 in terms of a multigraph
M derived from the color pair assignment. M has a vertex for each color a, 1 -< a -<_ A.
It has an edge a/3 of multiplicity k if G has k > 0 uncolored edges assigned the pair
aft. Fig. 6 shows M for the assignment of Fig. 5 (edge labels give multiplicities). The
task of line 3 is this: Given a multigraph M, with n vertices, mg edges, and
multiedges (recall m,, counts each edge according to its multiplicity), find p vertices
whose induced subgraph P has a large number of multiedges. (In line 3, p 2 riga/,
and >m,/4 multiedges are required. Also, n (of M)= A.)

FIG. 6. The multigraph derived from the assignment.

A natural approach is to build P up in a greedy way: repeatedly add the vertex
that in some sense has the highest degree. Variations of this method work (see below).
However, better results come by reducing M down to P in a greedy way.

procedure dense-graph; comment given is M, a multigraph, and p, an integer -<n.
The algorithm finds P, a subgraph induced on p vertices, containing a
large number of multiedges;

begin
P:=M;
fori:=n step-ltop+ldo

begin
let v be the vertex of least multidegree in P;
P:=P-v;

end end dense-graph;

In Fig. 6, for p 4 the vertices of P are 1, 2, 3, 4 (as desired in Fig. 5). For p 2,
P contains 1 and 3.

LEMMA 5. "Dense-graph" halts with P a subgraph of M having p vertices and
>=mrn" (p(p--1)/n(n- 1)) multiedges. The time is O((mg + n)log n) and the space is

O(mg+n).
Proof. First we discuss correctness. Let v be the vertex with least multidegree in

M. Since the sum of all multidegrees in M is 2m,, v has multidegree-< 2m,,/n. Thus
M v has >=m,,(1-(2/n)) multiedges. This reasoning shows that when dense-graph
halts, the number of multiedges in P is at least

mm mm
i=p+l i=p+l

p(p-)
n(n- 1)’

as desired.
To achieve the time bound, use a priority queue containing the multidegree of

each vertex of P. Line 3 finds the vertex v of least multidegree and removes it from
the queue. Line 4 removes the vertices adjacent to v from the queue, and reinserts
them with multidegree appropriately reduced. Charging these queue operations to
the corresponding vertex or edge shows the total time is O((mg + n) log n). 71

EDGE COLORING BIPARTITE GRAPHS 123

Lemma 6 follows easily:
LEMMA 6. Line 3 of "color-by-pairs" can be done, using time O(m log n) and

space 0 m + n).
Proof. To do line 3 execute dense-graph, with M constructed as described above,

and p 2 tga/. The desired colors C correspond to the vertices of P.
Note p=2tga _>(A+ 1)/2, n A, and m, is the number of uncolored edges.

Lemma 5 implies P contains >m,,/4 multiedges. So C is as desired in line 3.
As for time and space, M can be constructed in linear time, using a bucket sort.

Lemma 5 shows dense-graph runs in the desired time. I-1
Several remarks about dense-graph are in order. First, note that we may view

dense-graph as an approximation algorithm for the clique problem. This problem is,
given a graph G and an integer p, find a complete subgraph on p vertices, i.e., a
subgraph with p vertices and p(p-1)/2 edges. The clique problem is NP-complete
and so, probably intractable [K]. Dense-graph does not solve this problem but a
related one: Find a subgraph with a guaranteed number of edges. For this related
problem, dense-graph’s bound of m,, (p(p- 1)/n(n 1)) multiedges is the best pos-
sible. This can been seen by taking M as the complete graph on n vertices.

As expected, decreasing the bound on the number of multiedges allows faster
algorithms. For example, consider this alternative algorithm: First, from M, delete
the (n -p)/2 vertices with smallest multidegree; then, from the resultant graph, delete
the (n-p)/2 vertices with smallest multidegree. This algorithm is faster than dense-
graph--the time is O(mg + n), using linear median finding. It is straightforward to
calculate the bound on the number of edges. For instance, when p >-(n + 1)/2 (the
region of interest for color-by-pairs), the bound is >=m,/6 multiedges.

Other variations and generalizations of dense-graph are possible. For example,
the above linear algorithm works if we build P up rather than reduce M. A similar
but simpler linear algorithm is given in [LPV]. Any method that, when p-> (n + 1)/2,
achieves a bound of cm,, multiedges (for some constant c > 0) in time O((mg + n) log n)
suffices for color-by-pairs.

Lemmas 3, 4, and 6 complete the analysis.
THEOREM 1. "Color-by-pairs" finds a minimum coloring, in time O(m(log n)2)

and space 0(m + n).
An interesting variant of color-by-pairs that runs efficiently on a parallel machine

(the Parallel Random Access Computer) is given in [LPV]. The time is O((log n)3).
Now we present the second coloring algorithm. It also repeatedly colors subgraphs

with maximum degree a power of two. However, it proceeds recursively. The graph
is divided in two, using an euler partition. The first subgraph is colored recursively.
This coloring is used to enlarge the second subgraph, so its maximum degree is a
power of two; it is colored by euler-color.

proced.ure color-by-partition (G); comment G is a bipartite graph, all of whose
edges are uncolored. A minimum coloring of G is found;

begin
1. let A be the maximum degree in G;
2. if A 1 then color all edges in G, using a new color

else begin
3. divide G into edge-disjoint subgraphs G1 and G2 having maximum degree

A1 and A2, where A1, A2--< [A/2] and G1 has no more edges than G2 (use
an euler-partition);

4. color-by-partition (G1);

124 HAROLD N. GABOW AND ODED KARIV

remove the edges of r colors from G1 and add them to G2, where r=
2 [lga/2] --A2;
euler-color (G2); comment now the colorings of G1 and G2 (as modified in
line 5) give a A- or (A + 1)-coloring of G;
if G is not A-colored then

begin
make all edges of some color o uncolored;
for all uncolored edges e do augment (e);

end end end color-by-partition;

For Fig. 4, an euler partition gives the subgraphs of Fig. 7; the recursive call of
line 4 colors the left subgraph G as shown. Line 5 enlarges G2 to Fig. 1, which gets
colored as shown. Adding the edge of color 5 from G gives the desired 5-coloring.

Figure 8 gives the call tree for this example. The root represents the original call
to color-by-partition, on a graph of maximum degree 5 (Fig. 4). The left son of the

FIG. 7. G1 and G2. FIG. 8. The call tree.

root represents the recursive call, on a graph of maximum degree 3 (Fig. 7); the right
son represents the call to euler-color, on a graph of maximum degree 4 (Fig. 1). Other
nodes are interpreted similarly.

LEMMA 7. "Color-by-partition" finds a minimum coloring.
Proof. The argument is by induction on A. If A 1, line 2 colors the graph

correctly. Now assume A > 1. By induction, the recursive call of line 4 correctly colors
G1.

In line 5, note the transfer of edges can be done, i.e., A _> r--> 0. For A => r, note
A A- A2 and A > 2 rlgA/2], for r > 0, note 2 rigA/2] > [A/2] > A2

After the transfer of line 5, G2 has maximum degree _--<A2 + r 2 rga/2. So, in
line 6, euler-color finds a (A2 + r)-coloring of G2. GI is colored with Ax-r additional
colors. Thus, after line 6, G is (A + AE)-Colored. A + A2 is A or A + 1, by the euler
partition of line 3. So there is at most one extra color. It is eliminated by the augments
of lines 7-9.

Now by induction, color-by-partition finds a minimum coloring (this is true even
if G is a multigraph).

LEMMA 8. "Color-by-partition" uses time O(n 2 log n) and space O(m + n).
Proof. For the time bound, consider the call tree illustrated in Fig. 8. In general

this tree has nodes representing calls to color-by-partition and euler-color. The root
represents the original call, color-by-partition (G). A color-by-partition node can have
two sons; the left son represents the call color-by-partition (G1) (line 4), and the right
son represents euler-color (G2) (line 6). Euler-color nodes are leaves. Suppose the
levels of the tree are numbered, with 0 at the root. So each level except 0 has two nodes.

We note two facts about this tree. First, it has at most fig A] / 1 levels. For the
color-by-partition son of a color-by-partition node satisfies A1 -< [A/2] (see line 3).
Hence a color-by-partition node on level has degree at most [A/2i], and the conclusion
follows.

EDGE COLORING BIPARTITE GRAPHS 125

Second, let mi be the number of edges in the graph of a node on level i. For a
color-by-partition node, rni <- m/2, by the euler partition of line 3. So for an euler-color
node, m <-m/2-1 (recall that line 5 enlarges G2).

Now we estimate the time. We first consider the total time spent in color-by-
partition nodes, and then the time in euler-color nodes.

Fgr color-by-partition nodes, we estimate the time in a typical node, excluding
the calls in lines 4 and 6. Lines 7-9 do -<n augments. Each of these is O(n), giving
O(n 2) time. The other lines are O(m + n). So the time in a typical node is O(n), and
the total time for color-by-partition nodes is O(n z log n).

Next consider the euler-color nodes. For a node on level i, the time is O(m log n)
(by Lemma 2). Summing over all levels and noting rni <= m/2-1 shows the total time
is O(m log n).

Thus the total time for color-by-partition is O(n 2 log n), as desired.
The linear space bound follows from careful programming, making sure that an

edge is represented only once in all levels of the recursion. See also Lemmas 1-2. [-!

Lemmas 7 and 8 give the desired result:
THEOREM 2. "Color-by-partition" finds a minimum coloring, in time O(n 2 log n)

and space 0 m + n).
We close this section by noting how coloring algorithms can be used to find

matchings for a large class of graphs.
DEFINITION. A bipartite graph is high-low if for some integer k, one vertex set

contains only vertices of degree >-k, and the other contains only vertices of degree -<k.
High-low graphs include both regular graphs and semiregular graphs. (A bipartite

graph is semiregular if one vertex set (or both) contains only vertices of degree A.)
A coloring algorithm can be used to find a maximum cardinality matching on a

high-low graph H. First prune H to a semiregular graph S (with A k). Any color
of a minimum coloring covers all degree A vertices. So a coloring of $ gives a maximum
matching of H.

THEOREM 3. A maximum cardinality matching can be found in a high-low graph
in time 0(min (m (log n ’2, n 2 log n)) and space 0(m + n).

The general bipartite matching algorithm of [HK] uses time O(mx/-). Theorem
3 improves this for high-low graphs. Other improvements, based on euler-color, are
given in [Ga], [GK]. For example, in a semiregular graph with A a power of two, a
maximum matching can be found in time O(m + n). (Use euler-color, only recurring
on G1).

4. Large multiplicities. This section discusses coloring multigraphs with large
multiplicities. An algorithm using O(nmg log K) time is presented. This is faster than
previous algorithms on a large class of graphs (more precisely, if n log K o(mg)).

The difference between coloring graphs and multigraphs is that in a multigraph
a matching can be used for more than one color, if each of its edges has multiplicity
greater than one. Hence the term multicolor denotes a set of colors, each of which
uses the same matching; the multiplicity (of a multicolor) is the number of colors in
the set. (When the meaning is clear from context, we use "color" instead of "multi-
color," and speak of the "multiplicity of a color," etc.) Thus a minimum edge coloring
can be viewed as a collection of 6 multicolors of multiplicity ki, 1,..., 6, where
A=Ei=1 ki.

Figure 9 shows a multigraph (edge labels give multiplicites). Figure 10 shows a
coloring that uses.multicolors 1,..., 5 (edge labels give multicolors). Note that
multicolors 1 and 5 can be combined to give a coloring with four multicolors.

126 HAROLD N. GABOW AND ODED KARIV

FIG. 9. A multigraph.

multicolor

multiplicity

2 3 4 5

2 2

FIG. 10. A 7-coloring with 5 multicolors.

Our problem is to find a minimum coloring of a bipartite multigraph. It is also
desirable to economize on the number of multicolors. For instance, in scheduling
applications, the colors of a multicolor can be scheduled in consecutive time periods.
In the class-teacher timetable problem, this reduces the number of interrupted meet-
ings; in open shop scheduling it reduces the number of preemptions [GS], ILL]. (The
number of preemptions is less than n times the number of multicolors.)

The algorithms of 3 color multigraphs. However, they do not take advantage
of large multiplicities of multiedges and multicolors. Here we give an algorithm that
does. If K is the largest edge multiplicity, the time and space are both O(nmg log K);
the number of multicolors is O(mg log K). (The algorithms of 3 use time
O(m,,,(log mm)2) and O((n 2 + m,,) log m,), and O(m,) multicolors.)

Gonzalez and Sahni [GS] give an algorithm for this problem based on augmenting
paths for matchings. Their algorithm uses time O(m2 3g). The space is O(nmg) (or if
colors can be output as they are found, O(mg + n)). The number multicolors is O(mg).

Our algorithm runs faster than [GS] if

(1) n log K o(mg).

For example, suppose K O(n a) for some constant a > 0. (This is not unreasonable,
since otherwise the time for doing arithmetic on multiplicities cannot be ignored, as
it is in the time bounds.) Then (1) becomes n log n =o(mg). So, for instance, if
mg (n l+e) for some e >0, (1) holds and our algorithm is faster. Thus, our algorithm
is faster on a large collection of graphs. However, it is clear that our algorithm uses
a factor O(log K) more space and more multicolors.

Our algorithm is based on augmenting paths for colorings. In a multigraph an
augment works as follows. Let e be an uncolored edge of multiplicity ke. Suppose e
misses color pair aft, where colors a,/ have multiplicity k, k, respectively. One a/3
path P can be used to augment k copies of e, where k min (k,, k, ke). (Imagine
doing a series of standard augments along P, each time using copies of a, fl, and e.)
The result is a new coloring where a and / have multiplicities k,- k and k- k,
respectively; new colors a’ and fl’ have multiplicities k; and an uncolored copy of e
has multiplicity ke- k. (Note a color or edge of multiplicity 0 can be discarded, so
either a,/, or the uncolored edge e disappears).

For example, consider edge 24 in Fig. 11. By choosing aft- 22, P= , and
augmenting, multicolors 2 and 4 of Fig. 10 are formed.

Ideally we would like to augment just once for each multiedge. This will be the
case if

(2) ke _-<min (k, ka)

This time bound is for the simpler of two algorithms in [GS]. The other algorithm has a lower bound
when n < mg (here n is the number of vertices in the smaller of the two vertex sets of the bipartite graph).
In our algorithm’s time bound, n can be replaced by nl, allowing a comparison with the second algorithm.
Since the result is similar but more involved, we omit it. Also, see [Gon].

EDGE COLORING BIPARTITE GRAPHS 127

multicolor

multiplicity

2 3 4

2 2

FIG. 11. A partial coloring.

(for if (2) holds, k ke, whence all copies of e get colored). However, (2) is difficult
to achieve, since an augment introduces color multiplicities ks- k and k0- k, and
these quantities can be small. This may cause (2) to fail in a later augment.

A special case where (2) always holds is when the edge multiplicities, say
kl, , k,, satisfy ki => 2ki+l. In this case, we can augment edges in order of decreasing
multiplicity. Then before any augment ks, ko >-2ke (since if this holds before an
augment, the new color multiplicities (ks -ke, ko- ke, ke) are >-ke, whence it holds for
the next augment.) Hence we do only one augment per multiedge.

The general case can be transformed to the special one, at a slight price: An edge
of multiplicity k > 1 is split into =< [lg k] copies, each with multiplicity a power of
two, using the binary expansion of k. Then all multiplicities are a power of two, and
essentially the above strategy works.

The algorithm below uses this approach. We assume the multigraph is given as
a collection of adjacency lists, where each edge specifies its (integer) multiplicity.
Similarly, the output coloring is specified as a list of colors (i.e., matchings) each with
its multiplicity.

The algorithm starts with only one multicolor, A, corresponding to the null
matching, having multiplicity A. New multicolors are formed by splitting off from old
ones in augments. However, the number of colors is always A.

procedure color-by-multiplicity comment given is M, a multigraph with large
multiplicities. A coloring with large multiplicities is found;

begin
1. let A be (the only) multicolor, with a matching that is empty, and multiplicity

A (where A is the largest multidegree of a vertex);
2. let K be the largest multiplicity of an edge;
3. for p := 2 tgtl, 2 tgK-l, 21, 20 do

begin
4. for each uncolored edge e of multiplicity k _-> p do

begin
5. let e miss c/, where ce and/ are (existing) multicolors, of multiplicities

k, and kt, and a,/ A if possible comment ks, k >_-p;
6. split e into uncolored multiedges f, h of multiplicites p, k-p, respectively;

comment discard edges of multiplicity 0;
7. color multiedge f by augmenting along an a/ path, forming multicolors

a’ and /3’ (multiplicity p) and original multicolors a,/3 (multiplicities
ks-p, k0-p) comment discard colors of multiplicity 0;

end end end color-by-multiplicity;

Figure 11 shows the coloring for Fig. 9 after the iteration for p 2. The coloring
of Fig. 10 can be obtained, if the algorithm chooses pairs aft so the augmenting path
is always empty.

LEMMA 9. "Color-by-multiplicity" finds a minimum coloring of a multigraph,
using O(mg log K) multicolors.

128 HAROLD N. GABOW AND ODED KARIV

Proof. We first prove that color-by-multiplicity finds a minimum coloring. To start
we show that at all times the partial coloring uses A colors; further, for any multicolor
a A, pike. The argument is by induction on the number of augments. Clearly the
inductive hypothesis holds before any augment has been done.

Now consider an augment in lines 5-7. Note in line 5, ks, k => p. This is true by
induction if a(3) A. Otherwise if a(fl)= A, then by the choice rule in line 5, one
end of e misses only one multicolor, A. Thus A_> k +vA kv. Also, by induction,
A kA +veA kv. So, kA k _->p, as desired.

Thus, the augment can always be done as specified in lines 6-7. It is easy to see
the augment conserves the number of colors, and further, plkv for y # A.

The halving of p in line 3 also preserves the condition plkv. This completes the
induction.

In the last iteration of line 3, p 1. So the loop of lines 4-7 colors all remaining
uncolored edges. Hence the algorithm halts with a A-coloring, as desired.

Now consider the number of multicolors. It is easy to see that at most [lg K / 1
augments are done for each multiedge e. (More precisely, an augment is done for
each one in the binary expansion of e’s multiplicity). Each augment creates at most
two new multicolors a’, fl’. So there are =<2mg([lg K + 1) multicolors.]

We sketch some implementation details. Line 5 requires finding a multicolor
missing at a given vertex. To do this, each vertex has a list of the multicolors it misses.
Line 7 requires finding an (augmenting) aft path from f. To do this, there is a table
T(v, a) that specifies, for each vertex v and each multicolor a, the edge (if any) of
color a incident to v. (Note this approach to finding the path uses more space than
the approach in 2.) Finally, each multicolor a specifies its multiplicity. (Some auxiliary
pointers are left to the reader.)

LEMMA 10. "Color-by-multiplicity" uses time and space O(nmg log K).
Proof. For the time bound, there are O(mg log K) augments (as noted in the

proof of Lemma 9). An augment takes time O(n), if the above data structure is used.
For the space bound, the lists of missing multicolors and the table T use space
O(nmg log K). Further details are left to the reader.

Lemmas 9-10 are summarized as follows.
THEOREM 4. ’:Color-by-multiplicity" finds a minimum coloring of a bipartite

multigraph. It uses O(nme. log K) time and space, and O(mg log K) multicolors.
Note that in the special case ki >- 2ki/1 mentioned above, the bounds on time,

space and multicolors all decrease by a factor O(log K).

Acknowledgment. We thank Adi Shamir for his stimulating conversations and
for defining "high-low" graphs.

[E]

[Ga]

[GK]

[Gon]

REFERENCES

C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
S. EVEN, m. ITAI AND m. SHAMIR, On the complexity of time-table and multicommodity flow

problems, this Journal, 5 (1976), pp. 691-703.
H. GABOW, Using euler partitions to edge color bipartite multigraphs, Inter. J. Comp. and Inf.

Sci., 5 (1976), pp. 345-355.
H. GABOW AND O. KARIV, Algorithms for edge coloring bipartite graphs, Proc. Tenth Ann.
ACM Symposium on Theory of Comp., San Diego, CA., 1978, pp. 184-192.

T. GONZALEZ, A note on open shop preemptive schedules, IEEE Trans. Comput., C-28 (1979),
pp. 782-786.

EDGE COLORING BIPARTITE GRAPHS 129

[GS]

[Got]

[HK]

[K]

[L]

ILL]

[LVP]

[o]

T. GONZALEZ AND S. SAHNI, Open shop scheduling to minimize finish time, J. Assoc. Comput.
Mach., 23 (1976), pp. 665-679.

C. C. GOTLIEB, The construction of class-teacher time-tables, Proc. IFIP Congress 62, Munich,
North-Holland, Amsterdam, 1963, pp. 73-77.

J. E. HOPCROFT AND R. M. KARP, An n 5/2 algorithm for maximum matchings in bipartite
graphs, this Journal, 2 (1973), pp. 225-231.

R. M. KARP, Reducibility among combinatorialproblems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.

E..L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

E. L. LAWLER AND J. LABETOULLE, On preemptive scheduling of unrelated parallel processors
by linear programming, J. Assoc. Comput. Mach., 25 (1978), pp. 612-619.

G. LEV, N. PIPPENGER AND L. G. VALIANT, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. Comput., C-30 (1981), pp. 93-110.

O. ORE, Theory of Graphs, AMS Colloquium Publications 38, American Mathematical Society,
Providence, RI, 1962.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0010 $01.00/0

TWO FAMILIAR TRANSITIVE CLOSURE ALGORITHMS
WHICH ADMIT NO POLYNOMIAL TIME,
SUBLINEAR SPACE IMPLEMENTATIONS*

MARTIN TOMPA

Abstract. Any Boolean straight-line program which computes the transitive closure of an n n Boolean
matrix by successive squaring requires time exceeding any polynomial in n if the space used is o(n). This
is the first demonstration of a "natural" algorithm which (1) has a polynomial time implementation and
(2) has a small (e.g., O(log n)) space implementation, but (3) has no implementation running in polynomial
time and small space simultaneously. It is also shown that any implementation of Warshall’s transitive
closure algorithm requires fl(n) space, and that many familiar sorting algorithms exhibit similar behavior.

Key words, transitive closure, sorting, time-space tradeoff, pebbling, straight-line program

1. Introduction. The transitive closure of an n n Boolean matrix can be
computed by a Boolean circuit of polynomial size and O(log2 n) depth, by O(log n)
matrix squaring operations. There are two obvious implementations of this algorithm
on a sequential machine, one running in polynomial time (corresponding to a breadth-
first evaluation of the circuit), the other in O(log2 n) space (corresponding to depth-first
evaluation). However, a recent conjecture maintains that there is no algorithm which
computes transitive closure and runs in polynomial time and (log n)1 space simul-
taneously (see, for example, Cook [1979]). This paper provides two pieces of evidence
relevant to the conjecture"

(1) Any implementation of the aforementioned successive squaring algorithm
requires time exceeding any polynomial in n if the space used is o(n)
(independent of the subprocedure chosen for matrix squaring).

(2) Any implementation of Warshalls transitive closure algorithm (Warshall
[1962]) requires space f(n).

Most of the recent results concerning time-space tradeoffs fall into two categories,
those which demonstrate modest tradeoffs for algorithms which solve "natural"
problems (Abelson [1978], Borodin and Cook [1980], Borodin et al. [1979], Grigoryev
[1976], Ja’Ja’ [1980], Munro and Paterson [1978], Savage and Swamy [1978], [1979],
Tompa [1980], and Yao [1979]) and those which introduce algorithms designed
specifically to demonstrate that a decrease in space in their implementation causes
the required time to increase from polynomial to superpolynomial (Carlson and Savage
[1980], Lengauer and Tarjan [1979], Lingas [1978], Paul and Tarjan [1978], and van
Emde Boas and van Leeuwen [1978]). The time-space tradeoff presented in this paper
for transitive closure by successive squaring is the first demonstration of a "natural"
algorithm which exhibits the time and space behavior of the latter category.

A method for determining the time and space requirements of straight-line
implementations of circuits comes from a well-known "pebbling game" played on the
circuit (for a survey, see Pippenger [1980]). The programmer is given a supply of
pebbles which may be placed on the vertices of the circuit in a sequence of moves.
Each move consists of picking up 0 or more pebbles, and putting down exactly 1.
There is no restriction on which pebbles may be removed, but a pebble may only be

* Received by the editors September 24, 1980, and in revised form February 17, 1981. This material
is based upon work supported by the National Science Foundation under grant MCS77-02474.

-t Department of Computer Science, FR-35, University of Washington, Seattle, Washington 98195.

130

TRANSITIVE CLOSURE ALGORITHMS 131

placed on a vertex v (called pebbling v) if all vertices with edges directed into v were
pebbled at the beginning of the move. The goal of the game is to pebble the circuit,
which means that each output must have been pebbled at some point. Intuitively,
each pebble corresponds to a register, and pebbling a vertex v corresponds to storing
in that register the subexpression computed at v. Each pebbling of a circuit then
corresponds to a single straight-line implementation, using time equal to the number
of moves in the pebbling and space equal to the maximum number of pebbles
simultaneously on the circuit.

2. A time-space tradeoff for successive squaring. The transitive closure of
an n x n Boolean matrix A is simply (IvA)n-l, and hence can be computed by
[log2 (n 1)] matrix squaring operations. This section applies a method of Grigoryev
[1976] to demonstrate a modest time-space tradeoff for any Boolean straight-line
program which squares matrices. Using a technique of Paul and Tarjan [1978], this
modest tradeoff for a single squaring operation is compounded into a dramatic tradeoff
for [log2 (n 1)] successive squaring operations. Notice that the result is independent
of the particular subprocedure chosen for matrix squaring.

The following independence notion is central in Grigoryev’s work: A function
f:{0, 1}p - {0, 1}q is m-independent if and only if:

(a) for all k =< m,
(b) for all sets of k inputs xil, xi2,’", xik, and
(c) for all sets of m- k outputs y.l, yj2, , y..,_k,

there is an assignment of values to xil, xi,’", xi such that YI, Y, ", Y,.-, assume
at least 2’’-k-1 + 1 of their possible 2"-k values when only the other p- k inputs are
allowed to vary.

The following lemma establishes the relationship between independence of a
function and the time and space requirements to compute it"

LEMMA 1 (Grigoryev [1976]). Let G be any Boolean circuit which computes an
m-independent function. Then in the course of pebbling any S + 1 outputs, starting from
any configuration of S pebbles on G, at least m- S inputs must be pebbled.

Proof. Assume only k =< m S 1 inputs xi, xi, , xi are pebbled in the course
of pebbling outputs Yil, Yi,"" ", Ys+l. Consider the Boolean straight-line program
which corresponds to this pebbling. The values of its S + 1 outputs are determined
solely by the values of the k inputs read and the initial values of the S Boolean
registers corresponding to pebbles. By the definition of m-independence, there is
some fixed assignment of values to the inputs Xil xi2, Xik such that y., Yi2,’ ",

yis+ assume at least 2s+ 1 combinations of values. But these S+ 1 outputs are
determined completely by the initial contents of the S Boolean registers once the
input values read are fixed, and these registers can assume only 2s distinct combinations
of values. 71

COROLLARY (Grigoryev [1976]). The time T and space S required to compute an
m-independent function f:{0, 1}p {0, 1}q satisfies (S + 1) T >= (q S)(m S).

Proof. For every set of S + 1 outputs pebbled, m-S inputs must be pebbled.
Hence,

T >= [q/(S + 1)J (m S) >-_ (q S)(m S)/(S + 1). El

Grigoryev applied this result to prove a time-space tradeoff for matrix multiplica-
tion. An examination of the technique used to prove n-independence for matrix
multiplication will shed some light on how a similar independence result may be
proved for matrix squaring:

132 MARTIN TOMPA

LEMMA 2 (Grigoryev [1976]). Let mult" {0, 1}2n {0, 1}nz be the function which
multiplies two n x n Boolean matrices A and B. Then mult is n-independent.

Proof. Let k _-< n, and suppose k inputs and n -k outputs are specified. By fixing
B to be a permutation matrix, the columns of AB can be made an arbitrary permutation
of the columns of A. Since the specified inputs occupy at most k columns of A and
the specified outputs at most n -k columns of AB, B can be fixed in such a way that
the n k specified outputs are identically n k unspecified inputs. Thus, these outputs
assume all 2- possible combinations of values when only unspecified inputs are
allowed to vary. 71

Let sq" {0, 1}-"- {0, 1}"-" be the function which maps the off-diagonal entries
of an n x n Boolean matrix A into the off-diagonal entries of (I v A):. There are two
minor obstacles to proving a result about sq similar to Lemma 2: there is no "extra"
matrix B to manipulate, and some care must be taken in choosing the column
permutation in order to avoid the ls on the main diagonal of I v A. To overcome the
first obstacle, the roles of A and B in the proof of lemma 2 will be combined into
one matrix, and we will be satisfied with (approximately) n/2-independence. The
following lemma will be useful in overcoming the second obstacle"

LEMMA 3. Let K, C1, C2,’", Cr be nonempty sets. If [K]> E=I [Ci], then there
are distinct elements kl, k2, , k in K such that ki Ci.

Proof. For each Ci there must be at least r elements in K- Ci, since the other
C are nonempty. The lemma then follows by an easy application of P. Hall’s theorem
on systems of distinct representatives. (Consult any of several combinatorics texts,
e.g., Liu [1968, Thm. 11-1].) 71

LEMMA 4. sq is [(n- 1)/2]-independent.
Proof. Let rn [(n- 1)/2J. Let 0_-< k-<_ m, and suppose k inputs and rn- k out-

puts are specified. Let K be the set of column numbers which contain neither specified
inputs nor specified outputs, so [K] _->n-m > m. Let Ci {/[output position (i, j)is
specified}. By Lemma 3, there is an injection f" {/’[6"/: } K such that f(f) C. For
each f such that C. , fix

1 if i=j or i=f(f),
Aia= 0 otherwise.

and fix all others of the k specified inputs arbitrarily. Then if (i, f) is a specified output
position (A v I):i,] Aid V Ai,f(l). But Aid is already fixed at 0 (i /" since (i,/’) is specified,
and f(j) since i C. and f(f)_ Q) so (A v I) i,i is identically Ai,f(i). Note that by the
choice of K, column f(/’) of A has no entries fixed other than the diagonal entry, and
Ai,f(i) is not the diagonal entry since, as already observed, # f(f). Finally, the mapping
from specified outputs (i,]) to (i,f(])) is injective, so the m-k specified outputs
assume all 2"- possible combinations of values when only unspecified inputs are
allowed to vary.

COROLLARY. Any Boolean straight-line program which computes sq using S
Boolean registers and T steps requires (S + 1) T >-_ n3/4 O(n2).

Proof.
Case 1 (S>=n/4). Since T>-_n-n, (S+ 1)T>=n3/4+3n/4-n.
Case 2 (S <= n/4). By Lemma 4 and the corollary to Lemma 1,

(S + 1)T >- (n

The main result of this section follows easily from Lemma 4:
THEOREM 1. Let G be any Boolean circuit which computes the transitive closure

of an n n matrix A by computing (A v I), (A v I), (A v i)4,..., (A v I)2r’("-),

TRANSITIVE CLOSURE ALGORITHMS 133

iteratively using any subcircuit which computes the function sq. Then pebbling G with
S pebbles requires time

T -> [(n -4S 3)/(2S + 2)]’g=".

Proof. The argument is similar to one used by Paul and Tar]an [1978, Lemma
4]. Let m= [(n-1)/2J and k= [log2 (n -1)]. G is composed of subcireuits
C1, C2," ", C, each of which computes sq, and the inputs of Ci+l are the outputs of
Ci. Using induction on i, it is straightforward to show that pebbling any S + 1 outputs
of C+, beginning with any configuration of the $ pebbles on G, requires
[(m-S)/(S + 1)1 i(m-S) moves in which pebbles are placed on inputs of G"

Basis (i -0)" follows directly from Lemmas 1 and 4.
Induction" In the course of pebbling any $ + 1 outputs of Ci+l, Lemmas 1 and

4 show that rn- $ outputs of Ci must be pebbled. Applying the induction hypothesis
to sets of $ + 1 of these as they are pebbled yields the claimed result.

Thus, the total number of times inputs of G are pebbled is

T=> [(m -S)/(S + 1)J -l(m -S)[(nZ-n)/(S + l)J

--> L(L(n 1)/2] -s)/(s + 1)]
>_- [(n 2 2S)/(2S + 2)]

=> [(n -4S 3)/(2S + 2)]

COROLLAY. For any circuit satisfying the statement o[Theorem 1, i] S o(n)
then T exceeds any polynomial in n. In fact, if S O(n -) for any fixed e > O, then
T 2la(lgz n).

3. Warshall’s algorithm requires linear space. The result of 2 prompts the
investigation of other transitive closure algorithms. Warshall’s algorithm (Warshall
[1962]) suggests itself because of its familiarity and its contrast to the successive
squaring algorithm. Warshall’s algorithm computes the transitive closure A* of an
n n Boolean matrix A as follows"

Cii - (I v A)i] for all 1 <-_ i,/" _-< n;

for k from 1 to n do- & C/- for all 1 _-< i,/" -<_ n;Ckil <’- Cij v (C/kk--1

A*i is then given by C i’, for all 1 < i,/’ < n. The circuit corresponding to this algorithm
has size O(n 3) and depth n, and each internal vertex has indegree 3.

The main result of this section is to show that n- 1 pebbles are necessary to
pebble this circuit. (Notice that, unlike the discussion in 2, this section deals with
pebblings of a single circuit, rather than any of a family of circuits.) The method is
due to Cook [1974], who showed a lower bound on the number of pebbles required
to pebble a certain "pyramid" graph. The circuit corresponding to Warshall’s algorithm
contains a similar subcircuit, which will be called a Warshall pyramid and is defined
recursively:

(a) Warshall pyramid P/ consists of a single vertex labelled C..
(b) Warshall pyramid P. consists of pyramids p/k-I and P/-a, whose identically

k-1labelled vertices have been identified, together with new edges from Cik

and Ckk/-1 to a new vertex labelled C..
Warshall pyramid P7 is shown in Fig. 1.

LEMMA 5. If k < and k <], then k + 1 pebbles are required to pebble P..

134 MARTIN TOMPA

FIG. 1. Warshall pyramid P7.

Proof. The argument is similar to one given by Cook [1974, Thm. 5]. The pebbling
begins with all paths from inputs to Ck

ij pebble-free, and ends with no paths from
inputs to C/ pebble-free. Consider the first step after which this latter condition is
attained; some input v must have been pebbled in this step, closing an otherwise
pebble-free path p from v to Ck k

ij, and every other path from any input to Cij contains
a pebble. The path p contains one of C/-1 or C/-1, say C/-a. Notice that the (unique)
path from C/-a to Ci contains at least one pebble, and is disjoint from p/-a since
/" > k. Continuing inductively, P-a contains k additional pebbles. I-1

THEOREM 2. Any straight-line program which implements Warshall’s algorithm
for n x n transitive closure requires space n 1.

n-2Proof. The circuit corresponding to Warshall’s algorithm contains P,.n-1 whose
pebbling, by Lemma 5, requires n- 1 pebbles. 13

Notice that Theorem 2 is optimal to within a constant factor, since Warshall’s
circuit can be pebbled using 2n + 1 pebbles.

It should be remarked that Theorem 2 applies as well to Floyd’s shortest-paths
algorithm and Kleene’s algorithm for converting finite automata to regular expressions.
(See Aho, Hopcroft, and Ullman [1974, 5.6] for the appropriate generalization of
Warshall’s algorithm.)

4. Ramifications of the generalization of these results. Sections 2 and 3 analyzed
the time and space requirements of two common transitive closure algorithms, and
found that neither admits a polynomial time, sublinear space implementation. The
obvious direction for further research is to attempt to generalize these results to
broader classes of algorithms. However, demonstrating that no Boolean straight-line
program computes transitive closure in polynomial time and small space simultaneously
will prove to be as difficult as some of the more "classical" open problems of complexity.
For instance, if no circuit which computes a function f can be pebbled with O(log n)
pebbles in polynomial time, then no circuit which computes f has O(log n) depth. In
the case of transitive closure, f would be a function computable in polynomial time
but provably not in logarithmic Boolean depth. Such a result would be a breakthrough
in complexity theory.

Cook [personal communication] and Pippenger [1979] made a more important
observation about the ramifications of demonstrating that no Boolean straight-line
program computes transitive closure in polynomial time and small space simul-
taneously: namely, if no Boolean straight-line program computes a function f in
polynomial time and (log n)(a) space simultaneously, then neither does any Turing

TRANSITIVE CLOSURE ALGORITHMS 135

machine. In particular, if f can be computed in polynomial time, as in the case of
transitive closure, then polynomial time would have been proved more powerful than
logarithmic space. Their result is obtained by simulating Turing machines by straight-
line programs as follows" Let a semioblivious Turing machine be one with two tapes,
one of which is a read-only, oblivious input tape and the other a read-write non-
oblivious work tape. For simplicity, assume in what follows that $ is a function of n
which is f(log n) and O(n). Then a multitape Turing machine using time T and space
S can be simulated by a semioblivious Turing machine using time O(nT) and space
O(S), by recording the original input head position on a work tape track. This machine
can be simulated in turn by a Boolean circuit of depth O(nT) and "width" O(S),
using a well-known construction (see, for example, Ladner [1975]). Such a circuit can
be pebbled in O(nST) steps using O(S) pebbles.

Lipton [personal communication] has observed that this simulation can be carried
out even if the Turing machine is probabilistic, by generalizing a result of Adleman
[1978]. (Consult that reference for a discussion of probabilistic Turing machines and
their simulation by circuits.) The simulating Boolean circuits are deterministic but
nonuniform (i.e., there is no efficient algorithm which, given n, constructs the n th
circuit), have width O(S), and depth O(n2T). As a relevant application, Lipton pointed
out that symmetric transitive closure can be computed by (nonuniform) Boolean
straight-line programs which use only O(log n) space and polynomial time, by the
main result of Aleliunas et al. [1979].

5. Sorting algorithms which exhibit similar behavior. This section shows that the
behaviors of transitive closure algorithms described in 2 and 3 are also exhibited
by certain familiar sorting algorithms. The main result is that any straight-line program
which executes a recursive merge-sort using only the binary operators max and min
requires time 2f(lg2n) if the space is restricted to n 1-, independent of the merging
subprocedure chosen. Examples of such sorting al’gorithms include Batcher’s odd-even
merge-sort, Batcher’s bitonic merge-sort, and Stone’s perfect-shue sort (see Knuth
[1973] for descriptions). The proof of this result is similar to that of Theorem 1, but
Lemmas 1 and 4 are replaced by

LEMMA 6. Let G be any max-min circuit which merges two sorted lists of length
m. Then in the course of pebbling any 2S outputs in the middle third of the outputs of
G, starting from any configuration of S pebbles on G, at least (m -6S-1)/6 inputs in
the middle thirds of each of the input lists must be pebbled.

Proof. The argument is similar to one given in Tompa [1980, Thm. 2]. Let Y be
any set of 2S outputs in the middle third of the outputs of G, and consider a partition
of the middle third of either input list into blocks Xi each consisting of 2S consecutive
inputs. Since there is an assignment of distinct values to the 2m inputs which causes
the 2S inputs in Xi to end at the output positions in Y, there must be 2S vertex-disjoint
paths from each Xi to Y, of which at least S must be pebble-free initially. Hence to
pebble the 2S outputs in Y, at least

[[m/3I/2SIS>= [(m-2)/6SIS>=(m-6S-1)/6

of the middle third inputs must be pebbled. Iq

THEOREM 3. Let G be any max-min circuit which sorts n inputs by recursively
sorting the first and second halves, and merging the resulting sorted lists. Then pebbling
G with S pebbles requires time

T ->_ 2 (lg2 n-log S-6)2/2.

136 MARTIN TOMPA

Proof. Let k [log2n-log2S-6J. As in Theorem 1, repeated application of
Lemma 6 reveals that the number of pebble placements at level k of G is at least

[[n/3J] [(n/2-6S-2s 1)/6].[(n/4-6S-2s 1)/6J...(n/2k_6s_l)/6
n 18S n/2- 18S n/4-18S n/2k 18S
12S 12S 12S 12S

>__ (n/24S)t’+l/2k(t’+l)/2

2 (k+1)2/2. [-]

COROLLARY. For the circuit of Theorem 3, if S= O(n 1-) for any fixed e >0,
then T 2g(lg= n).

It should be noted that Theorem 3 applies to a generalization of max-min circuits
called "ordering networks" by Pippenger and Valiant [1976].

Other max-min sorting algorithms mentioned in Knuth [1973], namely straight
insertion, bubble sort, and the odd-even transposition sort, are readily seen to require
)(n) space, using the same technique as in 3.

Acknowledgments. I am grateful to Allan Borodin, Mike Fischer, Richard
Ladner, and Larry Ruzzo for enjoyable and fruitful discussions concerning this
material.

REFERENCES

H. ABELSON [1979], A note on time-space tradeoffs]:or computing continuous functions, Inform. Process.
Lett., 8, pp. 215-217.

L. ADLEMAN [1978], Two theorems on random polynomial time, Proc. 19th IEEE Symposium on Founda-
tions of Computer Science, October 1978, IP. 75-83.

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN [1974], The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA.

R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LovAsz AND C. RACKOFF [1979], Random walks,
universal traversal sequences, and the complexity of maze problems, Proc. 20th IEEE Symposium
on Foundations of Computer Science, October 1979, pp. 218-223.

A. BORODIN AND S. A. COOK [1980], A time-space tradeoff for sorting on a general sequential model of
computation, Proc. 12th ACM Symposium on Theory of Computing, April 1980, pp. 294-301.

A. BORODIN, M. J. FISCHER, D. G. KIRKPATRICK, N. A. LYNCH AND M. TOMPA [1979], A time-space

tradeoff for sorting on non-oblivious machines, Proc. 20th IEEE Symposium on Foundations of
Computer Science, October 1979, pp. 319-327.

D. A. CARLSON AND J. E. SAVAGE [1980], Graph pebbling with many free pebbles can be difficult, Proc.
12th ACM Symposium on Theory of Computing, April 1980, pp. 326-332.

S. A. COOK [1974], An observation on time-storage trade off, J. Comput. System Sci., 9, pp. 308-316.
[1979], Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space,
Proc. 11th ACM Symposium on Theory of Computing, April-May 1979, pp. 338-345.

D. Yu. GRIGORYEV [1976], An application of separability and independence notions for proving lower
bounds of circuit complexity, Notes of Scientific Seminars, 60, Steklov Mathematical Institute,
Leningrad Department, pp. 38-48 (in Russian).

J. JA’ JA’ [1980], Time-space tradeoffs for some algebraic problems, Proc. 12th Annual ACM Symposium
on Theory of Computing, April 1980, pp. 339-350.

D. E. KNUTH [1973], The Art of Computer Programming: Sorting and Searching, vol. 3, Addison-Wesley,
Reading, MA.

R. E. LADNER [1975], The circuit value problem is log space complete for P, SIGACT News, 7, pp. 18-20.
T. LENGAUER AND R. E. TARJAN [1979], Upper and lower bounds on time-space tradeoffs, Proc. 11th

ACM Symposium on Theory of Computing, April-May 1979, pp. 262-277.
A. LINGAS [1978], A PSPACE-complete problem related to a pebble game, in Automata, Languages and

Programming, Lecture Notes in Computer Science 62, Springer-Verlag, Berlin, pp. 300-321.

TRANSITIVE CLOSURE ALGORITHMS 137

C. L. Lu [1968], Introduction to Combinatorial Mathematics, McGraw-Hill, New York.
J. I. MUNRO AND M. S. PATERSON [1978], Selection and sorting with limited storage, Proc. 19th IEEE

Symposium on Foundations of Computer Science, October 1978, pp. 253-258.
W. J. PAUL AND R. E. TARJAN [1978], Time-space trade-offs in a pebble game, Acta Informat., 10,

pp. 111-115.
N. Pn’’ENGER [1979], On simultaneous resource bounds, Proc. 20th IEEE Symposium on Foundations of

Computer Science, October 1979, pp. 307-311.
[1980], Pebbling, preprint, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.

N. PI’r’ENGER AND L. G. VALIANT [1976], Shifting graphs and their applications, J. Assoc. Comput.
Mach., 23, pp. 423-432.

J. E. SAVAGE AND S. SWAMY [1978], Space-time tradeoffs on the FFT algorithm, IEEE Trans. Inform.
Theory, IT-24, pp. 563-568.
[1979], Space-time tradeoffs for oblivious integer multiplication, in Automata, Languages and
Programming, Lecture Notes in Computer Science 71, Springer-Verlag, Berlin, pp. 498-504.

M. TOMPA [1980], Time-space tradeoffs for computingfunctions, using connectivity properties of their circuits,
J. Comput. System Sci., 20, pp. 118-132.

P. VAN EMDE BOAS AND J. VAN LEEUWEN [1978], Move rules and trade-offs in the pebble game,
University of Utrecht Technical Report RUU-CS-78-4.

S. WARSHALL [1962], A theorem on Boolean matrices, J. Assoc. Comput. Mach., 9, pp. 11-12.
A. C.-C. YAO [1979], On the time-space tradeofffor sorting with linear queries, preprint, Stanford University.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0011 $01.00/0

MINIMUM VARIANCE HUFFMAN CODES*

LAWRENCE T. KOU"

Abstract. Huffman’s well-known coding method constructs a minimum redundancy code which minim-
izes the expected value of the word length. In this paper, we characterize the minimum redundancy code
with the minimum variance of the word length. An algorithm is given to construct such a code. It is shown
that the code is in a certain sense unique. Furthermore, the code is also shown to have a strong property
in that it minimizes a general class of functions of the minimum redundancy codes as long as the functions
are nondecreasing with respect to the path lengths from the root to the internal nodes of the corresponding
decoding trees.

Key words. Huffman code, redundancy, mean, variance, decoding tree, weights at leaves, weights at
internal nodes

1. Introduction. Let 5 {s1, $2," Sq} be the set of q => 1 source symbols com-
posed in the messages to be sent, c {Cl, ca,’", cr} be the set of r => 2 code letters
used in sending the enclosed messages and ,: ff’- be the discrete probability density
function on if’, where is the set of real numbers and for each si 5, (si) gives the
probability that the source symbol si appears in the messages. For every coding scheme,
we have the set {wi[w is the string of letters in c encoded for the source symbol
sg}. We shall call wg a word and o//. the code for 5 in terms of c. 7g" is an instantaneous
code if and only if for every pair of distinct words in 7g’, neither is a prefix of the
other. We shall be interested only in the instantaneous codes in this paper. Given ,
c and ,, each encoding scheme defines the word length, or more precisely, the random
point l: 5t’- 5, where s is the set of nonnegative integers and, for every si if’, l(si) is
the length of wi, i.e., the number of letters in wi. We shall adopt the notion of the
null word, A, as the word of no letter and define the length of A to be zero. The
induced discrete probability density function for l,/1: -, is defined such that, for
every k , ill(k) Esi5", fi(si), where 6k {SilSi and l(si) k}. With respect to the
given ow, and fi, the instantaneous code with the minimum expected value of is
not necessarily unique as can be illustrated by the following example.

Example 1. Let 5= {Sl, sz," ", s9}, {ca, c2, c3}, /e(Sl) fi(s2) fi(s3) to,
fi(s4) fi(ss) (s6) (ST) 3-z6,(Ss) oand(s9) 13. Consider the following two
instantaneous codes.

o {W1 ClClCl, W2 ClClC2, W3 ClClC3, W4 ClC2Cl, W5 CLC2C2,

W6 12C3, W7 1C3, W8 C2, W9 C3},
o, {Wi C11Cl, W 1C1C2, W; C113, W4 CLC2, W; 1C3,

C3}.W; C2Cl, W C2C2, Wt8 C2C3, W9

Both codes have expected word length equal to -, which, in fact, is the minimum
value for the given inputs.

It is convenient to introduce the construction of the decoding tree for a coding
scheme. The following example is used to demonstrate several terminologies in
connection with the decoding tree for an instantaneous code.

Example 2. Let 5e, , ,, o//. and //" be the same as in Example 1. The correspond-
ing decoding trees are shown in Fig. 1. Every decoding tree consists of two types of

* Received by the editors June 30, 1980, and in revised form April 15, 1981.
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

138

MINIMUM VARIANCE HUFFMAN CODES 139

(i) DECODING TREE T (---

s 2 s3 4

8 s9

5 6

(ii) DECODING TREE T’

c Cl
c2

I+ol
2 3

s6 s7 8

FIG.

nodes, the leaves (the square-shaped nodes) and the internal nodes (circular nodes).
Written next to each leaf is the corresponding source symbol. Each node, leaf or
internal node, is labeled with a weight. The weight at the leaf associated with source
symbol si is the probability ,(si). The weight at an internal node is the sum of the
weights of its sons, or equivalently, the sum of the weights labeled at the leaves of
the subtree rooted at that particular internal node. Edges of the tree are systematically
labelled with the letters in % The path from the root to the leaf associated with the
ource symbol si specifies the encoded word wi and the number of edges on the path
equals l(si). The weighted path length [2] of a decoding tree, Ye fe(si)l(si), equals
to Y’.kS l(k)k which, by definition, is the mean of the corresponding random point
I. For both decoding trees in this example, each of the weighted path lengths is equal
to . However, the corresponding variances differ. For the decoding tree T, the
corresponding variance is while for the decoding tree T’, the corresponding variance

57is 135.

Let T be a decoding tree for the code /4/with respect to ow, and ,. The
following terminologies associated with T are used in this paper.

DEFINITION 1.

MEAN(T) a__ mean of the random point associated with T;

VAR(T) a_ variance of the random point associated with T;

140 LAWRENCE T. KOU

WL(T) =a (((Sil), l(sil)), ((Si2), l(si2)),’’" (fi(siq), l(siq))), where U qk=l {Sik.} -’’Cz)

and for all k 1, 2,. , (q 1), (fi(sik), l(sik)) is lexicographically equal
to or smaller than (,e(si+), l(si,+)).

WL(T)+&((fi(sh), l(sh)), (fi(si), l(si)),’’’,(fi(si), l(si))), where g Nq=.
[[U g {si}={s[&and(si)O}andforallk=l 2 (g-l)k=l

((si,), l(si)) is lexicographically equal to or smaller than (#(si+),
l(s]k+l)).

For any tree T with weighted nodes, we define the following.

DEFINITION 2.

L(T) the set of the leaves of T;

I(T) the set of the internal nodes of T;

W(T) sum of weights labeled at the leaves of T;

Wt(T) sum of weights labeled at the internal nodes of T;

WPL(T) weighted path length of T.

We shall often use the following convention in this paper for naming the nodes
and subtrees of a decoding tree T. Node in T is the ith node counting, level by
level, from the top level to the bottom level and, for each level, from the leftmost
node to the rightmost node. The notation T(i) is used for the subtree of T with node
as its root. Thus, for the decoding tree T’ in Fig. 1, node 5 has weight and T’(5)

is the subtree of T’ that has node 5 as its root which has node 11, node 12, and node
13 as the three sons labeled with source symbols sl, s2 and s3 respectively.

Since there is a one-to-one correspondence between the set of instantaneous
codes and the set of their decoding trees, the outputs of the coding algorithms discussed
in this paper are chosen, for convenience, to be the decoding trees instead of the
actual codes they decode. With respect to if’, c and ,, Huffman’s well-known algorithm
[1] constructs a decoding tree for a minimum redundancy code and in terms of the
word length, l, Huffman code minimizes the mean of 1. To describe Huffman’s
algorithm, we start with the family 0% of q I0] weighted trees, kJ qi= {T}, where T
contains just a single node labeled with the source symbol si and the weight/e(si). For
any weighted tree X, let us temporarily consider WL(X) as the weight of X. Huffman’s
algorithm is, in short, a procedure that repeatedly merges the r I1 trees in o that
have the r smallest weights until the whole family - reduces to a singleton set which
then contains the decoding tree corresponding to a minimum redundancy code. We
shall show in this paper that if we consider the vector (WL(X), Wt(X)) as the weight
of the tree X, then repeatedly merging the r trees in o that have the r lexicographically
smallest weights will produce a decoding tree that corresponds to the minimum
redundancy code with the minimum variance of the word length.

The main body of this paper is divided into three sections. In 2, we restate the
Huttman algorithm and show that although there are minimum redundancy codes
that are not producible via Huttman’s algorithm, it is sufficient to consider those codes
produced by Huffman’s algorithm in searching for the minimum redundancy code
with the minimum variance. In 3, we give a characterization for the minimum
redundancy codes that have the minimum variances. We also show that, with respect
to any given input, 5", c and fi, if U and V are the decoding trees for two distinct
minimum variance minimum redundancy codes respectively, then WL(U)+ WL(V)/.

MINIMUM VARIANCE HUFFMAN CODES 141

In other words, the minimum redundancy code with the minimum variance is unique
in the sense that it will produce a unique lexicographically sorted list of weight-length
pairs of those words of the code that have nonzero probabilities. In 4, we give an
algorithm to produce the minimum variance minimum redundancy code. We also
show a strong property of the code in that it minimizes a general class of functions
of the minimum redundancy codes as long as the functions are nondecreasing with
respect to the path lengths from the roots to the internal nodes of the corresponding
decoding trees.

2. Characterizations of Huffman trees. We now restate Huffman’s algorithm.
Without loss of generality, we shall introduce source symbols each with zero probabil-
ity, to make I el mod 1 so that every internal node in the output decoding
tree will have sons [23.

ALGORITHM H.
INPUT: a set of source symbols, oW={sl, sz,...,Sq}; a set of code letters

={Cl, C2,’" ,cr}; the discrete probability density function on

OUTPUT: a decoding tree corresponding to an instantaneous code with the
minimum expected value of the word length.

Step O. Initialize " to be an empty set.
Step 1. For 1, 2,.. , q, set LI {Ti}, where T/is the weighted tree of

a single node associated with the source symbol si and labeled with
weight (si).

Step 2. Repeat Step 3 and Step 4 until I1 1.
Step 3. Choose r elements in , Tul, T,2," , T,r, such that for any Tk

other than these r chosen weighted trees, WL(T,,) <- WL(Tk) for all
t--1,2,...,r.

Step 4. Replace T,1, T,2, , T,, in "by a single weighted tree X in which
T,I, Tu," , Tu are the r subtrees of the root and the root is labeled
with the weight Y=l Wz(T,,). The edges connecting the root to the
r subtrees are systematically labeled with letters cl, c2, , cr respec-
tively.

Step 5. Output the decoding tree in o.
Notice that in Step 3 there would be more than one qualified choice of

T,1, T,, , T,r. It is understood that one would make a random selection among
all qualified choices. Therefore, strictly speaking, Algorithm H is nondeterministic in
nature.

DEFINITION 3.

Yg(6e, c, ,)A the set of all decoding trees, with respect to the input 5, and ,,
each of which is producible by Algorithm H via certain selections
of the r elements, T1, T,, ., Tur, in Step 3.

It is conventional to call the decoding trees in (Se, c, ,) the Huffman trees and the
corresponding codes Huffman codes. The following are two fundamental facts about
Huffman trees and/or decoding trees in general.

THEOREM 1. (Knuth [2]). Let Tbe a decoding tree. Then MEAN(T) WPL(T)
W,(T).

THEOrEM 2. (Glassey and Karp [4]). T Y(5, ,/e) if and only if, for every
nondecreasing concave function f: [0, c) and every decoding tree T’ corresponding

142 LAWRENCE T. KOU

to an instantaneous code with respect to 5, c and #, we have ii(r)flWL(T(i)))<=
Yq(v’ f(WL(T’(j))).

By examining the two decoding trees, T and T’, in Example 2, it is obvious that
T 6 (ow, (G ,), T’: (5, (G ,) and MEAN(T) MEAN(T’). We summarize this fact
in the following lemma.

LEMMA 1. There exist minimum redundancy codes that are not producible via

Huffman s algorithm.

DEFINITION 4.

M(, , ,) & the set of all decoding trees corresponding to the set of all minimum
redundancy codes with respect to the input , and #.

In view of Lemma 1, we might suspect whether min {VAR(U)] U e (S, , #)}
is equal to min {VAR(V)I V e M(, , #)}. However, we shall show that, as far as the
functions of the weights and lengths of the words are concerned, (S, %, #) contains
sufficiently many trees for our consideration.

THEOREM 3. Let T be a decoding tree for an instantaneous code with respect to
SF, (and #. Then TM(, , #) if and only if WL(T){WL(V)IV)(, , #)}.

Proof. The "if" part of the theorem is immediate. We shall give an inductive
proof for the "only if" part of the theorem. Let m be the number of internal nodes
of T. If m 0, both M(, %, ,) and (, , #) contain one and only one element,
T. In this case, the "only if" part of the theorem is trivially true. Assume then the
statement is true for all m 0, 1, 2,. , k where k->_0. For n k + 1, let node be
one of the internal nodes in T that has the longest path length from the root.
Interchange some of the r sons of node with other leaves in T, if necessary, to ensure
that the weights labeled at the r sons of node are the r smallest weights among all
weights labeled at the leaves in T. Make the necessary changes of the weights at some
of the internal nodes of T which are caused by the foregoing interchanging of leaves.
Call this new tree X. Now construct a decoding tree Y from X by replacing X(i) in
X by a single leaf labeled with source symbol s’: and weight WL(X(i)). Let ’ and
#’ be the corresponding new set of source symbols and new discrete probability density
function respectively. Observe the following.

(i) T 6 M(, %, #) implies that, in producing X from T, only interchanges of
leaves at the same level can occur and hence WL(T)= WL(X).

(ii) X minimizes the mean of the corresponding random point with respect to, and # if and only if Y minimizes the corresponding random point l’ with respect
to S’, and

(iii) WL(X) {WL(V)] V
{WL(Z)JZ e (5’, , #’)}.

The decoding tree Y has k internal nodes. By (i), (ii), (iii) and the induction
hypothesis, the proof for the case when T has k + 1 internal nodes follows. We thus
complete our proof.

Intuitively, one decoding tree in (, , ,) can be transformed into another in
Y((5, , ,) by appropriate subtree interchanges. We formalize this notion in the
following.

DEFINITION 5. Let X, Y be two distinct decoding.trees. X--- Y if and only if Y
can be constructed from X by interchanging two disjoint subtrees, X(i) and X(]),
of X where either node and node j have the same father or WL(X(i))= WL(X(j)).

Two subtrees are disjoint if one is not a subtree of the other.

MINIMUM VARIANCE HUFFMAN CODES 143

DEFINITION 6. Let X, Y be two decoding trees. X. Y if and only if there exists
a sequence of decoding trees, Z1, Z2, ,Z for some >1 such that X=Z
Y Z and, if > 1, Z Zu/l for all u 1, 2, , t- 1.

The following lemma is a direct consequence of Definition 5 and Algorithm H.
We shall leave the details of the proof to the readers.

LEMMA 2. Assume X and Y are two decoding trees such that X--. Y. Then
X e (oW, , fi) if and only if Y e Yt(ow, , fi).

It should be clear that is an equivalence relation over the set of all decoding
trees. We shall show that Y((5, (, ,) is an equivalence block under ..

THEOREM 4. LetX g(, (,). Then Y (, (, /) if and only ifX Y.
Proof. The "if" part of the theorem follows immediately from Lemma 2. To

prove the "only if" part of the theorem, we shall consider the sequence of subtrees
brought into the set during the execution of Algorithm H. For any V g(5, (, ,),
where V contains n nodes, let V, V2, V" be the sequence of subtrees, including
V itself, in the order of their joining the membership of during the execution of
Algorithm H. The first q 151 subtrees in the sequence correspond to the q leaves in
V. We may specify the construction of Vi, q < <-_ n, by identifying the index set
{i(h)]l _-< i(h) < and h 1, 2, , r} such that Vi(1), Vi(2), Vi(r) are the r subtrees
to be selected to form Vi. Let s be the largest index such that, for all 1, 2, , s,
X Yg. Such an index exists since for] 1, 2, q, X Y. Let h n -s. We shall
now proceed with the proof by induction on h. If h 0, then s n andX X Y Y
which implies X. Y by the definition of .. Now assume the "only if" part of the
theorem is true for h=0,1,...,k. For h=k+l, we have s=n-k-1. LetX
X2) , X) be the r subtrees selected in Step 3 of Algorithm H when constructing

k’X and yb(1), yb(2), ", yb(r) be the corresponding r subtrees selected when
constructing y,-k. Notice the following.

(i) For all h=l,2,...,r, X(h) is a member of the subsequence
X X, X-k- and yb(h) is a member of the subsequence Ya y2,.., yn-k-1
Since the two subsequences are identical, both Xa(h) and yb(h) are subtrees of X and
subtrees of Y, for all h 1, 2,. ., r.

(ii) If there exist subtrees E and F such that E 6 (U g= {xa(i)} ’J i= { yb(i)}) and
F (Ug=x {Yb(g}-LJg=a {xa(g)}), then W(E) W(F).

If ([,-J i=1 {xa(i)}-[,-Ji=l {yb(i)})) let T/" (J i= {a(i)}- U= {b(i)})-->
([-Ji=l{b(i)}-Ui= {a(i)}) be a bijective mapping. Then (ii) suggests that we can
construct a decoding tree Z e Y(9, ,) where, for a 1, 2, , n k, Z is construc-
ted by using the index set {a(h)[l<-a(h)<a and h 1, 2,..., r} which is the same
as the index set used for the construction of X and, for/3 n k + 1, n k + 2, , n,
Zt is constructed by using the index set {/3(h)11 _-</3(h) </3 and h 1, 2,..., r} which
is the same as the index set used for the construction of yt except that if for some
/’, 1 _-<] _-<r, fl(])e (t_J = {a(i)}- [.J = {b(i)}), we shall replace the index fl(]) by zr(fl(]))
during the construction. (i) and (ii) discussed above imply that Y.Z. Now applying
the induction hypothesis on Z, we have X.Z. We conclude that X. Y since is
commutative and transitive. The proof is thus completed.

3. Minimal variance Huffman codes. In this section, we shall give a characteriz-
ation for minimum variance Huffman code. We rely on the following lemmas.

LEMMA 3. Let T (5e, cg, /), T(i), T(j) be two subtrees of T and ai, a be the
path lengths of node and node respectively from the root of T. Then (i) WL(T(i)) >
WL(T(j)) implies ai <=a/; (ii) T(i), T(]) are disjointand W(T(i)) Wt(T(j)) 0 imply
0 <-[a- ai[<= 2 where [ai- ai[2 only if WtT(i) WtT(j) O.

144 LAWRENCE T. KOU

Proof. (i) Assume on the contrary that we have WL(T(i)) > WL(T(j)) and
Let i, ix, i2,’ ", is, be the sequence of nodes specifying the path from node to the
root of T and/’, 1, 2,"]i be the sequence of nodes specifying the path from node
/" to the root of T. The assumption that W(Ti) > W(T) implies that T(ix) is constructed
after T(jx), during the processing of Algorithm H and W(T(ix))> W(T(fx)). The
latter in turn implies that T(iz) is constructed after T(]z), during the processing of
Algorithm H and WL(T(i2))> WL(T(]2)). It follows that WL(T(i,,))> Wt(T(],)).
However, this contradicts the fact that W(T(],))= W(T).

(ii) Without loss of generality, let ai >= aj. Assume on the contrary that we have
T(i), T(]) being disjoint, W(T(i))= WL(T(]))#O and ci-cej >-3. Let node ix be the
father of node and node i2 be the father of node ix. It is clear that W(T(iz)) >-

W(T(ix)) >- W(T(i))# O. The path length from the root of T to node iz is greater
than ci. Part (i) of this lemma then implies W(T(i2))<= WL(T(]))= W(T(i)). Hence,
W(T(i)) W(T(il)) W(T(i2)) O. This implies that the node i2 has a son k2 such
that WL(T(k2))=0. Then, according to Algorithm H, each of the r subtrees of node
il, namely, T(il(h)), for h 1, 2,..., r, should have weight zero, i.e., W(T(ix(h))=O.
This contradicts the fact that W(T(il))#O. Therefore, T(i), T(]) are disjoint and
Wt.(T(i))= W(T(]))O implies 0-<_lci-ail_-<2. Now if Ice/-cil=2 then the path
length from the root of T to the node il is greater than ai. Using arguments similar
to the above, we conclude that WL(T(i))= W(T(il)) O. Thus node il has a son
such that W(T(kl)) 0. If Wt(T(i)) O, i.e., node is not a leaf, then using arguments
similar to those given above, we would have W(T(i))=O, a contradiction. On the
other hand, if Wt(T(])) O, i.e., node/" is not a leaf, then there are two cases. In the
first case, we assume T(]) is constructed before T(il) is. Then W(T(])) 0 implies
that T(kx)>0, a contradiction. In the second case, we assume T(il) is constructed
before T(]) is. Then WL(T(i))<= W.(T(f(h))) for all h 1, 2,..., r, where T(f(h)) is
a subtree of node/’. This contradicts the fact that W(T(ix)) W(T(i)) W(T(])) O.
Therefore [ci- ajl 2 can take place only if Wt(T(i)) Wt(T(])) 0. We thus complete
our proof.

LEMMA 4. Let T(i), T(]) be two disfoint subtrees o]: T Yg(5, c,/) such that
WL(T(i)) W(T(f)) and ci, c be the path lengths from the root of T to node and
node] respectively. If the decoding tree U is constructed from T by interchanging T(i)
and T(j) in T, then VAR(T)-VAR(U)= 26ii(Wt(T(i))-Wt(T(]))), where

+ 1 if O > 0],

i] 0 if O 0/’,

-1 if O <

Proof. A straightforward evaluation of VAR(T) and VAR(U) together with the
application of Theorem 1 will yield VAR(T)-VAR(U)=2(ai-a)(Wt(T(i))-
Wt(T(f))). This lemma then follows immediately from Lemma 3. We leave the details
to the readers, lq

LEMMA 5. Let T (, c,) and VAR(T) min {VAR(U)I u e(se,
Then, for all X ?;(St’, c,) either WL(X)/= WL(T)/

or there exists a sequence of
decoding trees Z 1, Z2, ., Z t, for some > 1 such that

(i) X Z and, for all h 1, 2, , t- 1, Z h Zh+l"

(ii) WL(Zt)/ WL(T)+;

(iii) VAR(Z 1) > VAR(Z2) >. > VAR(Zt);

MINIMUM VARIANCE HUFFMAN CODES 145

(iv) for all h 1, 2,. , t- 1, Z h+l can be constructed from Zh by interchanging
two subtrees in Zh where one of the two subtrees consists of a single node only.

Proof. We first point out that both X and T are members of (Se, , p) and
hence (1) both X and T have the same number of internal nodes and if we list the
weights labeled at the internal nodes of X in nondecreasing order, the list would be
the same as the corresponding list of the weights labeled at the internal nodes of T;
(2) in X (or T), if node and node j are two internal nodes labeled with the same
weights then all the weights labeled at their sons are identical; (3) for each internal
node u in T (or X) there exists an internal node v in X (or T) such that the weight
labeled at node u is the same as the weight labeled at node v and the nondecreasing
order list of the weights labeled at the sons of node u is the same as the nondecreasing
order list of the weights labeled at the sons of node v. Recall the indexing scheme
for the nodes of a decoding tree as defined in the first section of this paper. Let be
the largest index such that for each node u 1, 2,..., in T, there is a one-to-one
correspondence, node v, in X where (i) node v is at the same level in X as node u
is in T; (ii) node v and node u are labeled with the same weight; (iii) if the weights
labeled at node u and v are not zero then node v is an internal node if and only if
node u is. Such an exists since the roots of X and T are in the same level, labeled
with the same weight, 1, and one is an internal node if and only if the other is. Let
n be the total number of nodes in T (or X) and let n- i. We shall give a proof
for our lemma by induction on A. If 0, then all nonzero weighted leaves in one
decoding tree have their correspondences in the other decoding tree at the same level.
Therefore, WL(X)/= WL(T)/ and the lemma is clearly true. Assume the lemma is
true for 1, 2,..., k. For k + 1, we have n-, n- k- 1. Let node n- k
in T be in the Lth level and is labeled with weight W. From (2) and (3) discussed
above, we conclude that the only reason that we can not find a node in X corresponding
to the node n- k in T is that, although there are nodes eligible for consideration that
satisfy condition (i) and (ii), they violate condition (iii). We claim that node n- k in
T is an internal node. For otherwise, node n-k is a leaf in T. By (1) mentioned
above, we would have an internal node z in T located at a level lower than the Lth
level and labeled with the same weight W 0. Interchanging subtrees T(n- k) and
T(z) will result in a tree T1. Theorem 4 and Lemma 4 indicate that T6 Y((5, , p)
and VAR(T)> VAR(Ta), a contradiction. Now that node n-k in T is an internal
node, the implication of (2) and (3) is that there is a leaf y in X located at level L
and labeled with the weight W 0 and furthermore, by (1), there is an internal node
z in X located at a lower level than level L also labeled with weight W 0. Interchang-
ing subtrees X(y) and X(z) in X will result in a decoding tree Z2. Let Z X. Clearly,
Z2 is constructed from Z by interchanging two subtrees where one is a single leaf
and, by Lemma 4, VAR(Z 1) > VAR(Z2). Now apply the induction hypothesis on Z2.
It follows immediately that the lemma is true for , k + 1. We thus complete our
proof. 71

We now introduce the main theorem for the characterization of the minimal
variance Huffman code.

THEOREM 5. Let T Y{(, c,/). Then, the following statements are equivalent.
(i) VAR(T) min {VAR(U)IU (Se, , ,)}.

(ii) VAR(T) min {VAR(V)I V se(ow, , ,)}.
(iii) For all decoding trees X-- T, VAR(X)=> VAR(T).
(iv) For all pairs of disjoint subtrees T(i) and T(f) in T, WL(T(i))= WL(T(f)) and

WI(T(i)) < WI(T(f)) imply ai >= ai, where ai, aj are the path lengths from the root of T
to node and node f respectively.

146 LAWRENCE T. KOU

Proof. (i) implies (ii). This is an immediate consequence of Theorem 3.
(ii) implies (iii). If X--- T then X Y(Se, , ,). The proof follows.
(iii) implies (iv). This is an immediate consequence of Lemma 4.
(iv) implies (i). If (i) is not true then Lemma 5 implies that there exists a decoding

tree Z such that T---Z and VAR(T)> VAR(Z). This implies, by Lemma 4, that (iv)
is not true. Hence (iv) implies (i). Iq

Although a minimal variance Huffman code is not unique in the strict sense, the
lexicographically sorted list of weight-length pairs for the leaves with nonzero weights
in the minimal variance Huttman tree is unique. We state this formally in the following
corollary.

COROLLARY 1. Let X 4(, , /), Y s4(, cg, /) and VAR(X)
min {VAR(V)[V d(, , ,)}. Then VAR(Y)= VAR(X) if and only if WL(Y)+

WE(X)+.
Proof. If WL(Y)/= WL(X)/, then clearly VAR(Y)=VAR(X). On the other

hand, if WL(Y)/ WL(X)/, then Lemma 5 and Theorem 5 imply that VAR(Y) # min
{VAR(V)I V (5, , ,)} VAR(X). [q

Notice that, given the fixed value of the mean of the random point I, the variance
of is minimized if and only if the second moment of is minimized. For any weighted
tree T, let us call the quantity .,i,z.7-)(i)l(i) t" the kth moment of T, where k =>0,
L(T) is the set of leaves in T, ,(i) is the weight labeled at node and l(i) is the path
length from the root of T to the node in T. Algorithm H repeatedly merges the r
subtrees with the smallest 0th moment and finally produces a decoding tree with the
minimum first moment. Algorithm K (below) repeatedly merges the r subtrees with
the smallest 0th moment and breaks ties by choosing the subtrees with the smallest
1st moments and finally produces a decoding tree with the minimum second moment
among all decoding trees with the minimum first moment. Corollary 1 implies that if
T is the decoding tree produced by Algorithm K with respect to input , and ,
then V e (, , ,) has the same second moment as T has implies that V has the
same kth moment as T has for all k > 2.

4. An algorithm to produce a minimum variance Huffman code. In this section,
we shall give a simple algorithm to produce the minimum variance Huffman code.

ALGORITHM K.
INPUT: a set of source symbols, if’-{Sl, s2,’’ ", s}; a set of letters, cg_

{ca, c2, , G}; the discrete probability density function on St’, . St’

OUTPUT: a decoding tree corresponding to a minimal variance Huffman code.
Step O. Initialize to be an empty set.
Step 1. For 1, 2,. , q set -- -U {T} where T is the weighted tree of

a single node associated with the source symbol sg and labeled with
weight (s).

Step 2. Repeat Step 3 and Step 4 until][1.
Step 3. Choose r elements in , T,1, T,,. , T,, such that for any T

other than these r chosen weighted trees, (W(T,,), Wt(T,,)) is
lexicographically smaller or equal to (W(T), W(T)) for all t=
1,2,...,r.

Step 4. Replace T,, T,,, ., T, in by a single weighted tree X in which
T,1, T,,. ., T, are the r subtrees of the root and the root is labeled
with the weight W(X). The edges connecting the root to the r subtrees
are systematically labeled with letters, c, c2," , Cr respectively.

Step 5. Output the decoding tree in .

MINIMUM VARIANCE HUFFMAN CODES 147

The lemma stated below gives an important characteristic of Algorithm K. Its
proof follows from a similar argument as given for the proof of part (i) of Lemma 3.
We state the lemma here without proof.

LEMMA 6. Let T be a decoding tree produced by Algorithm K with inputs 5, c
and , T(i) and T(]) be two subtrees of T and ci, cei be the path lengths]rom the root

o]: T to node and node] respectively. Then (WL(T(i)), WI(T(i))) is lexicographically
greater than (Wc(T(i)), W(T(]))) implies cei <-_cei.

To conclude this paper, we shall give some final remarks on the correctness of
Algorithm K and the functions of the minimum redundancy codes that the correspond-
ing code produced by Algorithm K minimizes. We need a few more definitions.

DEFINITION 7. For all X (o, , ,), the vector of the sorted internal path
lengths of X, IPL(S), is defined as

IPL X
(al,a2,’’ ",am)

if X has no internal node,
if X has m >= 1 internal nodes,

where, for all 1, 2,..., m ai is the ith longest path length from the root of X to
an internal node of X.

DEFINITION 8. Let X sC(oW, % ,) and Y 6 sC(ow, , N). Then IPL(X) < IPL(Y)
if and only if both X and Y have no internal node or else IPL(X) (al, a2, , am),
IPL(Y) (bl, b2, , bin), for some m => 1, and ai <- be for all 1, 2, , m.

DEFINITION 9. A function, f: {WL(X)+IX sg(5, c, p)}_ , is nondecreasing
with respect to < if and only if for all X s(ow, % ,) and Y sg(5, %/), IPL(X)<
IPL(Y) implies f(WL(X)+) <= f(WL(Y)+).

We shall show that if T is a decoding tree produced by Algorithm K with respect
to input ow, and ,, then f(WL(T)+)=min {f(WL(X)+)IX sg(5, , ,)} for any
nondecreasing function f: {(WL(X)+)IX sl(5, c, ,)}_ Yt with respect to <. We first
need the following lemma.

LEMMA 7. Let X s(5, % /) and Y sg(5, %/). Then WL(X)= WL(Y) if
and only i] IPL(X) IPL(Y).

Proof. X and Y have the same number of internal nodes. If IPL(X) IPL(Y),
then IPL(X) 6) IPL(Y). Let s be the smallest index such that the sth component
of IPL(X) and the sth component of IPL(Y) are different. Let h be equal to the
smaller of the two components. It should be clear that h > 0. Let us count the levels
of the decoding trees from the first level where the root is down to the bottom level.
Thus an internal node with the path length from the root equal to h is situated at the
(h + 1)th level. It follows that at any level h’, 1 -< h’ <- h, both X and Y have the same
number of nodes and the same number of internal nodes. Therefore, at level h + 1,
both X and Y have the same number of nodes but one has at least one more internal
node than the other one does. This implies WL(X) WL(Y). On the other hand, if
WL(X) WL(Y), then both X and Y have at least one internal node. Let WL(X)
((,f4(Sil), l(sq)), ((Siz), l(si2))," ’’, ((Siq), l(siq))), and WL(Y)= (((si), l(si)), (/e(si2),
l(si)), , (N(si,), l(sj,))). The elements of WL(X) and WL(Y) are sorted lexicographi-
cally. Hence, for all u 1, 2,. , q, N(siu) N(sju). Since X e s(ow, c,) and Y e
sO(00, c, ,), we must have l(sq) >- l(si2) 2 >- l(si.) and/(Sil) -> l(si) >=. >-_ l(si,). Let
k be the largest index such that ((sik), l(sik))7 (fi(S/k), l(Sh.)) and let e equal to the
smaller of l(si) and l(si,). It is clear that e >0. Thus, at any level e’, 1-<e’-<e, both
X and Y have the same number of nodes and the same number of leaves. Therefore,
at level e + 1, both X and Y have the same number of nodes but one has at least one
more leaf than the other one has. This implies IPL(X) IPL(Y). The proof is thus
completed. !-]

148 LAWRENCE T. KOU

THEOREM 4. Let T be a decoding tree produced by Algorithm K with input 5e, c
and ft. Then: (i) foralIX e sg(9’, c, ,), VAR(T)<__ VAR(X); (ii) foralIX e sg(St’, c,),
f(WL(T)+)<=f(WL(X)+), where f: {WL(X)+IXe(, c, N)} y is any function that
is nondecreasing with respect to <.

Proof. (i) Lemma 4 and Lemma 6 imply that, for all Y--- T, VAR(T) <- VAR(Y).
Part (i) of the theorem then follows immediately from Theorem 5.

(ii) By Theorem 3, for any X e s(, c,), there exists U e (ow, , ,) such that
WL(U) WL(X). By Lemma 7 we have IPL(U)= IPL(X). It should be clear that
WL(T)e {WL(V)IV (, c, fi)}. Lemma 5 implies that either WL(U)+= WL(T)+,
in which ease f(WL(T)+)=f(WL(U)+)=f(WL(X)+), or there exists a sequence of
decoding trees, Z a, Z2, Z t, for some > 1 such that (i), (ii), (iii), (iv) of Lemma
5 are satisfied. Lemma 5 together with Lemma 4 then imply that, for all h
1, 2,..., t-1, Zh+ is constructed from Zh by interchanging a subtree T(i) at a
lower level in Zh with a subtree T(j) at a higher level in Z h, where W(T(i))=
WL(T(j)), Wt(T(i))O and W(T(j))=0. (T(]) contains a single node only.) This
implies that for all h 1, 2, , 1, IPL(Zh+) < IPL(Zh). The definition of f implies
that f(WL(T)+)=f(WL(Z’)+)<-_f(WL(Z’-a)+)<= <-_f(WL(Za)+)=f(WL(U)+)
(WL(X)+).

Acknowledgment. The author is in debt to Professor Richard Hamming for his
encouragement and for his inspiring lecture on coding and information theory where
this research work was originated. The author would also like to thank his colleague,
George Markowsky, for many technical discussions. Lastly but not leastly, the author
is grateful to the referees of this paper for their careful reviews and their pointing
out several mistakes in the first draft of this paper.

REFERENCES

[1] D. A. HUFFMAN, A method for the construction of minimum-redundancy codes, Proc. IRE, 40 (1952),
pp. 1098-1101.

[2] D. E. KNUTH, Fundamental Algorithms: The Art of Computer Programming, Vol. 1, Addison-Wesley,
Reading, MA, 1968.

[3] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetical codes,
SIAM J. Appl. Math., 21 (1971), pp. 514-532.

[4] C. R. GLASSEY AND R. M. KARP, On the optimality of Huffman trees, SIAM J. Appl. Math., 31
(1976), pp. 368-372.

[5] M. R. GAREY, Optimal binary search trees of restricted maximal depth, this Journal, 3 (1974),
pp. 101-110.

[6] J. VAN LEEUWEN, On the construction ofHuffman trees, Proc. 3rd International Colloq. on Automata,
Languages, and Programming, Edinburgh, July 1976, pp. 382-410.

[7] A. ITAI, Optimal alphabetic trees, this Journal, 5 (1976), pp. 9-18.
[8] D. S. PARKER, JR., Conditions for optimality of the Huffman algorithm, this Journal, 9 (1980), pp.

470-489.
[9] E. S. SCHWARTZ, An optimal encoding with minimum longest code and total number of digits, Inform.

and Control, 7 (1964), pp. 37-44.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1101-0012 $01.0/0

POLYGON RETRIEVAL*

DAN E. WILLARD"

Abstract. Given a set of N points on the plane and an arbitrary polygon, we consider how to efficiently
find the subset of these points lying inside this polygon. A data structure will be displayed that occupies O(N)
space and enables polygon retrieval to be performed in O(N1g64) worst-case execution time. This is the best
currently known worst-case complexity.

Key words. Multidimensional retrieval, quad tree, K-d tree, augmented tree, K-fold tree, K-range,
range tree, super-B-tree

1. Introduction. In this paper, S will denote a set of N points, Q a query
requesting some subset of these points, and COUNT(Q) the number of records that are
requested by Q. The locate-and-copy runtime of Q will be defined as the amount of
execution time needed to find and copy those records specified by Q into the user’s
workspace. This concept is not especially useful because the degenerate case where
COUNT(Q) O(N) forces most queries to have an O(N) worst-case locate-and-copy
runtime. In order to avoid these difficulties, a new criterion for measuring performance
will be employed in this paper, called worst-case locate runtime. A query Q will be
defined to have an Oil(N)] worst-case locate runtime iff the worst conceivable set of
cardinality N can be queried in execution time O(f(N) + COUNT(Q)). It is meaningful
to measure an algorithm’s worst-case locate runtime because this concept has been
adjusted to preclude the trivial degeneration that results when COUNT(Q)= O(N).

Notions similar to locate runtime have been used during the last three years to
measure worst-case performance in several papers about multidimensional searching
[4], [16], [17], [20], [21], [24] although most of these papers did not formally use this
term. The phrase "worst-case locate runtime" fist appeared in [21] because it seemed
desirable to attach a special name to a concept that was repeatedly occurring in different
contexts in several articles.

The main concern .of most of the previous literature about multidimensional
retrieval has been the efficient retrieval of records from orthogonally defined regions
such as rectangles, boxes and their K-dimensional analogues of the form

al =< KEY.1 =<bl ^ a2-< KEY.2-< b2 ^. ^ an -< KEY.K <=bK.

A variety of different retrieval runtimes have been obtained for this query, depending
on the amount of memory that is needed by the associated data structure. The best
known asymptotic retrieval times in O(N), O(N logK-1 N) and O(N/) memory
space are discussed respectively in [4], [21], and [4]. The data structure of the second of
these articles is a modified version of the K-fold trees of [3], [7], [14], [15], [17], [20],
[23], [25] which has a log N better runtime in many practical static and dynamic
applications due to the use of one additional type of pointer. Two other interesting data
structures are K-d and quad trees of [2], [6], [10], [16], [22], [24]; these data structures
do not have quite as good an asymptotic retrieval time as the comparable O(N) memory
space data structures of [4]; however, they are attractive because their memory space
utilization has a significantly better coefficient. General methods for manipulating the
preceding data structures in a dynamic setting are discussed in [5], [14], [15], [18], [20],

* Received by the editors March 30, 1979, and in revised form April 13, 1981.
t Department of Computer Science, University of Iowa. New address, Bell Laboratories, Holmdel, New

Jersey 07733.

149

150 I. E. WILI_.ARD

[21], [22], [23], [24], [25]. Lower bounds on the complexity of dynamic worst-case
orthogonal range queries are discussed in [11], [12], [13].

The main omission of the previous multidimensional literature was the study of
more complex geometric regions such as, for instance, polygons. It will be shown in this
article that polygon retrieval is much more complex than one might first expect and that
all of the previous data structures are of no use when optimizing worst-case polygon
retrieval time. The data structure of this article will thus be rather significant because it
attains an O(N1g64) worst-case polygon locate time while occupying only O(N) space.
Recently, Fredman [11] has calculated a lower bound on dynamic polygon query time
(which is of order N1/3 in the notation of this article). The gap between this article’s
upper bound and Fredman’s lower bound remains an open question.

The discussion in this paper is divided into three major parts. Section 2 defines our
proposed polygon tree data structure and proves that near-ideal 3-way polygon trees
have the claimed O(N1g64 worst-case locate runtime. Section 3 explains the
significance of this theorem by showing that every set of N points can be represented as
a near-ideal polygon tree; it also makes some meaningful comparison between polygon
tree and the related quad and K-d tree data structures. Section 4 shows how near-ideal
polygon trees can constructed in O(N log2 N) expected and O(N2) worst-case time.
Open questions for future research are raised at the end of this paper.

2. The data structure. A set of J lines, L1, L2, , Lj will be said to form a J-way
division of the x, y-plane if and only if the following three conditions are satisfied"

(i) L1 and L2 must be two distinct straight lines with infinite reach in both
directions;

(ii) for i->_ 3, each Li must be a half line whose starting point is on one of lines
L2L3 Li-1 and which lies fully to the right of line Li-1;

(iii) the L1 line must intersect each of the L2L3"" Lj lines.
An example of five lines that form such a partition of the x, y-plane is shown in Fig. 1.

Let Z denote a set of points in the x, y-plane and D a set of lines that form a J-way
division of this plane. Note that the lines of division D form boundaries of exactly 2J

FIG.

POLYGON RETRIEVAL 151

open regions in the x, y-plane. The symbols D(Z, 1), D(Z, 2),... ,D(Z, 2J) will
denote the respective subsets of Z that lie in these 2J open regions. Also, the symbols
D(Z, 2J + 1), D(Z, 2J + 2),. , D(Z, 3J) will denote the subsets of Z whose points lie
on the respective lines of L1L2" Lj.

The data structure proposed in this paper will be a tree that uses J-way divisions in
the intuitively natural manner to define its underlying structure. This data structure is
called a J-way polygon tree. In order to formally define it, we let v denote an internal
node of this tree and Z the set of leaves descending from v; also assume that every
internal node v contains stored information describing a J-way division, which we
denote as D. A J-way polygon tree will be said to represent the setZ ofpoints if and only
if"

(1) there exists a one-to-one correspondence between the leaves of this tree and
the elements of set Z;

(2) each internal node v will have one son Si for every D(Z, i) set that is
nonempty;

(3) the set of leaves associated with the subtree rooted at such a son $i will consist
of precisely the D(Z, i) set.

Every node in a polygon tree will also be said to have a range. This will be denoted
as R and defined to equal:

(1) the whole x, y-plane when v is the root of the polygon tree;
(2) the set Dr(Rr, i) when v is the "ith son" of a node f whose J-way division and

ranges are respectively Dr and Rr (the phrase "ith son" was put in quotes to
emphasize it means "ith" in the sense of part 2 of the definition of polygon
trees).

Note that the range of any internal node v contains the physical positions of all
leaves descending from it. A node in a J-way polygon tree will be said to be linear if and
only if its range consists of a straight line, and nonlinear otherwise. Some typical ranges
in a 2-way polygon tree are illustrated in Fig. 2.

R3.,

FIG. 2. Each region Ru represents the range of one of the root’s nonlinear grandsons in a 2-way polygon
tree. For any i, the union of regions Ril, Ri2, Ri3 and Ri4 represents the range of the root’s ith nonlinear son. The

full and dashed lines in Fig. 2 represent, respectively, the ranges of the root’s linear sons and grandsons.

152 r). E. WILLARD

A J-way polygon tree will be said to be ideal itt the following two conditions are
met:

(1) precisely the first 2J sons of each internal node are nonnull elements (note that
this set corresponds to the sons with nonlinear range);

(2) all leaves ,of a polygon tree of height h have a depth equal to exactly h.
An example of an ideal 2-way polygon tree is shown in Fig. 3.

FIG. 3. Assume that leaf Wii lies in region RijofFig. 2. Then the above data structure is an ideal 2-way tree
based on the 2-way division of Fig. 2.

Note that the definition of range in a J-way polygon tree implies Zv Z f3 Rv. The
algorithm for performing retrievals in J-way polygon trees is essentially the natural
procedure motivated by this equality and the definition of range. This algorithm will
consist of a standard topdown tree walk that visits all nodes whose range overlaps with
the region associated with the polygon (or other geometric shape) that is being
requested. All leaves thus visited will have their coordinates tested for whether they
correspond to a specific point lying in the designated region. Those leaves passing this
test will be copied into the user’s workspace, since they constitute his requested set of
records.

The above algorithm is the polygon tree counterpart of earlier procedures that
have performed orthogonal range queries for quad and K-d trees [2], [6], [10], [16],
[22], [24]. This paper shows that certain unique structural characteristics of J-way
polygon trees lead to more efficient polygon retrieval than is possible with these other
data structures.

The following lemma will be related to our runtime analysis.
LEMMA 1. Every straight line will intersect with the ranges of no more than

O(Nog2j (1+1)) vertices of an ideal J-way polygon tree with N leaves.
Proof. Let Id denote the number of nodes of depth d whose ranges intersect with

straight line L. Note that L cannot possibly intersect with more than J + 1 of the 2J area
regions associated with any J-way division D. This implies that ld <= (J + 1)’Id_l. This
observation, the principle of induction, and the fact that Io 1 jointly imply that
ld <= (J + 1)a for all d. The maximum number of nodes whose range intersects with L in a

POLYGON RETRIEVAL 153

J-way polygon tree of height h will therefore be

h

(1) Y (J + 1)a,
d=0

which equals

(2)
(J + 1)h+- l

The latter quantity lies in O(Nlg:J(’+a) because an ideal polygon tree of height h will
have exactly N (2J)h leaves. Hence, the desired bound on the number of intersected
vertices has been obtained. O.E.D.

LEMMA 2. Any polygon query (2 can be performed in an ideal J-way polygon tree
within O(Ng=J’+’)) worst-case locate time.

Proof. Note that the polygon retrieval algorithm will visit precisely those nodes
whose "range" intersects with the geometric region associated with the user’s specified
query O. The range of each such intersecting node must clearly either:

(i) intersect with both the geometric region of O and its complement;
(ii) or lie completely contained within O’s region.

As the runtime of our retrieval algorithm is proportional to the number of visited nodes,
it follows that this runtime can be calculated by simply counting the number of nodes
belonging to categories (i) and (ii).

By Lemma 1, the number of nodes in category (i) for a query O whose boundary
consists of K straight" lines must be O(KNg=J+). Since the constant K is ignored in
our asymptotic estimates, this quantity has an O(N’’+) magnitude.

Next, we wish to calculate the number of nodes belonging to category (ii). Its
number of leaves is surely less than COUNT(O) because each such leaf satisfies query
O. The number of internal nodes belonging to category (ii) can be seen to be less than its
number of leaves by using the observations that"

(a) the set of nodes in category (ii) can be regarded as a forest;
(b) all internal nodes in each subtree of this forest will have at least two sons;
(c) a trivial inductive argument shows that any tree, and therefore also forest,

satisfying condition b, must have more leaves than internal nodes.
Hence, the total number of leaves plus internal nodes in category (ii) is less than
2. COUNT(O).

Since the sum of the preceding two quantities lies in O(N"+) + COUNT(O)),
this quantity is a bound on the locate-and-copy time of the polygon retrieval algorithm.
Hence, this algorithm has an O(g=" +1) worst-case locate time. Q.E.D.

At first, it may appear that the preceding lemma proves the worst-case runtime
asserted in this paper since Nlg2r "+ N1g64 when J 3. However, we have, not yet
actually proven our main assertion because many sets Z cannot be presented in the
simple form of an "ideal" J-way polygon tree. One source of difficulty is that an ideal
tree of height h has exactly (2J)h leaves and therefore can represent only sets of exactly
this cardinality. Another difficulty is that sets with a large number of collinear points can
not be represented in the ideal J-way form. In order to resolve these difficulties, we
employ the concept of near-ideal J-way polygon trees, defined in the next paragraph.
The most subtle part of this paper will be the proof that every set Z can be represented
as a near-ideal J-way polygon tree.

This is because all descendants of a node in category (ii) are also in category (ii).

154 D.E. WILLARD

In our definition of near-ideal trees, N denotes the number of leaves descending
from node v. A J-way polygon tree will be said to be near-ideal iff the following two
conditions are met:

(1) every nonlinear internal node v must have at least two sons and for each _-< 2J,
there must be no more than [N/2J] members associated with each cor-
responding Dv(Z, i) set;

(2) every linear internal node must have exactly two sons, and these two sons must
have either the exact same number of leaf-descendants or a number of leaf
descendants which differs by at most one.

(An informal restatement of condition (2) is that the portion of a J-way polygon tree
that descends from a linear node must be a binary tree whose balance is as close to ideal
as possible.)

THEOREM 1. Near-ideal J-way polygon trees have the same O(N"(+) worst-
case polygon locate time as ideal polygon trees.

The above proposition can be intuitively justified by observing that near-ideal trees
are sufficiently similar to ideal polygon trees to ascertain that their worst-case runtimes
differ only by a coefficient. A more formal proof is given in the rest of this section. Some
readers may wish to skim this proof because the example of ideal polygon trees
illustrates the intuition behind Theorem 1. The next section explains the significance of
near-ideal trees by showing that every set Z can be represented in such a form.

The proof of Theorem 1 rests on the following preliminary lemma, which is the
direct analogue for near-ideal trees of Lemma 1.

LEMMA 3. For every near-ideal J-way polygon tree ofN leaves and every straight
line L (regardless of whether it be a line segment, a full line of infinite reach, or a halfline),
the number of nodes in tree T whose range intersects but is not contained within L will be
bounded by 0(Nlg, (+ a)).

Proof. We will first prove Lemma 3 for ,,the case where L is a full line of infinite
reach and then consider the other cases of half lines and line segments.

For each nonlinear node v of polygon tree T, define SL(V) to be the subset of v’s
descendants satisfying the following two conditions:

(a) each such node must have a range that intersects but is not contained within L;
(b) each such node must either be one of v’s linear sons or a descendant of such a

son.
Also, define IlL(V) to be equal to"

(i) one plus the cardinality of SL(V) when v is a nonlinear node whose range
intersects L;

(ii) zero, otherwise.
It can be readily verified that the definition of 1-IL(V) implies that the number of nodes
which belong to polygon tree T and satisfy Lemma 3’s intersection property will simply
be

(3) Z n(v).
tT

Therefore, the proof of Lemma 3 will rest on calculating a bound on the above sum.
Recall that N denotes the number of leaves descending from v. Let w denote a

linear son of v, Rw the range of w, Tw the subtree descending from w, and IIL(W, V) the
number of vertices in T that also belong to set SL(V). Our first claim is that for any full
line L, the inequality IIL(w, v) =< [log2 N will hold. In the cases where R 71L equals
either the empty set or a set of more than one point, it is easy to verify IlL(w, v) 0 (this
quantity vanishes in the first case because no node of Tw has a range intersecting L and

POLYGON RETRIEVAL 155

in the second case because all ranges are actually straight lines contained within L). The
only remaining case is therefore the possibility that Rw L consists of precisely one
point. In this case, no more than one node at each level of tree Tw can have a range
intersecting L; this implies that IIL(w, v) can be no greater than the height of subtree Tw.
Now, it is easy to conclude IlL(w, v)--< [log2 Nv] by using part 2 of the definition of
near-ideal polygon trees to show that tree Tw has height bounded by [log2 Nv].

The preceding analysis enables us to compute a bound on IIL(v)" this quantity must
be bounded by J [log2 N] + 1 because no more than J linear sons will be associated
with any nonlinear node v. Now, we use the following three observations to calculate
bounds on the value of N:

(i) Each nonlinear node at a depth d in a near-ideal polygon tree will have
Nv <- [N/(2j)d]

(ii) no more than (J+ 1)d such nonlinear nodes at depth d will have ranges
intersecting line L;

(iii) no nonlinear internal nodes can exist in a near-ideal tree at depth below
[logzjN].

Clearly, observation together with our bound on IIL(v) implies that all nodes at depth
d must satisfy

(4) IlL(v) < 1 +J. log2 (2J). ([log2jN] -d).

Applying (4) and observations (ii) and (iii) to equation (3), we obtain that this sum is no
greater than

[log2sN

(5) E
d=0

(Y + 1)a[1 +J. log2 (2J)([logzN] -d)].

Since the latter sum lies in O(Nlg2s (l+l)), our proof has verified that this quantity
bounds the number of vertices whose ranges intersect but is not contained by a line L of
infinite reach.

The same general reasoning is used to verify Lemma 3 for the alternate cases of half
lines and line segments. The only difference in these two cases is that HL(w, v) has
respective bounds [log2 N] and 2 [log2 N] when Rw f)L has more than one inter-
section point. This event affects no more than one son of every nonlinear internal node
v; it therefore increases the final coefficient by a factor of less than 1 + 1/J. Q.E.D.

We are now ready to explain how Theorem 1 can be proven. The proof rests on
reasoning similar to the proof of Lemma 2 except that Lemma 3 rather than Lemma 1
must now be used in the step of this proof that counts the number of type (i) vertices.
That is, the previous proof of Lemma 2 was (carefully) worded so that it will also prove
Theorem 1 once its citation of Lemma 1 is changed to a reference to Lemma 3.

COROLLARY 1. In a near-ideal J-way polygon tree, a request for either the points
lying on a straight line or in a (nonpolygon) region whose boundary is determined by
several straight lines can be performed in the same O(Nlg2s (j+l)) worst-case locate
retrieval time as polygon requests.

Proof. It is easy to see the validity of Corollary 1 for any convex region" such a
geometric shape with K boundary lines has a worst-case locate runtime proportional to
gNlOg2s (J+l) by the exact same reasoning as was previously used to prove Lemma 2 and
Theorem 1. One way to prove Corollary 1 for nonconvex regions is to first decompose
an initial nonconvex region into a union of disjoint convex parts (the Chazelle-Dobkin
algorithm [7] will produce such a decomposition for nonconvex polygons). The

156 D.E. WILLARD

nonconvex query is then performed by taking the union of the results from querying its
convex parts. It is easy to see that such a retrieval algorithm runs in O(Nlg2J(1+l))
locate runtime. Q.E.D.

Comment 1. Also, the results of this paper can be extended to geometric regions
whose boundary consists of differentiable curves. This is because differentiable curves
tend to be almost linear in small regions of space. As a result, differential curves will
appear almost as straight lines within local regions of our polygon tree. This means that
the efficiency of polygon trees can be heuristically justified in the context of differenti-
able curves.

Comment 2. Let f denote a function that maps the elements of set Z onto real
numbers. A polygon tree will be said to be an aggregate representation of function f
over set Z if and only if each internal node of that tree contains an additional field
indicating the sum of the f-values of all the leaves descending from it. The theorems in
this section can be modified to state that aggregate polygon trees make it possible to
calculate the sum of the f-values lying inside any arbitrary polygon in O(Nlg2JJ+l

worst-case execution time. This time is somewhat different from our earlier results
because it is a strict worst-case result rather than a worst-case locate measurement.

3. The significance of polygon trees. This section will prove that every conceiv-
able set of N elements can be represented as a J-way near-ideal polygon tree. Our
discussion of this existence theorem is significant because the same proposition does not
hold when it is applied to other related data structures (such as the quad trees of
[63, 103).

By the end of this section, it will become apparent how polygon trees are more
efficient than previously proposed data structures.

LEMMA 4. Assume thatfour numbers ng have been chosen so that n + n2 + n3 + n4
Nand thatZ is a set ofcardinality Nwhere nx + n2 (respectively n3 + n4) of its elements lie
above (below) L. Then it is possible to find a line L2 (as shown in Fig. 4) so that the
number of points lying in each region Ri is less than or equal to ni. (The possibility of
inequality is allowed in this lemma because some members ofZmay lie on either the L or
L line.)

Proof. The lemma is trivial (and basically uninteresting) to verify in the degenerate
case where at least one of the four n quantities equal zero. In our remaining discussion,
it will therefore be assumed that each ng is greater than or equal to 1.

Given a fixed pointP on the L line, let f(P) denote the least possible value for 0 in
Diagram 4 such that the line L2 through P at this angle causes there to be no more than
respectively n and n points in the regions R1 and R2. Similarly, let g(P) denote the
least 0 such that there are no more than respectively n3 and n4 points in the R3 and R4

FIG. 4

POLYGON RETRIEVAL 157

regions. Note that the functions f(P) and g(P) are continuous as P is moved along the L
line. Also, the following limits must hold as P is moved along this line"

(6) lim f(P)= H,

(7) lim f(P) o,

(8) lim g(P) O,

(9) lim g(P)= H.
p--x

The combination of the above four limits and the continuity of f and g imply the
existence of a point P with f(P) g(P). The line L2 passing through this point with angle
f(P) will satisfy the conditions of the lemma. Q.E.D.

COROLLARY 2. There will always exist some line L2 which intersects at least two
points of set Z and satisfies Lemma 4.

Proof. It is clear that the line L2 in the preceding proof satisfies this condi-
tion. Q.E.D.

LEMMA 5. For every set Z ofNpoints and every real number s, there exists a J-way
division similar to Fig. 1 such that:

(i) there are no more than [N/2J] points in any of the 2J open regions whose
boundary is determined by this division;

(ii) the L1 line has a slope of s.

Proof. There clearly is no difficulty in selecting an L1 line of slope s such that it
separates the set Z of points into two subsets that each have less than or equal to IN/2]
points. Our remaining proof rests on repeated applications of Lemma 4 to successively
prove the existence of the L2L3"" Lj lines that are required by the present
proposition.

More specifically, Lemma 4 is first utilized to prove the existence of a L2 line such
that there are no more than [N/2J] points in each of the two leftmost regions of
Diagram 1 and such that the remaining points to its right are divided by line L into two
subsets of no more than [(J-1)N/2J] points.

For our second application of Lemma 4, we have Z2 denote the subset of set Z that
lies to the right of line L2; this lemma immediately implies the existence of a line L3 that
divides Z2 and therefore also Z in the desired manner.

The existence of the additional L4L5"" Lj lines is proved by further repeated
applications of Lemma 4. Q.E.D.

THEOREM 2. It is possible to represent every setZ as a near-idealJ-way polygon tree.

Proof. The natural algorithm for constructing a near-ideal polygon tree is a
topdown procedure that first builds the J-way division that is needed by the root and
then recursively calls itself to build the portions of this tree which (this division indicates
should) descend from each of the root’s sons. In order to show that near-ideal trees can
always be constructed with such a topdown algorithm, it is sufficient to verify that the
root can always be made to satisfy the requirements of near-idealness. Note that the
only nontrivial aspect of the definition of near-idealness is its first part and that Lemma
5 indicates that the root can always be made to satisfy this condition. Our theorem thus
follows from the previous lemma. Q.E.D.

158 . E. WILLARD

Comment 3. The combined implication of Theorems 1 and 2 is that every set of N
points can be represented as a near-ideal J-way polygon tree with an O(Ngr+

worst-case polygon locate time. This asymptotic time is minimized when J is chosen to
have the value 3. Under these circumstances, the derived O(N1g64 runtime has an
O(/V77) magnitude.

Comment 4. A 2-way polygon tree will be said to be a quad tree if the L1 and L2
lines of every division D have been chosen so that they are respectively parallel to the
x- and y-axes. The runtime characteristic of quad trees for finding the subset of set Z
whose x and y components satisfy a query of the form aa < x < bl and a2 < y < b2 has
been discussed in [6], [10], [16]. An examination of quad trees in the context of this
article indicates that Theorem 1 holds for near-ideal quad trees but not Theorem 2. In
other words, near-ideal quad trees do have an O(Nlg43) worst-case polygon locate
runtime but there is no guarantee that an arbitrary set of points can be represented in
such a form. This shortcoming of quad trees is serious. The worst-case polygon locate
runtime for quad trees lies in O(N) because certain sets can not be represented in a
reasonable manner by this data structurez. It is for this reason that polygon trees are
more suitable in many applications.

Comment 5. Also, there are some interesting comparisons between K-d trees and
polygon trees. K-d trees are discussed in [2], [16], [22], [24]. They have difficulty with
polygon retrieval for just the opposite reason as quad trees. Thus, Theorem 2 but not 1
holds for K-d trees. In other words, every set of points in the plane can be represented
as a near-ideal (two-dimensional) K-d tree, but there is no guarantee these trees have
efficient polygon retrieval time (since analogs of Lemmas 1 and 3 do not hold for K-d
trees). The intuitive idea that motivated much of this paper’s research into polygon trees
was that they would attain an efficient worst-case polygon locate time by combining the
best characteristics of quad and K-d trees.

Comment 6. It is easy to develop counterexamples which demonstrate that all the
other multidimensional data structures mentioned in the introduction of this paper, also
have inefficient f(N) worst-case polygon locate times. We will not discuss the relevant
details here because these structures were intended for a different type of application
and have an underlying design which is unrelated to this article’s polygon trees.

Comment 7. A polygon tree will be said to satisfy the alternating condition if the
L line of the D division of every node v of this tree is

(i) parallel to the x-axis when v has even depth;
(ii) parallel to the y-axis when , has odd depth.

Note that part (ii) of Lemma 5 indicated that complete freedom exists in choosing the
slopes of L lines of the J-way divisions. Consequently, Theorem 2 can be strengthened
to read that every set Z can be represented as an alternating near-ideal J-way polygon
tree. In most applications, users will desire to employ alternating rather than nonalter-
nating polygon trees because the former have an improved runtime for the special case
where the retrieval query is a request for those records lying in a rectangle with
horizontal and vertical edges. Near-ideal alternating polygon trees permit this request
to be processed in O(Nlg(4%(JE+J)) worst-case locate time (because the alternating
condition guarantees that no horizontal or vertical line can intersect the ranges of more
than j2 +j of the 4J2 nonlinear grandsons of a given node). For the cases of J equals 2
and 3, the preceding quantities reduce respectively to N65 andN69 worst-case rectangle

For an example, consider any finite set at points whose coordinates satisfy y x. Such a set can never be
represented by a near-ideal quad tree. Any nonideal quad tree representing this set will have an f(N)
worst-case polygon locate runtime.

POLYGON RETRIEVAL 159

retrieval times. The central point is that the alternating concept improves the rectangle
retrieval time for polygon trees without weakening any of the preceding r__esults.

Comment 8. We should point out that quad and K-d trees have x/N worst-case
runtime for rectangle queries; they thus outperform polygon trees for these special
queries. Some readers may be surprised to learn how slightly changed assumptions
make polygon trees asymptotically more efficient from one standpoint and less from
another. There are actually many other surprising characteristics of multidimensional
trees. For instance, a slightly imbalanced K-d tree, satisfying the AVL condition, can
require fI(N) orthogonal range query time if the query has dimension of at least four
[24]. The same reference also shows that randomly generated K-d trees have a
surprisingly inefficient expected retrieval time for partial match and orthogonal range
queries. A major difference between one and multidimensional retrieval is that the
latter has a runtime that is more sensitive to relatively minor changes in the data
structure.

Comment 9. For the sake of simplicity, the emphasis of this paper has been on the
optimization of CPU runtime rather than disc accesses. However, there is no difficulty
in extending our results to the disc by designing special polygon trees that store nearby
nodes on the same disc page. IfM denotes the number of records stored on a page, then
polygon trees will have O[(N/M)lgJ+l (2J)] worst-case number of page accesses in this
context.

Comment 10. One of the most attractive aspects of polygon trees is their potential
applications in data-bases. The nature of these applications can be understood once it is
noted that many algebraically defined sets can be converted into geometric structures if
they are mapped onto their representation in a Cartesion coordinate system. For
instance, the set of points satisfying "y >0 AND y <2x AND y < 1-2x" forms an
isosceles triangle in the x, y-plane. Obviously, a retrieval for this algebraic relation can
be performed efficiently with a polygon tre.. As many algebraic relations have
geometric representations that consist of straight lines, polygons or regions bounded by
several straight lines, it follows that these relations can be queried in efficient worst-case
runtime with polygon trees. The clearly attractive feature of these trees is that they
efficiently serve a very broad class of predicate retrievals while occupying only O(N)
space.

4. Construction of polygon trees. Several algorithms for constructing near-ideal
polygon trees are outlined in this section. We show that a J-way polygon tree can be
constructed in O(N2) worst-case and O(N log2 N) expected runtime. The crux of our
analysis will consist of showing that for any set Z, the L2 line of Lemma 4 can be found in
O(N2) worst-case and O(N log N) expected runtime.

Recall that Corollary 2 indicated that it is always possible to select a line L2 which
satisfies the requirements of Lemma 4 and additionally intersects at least two points of
set Z. This observation suggests one very simple (although inefficient) algorithm for
finding the L2 line"

Make an exhaustive scan over all O(N:z) different lines generated by pairs of
points from set Z and compare the position of each examined line to the N
points of set Z until a line satisfying L2’s requirements is found.

The principal disadvantage of the above procedure is that it runs in O(N3) worst-case
time. Most of the rest of this section will explain how a more efficient O(N2) worst-case
complexity can be obtained with a modified algorithm.

160 D.E. WILLARD

In our discussion, Wo will denote the set of points that lie on line L and also lie on
one of the lines generated by the pairs of points in set Z. We will now explain how a line
Lz satisfying requirements of Lemma 4 can be quickly found by using a special variation
of binary search. This search will be based on the natural linear ordering that line L1
imposes upon set W0.

Let P denote a point on line L1; also assume that L1 satisfies the usual condition of
dividing set Z so that there are nl + n2 (respectively rt3 -b n4) points above (below) L1.
The upper (respectively lower) angular set of P will be defined as the set of angles 0 such
that the L2 line passing through P at angle 0 causes regions R and R2 (respectively R3
and R4) of Fig. 4 to contain no more than nl and n2 (n3 and t/4) of Z’s points. The
following lemmas motivate the form of binary search employed in this paper.

LEMMA 6. Again assume that line L1 divides set Z so that nl + n2 (respectively
rt3 q- n4) elements lie above (below) it. A necessary and sufficient condition for some line
Lz to pass through pointPofline L1 and divide setZso thateach region Ri (in Diagram 4)
has no more than ni points is that P’s upper and lower angular sets have a nonempty
intersection. If, on the other hand, all the angles of the lower angular set are less
(respectively greater) than those ofthe upper angular set then such a division will beformed
by some line L2 intersecting line L1 to the left (right) of P.

Proof. The first half of Lemma 6 is an obvious consequence of the definition of
angular sets, and the second follows from reasoning similar to the proof of
Lemma 4. Q.E.D.

LEMMA 7. The upper and lower angular sets can always be calculated in O(N)
runtime.

Proof. For any two points X1 and X., simple techniques from linear algebra can be
used to determine in O(1) runtime whether or not line segment X1P forms a greater
angle with line L than XzP. In order to calculate the upper angular set, we must find the
n lth and (n + 1)th largest angles among the lines that connect point P to the subset of Z
lying above L1. It is well known that if an individual greater-than comparison can be
performed in O(1) time, then the Kth largest of N elements can be found in O(N) time
(see for instance 1, pp. 97-99]). The desired calculation of the upper and lower angular
sets is therefore obtained by applying this algorithm to find the n lth and (nl + 1)th
largest angles. Q.E.D.

We are now ready to explain how a line L2 satisfying all the requirements of
Lemma 4 can be found in O(N) worst-cast time. Our search algorithm will consist of
the following two steps’

(1) Recall that Wo denotes the set of points on line L1 that intersect some line that
contains at least two points of set Z. This step will construct set Wo by
performing a straightforward exhaustive scan over all O(NZ)pairs of points in
set Z; it will then prepare for the execution of the next step by making W equal
to Wo.

(2) This step will consist of an iterative procedure which repeatedly divides the set
W in half until the desired line L is found. The precise procedure of this step
will consist of repetitions of the following three substeps:
(2a) Find the median member of set W in time proportional to the cardinality

of W by using the median element search procedure of [1, pp. 97-99]. Let P
denote this point; construct two sets, W/ and W-, which designate the
respective subsets of W whose points lie to the right (left) of P along line L1.

(2b) Use the Lemma 7 procedure to calculate P’s upper and lower angular
sets.

POLYGON RETRIEVAL 161

(2c) If these two angular sets have a nonempty intersection then the search is
done" in this case, L2 is set equal to any line passing through P with such an
angle. Otherwise, go back to substep (2a) with W made equal to W/ if the
lower angular set is greater than the upper angular set and equal to W- when
this inequality is reversed.

THEOREM 3. For any line Lx that divides set Z into subsets of respectively nx + n2
and n3 + n4 points, the above algorithm:

(i) correctly finds a L2 line such that each Rg region of Fig. 4 has no more than n
points;

(ii) performs this task in O(N2) worst-case runtime.

Proof. The correctness of the cited algorithm isan immediate consequence of
Corollary 2 and Lemma 6. Its O(N2) runtime is a consequence of the following
observations:

(1) step 1 consumes O(Nz) time and the ith iteration of substeps (2a), (2b) and (2c)
consume respectively 0(N2/2i), O(N) and O(1) runtime;

(2) there are no more than [2 log N] iterations of substeps (2a) through (2c)
(because each iteration cuts W in half). O.E.D.

We now describe an alternate algorithm for finding line L2 that runs in O(N log N)
expected time. This improved algorithm is based on the observation that the previous
procedure was slow because it manipulated unwieldy sets, W and W0, that had
expensive cardinalities in O(N2). Rather than think of W as a large finite set, our
revised algorithm will regard W as a closed interval connecting two points belonging to
line L. The only other major change in our revised algorithm is that point P will
designate the position midway between W’s two endpoints, rather than the median
element of a finite set. The intuitive reason for the added efficiency of this modified
algorithm is that midway points can be calculated much more quickly than median
elements.

Now more formally, we describe exactly how our revised algorithm differs from the
previous procedure. Step I of the new algorithm will calculate the projection that set Z
has on line LI; it will then set W initially equal to the interval connecting the left and
right most of these points. Substep (2a) of the new procedure will set P equal to the
point that bisects W; it will then make W- and W/ denote the respective halves of
interval W that lie to the left and right of P. These are the only parts of our revised
algorithm that differ from the old procedure; other aspects of our new algorithm
(specifically substeps (2b) and (2c)) are identical to the old procedure.

THEOREM 4. Let Z denote a set of N n + n2 + n3 + n4 elements generated by a

uniform distribution on any convex and bounded region R in the plane. Again let L1 be
some line such that nl + n2 (respectively n3 + n4) ofZ’s points lie above (below) L1. Then
the above algorithm willfind in O(N log N) expected time a line L2 such that each region
R in Fig. 4 has no more than ng points.

Proofsketch. Let W*(Z) denote the set of points P on line L such that some line
L2 passing through P satisfies the above conditions. Since W*(Z) is a closed interval, it
makes sense to use the symbol l*(Z) for denoting the length of this interval. Also let
denote the length of the part of line L1 that intersects with region R. Our first claim is
that the event l*(Z)<hl will occur with a probability less than 2AN when Z is
generated by the uniform probability distribution.

We will only sketch the proof of this assertion since its formal verification is trivial
and tedious and since the later parts of our analysis will not require the particular
coefficient 2, associated with AN in this paragraph. Given one specific line L2 which

162 D.E. WILLARD

divides region R so that ni points from set Z lie in each subregion Ri, let x denote the
length of that portion of line L which lies to the left of L2 in region R, L and L- two
lines which are parallel to L2 and which intersect L1 at respective distances Ax to the left
and A (l-x) to the right of L2’s intersection point with L1, and Ei the portion of region
Ri that lies between lines L and L- (see Fig. 5). Since each region Ri is convex and
bounded, the ratio of the areas of Ei to Ri must be less than 2A, for each i. The regions Ei

FIG. 5. In this figure, R is an oval shaped region, Ri one of the regions bounded by the solid lines, and Ei the
part of Ri between the parallel lines.

are thus sufficiently small to assure that there is less than a probability 2AN for one or

more elements of set Z to lie in any of the regions Ei. But if no element of set Z lies
between L and L- then W*(Z) will certainly include the entire portion of line L1
between these two parallel lines. And the latter condition implies l*(Z)>-_A1. Hence,
there must be a probability less than 2AN that l*(Z)< Al, for all positive A.

The above observation implies that the expected value of log (I/l*(Z)) lies in
O(log N). In turn, this implies that our search algorithm will find one qualifying line L2
in a number of iterations of step (2) which is expected to be O(log N). Since each
iteration of our revised search algorithm runs in O(N) time, the total expected time of
this algorithm is O(N log N). Q.E.D.

THEOREM 5. A near-ideal J-way polygon tree can be constructed in
(a) O(N2) worst-case runtime for any set Z;
(b) O(N logN) expected runtime for a set Z whose points are generated by the

uniform distribution on a bounded convex region.
Proof. We will prove only assertion (a) since assertion (b) has a similar verification.

Note that for any slope s and set Z of cardinality N, it is possible in O(Nv) runtime to
find a line L1 of slope s such that no more than [N/2] records lie on each side of LI (one
way to find this line is to again invoke the median element selection procedure of 1, pp.
97-99]). Applying J 1 iterations of the Theorem 4 procedure to line L 1, we can obtain
lines LEL3’’" Lj such that each of the open regions in Fig. 5 contain no more than
[N/2J] records. Since constant J does not appear in our estimates of asymptotic
values, the preceding J-way division is constructed in O[(Nv)2] runtime. Now given this
complexity, we wish to show that O(N) is a bound on the total time to construct a
near-ideal J-way tree.

Consider a topdown procedure for constructing J-way trees similar to the one
discussed in the proof of Theorem 2. Let V(d) denote the set of internal nodes at depth

POLYGON RETRIEVAL 163

d in a near-ideal tree. The last paragraph implies that the total time spent constructing
the J-way divisions of depth d nodes is O[Y.v V(d (Nv)2]. Note that every node at this
depth in a near-ideal tree must satisfy N-<_ [N/2-1] also, it is easily seen that
Y. v(d N <-- N. Substituting the second and third terms into the first, we obtain that the
total time spent building the J-way division of depth d nodes is bounded by
O(N2/2d-1). Taking the sum of this quantity over all integers d, we derive O(N2) as the
worst-case cost of building a near-ideal polygon tree. Q.E.D

Polygon trees can be efficiently manipulated in a dynamic environment as a forest
with techniques similar to those proposed in [5], [22], [24] and more recently in [18].
Reasoning similar to that in [24] can be generalized to show that traditional tree
balancing methods should not be applied to dynamically changing polygon trees.

5. Further research. Six open questions about the complexity of polygon retrieval
are raised in this section. Both upper and lower bounds in answer to these questions
would be interesting.

Question 1. Is it possible to construct near-ideal J-way polygon trees in better
than worst-case time O(N2)? The large gap between the two runtimes in Theorem 5
suggests that better runtime may be possible.

Question 2. Let A denote an open and bounded region on the plane, /z a
probability density which is defined on A and has a bounded derivative, Z a set of N
elements generated by probability density/z, T a J-way near-ideal polygon tree that
satisfies the alternating condition of Comment 7, and B the set of boundary lines that
divide the ranges of the nodes of depth d in T. This author conjeCtures that the
intersection of B with set A will have an aggregate length of expected magnitude
0((2J)/2). Is this conjecture true? If so, then it can be proven that polygon trees will
have an expected locate query time O(x//) for such an input distribution.

Question 3. A class of trees will be said to be universal if and only if every set of
elements can be represented as a tree of this form. In this terminology, Theorem 2 can
be interpreted as stating that near-ideal polygon trees are universal and Comment 4 as
indicating that near-ideal quad trees are not universal. An important open question is
whether better polygon retrieval times can be obtained with other universal classes of
data structures, perhaps occupying more memory space. Researchers investigating this
question should keep in mind that one can easily be misled by alternate data structures
that appear to have a better worst-case retrieval time than the N77 performance of
3-way polygon trees until it is realized that they are not universal. This author has an
uneasy suspicion that it may be difficult to improve asymptotic retrieval time without a
prohibitive increase in memory space. For instance, how much memory space is
necessary to achieve log N worst-case polygon locate time?

Question 4. Are the natural three and four dimensional generalizations of polygon
trees universal? This author has determined that their five-dimensional generalization
is not! 3 What universal classes of data structures will generalize the results of this paper
in higher dimensions?

Question 5. Note that any algebraically defined set over the x, y-plane, generated
by the primitives of addition, subtraction,, and scalar multiplication, has linear boun-
daries and therefore can be efficiently queried with a polygon tree. For instance, the set
of points satisfying "y > 0 AND y < 2x AND y < 1- 2x" is an isosceles triangle and

This is because Lemma 4 does not generalize for dimension k >_- 5. Note that this generalization would
consist of using k distinct (k-1)-dimensional hyperplanes for dividing k-space into 2 volumes. Since
2 > k when k _-> 5, there are more constraints than degrees of freedom when k -> 5. This means a division

is not possible for arbitrary values of hi.

164 D.E. WILLARD

therefore can be easily handled by this data structure. What can be said about more
complex queries that employ multiplication of variables such as for instance "xy >
1 AND x + y < 2"? Does there exist a universal class of data structures that occupies a
reasonable amount of memory space and serves these queries in better than O(N)
worst-case locate time?

Question 6. For an arbitrary data structure in a dynamic setting, what are the lower
bounds on the tradeoits between worst-case record insertion, deletion, and polygon
retrieval times? This question was raised by Fredman [11], and Fredman also
conducted the initial research in this topic.

Acknowledgment. I would like to thank the referee for having carefully read this
article and for his several useful comments and observations.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. L. BENTLEY, Multidimensional binary search trees used for associative searching, Comm. ACM, 18
(1975), pp. 509-517.

[3],Multidimensional binary search trees, Comm. ACM, 23 (1980), pp. 214-228.
[4] J. L. BENTLEY AND H. A. MAURER, Efficient worst-case data structures for range searching, Acta

Inform., 13 (1980), pp. 155-168.
[5] J. L. BENTLEY AND J. B. SAXE Decomposable searching problem # 1: static to dynamic trans-

formation, J. Algorithms, (1980), pp. 301-358.
[6] J. L. BENTLEY AND D. F. STANAT, Analysis of range searches in quad trees, Inform. Proc. Letters, 3

(1975), pp. 170-173.
[7] J. L. BENTLEY AND M. I. SHAMOS, A problem in multi-variate statistics: algorithm, data structure, and

applications, Proc. 15th Allerton Conference on Communications, Control, and Computing, 1977,
pp. 193-201.

[8] B. CHAZELLE AND D. DOBKIN, Decomposing a polygon into its convex parts, Proc. lth. ACM
Symposium on Theory of Computing, 1979, pp. 38-45.

[9] D. DOBKIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp.
181-186.

[10] R. A. FINKEL AND J. L. BENTLEY, Ouad trees: a data structure for retrieval on composite keys, Acta
Inform., 4 (1974), pp. 1-9.

[11 M. L. FREDMAN, The inherent complexity ofdynamic data structures which accommodate range queries,
Proc. 21st IEEE Symposium on Foundations of Computer Science, 1980, pp. 191-200.

12 ,Lower bounds on the complexity ofsome optimal data structures, this Journal, 10 (1981), pp. 1-11.
[13], A lower bound on the complexity of orthogonal range queries, J. Assoc. Comput. Mach., to

appear.
[14] G. S. LUEKER, A transformation for adding range restriction capability to dynamic data structures for

decomposable search problems, Tech Rep # 129, Department of Computer Science, Univ. of
California at Irvine.

[15] G. S. LUEKER AND D. E. WILLARD, A data structure for dynamic range queries, forthcoming report.
[16] D. T. LEE AND C. K. WONG, Worst-case analysis for region and partial region searches in multi-

dimensional binary search trees and balanced quad trees, Acta Inform., 9 (1977), pp. 23-29.
[17] ., Ouintary trees: a file structure for multidimensional database systems, ACM Trans. Database

Systems, 5 (1980), pp. 339-353.
[18] M. H. OVERMARS AND J. VAN LEEUWEN, Two general methods for dynamizing decomposable

searching problems, Computing, 26 (1981), pp. 155-166.
[19] R. L. RVEST, Partial match retrieval algorithms, this Journal, 5 (1976), pp. 19-50.
[20] D. E. WILLARD, Predicate-oriented database search algorithm, Ph.D. thesis, Mathematics Department,

Harvard Univ., Cambridge, MA, disseminated as one of volumes in Garland Publishing Company’s
series of "Outstanding Dissertations in Computer Science."

[21 New data structures for orthogonal range queries, Tech. Rep. TR-22-78, Harvard Aiken Comp.
Lab, Cambridge, MA, Nov., 1978.

POLYGON RETRIEVAL 165

[22],BalancedforestsofK-d Trees as a dynamic data structure, Tech. Rep. TR-23-78, Harvard Aiken
Comp. Lab., Cambridge, MA, Nov., 1978.

[23],The super-B tree algorithm, Tech. Rep. TR-79-03, Harvard Aiken Comp. Lab, Cambridge, MA.
[24] ., K-d Trees in a dynamic environment, Tech. Rep. 80-1, Computer Science Department,

University of Iowa, Iowa City, May, 1980.
[25] D. E. WILLARD AND G. S. LUEKER, A transformation for adding range restriction capability to data

structures, forthcoming report.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0013 $01.00/0

A POLYNOMIAL TIME ALGORITHM FOR DECIDING
THE EQUIVALENCE PROBLEM FOR

2-TAPE DETERMINISTIC FINITE STATE ACCEPTORS*

E. P. FRIEDMANS" AND S, A. GREIBACH:

Abstract. The equivalence problem for the class of one-way deterministic 2-tape finite state acceptors
is the problem of deciding "L(M1) L(Ma)", where M1 and M2 are machines in this class. A new algorithm
for deciding equivalence is provided, having time complexity proportional to p(n), where p is a polynomial
and n is the size of the machines. This improves upon the best previously known upper bound having
order 2cn6, where c is a constant [C. Beeri, Theoret. Comput. Sci., 3 (1976), pp. 305-320].

Key words, deterministic, equivalence problem, finite state acceptors, multitape automata, polynomial
time, 2-tape acceptors

1. Introduction. Consider the class of deterministic finite state machines with
tapes, each with its own read-only head moving from left to right. The equivalence
problem for machines in this class has remained open for t->_ 3 since it was originally
posed [6]. Rabin and Scott [61 showed that equivalence is decidable for 1, and
this problem was later proven to have time complexity of order nG(n), where n is
the size of the machines and G(n) is a function which grows extremely slowly [1], [5].
Although the equivalence problem remains decidable for nondeterministic single-tape
machines [6], the problem becomes undecidable for classes of nondeterministic
machines with more than one tape [4], [7]. Hereafter we restrict our attention to
deterministic devices.

Equivalence for the case 2 was first shown to be decidable by Bird [3]. Later,
Valiant [8], [9] provided a different algorithm for determining equivalence of 2-tape
acceptors, and his algorithm was modified by Beeri [2], yielding an upper bound on
the time complexity of 2cn6, where c is some constant and n is the size of the machines.
In this paper we provide another algorithm for determining equivalence of 2-tape
acceptors, but with the time complexity reduced from an exponential bound to a
polynomial one.

In 2, we establish notation and define 2-tape deterministic finite state acceptors
formally. In 3, we provide an exponential time algorithm for determining equivalence
between two states of a single 2-tape acceptor. In 4 we build upon the ideas in this
algorithm to obtain a polynomial time algorithm for deciding equivalence. The remarks
in 5 indicate how this algorithm can be improved to have time complexity of order
n 4, where n is the size of the machines. All complexity bounds are given for execution
on a RAM under the uniform cost criterion (cf. [1] for discussion of this concept).

2. Preliminaries. A 2-tape deterministic finite-state acceptor (abbreviated 2-dfsa)
is denoted by M (K1, K2, Z, 6, q0, F), where K1 and K2 are disjoint finite sets of
states, with K1 controlling tape 1 and K2 controlling tape 2, E is a finite set of input
symbols, qo in K1 LIK is the initial state, F a subset of K1 U K2 is the set of accepting
or final states, and 6 ((K1U K.)x E) (K1U K2) is the transition [unction.

* Received by the editors August 16, 1979, and in final form February 5, 1981. This research was
supported in part by the National Science Foundation under Grant MCS-78-04725.

Radar Systems Group, Hughes Aircraft Company, Bldg. R1, Mail Station B218, P.O. Box 92426,
Los Angeles, California 90009 and Computer Science Department, University of California, Los Angeles,
California 90024. This work was completed while this author was at the Software Engineering Laboratory,
Radar Systems Group, Hughes Aircraft Company, El Segundo, California.

$ Computer Science Department, University of California, Los Angeles, California 90024.

166

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 167

Let e denote the empty word, Ix[, the length of word x, and I(u, v)[lu[+ I 1, the
length of pair (u, v). We say that x is a suffix of y if y zx for some z; it is a proper
suffix if x y. We let [S[denote the cardinality of finite set S.

We write 8(p, a)=q as p--(a, e)q when p is in KI and as pro(e, a)q when
p is in K2, and call it a 1-step computation. We let p--(e, e) p trivially for any p in
K1 K2; for any p, q, r in KI K2 and u, v, x, y in X*, if p(u, v)- q and q(x, y) r,
we write pm(ux, vy) r, and call it a computation; this computation is said to have
length [(ux, vy)]. A state q is accessible from a state p if pro(u, v) q for some u, v
in Y_,*, and accessible if it is accessible from the initial state qo.

The language accepted from state p is

L(p)={(u, v)[p--(u, v)q for some q in F}

and the language accepted by M is L(M)= L(qo). A pair (u, v) is accepted by M if
it is in L(M); otherwise, it is rejected.

The left quotient of L(p) by pair (x, y), denoted (x, y)\L(p), is the set

{(u, v)[p(xu, yv) r for some r in F}.

Two states p and q are equivalent if L(p)= L(q). Two machines are equivalent
if their initial states are equivalent. If p q and (u, v) is in (L(p)-L(q)) t_J (L(q)-L(p)),
then (u, v) distinguishes p and q. If L and L’ are subsets of E* E*, L L’, and (u, v)
in in (L- L’)t_J (L’-L), then (u, v) distinguishes L and L’.

The state equivalence problem for 2-dfsa’s is the problem of deciding "L(p)=
L(q)" where p and q are states in a 2-dfsa. The equivalence problem for 2-dfsa’s is
the problem of deciding "L(M1)= L(M2)" where Mx and M2 are 2-dfsa’s.

3. The simulating machine. In this section we develop the main ideas to be used
in our algorithm for deciding equivalence of 2-dfsa’s. The construction is illustrated
by first describing a less efficient mechanism for deciding whether "L(p)= L(q)", for
p and q two states in an arbitrary 2odfsa M. In 4 we build upon this construction
to obtain the desired polynomial time algorithm for deciding equivalence. But first,
our strategy is to simulate the two computations of M by a single 2-dfsa whose finite
tate control encodes the information needed to carry out this simulation. This
simulator rejects all input tape pairs if and only if L(p)=L(q). As expected, our
method uses some of the ideas first developed by Valiant [8] and later modified by
Beeri [2].

Let M (K1, Kz, Z, 6, qo, F) be any 2-dfsa and p, q be any two states in K1U Kz.
We would like to construct a simulating machine S(M, p, q) to simulate at the same
time two computations ofM on the same input tape pair, one from state p and another
from state q, and accept if and only if L(p) L(q). This will provide the required
algorithm because emptiness is decidable for 2-dfsa [6].

Consider the operation of a "naive" simulator on input tape pair (xu, yv). If

and

p(x, yv)- r

q--(xu, y) s

with 1.1 (both computations have read the same number of input symbols, namely
Ixl / ly l- Ixul / lyl). then the naive simulator might record this in its finite state control
as

{(r, u, e), (s, e, v)].

168 E. P. FRIEDMAN AND S. A. GREIBACH

State [(r, u, e), (s, e, v)] means that the simulated computation continuing from state
r, hereafter called the LEFT computation, must simulate reading the string of stored
symbols u that the other computation, called the RIGHT computation, has "read
ahead" on tape 1; similarly, the RIGHT computation must simulate processing the
string v on tape 2 that the LEFT computation has read ahead and stored. Therefore,
this state represents testing whether (u, e)\L(r) (e, v)\L(s). But observe that the two
computations being simulated may operate on the tapes in quite different manners.
For example, the LEFT computation might search down tape 1 until it reads some
designated symbol before starting to read tape 2, whereas the RIGHT one might
search tape 2 first. Thus, the naive simulator discussed above will not work in general,
since there is no a priori bound on the length of the strings u or v that it would need
to store in state [(r, u, e), (s, e, v)].

The first modification that we discuss is called the "semi-naive" simulator. This
simulator keeps the two computations in synchronism on tape 1, but allows one of
the computations to read ahead on tape 2 (and store the symbols read) while the
other is waiting to read tape 1. For example, if

pu(x, yv r

and

qu(x, y)- s

for s in K1, then the semi-naive simulator reads input (x, yv) and records this in its
finite state control as

[(r, e), (s, v)].

State [(r, e), (s, v)] means that the LEFT computation has read ahead on tape 2 and
stored the string v of symbols read for the RIGHT computation to operate on later.
Hence, this state represents testing whethel L(r) (e, v)\L(s). The LEFT computation
keeps reading symbols from tape 2 and storing them until it needs to read tape 1. At
that time, both the LEFT and RIGHT computations read a symbol from that tape.
As before the RIGHT computation must perform actions on the stored string before
processing real symbols from tape 2. We do not consider the problem of identifying
when the RIGHT computation reads ahead on tape 2 instead of the LEFT one. This
is not important to the discussion at hand. Even without these details, however, we
can see that our semi-naive simulator is no better than the other; there is no bound
on the length of v.

How do we get around this problem? Consider a computation of the semi-naive
simulator that reaches a state

[(r, e), (s, v)]

for some r in Kz, s in K1, after having previously reached a state

[(r, e), (t, w)]

for some in K1, and where either s or w v. The simulating machine $(M, p, q)
that we shall construct is able to recognize this situation. When in such a state
[(r, e), (s, v)], it no longer continues the simultaneous computations from states r and
s, testing whether L(r) (e, v)\L(s). Instead, it changes to a state of the form

[(t, w), (s, v)]

to test whether (e, w)\L(t) (e, v)\L(s). We call such an action a REPLACEMENT.

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 169

How can we justify this? Lemma 3.2(3) and Theorem 3.3 guarantee that such a
state change is fail-safe. At the time such a change would occur, $(M, p, q) is testing
whether L(r)= (e, v)\L(s). If tape pair (x, y) distinguishes L(r) and (e, v)\L(s), then
either (x, y) distinguishes L(r) and (e, w)\L(t), or (x, y) distinguishes (e, v)\L(s) and
(e, w)\L(t). On the other hand, if L(p)= L(q), then (e, v)\L(s)= L(r)= (e, w)\L(t).

After such a REPLACEMENT has occurred, the LEFT computation must
simulate reading stored string w before reading "real" input symbols on tape 2, and
the RIGHT computation must simulate reading stored string v before reading "real"
symbols on tape 2. Both computations keep reading real symbols from tape 1 in
synchronism, as necessary. This process continues until one of the computations has
read all of its stored symbols. Let us say that S(M, p, q) gets into a state of the form

[(t’, e), (s’, v’)]

for v’ a suffix of v. Here, only the RIGHT computation still has stored information
remaining, so now we can continue the operation as discussed before the
REPLACEMENT.

But how do we handle the case where

E(t’, w’), (s’, e)]

occurs for w’ a suffix of w, so that only the LEFT computation still has stored
information? Since we are testing whether (e, w’)\L(t’)= (e, e)\L(s’), we can reverse
the ordering of the computations and record this as

[(s’, e), (t’, w’)].

So now, only the RIGHT computation has stored string w’ it must preprocess, and
the operation of the simulator can continue as before the REPLACEMENT.

There is one problem remaining with the implementation of the simulating
machine S(M, p, q). It must have some mechanism for remembering previously reached
states in order to perform the REPLACEMENT action from state [(r, e), (s, v.)] to
state [(t, w), (s, v)]. We shall see that this can be done with a finite amount of memory.
We shall discuss the states as though they were composed of two segments. One
segment, called CURRENT, has the form of the states we have been describing; e.g.,
[(r, e), (s, v)] and [(t, w), (s, v)]. The other segment, called HISTORY, will contain the
relevant past history of states visited by $(M, p, q) which enables it to determine
proper REPLACEMENTs when necessary. The actual structure of the HISTORY
segment will be shown later.

The construction of simulating 2-dfsa $(M, p, q) is sketched below. The operation
follows the outline above until it recognizes that one of the computations would accept
an input tape pair and the other would not accept this pair. When this occurs, $(M, p, q)
accepts, and this is the only situation in which $(M, p, q) can accept an input tape
pair. Thus, we can see that L(p)= L(q) if and only if L($(M, p, q))= .

Let M (K1, K2, Z, 6, q0, F) be a 2-dfsa. Let K K1 U K2, and let p, q be any
two states in K. Simulating machine $(M, p, q) will have a special state ACCEPT,
which is the only final state, that it enters when it knows that L(p) L(q). Once in
state ACCEPT the machine remains there, reading symbols from tape 1.

Machine S(M, p, q) also has a set of nonaccepting states having two segments
[HISTORY, CURRENT]. We call these latter types of states SIMULATING states.

The CURRENT segment of a SIMULATING state is of the form

[(r, u), (s, v)]

170 E. P. FRIEDMAN AND S. A. GREIBACI-I

for r, s in K, u, v in E* with 0-<_ I1, 1I IK.I. We call u the LEFT CURRENT word
and v the RIGHT CURRENT word.

The HISTORY segment of a SIMULATING state is an n-tuple, n IK=I, record-
ing the relevant past history of the LEFT and RIGHT computations, which enables
it to determine proper REPLACEMENTS. Each component of this n-tuple is associ-
ated with a state in K2, say r; we call this the r component of the HISTORY segment
and denote it by HISTORY(r).

The r component of HISTORY has the form either

NIL

or

(S, W)

for w in ,E*, 0 -<lw I< Igl, and s in K1.
When HISTORY(r) is NIL, then simulating machine S(M, p, q) has never been

in a state with CURRENT segment of the form [(r, e), (t, u)], for any state in gl or
string u. Otherwise, when the r component is (s, w), then machine S(M, p, q) has
previously been in a state with CURRENT segment [(r, e), (s, w)]. Thus, HISTORY(r)
records a string that the LEFT computation in state r has read ahead of the RIGHT
computation on tape 2; HISTORY also records the state in Kx that the RIGHT
computation was in at that time.

Machine S(M, p, q) starts in the SIMULATING state with CURRENT segment
[(p, e), (q, e)], and HISTORY segment having NIL for each component. This corres-
ponds to the initial situation where both computations are in synchronism, with the
LEFT in state p, the RIGHT in state q, and no past HISTORY.

Now we shall consider the operation of S(M, p, q) in a SIMULATING state. To
facilitate the presentation, we classify the ’action of a SIMULATING state as being
one of two basic types: READ and PREPARATION. When S(M, p, q) performs a
READ type action, it simulates a single step of the LEFT computation on an input
symbol of the tape indicated; a step of the RIGHT computation is also simulated on
this symbol when the state of the RIGHT computation reads the same tape as the
LEFT and no stored symbols remain to be processed on that tape. Before S(M, p, q)
can perform another READ type action, it may make several PREPARATION type
actions. A PREPARATION type action adjusts the CURRENT and HISTORY
segments, performs REPLACEMENTs and other actions necessary to put the simula-
tion in proper form for performing another READ type action. We relax our definition
of a 2-dfsa to allow PREPARATION type actions of S(M, p, q) not to read any
symbols from the input tapes. This will not affect our results as the machine will
remain deterministic. When a rule is not defined for a SIMULATING state, then it
is because this state is not accessible; the transition from such a state is irrelevant.

I. PREPARATION type actions. Suppose S(M, p, q) attempts to execute a PRE-
PARATION type rule when it has CURRENT segment

[(r, u), (s, v)]

where 0-<lul, I I IK=I, S(M, p, q) examines the possibilities in the order indicated
below. If the CURRENT segment does not meet the requirements of any of the
actions, it performs a READ type action, as specified in II below. Otherwise,
PREPARATION type actions are performed on input (e, e). After each such action,

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 171

S(M, p, q) tries to execute another PREPARATION type action (except when it goes
to ACCEPT after action 4).
(1) UNPACK LEFT

If r is in K2 and u au’ for some a in , then the CURRENT segment is
changed to

[(6(r, a), u’), (s, v)].

(2) UNPACK RIGHT
Ifs is inK2 and v=av
changed to

for some a in E, then the CURRENT segment is

[(r,u),(6(s,a),v’)].

(3) SWITCH
If r is in Ka and either (a) u e v, or (b) s is in K2 and u e v, then the
CURRENT segment is changed to

[(s, e), (r, u)].

(4) ACCEPT
Go to ACCEPT in the following two situations where there is some w such
that (w, e) distinguishes (e, u)\L(r) and (e, v)\L(s):

(i) w e and (e, e) distinguishes (e, u)\L(r) and (e, v)\L(s),
(ii) w # e, state r is in K2, u e, state s is in K1, and (w, v) is in L(s).

(5) HISTORY-RECORDING
If r is in K2, s is in K1, u e, and HISTORY (r)= NIL, then change this
HISTORY component to (s, v).

(6) REPLACEMENT
If r is in K2, s is in K1, and HISTORY (r) (t, x) # (s, v), then the CURRENT
segment is changed to

[(t,x),(s,v)].

II. READ type actions. Simulating machine S(M, p, q) performs a READ type
action when the CURRENT segment does not satisfy the requirements for any
PREPARATION type action.

During a READ type action, S(M, p, q) simulates a 1-step computation of both
the LEFT and RIGHT computations on the same input tape whenever possible.
Otherwise, it simulates a 1-step computation of just the LEFT computation. After
any such action, S(M,p, q) performs as many PREPARATION type actions as
possible.

There are three cases.
(1) BOTH READ TAPE 1

If r and s are both in K1, then S(M, p, q) reads a symbol, say a, from tape
1 and changes the CURRENT segment to

[(6(r, a), u), (6(s, a), v)].

(2) BOTH READ TAPE 2
If r and s are both in K2 and u v e, then $(M, p, q) reads a symbol, say
a, from tape 2 and changes the CURRENT segment to

[(6(r, a), e), (a(s, a), e)].

172 E. P. FRIEDMAN AND S. A. GREIBACH

(3) READ-AHEAD
If r is in K2, s is in K1, and u e, then $(M, p, q) reads a symbol, say a, from
tape 2 and changes the CURRENT segment to

[(6(r, a), e), (s, va)].

This concludes the construction of $(M, p, q). The next theorem shows that
$(M, p, q) is well defined. In particular, there exists a bound on the lengths of the
strings stored in the CURRENT and HISTORY segments of a SIMULATION state.
Because machine $(M, p, q) is constructed only to illustrate the ideas behind the
algorithm of the next section, we omit the proof.

TtlEOREM 3.1. Let S be an accessible SIMULATING state of $(M, p, q) with
CURRENT segment [(r, u), (s, v)]. The following statements hold.

(1) lul < Ig21,
(2) <= IK21,
(3) For each in K2, if HISTORY (t) has the form (t’, w), then

The next lemma gives important properties of S(M, p, q) needed to establish our
desired result, that L(S(M, p, q))= if and only if L(p)= L(q). Each part verifies
the validity of a rule of the simulating machine. The proof is straightforward and is
therefore omitted.

LEMMA 3.2.
(1) UNPACKING TAPE 1

If r is in K1 and r--(a, e)-+ r’ for a in , then for any u, v in ,*,

(au, v)\L(})= (u, v)\L(r’).

(2) UNPACKING TAPE 2
If s is in K2 and s--(e, a)+ s’ for a in , then for any u, v in *,

(u, av)\L(s)= (u, v)\L(s’).

(3) REPLACEMENT
If r is in K2, s,. are in K1, u, V are in *, then

L(r) (e, u)\L(s) and L(r) (e, v)\L(t) if and only if
L(r) (e, u)\L(s) and (e, u)\L(s)= (e, v)\L(t).

(4) STRAIGHT SIMULATION
(A) TAPE 1

If r and s are in K1, then for all u, v in Z*, (e, u)\L(r) (e, v)\L(s) if
and only if
(a) (e, e) does not distinguish (e, u)\L(r) and (e, v)\L(s)

(B)

and

and

(b)]:or all a in , (e, u)\L(8(r, a))= (e, v)\L(6(s, a)),
TAPE 2
If r and s are in K2, then L(r)= L(s) if and only if
(a) (e, e) does not distinguish L(r) and L(s)

(b) for all a in , L(8(r, a))= L((s, a)).

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 173

(5) READ-AHEAD SIMULATION
If r is in K2, s is in Kx, and v is in E*, then L(r) (e, v)\L(s) if and only if
(A) (e, e) does not distinguish L(r) and (e, v)\L(s),
(B) for all u in ,+, (u, v) is not in L(s)
and
(C) for all a in Z, L(6(r, a))= (e, va)\L(s).

We claim that if p and q are equivalent, then S(M, p, q) never enters state
ACCEPT for any input pair. Moreover, if p is not equivalent to q, then there is some
input pair which takes $(M, p, q) to state ACCEPT. This is captured in Theorem 3.3
below. Again, because S(M, p, q) will not be used in our final algorithm, we omit the
proof.

THEOREM 3.3. LetM (K1, Kz, , 6, qo, F) be a 2-dJ’sa, let p, q be any two states
in K1 U K2, and let S(M, p, q) be constructed as described earlier. Then

if and only if

L(p)=L(q)

L(S(M,p,q))=.

4. The equivalence algorithm. The SIMULATING machine S(M, p, q) described
in the last section provides an exponential time algorithm for testing equivalence of
states in a 2-dfsa. In this section we improve this bound by the following argument.

Notice first that if S and $’ are two accessible SIMULATING states, with
respective CURRENT segments [(r, e), (s, v)] and [(r, e), (s’, v’)], then it would be
valid to use (s, v) for a REPLACEMENT for S’ into a state with CURRENT segment
[(s, v), (s’, v’)]; S’ need not be accessible from S. Second, a careful study of S(M, p, q)
would show that if L(p) L(q), then there is a path from So to ACCEPT during
which all states have distinct CURRENT segments. This suggests building the access-
ible submachine of S(M, p, q) and simultaneously testing for emptiness, i.e., whether
or not ACCEPT is accessible from So. Only the CURRENT segments of the SIMU-
LATING states are stored, while a uniform HISTORY (the same for all SIMULAT-
ING states) is constructed with space for exactly IK21 entries. (In the notation of
Valiant [9] and Beeri [2], the uniform HISTORY is a REPLACEMENT function
constructed along with S(M, p, q).) When a new accessible state S with CURRENT
segment [(r, e), (s, v)] is found, the r component of HISTORY is set to (s, v) if
previously NIL; if the r component of HISTORY is (t, u) (s, v), then a SIMULAT-
ING state with CURRENT segment [(t, u), (s, v)] is constructed. An overall list of
CURRENT segments of accessible states is kept along with a pushdown store of
CURRENT segments of accessible but unexamined states. Essentially the algorithm
performs a depth-first search of accessible states looking for ACCEPT. If ACCEPT
appears on the overall list, L(p)L(q); if the pushdown store is emptied before
ACCEPT appears, then L(p) L(q). The details of the algorithm are presented below.

To determine whether two states in a 2-dfsa are equivalent, we apply procedure
EQUIVALENCE to 2-dfsa M (K1, K2, , t, q0, F) and states p, q in K (_J Kz, which
are inputs to the program. Eventually EQUIVALENCE, or one of the procedures
that it invokes, will HALT and print either "L(p)=L(q)" or "L(p)L(q)", as

appropriate. EQUIVALENCE and all other procedures in this section are written in
a dialect of Pidgin ALGOL; the reader is referred to [1] for more details.

Three global data structures are central to the operation of the algorithmLIST,
STACK, and HISTORY. LIST is a list of CURRENT segments of states in machine

174 E. P. FRIEDMAN AND S. A. GREIBACH

$(M, p, q) that the algorithm has found to be accessible. Stack (i.e., pushdown store)
structure STACK holds those elements of LIST whose immediate successors in
S(M, p, q) have not yet been examined. HISTORY is a IK21 element vector holding
the relevant HISTORY components. To begin, both STACK and LIST contain the
single element [(p, e), (q, e)]; each component of HISTORY is NIL.

EQUIVALENCE searches through the elements in STACK looking for
ACCEPT. If STACK empties without finding ACCEPT to be accessible, then
EQUIVALENCE halts and prints "L(p)=L(q)". Otherwise, EQUIVALENCE
removes the elements from STACK, one by one, from the top. Suppose the topmost
element is $ =[(r, u), (s, v)]. Procedure ACCEPT(S) is invoked to determine if
$(M,p,q) would enter state ACCEPT (PREPARATION rule of type (4). If
ACCEPT(S) returns value "YES", then EQUIVALENCE halts and prints "L(p)
L(q)". If the value returned is "NO", then the algorithm continues by placing those
CURRENT segments in S(M,p, q) that are immediate successors of S onto the
STACK for later examination by EQUIVALENCE. This is accomplished by
procedure EXAMINE(S) and the subroutines that it invokes.

First, procedure EXAMINE performs a HISTORY-RECORDING action
(PREPARATION rule of type 5) when necessary. Second, if S(M,p,q) could
perform a READ type action when having CURRENT segment S, procedure
EQUIVALENCE invokes subroutine NEXT. NEXT finds all possible CURRENT
segments resulting from a single READ move (for each symbol in E), and stores them
in both LIST and STACK if they are not already in LIST, that is they have not
previously been found accessible. Otherwise, when S indicates that S(M, p, q) could
not perform a READ action, EXAMINE calls subroutine PREPARATION to see
if either an UNPACK, SWITCH or REPLACEMENT type action would be indicated
by the SIMULATING machine. The resulting CURRENT segment from such a
move is placed on both STACK and LIST, if not already in LIST. The detailed
definitions of procedures EQUIVALENCE, ACCEPT, NEXT, EXAMINE, and
PREPARATION follow.

procedure EQUIVALENCE:
begin

STACK [(p, e), (q, e)];
LIST- [(p, e), (q, e)];
HISTORY- NIL;
while STACK not empty do

begin
S -top element of STACK;
pop STACK;
if ACCEPT(S)= "YES" then

begin
print "L(p) L(q)";
halt

end
else

EXAMINE(S)
end

print "L(p)=L(q)";
halt

end

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 175

procedure ACCEPT(S):
being

comment Suppose that $ has form [(r, u), (s, v)];
if (e, e) distinguishes (e, u)\L(r) and (e, v)\L(s) then

return ("YES")
else

if u e, r is in K2, s is in Ka,
and there exists some w e such that
(w, v) is in L(s) then
return ("YES")

else
return ("NO")

end

procedure EXAMINE(S):
begin

comment Suppose that $ has form [(r, u), (s, v)];
if r is in K2, s is in Ka, u e

and HISTORY (r)= NIL, then
HISTORY (r) (s, v);

if r and s are in Ka, or
r and s are in K2, u v e, or
r is in Kz, s is in Ka, u e, HISTORY (r)= (s, v) then

NEXT(S)
else

PREPARATION(S)
end

procedure NEXT(S):
begin

comment Suppose that S has form [(r, u), (s, v)];
for each a in do

begin
comment BOTH READ TAPE 1;
if r, s are in K1 then

S [(8(r, a), u),.(6(s, a), v)];
comment BOTH READ TAPE 2;
if r, s are in K2, u v e then

Sa -[(6(r, a), e), (6(s, a), e)];
comment READ-AHEAD;
if r is in Kz, s is in K1, u e, then

Sa [(6(r, a), e), (s, va)];
comment ADD NEW ELEMENT TO STACK AND LIST;
if S is not in LIST then

begin
add S to LIST;
push S onto STACK

end
end

end

176 E.P. FRIEDMAN AND S. A. GREIBACH

procedure PREPARATION(S):
begin

comment Suppose that S has form [(r, u), (s, v)];
comment UNPACK LEFT or RIGHT;
if r is in K2, u au’, a is in E then

Sp [(6(r, a), u’), (s, v)]
else

if s is in K2, v av’, a is in E then
Sp [(r, u), ((s, a), v’.)];

comment SWITCH;
if r is in K1, v e, and either u # e or s is in Kz then

Sp [(s, e), (r, u)];
comment REPLACEMENT;
if r is in K2, s is in K1, u e,

and HISTORY (r) (s’, v’) # (s, v) then
S,, ,- [(s’,v’), (s, v)];

if Se is not on LIST then
begin

add Sp to LIST;
push Sp onto STACK;

end
end

This concludes the definition of our algorithm for determining equivalence of
states in a 2-dfsa. The next several lemmas establish that our procedure is well-defined,
in particular, that the lengths of the strings stored in elements of LIST, STACK, and
HISTORY are bounded. We shall then show that the algorithm always halts, and
gives the correct answer as to whether or not L(p)= L(q) in time O(nlZ), where n is
the size of machine M. First we need some notation.

Let I denote the number of input symbols in M, so ! 15:1. At time during the
execution of the algorithm we have the following values defined.

HISTORYSIZE]{r HISTORY (r) NIL}I,
HISTORYWORD {v HISTORY (r)= (s, v)},

MAX 111 v is in HISTORYWORD},
HISTORYWORDSZE if HSTORYWORD

1, if HISTORYWORD
SUFFIX {xlx is a suffix of some word in HISTORYWORD},
SUFFIXPLUS {xalx is in SUFFIX, a is in

HISTORYSIZE is the number of the components of the HISTORY vector that are
not NIL at time t; HISTORYWORD contains all nonNIL strings stored in HISTORY
and HISTORYWORDSIZE gives the maximum length of any such string. SUFFIX
contains all suffixes of words stored in HISTORY, whereas words in SUFFIXPLUS
have an additional input symbol concatenated on the right. We make the following
observations"

ISUFFIX] =< (HISTORYSIZE)(HISTORYWORDSIZE + 1),
ISUFFIXPLUSI _-< (I)(ISUFFIX[)

<_- (I)(HISTORYSIZE)(HISTORYWORDSIZE + 1),
HISTORYSIZE -<_
The following lemma is immediate from the comments above.

EIUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 177

LEMMA 4.1. Upon any call of EXAMINE(S) from procedure EQUIVALENCE,
the following conditions must hold.

(1) $1 S is in LIST but not in STACK if and only if EXAMINE(S1) has been
called previously.

(2) If HISTORY (r)= (s, v), then [(r, e), (s, v)] is in LIST but not in STACK; so
[(r, e), (s, v)] was previously on the top of STACK.

(3) $ has never been on top of STACK before.
We can now state the Bounding Lemma needed to establish bounds on the size

of the words stored in the data structures.
LEMMA 4.2 (Bounding lemma). Upon any call of EXAMINE(S) from procedure

EQUIVALENCE, the following two conditions hold.
(1) HISTORYWORDSIZE < HISTORYSIZE.
(2) If [(r, u), (s, v)] appears in LIST, then either u v e or both u is in SUFFIX

and v is in SUFFIX U SUFFIXPLUS.
Proof. We proceed by induction on the number of times that EXAMINE has

been called. Both (1) and (2) hold trivially initially.
Suppose that (1) and (2) hold upon the current call of EXAMINE (S), and

$ =[(r, u), (s, v)]. It suffices to show that (1) and (2) hold after the execution of
EXAMINE (S), since when the ACCEPT subroutine returns value "YES" the
algorithm terminates.

Either NEXT (S) or PREPARATION (S) is executed. Suppose that NEXT (S)
is executed. Then for each a in 2,, a value of Sa is determined. There are two cases.
If both r and s are in K1 or both r and s are in K2, then Sa is of the form [(r’, u), (s’, v)],
so (2) holds whether or not $ is added to LIST. Also, HISTORY is unaffected so
(1) still holds. If r is in K2, s is in K1, u e and at the time NEXT (S) is executed
HISTORY (r) (s, v), then $ [(6(r, s), e), (s, va)]. Now if HISTORY (r) had been
(s, v) at the start of EXAMINE (S), then Lemma 4.1(2) insures that [(r, e), (s, v)]= S
would have been on the top of STACK previously, a contradiction to Lemma 4.1(3).
So at the start of EXAMINE (S), HISTORY (r) was NIL and it was reset to (s, v).
Thus HISTORYSIZE is increased by 1. At the start of EXAMINE (S), v is
in SUFFIXUSUFFIXPLUSU{e}, so IvI<-HISTORYWORDSIZE+I. Hence
HISTORYWORDSIZE is either unaffected or increased by 1. So after
EXAMINE (S) is executed, (1) holds and since v is now in HISTORY, va is il
SUFFIXPLUS, and (2) holds also.

On the other hand, suppose PREPARATION (S) is executed. If upon call of
EXAMINE (S), r is in Kz, s is in Ka, u e, and HISTORY (r) NIL, then NEXT (S)
would have been executed. Hence HISTORY is unaffected by PREPARATION (S),
so (1) holds afterwards. There are four cases. If an UNPACK is applied, $’ is of the
form [(r’, u’), (s’, v’)], where u’ is a suffix of u and v’ is a suffix of v, so (2) holds for
S’. If SWITCH is applied, v =e and S’=[(s, e), (r, u)], u in SUFFIX, so again (2)
holds for $’. In the remaining case (REPLACEMENT), r is in K2, s is in K1, u e,
HISTORY (r) (s’, v’) (s, v), and $’= [(s’, v’), (s, v)]. We still have v in SUFFIX
SUFFIXPLUS. By definition, v’ is in HISTORYWORD

SUFFIX. Hence (2) holds

after PREPARATION (S) in this case too.
Now we can establish upper bounds on the lengths of the words stored in entries

of LIST, STACK and HISTORY.
THEOREM 4.3. The following conditions must hold throughout the execution of the

algorithm.
(1) If HISTORY (r) (s, w), then Iwl < Ig21,

178 E.P. FRIEDMAN AND S. A. GREIBACH

(2) If [(r’, u), (s’, v)] appears in either LIST or STACK, then [u[<lKz[and

Proof. Statement (1) follows from the bounding lemma and the fact that
HISTORYSIZE_-<[K2I. Then (2)follows from (1) since either u=v=e or lul__<
HISTORYWORDSIZE and

We shall now establish an upper bound on the time needed to execute the
algorithm. Observe that before subroutine NEXT or PREPARATION can add an
entry to LIST, a search must first be made through LIST to determine whether this
entry was previously added. The length of LIST clearly affects the timing of the
algorithm, and the next theorem provides a bound on this length.

THEOREM 4.4. Let I I 1, k Ig21, N Igll / Ig21. Then the number of entries in
LIST is bounded by

(I + 1)N2k2(k + 1)2 __< (I + 1)N6.

and

so

and

Proof. By the bounding lemma (1), throughout execution of the algorithm

HISTORYWORDSIZE< k

HISTORYSIZE -<_ k,

[SUFFIXI _-< k 2

]SUFFIXPLUS[-< Ik 2.
Any entry in LIST is of the form [(, u), (s, v)], with r,s in K1UK2. By the

bounding lemma, either u =v =e, or u is in SUFFIX and v is in SUFFIX I.J
SUFFIXPLUS. There are N possibilities each for r and s, k2 possibilities for u, and
(I + 1)k2 possibilities for v, yielding a bound of

N2(I + 1)k4

which is bounded by

(I + 1)N6.

COROLLARY 4.5. The time complexity of the algorithm is

O([3N12)
or

O(n)
taking machine size as n IN (= size of the transition table).

Proof. First consider the time needed to execute procedure ACCEPT (S), where
$=[(r,u),(s,v)]. The test for whether pair (e,e) distinguishes (e,u)\L(r) and
(e, v)\L(s) can clearly be done in time O(lul + [vl). On the other hand, the else clause
is applicable if and only if $ =[(r, e), (s, v)] for some r in K2, s in K1, 0_-<lvl_-<lK21
and (,+x{v})f’lL(s)=. This test can be completed within time O(IN(lvl+l)).
Therefore, ACCEPT ($) has time complexity O(1)+ O([u[+ [v[)+ O(IN(Ivl + 1)), and
since the bounding lemma shows that]ul + Ivl--< 2N- 1, the time complexity is O(IN2).

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 179

Next we consider procedures PREPARATION (S) and NEXT (S). The time to
execute PREPARATION quickly becomes dominated by the time required to search
through LIST. Since the size of LIST is bounded by (I + 1)N6, the time needed to
complete NEXT is O(1) + 0((I + I)N6) -<_ 0((I + 1)N6). Similar arguments show that
each iteration of the for loop in NEXT requires this same amount of time, and since
the for loop is executed I times, the time needed to complete NEXT is O(I(I + 1)N6) =<
0(12N6).

Procedure EXAMINE uses some fixed amount of time to set HISTORY, when
necessary, and then the time to execute either NEXT or PREPARATION. So
EXAMINE has time bound O([ZN6).

Finally we come to procedure EQUIVALENCE. Every execution of the while
loop removes an entry from STACK, and no two executions can have the same
topmost entry. Since each entry in STACK must also be in LIST, and there are at
most (I + 1)N6 elements in LIST, the while loop can be executed at most (I + 1)N6

times. Each such execution may call both ACCEPT and EXAMINE. So the time
to execute EQUIVALENCE is bounded by O(1)+(I+I)(O(IN2)+O(I2N6)) <
0(I3N1).

We wish to show that if L(p)= L(q), then the algorithm never halts and prints
"L(p) # L(q)". Lemma 4.6 below establishes this claim.

Let So [(p, e), (q, e)]. Define

EQUIV {[(r, u), (s, v)] (e, u)\L(r)= (e, v)\L(s)}.

Observe that So is in EQUIV if and only if L(p)= L(q).
LEMMA 4.6 (Preserve equivalence). IfSo is in EQUIV, then every $ which appears

on LIST.is in EQUIV.

Proof. We proceed by induction on the numer of times the while loop in procedure
EQUIVALENCE is executed. The lemma holds’ trivially initially.

Suppose that the lemma holds at the start of the current execution of the loop.
It suffices to show that if S is on top of STACK, then ACCEPT (S) returns "NO"
and any entry added to STACK (and hence LIST) by subroutine NEXT or PREPAR-
ATION is in EQUIV.

Let S [(r, u), (s, v)]. ACCEPT (S) returns "YES" if either (e, e) distinguishes
(e, u)\L(r) and (e, v)\L(s) or u e, r is in K2, s is in K1, and for some w # e, (w, v)
is in L(s). In the first case $ is obviously not in EQUIV. In the second case, (w, e) is
in (e, v)\L(s) but not in (u, e)\L(r)= L(r) (since r is in K2 and w e), so S is not in
EQUIV. Hence if S is in EQUIV, ACCEPT (S) returns value "NO".

Case analysis shows easily that if S is in EQUIV and NEXT (S) adds Sa to
STACK, then Sa is in EQUIV. Suppose PREPARATION (S) applies, and adds S’
to STACK. IF an UNPACK or SWITCH applies, S’ codes the same sets as S and so
S’ is in EQUIV.

Consider when a REPLACEMENT applies. In this case S’ [(r, e), (s, v)], and
HISTORY (r)= (s’, v’). Since S is in EQUIV, L(r)= (e, v)\L(s). At a previous time,
S"= [(r, e), (s’, v’)] was on top of STACK. So if all members of LIST are in EQUIV,
L(r) (e, v’)\L(s’), so (e, v)\L(s) (e, v’)\L(s’). Hence $’ is in EQUIV. This covers all
cases. VI

From Lemma 4.6 we can conclude that if p and q are equivalent, then the
procedure EQUIVALENCE never halts and prints "L(p)# L(q)". But what if p and
q are not equivalent? Lemma 4.7 below establishes the desired result:
EQUIVALENCE eventually prints "L(p) # L(q)".

180 E.P. FRIEDMAN AND S. A. GREIBACH

Given any element S [(r, u), (s, v)] in LIST or STACK, we say that pair (x, y)
distinguishes S if (x, y) distinguishes sets (e, u)\L(r) and (e, v)\L(s). If (x, y) distin-
guishes S, then S is ([(x, y)[)-distinguishable. We say that (x, y) distinguishes LIST if
it distinguishes some element in LIST; in such a case, LIST is ([(x, y)[)-distinguishable.

Consider the while loop located in procedure EQUIVALENCE. We write LISTt
to denote the value of LIST just prior to the tth iteration through the loop; similarly,
STACKt denotes the value of STACK and TOP/ the value of the topmost element
of STACKt at this time. When the tth execution of the loop finds value "YES" returned
from procedure ACCEPT, then we say that LISTt+I ACCEPT.

LEMMA 4.7 (Find accept). If LISTt is n-distinguishable, then the following two
statements hold.

(1) There exists some m for which either
(A) LIST,. ACCEPT

Or"

(B) LIST,. is (n 1)-distinguishable.
(2) There exists some p with

LIST, ACCEPT.

Proof. We first show (1) by examination ofprocedures NEXT and PREPAR-
ATION, and then obtain (2) from (1) by induction on n.

First consider (1). We can assume that TOP is n-distinguishable for the following
reasons. Suppose TOP, is not n-distinguishable, and S is some n-distinguishable entry
in LISTt. If S is in LISTt but not STACKt, then at the start of some previous execution
of the while loop S was on top of STACK. Otherwise, if S is in STACKt, then during
future executions of the loop entries above $ in STACK are popped off unless
ACCEPT returns "YES" before this can happen.

Suppose S =TOPt [(r, u), (s, v)] and (x, y) distinguishes S, [xl+lyl- n. If n =0,
then ACCEPT (S) returns "YES", and if ACCEPT (S) returns "YES", then (A) holds.
So assume that n => 1 and that ACCEPT (S) returns "NO". First suppose that
NEXT (S) is executed. There are three cases.

(i) r, s are both in K1. Then x ax’ for some a in Z (or else (x, y) would be
in neither (e,u)\L(r) nor (e,v)\L(s)). Hence NEXT(S) finds value Sa
[(6(r, a), u), (6(s,a), v)], and clearly (x’, y)distinguishes Sa, with Ix’l+[y[=n-1.
Either Sa is already on LISTt or is added to it by NEXT. So $ is on LISTt+I, and
(B) holds.

(ii) r, s are both in K., and u v e. Then y ay’ for some a in Z. Hence
NEXT (S) finds $ [(6(r, a), e), (6(s, a), e)], which is distinguished by (x’, y) and so
is (n 1)-distinguishable. Thus $ is on LIST/+1 and (B) holds.

(iii) r is in Kz, s is in K1, u e, and HISTORY (r) (s, v). If we had y e, x e,
then we would have (x, e)= (x, y) in (e, v)\L(s) (since (x, e) cannot be in L(r) for r
in Kz) and hence ACCEPT ($) would return "YES". So y ay’, for some a in 5.
Now NEXT ($) finds $ [(6(r, a), e), (s, va)] which is distinguished by (x, y’) and so
is (n- 1)-distinguishable. Since Sa is on LISTt/, (B) holds.

Now we consider the cases in which PREPARATIONS ($) is executed.
(iv) First suppose that a REPLACEMENT rule applies. This means that r is in

K, s is in K, u e v, HISTORY (r) (s’, v’) (s, v), for s’ in Ka. We have entry
Sl=[(r,e),(s’,v’)] also in LIST/. So PREPARATION(S) finds value Se
[(s’, v’), (s, v)], which it ensures is on LISTt+. There are two cases. Either (x, y)
distinguishes (e, v’)\L(s’) and (e, v)\L(s) or (x, y) distinguishes (e, v’)\L(s’) and L(r).

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 181

In the first case, (x, y) distinguishes Sp. Since Sp is in LISTt+I, similar arguments to
those seen earlier show that either Sp was at the top of STACK before some previous
execution of the loop, or subsequent executions of the loop will make Sp the top
element (unless ACCEPT returns "YES" during some execution, at which point (A)
holds). So assume that Sp TOP., for some m. If ACCEPT (Sp) returns "YES", (A)
holds; otherwise NEXT (Sp) is executed and the arguments of Case (i) apply to Sp
(s, s’ in K1).

Now suppose on the contrary that (x, y) distinguishes (e, v’)\L(s’) and L(r). Since
HISTORY (r)=(s’, v’), at some previous time Sl=[(r, e), (s’, v’)] was on top of
STACK. So $1 TOP., for some m < t. The arguments of Case (iii) apply to $1 (r in
K2 and s’ in K1).

(v) Finally we consider the other cases in which PREPARATION (S) is executed.
These cases (UNPACK or SWITCH) find a value for Sp encoding the same sets
{(e, u)\L(r), (e, v)\L(s)}; thus (x, y) distinguishes Sp and ACCEPT (Sp) returns "NO".
Arguments similar to those seen earlier show that unless ACCEPT returns "YES",
there is some execution of the loop that has Sp on top of STACK. In the worst case,
lul/ll UNPACK rules, and possibly one SWITCH rule can apply. So PREPAR-
ATION rules other than REPLACEMENTS can apply at most lul / Ivl / a times until
one of Cases (i)-(iv) must occur and the appropriate arguments apply.

This establishes (1). Let us consider (2)--i.e., Case (A) of (1) always holds
eventually. We proceed by induction on n.

If n 0, then $ is 0-distinguishable. Hence ACCEPT (S) returns "YES" and so
(2) holds. Suppose (2) holds whenever n’< n, for n => 1.

By (1), either (a) holds and thus (2), or else STACK,, is (n- 1)-distinguishable
for some m. By the induction hypothesis, (2) holds.

Corollary 4.5 and Lemmas 4.6 and 4.7 yield the desired result.
THEOREM 4.8. The equivalence problem for 2-dfsa’s is decidable in time O(n12),

where n is the size of the machines involved.

5. Remarks. The UNION-FIND algorithm has been used to improve the upper
bound for determining equivalence of deterministic one tape finite state acceptors
from O(n z) to O(nG(n)), where G(n) grows very slowly [1]. We can use it in a similar
fashion to improve the time complexity of our algorithm from O(n 2) to O(n4).

In a typical application of UNION-FIND, one starts with a collection of pairwise
disjoint sets. An execution of UNION(A, A’, B) joints the sets named A and A’ and
names the new set B. An execution of FIND(x) locates the name of the set to which
element x currently belongs. For any constant c, another constant c’ can be found
(depending only on c) such that a series of up to cn UNION-FIND operations can
be performed on n elements in time c’nG(n). The reader is referred to [1] for details.
We sketch briefly below the ideas behind the use of the UNION-FIND algorithm to
improve our algorithm.

We wish to compute equivalence among m sets of the form (e, v)\L(r)mhenceforth
denoted (r, v)mfor v in SUFFIX I3 SUFFIXPLUS, with m _<-(I + 1)N3. Initially, we
hypothesize that "L(p)=L(q)". If an entry [(r, u), (s, v)] appears in our algorithm,
that means that if L(p)=L(q), then we must also have (e, u)\L(r)=(e, v)\L(s).
Equivalence is transitive so if we now hypothesize that "(r, u) (s, v)", all the languages
to which (r, u) or (s, v) is equivalent must be pairwise equivalent. The ACCEPT
subroutine described above gives the conditions under which a proposed equivalence
is contradictory and hence L(p) L(q). If all equivalences are established without
finding a contradiction (ACCEPT does not return "YES"), then L(p)= L(q).

182 E.P. FRIEDMAN AND S. A. GREIBACH

The Improved Algorithm starts with each (r, v) in a set by itself. A STACK gives
a list of proposed equivalences to test; initially it contains only [(p, e), (q, e)] for the
hypothesis "L(p)= L(q)". Suppose S =[(r, u), (s, v)] is on the top of the STACK. It
is removed and the following tasks are performed. If (e, e) distinguishes (r, u) and
(s, v), then the algorithm HALTs with the answer "L(p) L(q)". If r is in K2, s is in
K1, u e and HISTORY (r)= NIL, then HISTORY (r) is changed to (s, v), and the
algorithm determines whether (e, v)\L(s)fq[E/x{e}] . If the answer is no, it
HALTs with the answer "L(p) L(q)". The next step in the algorithm has FIND((r, u))
and FIND((s, v)) locate the sets A and A’ to which (r, u) and (s, v) belong. If A A’,
no further action is taken and the next element on the STACK is examined. If A A’,
UNION (A, A’, A) joints A and A’. Then the appropriate NEXT or PREPARATION
subroutine is executed as in the original algorithm. Either a sequence of I (for NEXT)
entries or one entry (for PREPARATION) is made on the STACK. Again, when the
STACK empties the algorithm HALTs with the answer "L(p)= L(q)".

Now the UNION operation can be performed at most m- 1 times, since the
algorithm starts with m unit sets. Each execution of the UNION algorithm adds at
most I entries to the STACK. Hence there are at most I(m 1) entries on the STACK
altogether and so at most I(m 1) executions of the FIND operation. Hence this part
of the algorithm has cost at most O(ImG(m)) or O(I2N3G(IN)) [1]. Each execution
of UNION or FIND is associated with other subroutines. The NEXT or PREPAR-
ATION subroutines following a UNION can be assigned cost no more than O(IN),
for a total of O(mlN) or O(I:N4). Before each FIND operation, there is a part of
the ACCEPT subroutine (does (e, e) distinguish (r, u) and (s, v)?) which can be assigned
cost O(N), for a total of O(ImN) or 0(I2N4). Finally, in the up to Ig=l steps which
change HISTORY, the expensive part of the ACCEPT subroutine (does (e, v)\L(s)
contain a word (w, e), w e?) is performed. As we saw, this can be done in time
O(IN2), for a total cost of O(IN3). The dominant term in this analysis in 0(I2N4),
so altogether we get O(n 4) for n IN.

There is one difficulty with the algorithm outlined above. Initially we do not know
which strings will be in HISTORY and thus in T SUFFIX t.J SUFFIXPLUS. Hence,
we cannot predict which m sets will be merged eventually, and so we cannot foresee
which m sets need initialization. However, we do know that strings in T will be
bounded in length by k for k IK2I, and that for each i, 0_<-i <_-k, there will be at
most MIN (I, (I / 1)k) distinct strings of size in T. So initially we set up an array
WORD(i,j) for O<-i<-k, O<-_]<-_Min(I;(I+l)k), with entries NIL (except for
WORD (0, 1)= e). When a new entry in HISTORY appears, we update the appropri-
ate entries WORD (i, j). This setup and updating can be considered to have a one-time
cost of o(IEN3) (there are up to N updates, each involves taking at most (I + 1)N
possible members of T and then determining whether a candidate v already fills one
of the up to (I + 1)N slots for WORD (Ivl,])). A language (e, v)\L(r) is denoted (r, i,])
where v WORD (i,/’). The updating precedes each READ-AHEAD step, so when
[(r, u), (s, v)] is to be added to STACK, u and v are already in the WORD array.
Their proper identifiers (i.e., i-lul, i’--Ivl, , ’ with WORD (i, /’) u and
WORD (i’, f) v) can be found in time O(IN). This cost can be assigned to a preceding
UNION operation, and we have already assigned a cost of O(IN) to the subroutines
following each UNION, and so these considerations do not affect the order of the
algorithm.

Thus, the time of the algorithm can be improved to O(n 4) on a RAM under the
uniform cost criterion.

EQUIVALENCE PROBLEM FOR 2-TAPE ACCEPTORS 183

We believe that the results of this paper strongly support the conjecture that the
equivalence problem is decidable for general multitape deterministic finite state
acceptors, and, perhaps, polynomially decidable.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] C. BEERI, An improvement on Valiant’s decision procedure for equivalence of deterministic finite turn

pushdown machines, Theoret. Comput. Sci., 3 (1976), pp. 305-320.
[3] M. BIRD, The equivalence problem for deterministic two-tape automata, J. Comput. Syst. Sci., 7 (1973),

pp. 218-236.
[4] P. C. FISCHER AND A. L. ROSENBERG, Multitape one-way nonwriting automata, J. Comput. Syst.

Sci., 2 (1968), pp. 88-101.
[5] J. E. HOPCROFT AND R. M. KARP, An algorithm for testing the equivalence of finite automata,

TR-71-114, Department of Computer Science, Cornell University, Ithaca, NY, 1971.
[6] M. O. RABIN AND D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop., 3

(1959), pp. 114-125.
[7] A. L. ROSENBERG, Nonwriting extensions of finite automata, Ph.D. thesis, Harvard University,

Cambridge, MA, August, 1965.
[8] L. G. VALIANT, The equivalence problem for deterministic finite-turn pushdown automata, Inf. Control,

25 (1974), pp. 123-133.
[9], Decision procedures for families of deterministic pushdown automata, Ph.D. thesis, Theory of

computation- Report No. 1, Dept. of Computer Science, University of Warwick, Coventry,
England, August, 1973.

SIAM J. COMPUT.
Vol. 11, No. 1, February 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1101-0014 $01.00/0

COMPLEXITY OF MATROID PROPERTY ALGORITHMS*

PER M. JENSENS" AND BERNHARD KORTE$

Abstract. A general theorem is proved which can be used to show that for a large number of matroid

properties there is no good algorithm of a certain type for determining whether these properties hold for
general matroids. Specifically, there exists no algorithm in which the matroid is represented by an indepen-
dence test oracle (or an oracle polynomially related to an independence test oracle) and which solves the
problem in question after a number of calls on the oracle which is bounded by a polynomial in the number
of elements of the ground set of the matroid.

Key words. Computational complexity, lower bounds, oracle algorithms, matroid properties.

Introduction. We will denote byM a matroid (E, :) on a finite set E with

2z

the appropriate independence system. All notation and definitions used in this paper
which are not explained are standard in matroid theory (cf. Welsh [15]). We shall
consider questions concerning a single matroid M, which have a well-defined unique
answer and furthermore the same answer if M is replaced by a matroid isomorphic
to M. Such a question defines a matroid property l-I, which is a mapping of the class
of all matroids into some set (the set of truth values, the set of integers, etc.) such
that any two isomorphic matroids have the same image under this mapping. In other
words a matroid property is a partition of the set of all matroids whose classes are
closed under isomorphism.

A matroid property is considered to be easy if there is a polynomial algorithm
for determining it, i.e., an algorithm which decides about the property in a number
of steps which can be expressed as a polynomial in IEI. So far we know only a few
easy matroid properties, among which are maximum weighted basis, k-disjoint bases,
k-connectivity (for a fixed and finite k), and the property of being graphic. The first
mentioned property is an algorithmic equivalent to the definition of matroids and can
be discovered by the famous greedy algorithm. For the other three properties we are
aware of good algorithms by J. Edmonds [51, R. E. Bixby, W. H. Cunningham and
J. Edmonds [2], [4] and P. D. Seymour [14].

When studying algorithms for deciding about matroid properties one question
immediately comes up" How is the matroid described to the algorithm? The number
of nonisomorphic matroids on a set E (with n := Itrl) is at least 2
Thus, even if we could number the classes of isomorphic matroids and specify a
matroid to the algorithm just by this isomorphism class number, then reading the
digits in the binary expansion of this number would require a number of operations
which grows exponentially with n.

One possible solution to this problem is to study oracle algorithms. This approach
was first used in Hausmann and Korte [7], [8], [9] to derive lower bounds on the
worst-case complexity of algorithms for optimization problems over independence
systems or fixed point approximation problems. This paper is a straightforward
extension of the techniques developed there. L. Lovfisz [11], G. C. Robinson and
D. J. A. Welsh [13] and P. D. Seymour [14] have also derived results about the
complexity of matroid properties by using oracle approaches.

* Received by the editors December 4, 1979, and in final revised form April 8, 1981.
q" The Technical University of Denmark, Lyngby, Denmark.

* University of Bonn, Bonn, Germany. The work of this author was supported by Sonderforschungs-
bereich 21 (DFG), Institut fiir konometrie und Operations Research, University of Bonn.

184

COMPLEXITY OF MATROID PROPERTY ALGORITHMS 185

An oracle can be defined as a mapping from 2E into some finite set of size -<-[El.
We consider here only mappings into sets of size 2; that is, the possible oracle answers
are "yes" and "no". The oracle mapping can then be specified relative to the different
matroid definitions. A basic matroid oracle is the independence test oracle which says
"yes" for F E if and only if F . An oracle algorithm is then an algorithm in
which one of the possible operations is the calling of a "subroutine", the oracle, which
answers questions of a certain type concerning the matroid (e.g., whether a set F

_
E

is independent or not). Calling the oracle is the only way in which the algorithm can
obtain information about the matroid. Other than this the algorithm is not in any way
restricted. The operation of calling the oracle is assumed to take constant time (or an
amount of time which is bounded by a polynomial in the size of the ground set of the
matroid). Thus an oracle algorithm is considered polynomial if the number of calls
on the oracle and the number of other operations in the algorithm are both bounded
by a polynomial in the size of the ground set of M. This verbal definition and explanation
of oracles and oracle algorithms should be sufficient for the reader of this paper. A
more precise definition of oracle algorithms can be found in Hausmann and Korte
[8], [9].

We should state that all the above-mentioned good algorithms for matroid
properties, like the greedy algorithm, are precisely independence test oracle
algorithms. On the other hand it can be said that for all important special cases of
matroids which occur in "real life", e.g., graphic matroids, transversal matroids,
gammoids, representable matroids, it is possible to make a polynomial "realization"
of the independence test oracle. Also for all common matroid operations (direct sum,
sum, truncation, dualization, etc.) the independence test oracles for the original
matroids can be combined by a polynomial algorithm into a realization of the indepen-
dence test oracle of the resulting matroid.

A lower bound on the complexity of matroid algorithms. We will now state a
general lemma from which we can easily derive statements about the complexity of
special matroid properties.

LEMMA. Let II be a matroid property, and suppose two matroids Mn and M’ are
given on a set E of size n, which are different with respect to II and/’or which Ox,
O2," ", Oq(n) E are dependent in one of the two matroids and independent in the
other one. Then every independence test oracle algorithm which decides II has complexity
at least

f(n)
i=1 p(Oi)

where f(n) is the number of automorphisms on M, and P(Qi) is the number of automor-
phisms on M, which map Qi onto itself, i= 1,..., q(n).

Proof. Suppose we have an algorithm for the property. If the algorithm is executed
on M, it calls the independence test oracle for some sets P1, P2,"’", Pp. For a given
one of these sets Pj and a given set Qi on which the matroids differ, the number of
automorphisms of M, which map Qi onto Pj is at most p(Qi), so there are at most

P 2)1 p(Qi) automorphisms of M, which map any of the Qi’s onto any of the Pi’s.
w-,q(n)Suppose f(n) P L=x Pt). Then there exists an automorphism b of M which does

not map any Oi onto any Pi. Let b(M’) be the matroid isomorphic to M’,, which is
the image of M’, under the mapping 4. The matroids 4(M’,) and 4 (M,)= M, differ
only on the sets 4(Oa), b(O2), , b(Oq(,)) and since none of the Pi’s are images of
a O under. b, the algorithm, when run on (M’), must behave exactly as when it

186 PER M. JENSEN AND BERNHARD KORTE

was applied to Mn and thus give the same answer, a contradiction. So

f(n) <-p , p(Oi) and
i=1 /’i=1 P((i)

The most important special case of this lemma is the following:
COROLLARY 1. Let II be a matroid property, and suppose a matroid M’,, with rank

r on a set E of size n is given which is different with respect to H from Un,r (the uniform
matroid of rank r or a ground set of size n). If the rank ofM’ is bounded by

an<=r<-_(1-a)n with O<a<l,

and M’, has at most polynomially many (in n) dependent sets of size <-r, then there is
no polynomial independence test oracle algorithm which decides II.

Proof. We apply the theorem with M, U,,r. The number of automorphisms of
U,,r is f(n)= n !. The sets on which the matroids differ are the dependent sets of M’
of size <=r. Since the number of these sets is bounded by the polynomial, say q(n),
and all supersets of a dependent set are dependent, the size of a dependent set of M’
must be at least r-k >= an- k, where k is the degree of the polynomial q(n). If Qi is
a dependent set of M’ of size -<r, then the number of automorphisms of U,r mapping
Q onto itself is p(Qi) (IQl)t (I\QI)! Furthermore]Qil >- an k and]E\QI >= n r >-

an >- an k. For fixed n the function x (n x)! increases if either x or n x decreases
from n/2. Therefore we have

p(Q) <- (n k)! (n -(n k))!

Thus an independence test oracle algorithm deciding about H must have complexity
at least

rq(" (om_k)(n-(om-k)) q(n) n-k-,i=

which grows exponentially with n.
Corollary 1 requires nearly uniform" matroids which can be constructed as

paving matroids by use of the following proposition which is a straightforward applica-
tion of matroid definition.

PROPOSITION. Let r(E) be the set of all r-subsets ofE and let q
_
r(E) be such

that q does not contain two sets C, C2 with [CC21 1. Then r(E)\ is the set of
bases of a matroid whose circuits of size <-_r are the sets in %

With this we construct now some matroids to be used with Corollary 1 (0 denotes
disjoint union)"

(i) M2r, is the matroid on a 2r-set with bases all r-sets except one.
(ii) 2M2r, is the matroid on a 2r-set with bases all r-sets except two complementary

sets.
(iii) Let r be even and Ao A J A2 1 A3 be a 2r-set with [A[r/2, O, 1, 2,

3.
M3r,r is the matroid on I,.J A with bases all r-sets except Ao A 1, Ao 1,3 A2,
AoA3.

(iv) Let r be even and AoAI’" Ar- be a 2r-set with IAil--2, i--O, 1,.., r-1.
4M.r,r is the matroid on U Ai with bases all r-sets except Ao U A= 1,3... UI At-2

and Ak t_J Ak/l " Ak/r/=-, k 0, 1, , r- 1 (indices modulo r).

COMPLEXITY OF MATROID PROPERTY ALGORITHMS 187

(v) Let r->_4 and Ao(_JAI(_JA2(.JA3(SBo(_JB1 be a 2r-set with IAil=2 and
IB]=r-4.
M2r, is the matroid on (CIAi)U BoLl B1 with bases all r-sets except BoU
(Ao UA 1), Bo U (Ao U A2), Bo t_J (Ao U A3), Bo U (A U A2), Bo U (A LI A3).

(vi) Let r>=4 and AoAlf..JA2JA3(.JBo(.JB1 be a 2r-set with Ai={ai, al},
0 -< < 3 and IBI-- r -4.
M6

2r.r is the matroid on ([,.JAi)Bo B1 with bases all r-sets except BoU
(Ai CI Ai), 0=<i </" =< 3 andBo U {ao, al, a2, a3},BoU{ao, al, a2, a3},BoU{ao,
a’1, a2, a3}, Bo {a’o, al, a, a3}, Bo U {a, a 1, a, a3}.

(vii) 7M2r, is the matroid on a 2r-set with bases all r-sets except the supersets of
a given (r-1)-set. (Here we cannot use the above proposition but one can
easily verify that 7Mzr. is a matroid.)
(We thank Rick Giles [6] for the idea of the constructions (v) and (vi).)

With these preparations are are now able to prove the following"
THZORZM 1. There exists no polynomial independence test oracle algorithm]or

any of the]ollowing matroid properties (]ormulated as questions or commands):
(1) ls M uniform ?
(2) Find the girth o]M (minimum cardinality circuits)!
(3) Find the number of circuits ofM!
(4) Find the number o] bases o]M!
(5) Find the number ol hyperplanes olM!
(6) Find a hyperplane o] maximum size!
(7) Find the number o]’ [lats
(8) Is the automorphism group o] M transitive ?
(9) Is M sel]-dual (isomorphic to its dual)?

(10) Given thatM is sel]-dual, is M identically sel]-dual (equal to its dual)?
(11) Is M transversal?
(12) Given that M is transversal, is M fundamental transversal (c]. Welsh [14,

Exercise 3, p. 245])?
(13) Find the connectivity o] M!
(14) Find the Tutte polynomial olM!
(15) Find the Crapo invariant (M) (c] Welsh [14, p. 269])!
(16) Is M representable ?
(17) Is M orientable (as defined by Bland and Las Vergnas [3], which is more

general than the definition of Welsh [9])?
(18) Is M a paving matroid?
(19) Is M bipartite ?
(20) Is MEulerian ?
Proof.
(1) U2r, is uniform, M2r, is not.
(2) Uz has girth r + 1, M2r, has girth r.

2r 2r(3) U2.r has (r+a) circuits, M2r, has (+1)+ 1-r circuits.
(4) U2 has ([) bases, M2,r has (2[)_ 1 bases.
(5) U2r.r has (z_]) hyperplanes, Mlr,r has (r2r) + 1--r hyperplanes.
(6) The maximum hyperplane in U2rr is an r 1 set, in M2r, it is an r-set.
(7) The number of flats in U2.r differs from the number of fiats in Mlr,r by r.
(8) U2. has a transitive automorphism group, M:zr, not.
(9), (10) Uzr.r is identically self-dual, M2r, is self-dual, but not identically self-

dual, 3M2. is not even self-dual.

188 PER M. JENSEN AND BERNHARD KORTE

2(11), (12) U2r, is fundamental transversal, M2r, is transversal, but not funda-
mental transversal 4M.r,r is not even transversal (Theorem of Mason, cf.
Welsh [15, p. 245]).

(13) U2r, has connectivity oo, Mg.r,r has connectivity r. Note that this result does
not conflict with the above-mentioned polynomial algorithm of Edmonds,
Bixby and Cunningham for deciding about k-connectivity (k fixed and finite).

(14) The Tutte polynomial of U2r, has no mixed terms, the Tutte polynomial of
M2r, has a term xy.

(15) (U2r,r) (M2r,r)-}- 1.
(16) U2r, is representable, M2r, is not, since Mr,r[(E\B1)" Ai is the Vamos

matroid.
6 6(17) U2r, isorientable, M.r,r is not, since M2r,rl(E\B1) t3 Ai M86,4 is not orient-

able (see the example in Bland and Las Vergnas [3, p. 112]).
(18) U2rr is a paving matroid, 7M2r, is not.
(19) Let r be odd, U2r, is bipartite, M2r, is not.
(20) U2r, is not Eulerian, Mr,r is Eulerian. 71
What is really shown in (1 6) and (17) above is that there is no polynomial algorithm

for deciding whether a matroid has a minor isomorphic to respectively the Vamos
matroid and the matroid 6M8,4, or whether it is uniform (and has only uniform minors).

6The idea behind the construction of the matroids M2r, and M2r, can be extended
to show for a quite large class of matroids that they cannot be detected as minors by
a polynomial algorithm.

Let Mn,r be a nonuniform matroid of rank r on a set A of size n satisfying the
condition that it has no circuit of size less than r and no cocircuit of size less than
n- r. Let E AOBo BI, IBil k. By taking as circuits all sets of the form C [.J Bo,
where C is a circuit of Mn,r of size r, and all subsets of E of size k + r + 1 which do

0not contain any of the former sets as a subset, we obtain a matroid Mk/n,k/r with
0 0Mnr as a minor (Mk+n,k+r I(E\B1 A --Mn,r). Furthermore the number q(n) in

Corollary 1 is constant (= the number of circuits of Mn,r of size r). Therefore Corollary
1 gives us directly:

COROLLARY 2. Let Mn,r be a nonuniform matroid with no circuit of size less than
the rank of the matroid and no cocircuit of size less than its corank. Then there is no
polynomial independence test oracle algorithm which will determine whether an arbitrary

omatroid has a minor isomorphic to Mn,r.

Some results require a nonuniform Mn and cannot be obtained from Corollary
1, but rather by direct application of the lemma"

THEOREM 2. There exists no polynomial independence test oracle algorithm for
the following matroid properties:

(21) Is M binary?
(22) Is M Hamiltonian (i.e., does M have a circuit of size greater than the rank

ofM)?
(23) Given a partition of the ground set of M into pairs Ao, A, ..., A,/-I,

[Ai]--2, what is the maximum size of an independent set being the union of
some of the sets Ai 9.

((23) is the 2-parity problem. (22) is the natural matroid generalization of the
Hamiltonian graph problem.)

The result for property (21) was first proved by Seymour [14]. Our proof is a
reformulation of his, one which demonstrates that it also fits into the framework of
the general lemma. L. Lovfisz [11] proved the result for property (23) independently

COMPLEXITY OF MATROID PROPERTY ALGORITHMS 189

by using polymatroids. Moreover he gave a polynomial algorithm for the 2-parity
problem in the case a representation of the matroid is known [12].

There is a slight complication in the case of property (23). Here there is, apart
from the matroid, another "parameter" to the problem, namely the partition of the
ground set. In such a case the word "automorphism" in the lemma should be read
as "automorphism under which the extra parameters of the problem are invariant".

lOIn the above case all automorphisms of M2r, satisfy this condition.
Proof of Theorem 2. For r odd let M2r, be the binary matroid having a standard

representative matrix over GF(2) of the form (I’J-I), where I is an r r identity
matrix and J an r r matrix of all l’s. If Q denotes the set corresponding to the J-I
part of the representative matrix, then it can be shown that adding Q to the collection
of bases of 8 9M2r, produces a new matroid and that this matroid is nonbinary.M2r,

Also it can be shown that 8M2r, does not have circuits of size r/ 1 whereas Mr,r
does. The lemma gives the following bound on the complexity of an algorithm for
(21) or (22)"

2r-lr!
2r-1

yli=lr!
For r even let E A0J A1 ’" A_I, IAI 2 and letM be the matroid on E
with bases all r-sets except those that are unions of r/2 of the sets A. M2r, is the
matroid on E whose bases are the bases of lOMz, and the set Ao U A A/z-1.
Clearly the solution to (23) for oM2r, is r--2, and for M, it is r. The theorem gives
the following bound:

2rr (r).
Conclusion. Almost all results in this paper were derived from the general

theorem in such a way that one of the two matroids considered with respect to a
certain property was chosen to be the uniform matroid. This was only done in order
to have a general framework for many matroid properties against the same property
of being uniform. Indeed, Robinson and Welsh [12] have proved that uniformity is
among all matroid properties the hardest one to decide by an independence test oracle.
This might have been the intuitive reason for our approach.

Another comment should be made on the choice of the oracle. We have explained
why we have chosen the independence test oracle, but one can also think of other
matroid "questions" for a possible oracle, such as: basis, circuit, flat, rank, closure,
girth, etc. They could be classified due to their different power and difficulty of
realization. For example, let us define the girth of a set F

_
E of a matroid on E to

be 0 if F is independent and the minimum cardinality of a circuit contained in F
otherwise. It is trivial to make a polynomial realization of an independence test oracle
using an oracle which finds the girth of a set. On the other hand the girth oracle
cannot be polynomially simulated by the independence test oracle. Thus, there are
oracles which are strictly more powerful than the independence test. However, they
are also more difficult to realize. For graphic matroids one can still find a polynomial
realization of the girth oracle (with higher complexity than the independence test
oracle), but for general binary matroids the realization of the girth oracle is equivalent
to finding the minimum distance of a binary error-correcting code, a problem which
has been proved to be NP-complete (Berlekamp, McEliece, and van Tilborg [1]).

190 PER M. JENSEN AND BERNHARD KORTE

So instead of just a single standard type of oracle what is needed is a stock of
more or less powerful oracles. The objective is then to find, for each class of matroids,
polynomial realizations of oracles which are as powerful as possible, and for each
matroid property (hopefully polynomial) algorithms which solve the problem using
oracles which are as simple as possible. Studies of relations among different types of
oracles can be found in Hausmann and Korte [10] and Robinson and Welsh [13].

REFERENCES

[1] E. R. BERLEKAMP, R. J. MCELIECE AND H. C. A. VAN TILBORG, On the inherent intractability
of certain coding problems, IEEE Trans. Inform. Theory, IT-24 (1978), pp. 384-386.

[2] R. E. BIXBY AND W. H. CUNNINGHAM, Matroids, graphs and 3-connectivity, in Graph Theory and
Related Topics, J. A. Bondy and U. S. R. Murty, eds., Academic Press, New York, 1978,
pp. 91-103.

[3] R. G. BLAND AND M. LAS VERGNAS, Orientability of matroids, J. Combin. Theory, Ser. B, 24
(1978), pp. 94-123.

[4] W. H. CUNNINGHAM AND J. EDMONDS, Decomposition ol linear systems, to appear.
[5] J. EDMONDS, Minimum partition of a matroid into independent subsets, J. Res. National Bureau of

Standards, 69B (1965), pp. 67-72.
[6] F. R. GILES, private communication.
[7] D. HAUSMANN AND B. KORTE, Lower bounds on the worst-case complexity of some oracle algorithms,

Discrete Mathematics, 24 (1978), pp. 261-276.
[8], Oracle algorithms for fixed point problemsman axiomatic approach, in Optimization and

Operations Research, R. Henn, B. Korte and W. Oettli, eds., Proc. Workshop in Bad Honnef,
Springer-Verlag, Berlin-Heidelberg-New York, 1978, pp. 137-156.

[9], Worst-case analysis for a class of combinatorial optimization algorithms, in Optimization
Techniques, Part 2, J. Stoer, ed., Proc. 8th IFIP Conference on Optimization Techniques,
Wiirzburg, 1977, Springer-Verlag, Berlin-Heidelberg-New York, 1978, pp. 216-224.

[10],Algorithmic versus axiomatic definitions ofmatroids, Math. Prog. Study, 14 (1981), pp. 98-111.
[11] L. LovAsz, The matroid matching problem, in Algebraic Methods in Graph Theory, L. Lovisz and

V. T. S6s, eds., Proc. Coll. Math. Soc. J. Bolyai, North-Holland, Amsterdam, 1981, to appear.
[12],Matroid matching and some applications, J. Combin. Theory Ser. B, 28 (1980), pp. 208-236.
[13] G. C. ROBINSON AND D. J. A. WELSH, The computational complexity of matroid properties, Math.

Proc. Comb. Phil. Soc., 87 (1980), pp. 29-45.
[14] P. D. SEYMOUR, Recognizing graphic matroids, Combinatorica, 1 (1981), pp. 75-78.
[15] D. J. A. WELSH, Matroid Theory, Academic Press, London-New York-San Francisco, 1976.

SIAM J. COMPUT
Vol. 11, No. 1, February 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397 82 1101-0015 $01.00 0

DOMINATING SETS IN CHORDAL GRAPHS*

KELLOGG S. BOOTH" AND J. HOWARD JOHNSON’

Abstract. A set of vertices D is a dominating set for a graph if every vertex is either in D or adjacent
to a vertex which is in D. We show that the problem of finding a minimum dominating set in a chordal
graph is NP-complete, even when restricted to undirected path graphs, but exhibit a linear time greedy
algorithm for the problem further restricted to directed path graphs. Streamlined to handle only trees,
our algorithm becomes the algorithm of Cockayne, Goodman and Hedetniemi. An interesting parallel
with graph isomorphism is pointed out.

Key words, chordal graph, directed path graph, dominating set, graph isomorphism, interval graph,
minimum dominating set, undirected path graph

1. Introduction. A set of vertices D is a dominating set for a graph G (V,E)
if every vertex is either in D or adjacent to a vertex which is in D. A smallest such
set is a minimum dominating set. For arbitrary graphs the problem of finding a
minimum dominating set is NP-complete [6]. For the special case of trees there are
algorithms which run in linear time [3], [15]. We improve upon both of these
results by showing that the problem remains NP-complete when restricted to
undirected path graphs but that a further restriction to directed path graphs admits
a linear time solution.

Our method is a simple greedy algorithm which walks a tree representation of
a directed path graph. It utilizes a linear time recognition algorithm for directed
path graphs devised by Dietz, Furst and Hopcroft [4]. If the graph is a tree (trees
are a subfamily of the directed path graphs) our algorithm can be streamlined to
the original procedure of Cockayne, Goodman and Hedetniemi [3].

The remainder of this section is devoted to notation and a brief review of
chordal graphs. Further details are available in the cited references.

We make heavy use of the term clique. A clique is any maximal set of vertices
which are all mutually adjacent. Some authors do not insist on maximality; our
usage follows Harary [11].

An edge is a chord of a cycle if it connects two vertices of the cycle but is not
itself an edge within the cycle. A graph is chordal if and only if every cycle of
length greater than three has a chord. For our purposes a more useful definition
of chordality is the characterization proven by Gavril. His result can be used to
classify a hierarchy of chordal graphs in terms of intersection models.

A graph is an intersection graph if there is a correspondence between its
vertices and a family of sets (the intersection model) such that two vertices are
adjacent in the graph if and only if their two corresponding sets have a nonempty
intersection. Restricting the sets to subtrees of a tree determines the class of
chordal graphs [8].

*Received by the editors July 24, 1980, and in final form August 4, 1981. This work was supported in part
by the Natural Sciences and Engineering Research Council of Canada under grant A4307. This paper was
typeset using software developed at the University of Waterloo.

fDepartment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

191

192 KELLOGG S. BOOTH AND J. HOWARD JOHNSON

If the intersection model is further restricted, so that each subtree must be a
path, a proper subclass called the undirected path graphs results [10]. Further
restricting the model to rooted trees with paths directed away from the root yields
the directed path graphs [9]. Requiring that the tree itself be a path defines the
class of interval graphs [5], [13].

As Gavril has shown in his papers, the intersection models can always be
chosen so that the nodes of the tree are the cliques of the original graph. Each
vertex then corresponds to the subtree comprised of exactly those cliques to which
it belongs. We call such an intersection model a clique tree for the graph. We
want to extract as much structural information as possible from the graph; thus we
insist that the clique tree have each vertex correspond to a subtree, undirected path,
directed path or subpath depending upon whether the original graph is a chordal
graph, undirected path graph, directed path graph or interval graph.

The hierarchy of chordal graphs is illustrated in Fig. which shows (a) a
chordal graph, (b) an undirected path graph, (c) a directed path graph and (d) an
interval graph. Each belongs to its subclass but does not belong to the next more
restrictive subclass. These four graphs are closely related. Each successive graph
is obtained from the previous graph by vertex or edge deletion where the deleted
elements are indicated with dashed lines. The examples are drawn from Gavril [8],
[9] and Lekkerkerker and Boland [13].

FIG. l(a). A chordal graph with its clique tree.

FIG. l(b). An undirected path graph with its clique tree.

DOMINATING SETS IN CHORDAL GRAPHS 193

/
/

/

FIG. l(c). A directed path graph with its clique tree.

FiG. l(d). An interval graph with its clique tree.

A polynomial time algorithm for constructing the clique tree of an interval
graph is easily obtained from an algorithm of Fulkerson and Gross [5]. Polynomial
time algorithms for the other three classes of chordal graphs were first given by
Gavril [8], [9], 10]. Linear time algorithms are now known for all but one of these
classes. Lueker, Rose and Tarjan [17] have an algorithm for chordal graphs.
Dietz, Furst and Hopcroft have a recognition algorithm for directed path graphs [4]
which can be modified to produce a clique tree. Booth and Lueker [2] have a
recognition algorithm for interval graphs which already produces the equivalent of a
clique tree. To our knowledge there is no published linear time algorithm which
builds a clique tree for undirected path graphs.

The notion of a path graph has been around for more than ten years. Renz
introduced the idea in 1970 when he gave a partial characterization for undirected
path graphs [16]. Dietz, Furst and Hopcroft base their work on a more recent
paper by Truszczynski [4], [18]. He refers to the problem as the generalized
consecutive retrieval problem (Booth and Lueker [2] provide references to this and
related concepts).

2. NP-completeness for chordal graphs. No one has produced a polynomial time
algorithm for finding a minimum dominating set of an arbitrary graph. The
problem is NP-hard. As is usual for combinatorial minimization problems, the
NP-complete version is stated as a recognition problem: "Given a graph G and an

194 KELLOGG S. BOOTHAND J. HOWARD JOHNSON

integer k, is there a dominating set of size k for G?" We will use the latter
formulation of the problem throughout this section.

The general dominating set problem was shown NP-complete using a reduction
from the vertex cover problem [6, p. 190]. A slight variation of that reduction
suffices to prove that even for the restricted case of chordal graphs the dominating
set problem is NP-complete. We prove a stronger result using a reduction from the
3-dimensional matching problem [6, pp. 50-53].

TI-IEOREM 1. The dominating set problem for undirected path graphs is NP-
complete.

Proof. Let W, X, and Y be three disjoint sets each of cardinality q and let M
be a subset of WX Y having cardinality p. We use the following notation of
Garey and Johnson [6].

W {wjl l<j<_q}

X {xkl l<k<_q}

r {Yt[l<l<q)

M {m < wj,xk,yl > wj W, xk X, yl Y, < <p }.

The 3-dimensional matching problem is to find a subset M’ of M having cardinality
exactly q such that each wj W, xk GX and Yt Y occurs precisely once in a triple
of M’.

For a 3-dimensional matching problem with triples M we may assume that each
element of W, X and Y occurs in at least two triples since otherwise the single triple
must occur in any solution so we could reduce the problem to a smaller one. We
construct a tree having 6p + 3q + cliques from which we will obtain an undirected
path graph. The cliques of the tree are explained below.

For each triple m in M there are six cliques whose vertices depend only upon
the triple itself and not upon the elements within the triple. These six cliques form
the subtree corresponding to mi, which is illustrated in Fig. 2,

{Ai, Bi, Ci, Di)

{Ai, Bi, Di, Fi}

(Ci, Oi, ai}

{Ai, Bi, Ei}

{hi, Ei, Hi}

(ni, Ei, Ii} for l<i<p.

Next, there is a clique for each element of W, X and Y which depends upon
the triples of M to which the element belongs.

{Jj} I0 {A wj . mi} for <j < q,

{gk} IO {B Xk -" mi} for < k < q,

{L} U {Cily mi} for 1<l < q.

And finally there is one large clique, the root of the tree, which contains
vertices for each of the triples

{Ai, Oi, Ci <i <p}.

DOMINATING SETS IN CHORDAL GRAPHS 195

We see that the sets are cliques by verifying that no set is properly contained
within another. We check that each element is contained only in a family of cliques
which form an undirected path within the tree; it is then easy to see that there is
only one way in which the cliques can be connected into a tree so that these
conditions hold. This is the arrangement shown in Fig. 2. We thus know that the
graph G whose cliques were built from the 3-dimensional matching problem is an
undirected path graph and the clique tree is unique.

mi M-,

{.c{Ai
<_i<_ P}I

u{Bill<-i<-P})

Ai,Bi,Di,F,} C,,Di,G, wj tW Xke X

FIG. 2. The clique tree for the undirected path graph G corresponding to a 3-dimensional matching
problem.

We next claim that the undirected path graph G has a dominating set of size

2p + q if and only if the 3-dimensional matching problem has a solution.
Verifying one direction of the claim is easy. If the 3-dimensional matching

problem has a solution M’ we simply choose for each m in M’ all of the vertices

Ai, B and Ci corresponding to that mi. There are precisely 3q of these. For all
other m not in M’ we choose the corresponding vertices Di and Ei. There are

2p-2q of these. Altogether we have chosen 2p +q vertices which form a

dominating set for G.
Conversely, given a dominating set for G we can assume without loss of

generality that for each either all three of Zi, B and Ci or else both of D and
E have been included. This follows from the observation that the only way to

dominate the subtree corresponding to mi with two vertices is to choose Di and Ei,
and that any larger dominating set might just as well consist of Ai, B and Ci since
none of the other possible vertices dominate any vertex outside of the subtree.

The proof is completed by noting that if there are of the m for which Ai, Bi
and Ci are chosen in a dominating set of size 2p + q, these account for 3t vertices
and the remaining Ei and O account for 2p- 2t vertices. It must be the case that

q. Picking the q triples m for which Ai, Bi and Ci were chosen yields a

solution to the 3-dimensional matching problem. E!

3. A linear algorithm for directed path graphs. This section describes a linear
time algorithm for finding a minimum dominating set in a directed path graph. We
will not give all of the details for our algorithm. Instead we will explain how to

build it from pieces of other algorithms.

196 KELLOGG S. BOOTH AND J. HOWARD JOHNSON

First we assume that a clique tree has been constructed for the directed path
graph G (V,E). This requires only linear time using an easy modification to the
recognition algorithm of Dietz, Furst and Hopcroft. The result is a rooted tree each
of whose nodes is a clique of G. It has the property that the cliques containing any
vertex form a contiguous path directed away from the root.

We next collect the following information, all in linear time, walking (or while
constructing) the clique tree and using the original graph G.

[1] For each clique C find the integer depth [C] which is the length of the path
from the root of the clique tree to C. A list of all vertices contained in the
clique is also generated.

[2] For each vertex v find the integer high [v]which is the depth of the highest
clique to which v belongs. A list of all adjacent vertices is also generated.

The rest of the algorithm is straightforward. Initialize the dominating set D to
be empty, mark as "undominated" every vertex, then walk the clique tree in
preorder (or any order in which all children are visited before their parent)
performing the following operation.

[3] If there is a vertex v in the current clique C marked "undominated" and
high[v]--C then choose a vertex x in C having the smallest value high[x
among all vertices in C. Add x to D and mark as "dominated" x and all
vertices adjacent to x.

A linear running time for the algorithm is easily established. The size of a
graph G is the sum of its number of vertices and its number of edges, n + e. The
sum of tle sizes of all of the cliques in a chordal graph is O(n + e) because each
vertex in a clique can be paired off against, either a vertex of G or against an edge
of G [7], [8]. Each of the major steps is linear either in the size of G, in the size
of the clique tree (the sum of the sizes of the cliques), or in the size of a clique.
Hence the entire algorithm is linear in the size of G.

With the exception of the clique tree building, which uses the Dietz, Furst and
Hopcroft algorithm, our solution is built entirely of standard algorithms from graph
theory. Each of these is almost trivially linear time. Their algorithm is a bit more
complicated and the proofs of linearity and correctness are quite involved. We
remark that even without their algorithm we can substitute the polynomial time
algorithm of Gavril to obtain a guaranteed polynomial running time for our
algorithm.

Correctness of the algorithm follows from the next theorem. We introduce the nota-
tion DOM (u) to denote the set of vertices dominated by a vertex u and DOM (U) to
denote the set of vertices dominated by a set U of vertices. A vertex dominates itself and
any adjacent vertex.

THEOREM 2. A t the termination of the dominating set algorithm DOM (D)= Vand
D is minimum along all dominating sets for G.

Proof We show by induction on the number of cliques visited that there is a
minimum dominating set D’ which contains D and that DOM(D) contains at least
those vertices which appear only in visited cliques.

The basis is trivial. After zero iterations D is empty and clearly contained
within any minimum dominating set. There are no vertices which D is required to
dominate.

For the inductive step, if no v satisfies the condition of Step [3] in the

DOMINATING SETS IN CHORDAL GRAPHS 197

algorithm the hypothesis continues to hold. Otherwise suppose that x is added to
D while visiting C in the clique tree. By the induction hypothesis D- {x) is
contained within some minimum dominating set D’. If x is in D’ we are done.
Otherwise let r be the vertex of C which is not dominated by D- {x).

The condition on r is that high[r]= depth[C]. Hence we know that r occurs
only in cliques within the subtree rooted at C. Let y be any vertex in D’ which
dominates r. Consider the set D"= D’-{y}o{x}. We claim that D" is a
dominating set for G.

Assume to the contrary that there is a vertex z not dominated by D". Note
that z appears in at least one clique which is not below C in the clique tree or it
would be in DOM(D) and hence in DOM(D"). Similarly z cannot be in C or it
would be in DOM(x) and hence in DOM(D"). The cliques containing z form a
path so z appears in no clique of the subtree rooted at C.

We conclude that y must appear in a clique of the subtree rooted at C because
it dominates r but that it must also appear in a clique not in that subtree because
it dominates z. The requirement that the cliques containing y form a path forces
us to conclude that y actually appears in C.

This produces the desired contradiction because the choice of x dictates that
high[x l> high[y which in turn implies that for vertices appearing in C or in cliques
above C, x can substitute for y as a dominator, whereas for vertices appearing only
in cliques below C other vertices of D can be substituted. The path constraint on
cliques containing z guarantees that these are the only two cases which arise. The
induction is now complete. D" is a dominating set for G, [D’[[D"[so D" is
a minimum dominating set, and D dominates every vertex appearing only in cliques
which have been visited, ta

Cockayne, Goodman and Hedetniemi actually solved a more general problem
for trees. They allowed a set R of required vertices and a set F of free vertices to
be specified. Required vertices must always be in D while free vertices are not
required to be dominated by D. Initializing D to be R and marking all vertices in
F plus all those in or adjacent to R as "dominated" converts our algorithm to this
purpose. This can be accomplished in a linear pass over the graph G. Step [3] of
the algorithm is then executed as before.

If G is an interval graph we can certainly apply the directed path graph
dominating set algorithm, but there is a substantially simpler method. Instead of
building a directed path model, which uses the Booth-Lueker interval graph test as
a subroutine, we can simply run the interval graph test and use the data structure
it builds to directly find a linear arrangement of the cliques [2]. The bottom-up
walk of the clique tree becomes a left-to-right scan of the cliques. In practice we
would expect this algorithm to be easier to implement and more efficient at run
time than the general directed path graph algorithm, although both are of course
asymptotically linear in the size of G.

Finally, it should be noted that every tree is a directed path graph so our
algorithm applies, but there is obviously no need to explicitly compute a clique tree.
The cliques of a tree are its edges. Visiting the edges in a depth-first order
corresponds to our algorithm and in fact is the original algorithm of Cockayne,
Goodman and Hedetniemi.

4. A possible relationship with graph isomorphism. An alternate construction,
different from the one used in Theorem I, which reduces the general vertex cover
problem to the dominating set problem for chordal graphs is the same construction

198 KELLOGG S. BOOTHAND J. HOWARD JOHNSON

chordal)graphs

NP Complete U’H,]:somorphism
Complete

uhdireted
path

graphs

directed
path. } ’grapns ,/

Linear
Time U’-

graphs Time

FIG. 3. The current status of the dominating set and graph isomorphism problems for chordal graphs

used to prove that isomorphism testing of chordal graphs is complete with respect to
graph isomorphism [2, Theorem 5]. This suggests a possible parallel between the
dominating set problem and the graph isomorphism problem.

The situation is. summarized in Fig. 3. For the dominating set problem we
have just shown that the problem for chordal and undirected path graphs is NP-
complete and that directed path and interval graphs have linear time algorithms.
For graph isomorphism both the chordal and undirected path graphs are known to
be isomorphism-complete [1, p. 13] whereas interval graphs have a linear time
algorithm [2], [14]. Only the isomorphism question for directed path graphs
remains open.

One possibility is that the two problems are related and that the isomorphism
problem for directed path graphs has a linear time (or at least polynomial time)
solution. We have not been able to prove or disprove this conjecture, but the
following observations may be useful.

The linear time isomorphism test for interval graphs follows from the fact that
a canonical representation of all possible clique trees for an interval graph can be
built in linear time; the algorithm of Dietz, Furst and Hopcroft does construct a
clique tree but not a canonical one. The same is true of Gavril’s recognition
algorithm. Thus we currently see no obvious way of obtaining a polynomial time
isomorphism algorithm for directed path graphs, although Paul Dietz is investigating
ways of building a canonical clique tree as part of his directed path graph
recognition algorithm.

The other possibility, that directed path graphs are isomorphism complete, does
not seem to follow from the techniques used for chordal and undirected path graphs
because the proof that isomorphism of undirected path graphs is complete with
respect to graph isomorphism hinges upon the fact that an arbitrary graph can be
represented by a clique tree in which some of the paths travel up one branch of the
tree and down another. This behaviour is not allowed in a directed path graph so
some other technique will have to be found if we are to prove isomorphism
completeness for directed path graphs.

DOMINATING SETS IN CHORDAL GRAPHS 199

Acknowledgements. The problem of finding dominating sets for chordal graphs
was first suggested by Sandra and Steve Hedetniemi. They were also kind enough
to point out a number of references in the literature. Conversations with Mcrrick
Furst and John Hopcroft concerning this work have also been very helpful.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[13]

[14]

[15]

[16]
[17]

[18]

K. S. BOOTH AND C. J. COLBOURN, Problems polynomially equivalent to graph isomorphism,
Department of Computer Science, University of Waterloo, CS-77-04 (1979).
K. S. BOOTH AND G. S. LUEKER, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13(1976), pp. 335-379.
E. COCKAYNE, S. GOODMAN AND S. HEDETNIEMI, A linear algorithm for the domination number of
a tree, Information Processing Letters 4(1975), pp. 41-44.
P. DIETZ, M. FURST AND J. HOPCROFT, A linear time algorithm for the generalized consecutive
retrieval problem, Department of Computer Science, Cornell University, TR 79-386 (1979).
D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs, Pacific J. Math.
15(1965), pp. 835-855.
M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, San Francisco, 1979.
F. GAVRIL, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph, this Journal 1(1972), pp. 180-187.
F. GAVRIL, The intersection graphs of subtrees in trees are exactly the chordal graphs,.J. Combin.
Theory 16(1974), pp. 47-56.
F. GAVRIL, A recognition algorithm for the intersection graphs of directed paths in directed trees,
Discrete Mathematics 13(1975), pp. 237-249.
F. GAVRIL, A recognition algorithm for the intersection graphs of paths in trees, Discrete
Mathematics 23(1978), pp. 221-227.
F. HARARY, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
B. L. HARTNELL, Some problems on minimum dominating sets, in Proceedings of the Eighth
Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica,
Winnipeg, Manitoba, (1977), pp. 317-320.
C. G. LEKKERKERKER AND J. CH. BOLAND, Representation of a finite graph by a set of intervals on
the real line, Fundamenta Mathematicae 51(1962), pp. 45-64.
G. S. LUEKER AND K. S. BOOTH, A linear time algorithm for deciding interval graph isomorphism,
J. Assoc. Comput. Mach. 26(1979), pp. 183-195.
K. S. NATARAJAN AND L. J. WHITE, Optimum domination in weighted trees, Information Processing
Letters 7(1978), pp. 261-265.
P. L. RENZ, Intersection representation of graphs by arcs, Pacific J. Math. 34(1970), pp. 501-510.
D. J. ROSE, R. E. TARJAN AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs,
this Journal 5(1976), pp. 266-283.
M. TRUSZCZYNSKI, The theorem characterizing the acyclic families of sets, ICS Polish Academy of
Sciences Reports 314 (1978).

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0001 $01.00/0

CONTINUOUS DATA TYPES*

M. R. LEVY" AND T. S. E. MAIBAUMt

Abstract. Data types can be elegantly characterized as the algebraic quotient of the initial algebra in
the appropriate class of algebras. In this paper, data types whose domain is continuous (continuous data
types) are defined and studied. It is shown that an algebraic quotient of the appropriate initial continuous
algebra can be used to characterize continuous data types when certain conditions are satisfied. Two
well-known computer science examples are presented to illustrate the results. These types are lists, including
infinite lists and control structures considered as operators of a data type.

Key words, abstract data types, initial algebra semantics, continuous domains, lists

1. Introduction. Data types play a central role in programming and it is therefore
important to find ways of giving semantic characterizations for them. Some authors
have suggested that data types are (many-sorted) algebras (ADJ [1], Guttag), and
ADJ [1] have shown that a data type may be characterized as a quotient algebra which
is initial in the class of algebras satisfying a set of equations. This algebra is found by
factoring a "term algebra" T by an appropriate congruence q and is denoted Tr./q.

A particular class of data types which is of additional interest is the class of data
types whose operators are continuous and whose set of objects is a complete partial
order or complete lattice (Scott, ADJ [2]). These data types arise when one is consider-
ing any types with infinite objects. Circular lists, for example, can be treated as infinite
objects of a continuous type (Reynolds). It has been shown (ADJ [2]) that the class
of all such data types (hereafter called continuous data types) has an initial algebra
denoted CTr. which is, intuitively, the algebra of finite and infinite terms. It is natural
to ask whether the elegant characterization of data types in terms of quotients given
by ADJ [1] extends simply to continuous data types. In this paper we show that the
quotient CTr./qwwhere q is obtained from a set of equations in the usual way
(ADJ [1])--is sometimes but not always initial in the class of continuous algebras
satisfying the equations. Firstly, we show that in general the quotient CTr./q does not
admit a partial order which is consistent with the partial order on CTr.. Thus, even
though CTr./q is a E-algebra, it is not a member of the class of continuous E-algebras
and hence cannot be initial in this class. We then define a function nf, called a
normalizer, which is a continuous function that selects a normal form from each class
in a congruence q. In order for such a function to exist, the congruence will have to
have a property of continuity, namely that the congruence respects limits--that is, if
two directed sets are pairwise congruent their least upper bounds must be congruent.
It is shown that, given any set of equations, there exists a unique least continuous
congruence containing these equations. CTr./q is then "made" into a partial order
by defining a partial order relation on CTr./q in terms of the relationship between
normal forms. It is then possible to establish the main result of the paper, namely
that if q is a continuous congruence generated by a set of equations and a normalizer
exists, then CT/q is initial in the class of continuous E-algebras satisfying the
equations. Hence continuous data types can be characterized as initial quotients of

* Received by the editors March 21, 1979, and in final revised form December 15, 1980. This work
was supported by grants from the Canadian Natural Science and Engineering Research Council and the
University of Waterloo.

f Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
V8W 2Y2.

t Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

201

202 M.R. LEVY AND T. S. E. MAIBAUM

CT just as data types were characterized as quotients of T by giving a set of equations
for the type and by finding a normalizer function for the type.

It is sometimes easier to find an algebra of normal or canonical terms for a data
type than to find the normalizer function directly. We show that if such a normal
algebra exists, then a normalizer function exists, and thus CT/q is initial in the
appropriate class. The characterization is illustrated with two well-known computer
science constructs, namely circular lists and while loops. It is shown that with the
appropriate equation for while it is possible to define a quotient for while in terms
of if then else. This quotient forms the basis of a model for an equational logic of
while programs.

2. Mathematical preliminaries. A data type is viewed here as a many-sorted
algebra. (For a discussion of algebras, see Cohn or Gritzer.) This view was put forward
previously by ADJ [1], Guttag and also Levy [1]. The notation and results in the
section are adopted from ADJ 1], [2]. We assume some familiarity with the definitions
and results of ADJ [1], [2], but provide intuitive explanations of the main results.

DEFINITION 1. Let 5 be a set whose elements are called sorts. An -sorted
operator domain E is a family of sets Ew, of symbols, for s e and w e 5*, where
5* is the free monoid on 5". Ew, is the set of operator symbols of type (w, s), arity w
and sort s.

A E-algebra consists of a family (A)sSO of sets called the carrier of A, and for
each (w, s 5* x and each r Ew, a function

erA" As1 x As2 x x asn - As
(where w sis2"" sn) called the operation ofA named by r. (If w- SlS2""sn, then
let AW denote

We use (xs)sso to denote a family of objects xs indexed by s, such that there is
exactly one object xs for each s 5. The subscript s e will be omitted when the
index set can be determined from the context. For cr ;,s where h is the empty
string, O’A As (also written rA’- As). These operators are called constants of A of
sort s. If s e 5, we usually denote the set As by s. If 5" has only one element then we
get the standard definition of a (one-sorted) E-algebra. In this case let E be a family
of sets E 5;0 U "1 -J "-’2 -J" such that, for each o- e En, there is a function

CrA’a xa x. xA A.

From this point on, all definitions and results in the paper will be for the one-sorted
case, although they could be generalized to many-sorted algebras. An example of an
algebra is a group which has a single binary operation (the "group operation"), a
single unary operation (the inverse operation), and a single constant operation (the
group identity).

DEFINITION 2. If A and A’ are both E-algebras, then a Y--homomorphism is a
function

h’AA’

such that if o- En and (al, , an) A then h(o’a(a,..., an)) O’A,(h(al),’’’, h(a,)).
DEFINITION 3. A E-algebra A in a class C of E-algebras is said to be initial in

C if and only if for every B in C there exists a unique homomorphism h" A B.
TI-IEOIEM 1. The class of all E-algebras has an initial algebra called T. It also

has an algebra T(X), called the free algebra on X in the class, such that for any
function [:X A, where A is a N-algebra, there is a unique homomorphism [" T(X)
A extending f.

CONTINUOUS DATA TYPES 203

Intuitively, Tx is the algebra of finite terms and T(X) is the algebra of finite
terms with variables. The unique homomorphism to an algebra A can be thought of
as the evaluation of the terms of T in A.

DEFINITION 4. A E-equation is a pair e (L, R where L, R T(X). A E-algebra
A satisfies e if

O(L)=O(R)

for all assignments 0" X-> A. If e is a set of E-equations, then A satisfies e if and
only if A satisfies each e e e.

Thus a set of equations e can be viewed as a set of axioms whose free variables
are implicitly universally quantified. The class of E-algebras which satisfy e is denoted
Alg,.
TogM 2. Alg, has an initial algebra called T,.
The structure of T, can be characterized as an algebraic quotient of T where

intuitively two elements of T are equivalent if and only if one can be derived from
the other by using the equations. That is, T, groups together all equivalent terms.

An important concept in the theory of abstract data types is the idea of quotients
mentioned above. A quotient partitions the carrier of an algebra, and when this
quotient is over T, it can be interpreted as a way of equating syntactic terms over
the alphabet of the type. The importance of such "equations" is that they provide a
means for expressing the difficult concept of abstraction. Furthermore, quotients are
defined in terms of equivalence relations which are congruences; intuitively, terms
that have been equated must behave in the same way with respect to the operators
of the type (referential transparency).

DEFINITION 5. A E-congruence-----on a E-algebra A is an equivalence relation
on A such that, if r E, and for 1 =< -_< n if ag, a A and a; -= a , then

O’A(al,’’" an)=O’A(al, a’).

If A is a E-algebra and is a E-congruence on A, let A/=- be the set of =-equivalence
classes of A. For a A let [a] denote the z-class containing a. It is possible to make
A/=- into a E-algebra by defining the operations rA/=_ as follows.

(i) If o" Eo, then rA/=_ [erA].
(ii) If rn and [ai]A/=- for l<=i<-n, then CrA/-_([al],...,[an])

[O’A(al,"’", an)].
Then it can be shown that A/= is a E-algebra called the quotient of A by -=. (The
property of being a congruence ensures that ra/= is well defined.)

A set of Z-equations e {(t, t’)[t, t’ T.(X)} generates a binary relation R
_
A A

called the relation generated by e. This relation is the set of all pairs {(if(t), ff(t’))] 0 is
an assignment}.

THZORZM 3. IfA is a E-algebra and R is a relation of A, then there exists a least
Z-congruence relation on A containing R; it is called the congruence relation generated
by R on A. (The ordering on E-congruences is the subset ordering.)

THEOREM 4. If e is a set of ,-equations generating a congruence q on T, then
T/q is initial in AIg.,.

The importance of the above theorems is that any set of E-equations (axioms)
"automatically" defines an algebra which can be regarded as the symbolic model of
the object being defined. This model can be used to answer such questions as "Do
the axioms characterize some particular model of the type?" and "Is a given
implementation of the type correct?".

204 M. R. LEVY AND T. S. E. MAIBAUM

DEFINITION 6. A partially ordered set (poset) (P, <-) is a set P together with a
binary relation -< which is reflexive, transitive and antisymmetric.

All posets are here assumed to have a minimum element denoted _1. ("bottom"
or undefined) such that +/- _-< p for any p P.

DEFINITION 7. A subset S of P is said to be directed if and only if every finite
subset of S has an upper bound in S. A function f: P P’ is said to be monotonic if
and only if for all pl <-- P2 in P, f(pl) <- f(P2) in P’. Such a function is said to be continuous
if it preserves all least upper bounds of directed sets that exist in P. That is, f is
continuous if and only if

iI / iI

.where (Pi)ieI is a directed set in P and]ixpi denotes the least upper bound of (Pi)ix
if it exists. A poset P is complete if and only if all directed sets have least upper
bounds in P.

DEFINITION 8. A E-algebra is continuous if and only if its carrier is strict (has a
minimum element +/-), is complete, and if its operations are continuous. A data type
is said to be continuous if it is continuous as an algebra. A function f: A-+ B is strict
if f(IA)"-- 113.

The following important result is proved in ADJ [2].
THEOREM 5. The class of continuous E-algebras with strict continuous X-

homomorphisms, called CAlg, has an initial algebra called CT.
As before with T, we let CT(X,) denote the free E-algebra in CAlg generated

by X,. An element xi X, is called a variable. Intuitively, CTx is the algebra of finite
and infinite terms, rather than just finite terms as in T. So, for example, it is possible
to express least fixed point solutions of recursive equations as infinite terms in CT..
See ADJ [2] for more details.

DEFINITION 9. The class of all continuous X-algebras that satisfy e together with
continuous X-homomorphisms between them is denoted CAlgx,.

We now investigate whether CAlgx, has an initial algebra which can be expressed
as a quotient of CTx.

3. Normal [orms and initiality. Suppose q is a congruence generated by some
set of equations. When taking the quotient of CT by this congruence of q, it will not
always be the case that an appropriate partial order relation on CT/q exists, and
hence clearly CT/q will not be initial in CAlg,.

For example, let E be defined as

o {_L, a, b}, 1 {0"1, 0"2}, "-i 3, >__-- 2,

and consider the set of equations

0"1(-1-) 0"2(b), 0"1(a) 0"2(1).

Let the function f: CT.-+ {0, 1, 2, 3, 4, 5, 6} be defined as

/(+/-) 4, /(0"1(b)) 3,

/(a)= 5, /(ri(_t_)) 2,

f(b) 6, f(0"2(a)) 3,

f(0"1(+/-)) 1, f(0"2(b)) 1,

f(r(a)) 2, f(t) 3 all other t.

CONTINUOUS DATA TYPES 205

Ker (f) is an equivalence relation on CT and is clearly in fact a congruence by
construction of f.

Also, by construction, (trl(+/-), 0’2(b)) Ker (f), (trl(a), tr2(+/-)) Ker () so Ker (f)
is a congruence in CT containing the above equations. Now suppose that q is the
least congruence on CTv. generated by the above equations (thus q Ker (f)), and
assume that it is possible to define a partial order

_
on CTv./q that is consistent with

the partial order in CTv., that is tl -- CTx t2 [tl] [t2].
Then, it must be the case that

since

(trx (a), tr2(b)) q,

[o’x(a)] [o’z(+/-)]
m_ [o-2(b)]

[o-(+/-)]-- [O’l(a)]

by the equations,

since tr2(+/-)=_ c7". o’2(b),.

again by the equations,

since tr(+/-)_ c7" try(a).

Hence, (trl(a), o’2(b)) q as required. But if this is the case, then (try(a), tr2(b)) E
Ker ([) which is not true, and hence =_ cannot exist.

Intuitively, the least congruence generated by the equations is defined indepen-
dently of any order structure on CTv.. It is possible to use different congruences and
a different quotient structure, but the simplicity of least congruences suggests that it
is worthwhile to try and use them when possible.

For practical reasons, it is often useful to try to characterize a class of values
which are equivalent in some equivalence relation by a single representative of the
class. We call such a representative a normalform of the class. This practical consider-
ation in fact leads to a sufficient condition for guaranteeing the initiality of CT/q.

DEFINITION 10. Suppose there exists a function

nf" CTr.--> CTv.

such that, for t, tx, t2 CT. and any congruence q,
(1) [tl] [t2] ::> nf (tx) nf (t2);
(2) [nf (t)] [t];
(3) nf is continuous (in the usual ordering on CTv.).

Here It]-O(t), where 0 is the natural homomorphism induced by the congruence q.
nf is called a normalizer [unction (or normalizer) for CTv./q.

LEMMA 5. (i) nf (nf (t))= nf (t). That is, nf is idempotent.
(ii) nf (q)= nf (tz) =:> [tl] [t2]. That is, two normal forms are equal only if the

corresponding terms are equivalent.
Proof. (i)From property 2 we get [nf (t)]= [t], so nf(nf(t))=nf(t) from

property 1.
(ii) Suppose nf (q)= nf (t2). Then It1] [nf (tx)] [nf (t2)] [t2].]
Until now, given a set of equations e, we have considered the least congruence

q generated by these equations. However, consider two directed sets (ti), (t) in CT
such that

L_J ti and

and such that for each I, (ti, t) q. In general, it would not be true that (t, t’) q,

206 M.R. LEVY AND T. S. E. MAIBAUM

but this condition is necessary for nf to exist. This is because if nf exists, then

nf (_1 til nf (ti) by continuity of nf,
/

[__J nf (tl) since (ti, t’i) q and by property 1 of nf,

=nf (L/_J tl) again by continuity.

Hence, (t, t’) q by Lemma 5. This motivates a concept called continuous con-
gruence which is defined below. We show that a least continuous congruence exists
for an arbitrary set of equations, and that continuous congruences have some desirable
properties.

DEFINITION 11. A E-congruence q on a continuous E-algebra A is said to be
continuous if whenever there exist two directed sets (ti)iI and (tl)ix in A such that
for all I, (ti, t) q, then (L_Ji tg, li tl) q.

We now generalize Theorem 3 to continuous Z-algebras.
THEOREM 6. IfA is a continuous E-algebra and R is a relation on A, then there

exists a least continuous E-congruence on A containing R, called the "continuous
congruence relation on A generated by R".

Proof. Let Y/’(R) be the class of all continuous E-congruence relations on A that
contain R. Yd(R # since

U=(us=AsXAsls)
is in ff{(R), and is continuous since (al, a2) U for any al, a2A. Let ----R
It is shown in ADJ [1] that --=R is a E-congruence relation. We show that =R is
continuous. Suppose that (ai)ix and (al)iz are directed sets in A with

a=[__Jag, a’= In’i.
Also, suppose that

Hence,
(ai, a i)=--R for eachi6L

(ai, a’i) K for each L and each K X(R)

by definition of ----Ro But each K Yd’(R) is continuous, so

(a, a’) K for each K X(R);

thus (a, a’) =--R as required.
DEFINITION 12. The kernel of a X-homomorphism h’A->B is the relation

Key (h)= {(a, a’)la, a’ cA and h(a)= h(a’)}.
It is well known that the kernel of a homomorphism is a congruence.
LEMMA 7. If A and B are continuous E-algebras and h" A-B is a continuous

X,-homomorphism, then Key (h is a continuous E-congruence.
Proof. We know Key (h) is a E-congruence and we must prove continuity. Let

(ai)it and (al)ii be directed sets in A such that (ai, a) 6 Key (h) for all I. Now

h(l_] nil [__J h (ai) since h is continuous,
\]

h(a’i) since h(ai)= h(a) for all i/,

-h([__J al) since h is continuous.

Thus (Ui ai, Ui bi) Key (h). V]

CONTINUOUS DATA TYPES 207

We now define a partial order on CT/q, where q is a continuous congruence,
in the case that a normalizer nf exists for q.

DEFINITION 13. Suppose [tx], [t2] CT/q. Then define a partial order relation_
on CT/q by

[q]=_ [t2] iff nf (q)<= nf (t2),

where -< is the partial order relation on CT.
Note that nf need not be unique, and so the order relation

_
also depends on

nf. See the corollary of Theorem 11 for clarification.
Consider briefly the following examples of normal forms. For the type linear list

with carrier (Atom, List) and operators

tl" ListList,

hd" List- Atom,

cons" Atom List--> List,

nil’-> List,

the (noncontinuous) normal form of a finite term is an equivalent term with no
occurrence of hd or tl. For example,

cons (hd (cons (a, nil)), cons (b, nil))

has normal form

cons (a, cons (b, nil)).

If we regard circular lists as being infinite terms in this algebra and say [_J ti is
such an infinite term and each ti is finite, the normal form of will be

] nf (ti),

where nf on finite terms is defined as outlined above. This example is worked out in
detail in 4. (Other important examples of normal forms occur where least fixed point
solutions to recursive equations are used as normal forms.)

Sometimes the normalizer will exist but be arbitrary. For example, consider the
data type with one sort and equation

x+(y+z)=(x+y)+z.

Here we can arbitrarily define

nf ((tl + t2) + t3) nf (tl + (t2 + t3)),

nf (c + (t2 + t3)) c + nf (t2 + t3) for each constant c.

Finally, we exhibit a rather unnatural type where no normal form exists. This
type has two nullaries,

a, _1_’ S,

and a countable set of unary operators

cri" S --> $, -> 0.

The equations are

(*) o’,(a) o’s+a(+/-), i_->O.

208 M.R. LEVY AND T. S. E. MAIBAUM

Define a function
f CT. - g" + {a },

where is the set of natural numbers and + is a disjoint union operator as follows"

f(+/-)=O, f(a)=a,

! + 2, a,
f(ri(t)) + 1, otherwise.

Notice that this definition is complete since any term CTv. may be written as i ti
for a directed set (ti)i I in CT., and if is not finite then

t=l Ir.(t) for some ri,

by continuity of CT..

Clearly Ker (f) is an equivalence relation on CTx, and it is in fact easily seen to be
a congruence, since if f(tl)=f(t2) and tl=o,i(t[), t2=ri(t’) for some and if t =a
then t a since f(t2)=f(tl).

Also, Ker (f) is a continuous congruence, since if (ti), (tl) are two infinite directed
sets in CTx such that f(ti)= f(tl) for each i, then it must be the case that f(ti)=f(t)=/"
since each ti, t must be of the form r-2(t). Hence, f(lli ti)=f([__.]it’i)=j.

Finally, the equations are in Ker (f) since

f(m(a))=i+2
Now, consider the chain

derived by f from

and f(O’i+(+/-)) + 1 + 1 + 2.

0_<_1__<2__<...,

+/- _-< ro+/- _-< roa rl +/- _-< ra _-<. .,
diagrammatically

This chain clearly has no upper bound, since if it did it would have to be one of the
portions 0, 1, 2,..., a, say k. But there is no element in k greater than any of the
elements in k + 1, and so no upper bound exists.

Now suppose that q is the least continuous congruence containing the equations
(,) above. It can hence be shown, since q_ Ker (f), that with the above equations
CTx/q cannot be complete with respect to any ordering that is consistent with the
ordering -< on CT.. Thus CT/q is not in the class of continuous algebras satisfying
the equations (,) and is thus not initial. This also illustrates, since q is continuous,
that continuity is not sufficient to guarantee initiality. In the remaining discussion it
is assumed that nf does exist.

LEMMA 8. is a partial order on CT/q.
Proof. Obvious, since =< is a partial order on CT.
LEMMA 9. Let (ti)ix be a set directed in CTx, and q a continuous congruence, and

suppose a normalizer nf exists. Then (Iti]) is directed in CTx/q, and it has a least upper
bound denoted [__Ji [ti] such that li [ti [l_Ji ti].

Proof. Let [__]i ti, which exists since CT is complete. By the monotonicity of
nf and definition of _, (It1]) is directed. Now for all L ti <= since is the least upper

CONTINUOUS DATA TYPES 209

bound of (ti)i I. Hence for all nf (ti) <- nf (t) so for all [ti]_ [t] by definition of _-<. So
It] is an upper bound of ([ti])iz. Now suppose that for some t’, for all I, [ti]_ [t’].
Then for all eL nf (ti)=<nf (t’). But since nf is continuous and (ti)z is directed,
(nf (ti))it is directed and

SO

and

UJ nf (t;) =< nf (t’) by continuity of nf,

by definition of <=,

[L J t,] =_ [t’].

Hence, [L_J t] is the least upper bound of ([ti])it. That is,

U.]/[ti] [1/ti]. FI

LEMMA 11. If B is a continuous E-algebra satisfying e, q is the continuous
congruence generated by e, tl, t2 CTv. and (tl, t2) q and

hB" CTr,- B

is the unique homomorphism guaranteed to exist by the initiality of CT., then hB(tl)=
hB(t2).

Proof. Let Ker (hB), the kernel of hB, be defined as before. We know that Ker (hB)
is a continuous congruence and, moreover, e(B)_ Ker (hB) where e(B) is the relation
on B generated by the set of equations e. This is because for each assignment 0" X B
and each (L,R) e, O(L)= O(R). Now 8 hB by uniqueness of hB and hence hB(L)=
hB(R). But q is the least continuous congruence satisfying e (containing e(B)) and
so q

_
Ker (hB). Thus (h, t2) Ker (hn) and hence hB(h) hB(t2) as required. V1

Much of the power of considering abstract data types as many-sorted algebras
centers around the property of isomorphism. An isomorphism is a homomorphism
that is injective and surjective, that is, 1-to-1 and onto. If there exists an isomorphism
h" A -* B, we write A B and say that A is isomorphic to B. Different implementations
of the same data type can be considered members of a class of isomorphic algebras.
In order to characterize this class precisely, the concept of initial algebra is used. The
initial algebra in a class of algebras contains in some sense the least amount of
information needed to specify a member of the class. Thus we would like to say that
a particular abstract data type is the initial algebra in a class of algebras satisfying
the specifications. Initiality ensures that the operators do no more than required by
the specification. ADJ [1] shows that Tv./q is initial in the class of algebras satisfying
the equations which generate the congruence q. It is natural to ask whether or not
CTv/q is initial, and we show that if the normalizer nf exists, then indeed CT/q is
initial (where q now is the least continuous E-congruence generated by the equations).

THEOREM 11. If a normalizer nf exists for q, then CT/q is initial in CAlg.,.
Proof. We must find a unique

hB" CTr,/q B,

for any B CAlgv,,. By Theorem 5, h" CTv.- B exists, and is unique. Now define

hB([t]) h(nf (t)).

210 M.R. LEVY AND T. $. E. MAIBAUM

(i) hB is a E-homomorphism. We must show that

hB([o(tl,.’’, tn)])= o’(h(ltl]),’’’, h([tn]))
for any

hR-([tr(tl, t,)])

hl(nf (r(tl,’’’, t,)))

hl(o’(tl,""" ,t,))

o’(hl(t), ’, hl(tn))

r(hl(nf (tl)),’"’, h(nf (t,)))

tr(h([tl]), , hs([t,]))

by definition of

by Lemma 10 and Property 2 of nf,

since hi is a homomorphism,

again by Lemma 10 and Property 2 of nf,

by definition of

(ii) hB is unique. Suppose there is a gs" CT/qB such that g is a homo-
morphism. Now consider the diagram

CT

c/q,

hB

where 0 is the natural homomorphism induced by a. If g exists, then we must have
0 h 0 gB 1 since 0 h and 0 g are both homomorphisms into B. But 0 is onto,
hence h g.

(iii) CTv./q is complete. Let ([ti])ii be directed in CT/q. Then, by the definition
of _-<, (nf (ti))ii is. directed in CTx. Applying Lemma 9, and since It] [nf (t)] for any
CT, we get

[-J [ti]=m-] [nf (ti)]= [i nf (ti)]
where [_.Ji nf (ti) exists since CTv. is complete.

(iv) CT/q is continuous. By (iii) CT./q is complete. [_1_] is the minimum
element of CT/q since nf is continuous, and hence nf (_L)= _L. Now we must show
that for each trE,, and each l<=f<=n, o-([t],...,I li[t],"’,[tn])
lir([t],’", ITS];’", [t]); there results

o’([tl],..., m] [tl.],...,

((tl,’’’, i,’’’, t,))

LI [(tl,..., ti, ., t,)] by Lemma 9,

(([t],..., [t],..., [t])) by definition

by definition and continuity of tr,

CONTINUOUS DATA TYPES 211

(v) ha is continuous. We must show that if [t] is the least upper bound of a
directed set ([ti])iI in CT/q then

hn([t]) hn([ti]).

By Lemma 9 and part (iii) above we know that if ([ti])it is directed, and if li nf (ti),
then

L._Ji [ti]=l li [nf (ti)]=[t] [_]i ti] [[SJ/" nf (ti)].
Now

hn([t]) hl(nf (t))

hl(nf (J nf (t)))
hl([-fi nf (ti))
L__J hl(nf (ti))

=1 h([ti])

by definition of

by definition of t,

since nf is continuous and idempotent,

since hi is continuous,

by definition of ha as required.

COROLLARY 12. The particular normalizer chosen will not affect the ordering on
CT/q, because any two initial algebras must be isomorphic and have the same structure.

In practice, an algebra of normal forms is useful for establishing properties about
an abstract data type, and this leads us to another definition. (This will be a generaliz-
ation of the concept of canonical term algebra in ADJ [1].)

DEFINITION 14. A continuous E-algebra is called a normal term algebra for
q if

(i) The carrier of v, is a subset of the carrier of CT., where if /1, 12 G v. then
Ix,
_

e. 12 if and only if l
_

c7-/2;
(ii) CT./q;

and
(iii) h:CT is a normalizer, where h is the unique homomorphism guaran-

teed to exist by initiality of CT.
If a normalizer exists, then it is possible to construct a normal term algebra.
THEOREM 13. Let nf: CT-> CT be a normalizer, and define a E-algebra as:
(i) The carrier is , {nf (t)lt CT}.

(ii) For each cr E, tre(nf (tx), ’, nf (tn)) nf (tr(t, ’, tn)).
Then Ev. is a normal term algebra.
Proof. Let g:f --> CT/q be defined as the restriction of the natural homomorph-

ism 0 to . Then;
(i) g is a homomorphism, since 0 is.
(ii) g is surjective, since if It] CT./q, then It] [nf (t)] since nf is a normalizer,

and so g(nf (t))= It] by definition of g.
(iii) g is injective, since if g(nf (tl)) g(nf (t)) then [nf (tl)] [nf (t2)] by definition

of g, and so nf (tl)= nf (t2) since nf is a normalizer.
Finally, since nf is a homomorphism, nf h the unique homomorphism from CT to

The converse of this theorem, namely that if a normal algebra exists then there
is a normalizer, is a trivial consequence of conditions (iii) of Definition 14.

212 M. R. LEVY AND T. S. E. MAIBAUM

4. Examples.
4.1. Finite and infinite lists. Let S (List, Atom) be a set of sorts with

a:-> Atom for each a Atom,

+/-’-> List,

nil’-> List,

cons" Atom List-> List,

hd’ List-> Atom,

tl" List-> List

being a set of operators. Let

X’ {cons, +/-, nil} (.J Atom, 5: {cons, hd, tl, +/-, nil} (.J Atom.

Let e be

hd (cons (a, l)) a, hd (+/-) tl (+/-) hd (nil) +/-,

tl (cons (a, l))= l, tl (nil)= _1_.

We show that there is a normal term algebra for the congruence q generated by the
above axioms.

(i) Let the carrier of .x be the carrier of CTx,.
(ii) Define

aze a,

hd (l)= +/- for +/- or =nil,

hdz (cons (a, l))= a,

tl (cons (a, l))= l,

tlze (nil)= _1_,

conse (a, l)= cons (a, l).

Since CT is initial in the class of all continuous E-algebras there exists a unique
homomorphism h:CT-> (is clearly continuous).

The kernel of a continuous homomorphism is a continuous congruence. Further-
more, it is easy to see that e(R)_Ker(h). (For example, h(hd (cons (a,/)))=
hd (cons:e (a, l)) a h(a).) Thus, by the minimality of q, q

_
Ker (h). Now:

(1) If (tl, t2)sq, then (tl, t2)s Ker (h) by the above, so h(t)= h(t2) as required.
(2) We must show that (h(t), t) q.
(i) If is finite then’

(a) If is an atom or +/-, h(t)= and the result follows. Else
(b) Suppose that for any of depth n (h(t), t) q.

Then h(t) must be of the form cons (a, l).
Now consider the term hd (t),

h(hd (t)) hdze(h (t)) hd (cons (a, 1))= a.

But, (h(t), t) q (by induction assumption),
so (cons (a, l), t) q,
so (hd (cons (a, l)), hd (t)) q since q is a congruence,
hence, (a, hd (t)) q
and (h(hd (t)), hd (t)) q as required.

The arguments for tl and cons go through similarly.

CONTINUOUS DATA TYPES 213

(ii) Suppose that is infinite. Then, li ti where each ti is finite.
Now, h(t)= h(l___li ti)=i h(ti) by continuity of h.
By (i) above, (ti, h(ti))q, and since q is continuous, (t, [_Ji, h(ti))q, so
(t, h(t)) q as required.

(3) h is continuous by definition, and is thus a normalizer.
We have thus shown that is a normal term algebra for the above axioms, and

that CTw/q is initial in the class of all algebras satisfying e. Note that minimality of
.q is used in part (1) of the above proof and continuity in Part (2ii). Establishing the
existence of normal forms for this type is both natural and straightforward. Reasoning
about the type uses the usual tools of equational logic, but with an additional
"continuity property", namely that if we prove ti tl for two directed sets (ti) and
(tl), then we can prove [_A

4.2. Recursive functions. An important continuous data type is the algebraic
characterization of recursive equations.

Sorts: Bool, Command.
Operations: ifthenelse: Bool x Command Command--> Command

whiledo: Bool Command--> Command
Command Command Command

null: --> Command
_k: -> Bool
bi: --> Bool for => 0.

Now let inf denote the least fixed point solution in Bool Command--> Command of
the definition:

w <: AbAs, if b then s; w(b, s) else null.

We introduce the single equation,

while b do s tinf(b, s).

PROPOSITION 15. There exists a normalizer for the above algebra.
Proof. Let nf: Bool--> Bool be the identity. Define nf: Command--> Command as

follows:
nf (if b then Sl else s2)= if b then nf (sl) else nf (s2),
nf (sl; s2) nf (sl); nf (s2),
nf (null) null,
nf (while b do s)= tinf(b, nf (s)).

A simple inductive argument will show that [nf (t)] It]. Secondly, we can show that
Ker (nf) is a continuous congruence since nf is a homomorphism and it contains the
congruence generated by the equation. Hence, since q is minimal,

[tl]--[t2] (tl, t2) Ker (nf)::), nf (tl)= nf (t2) as required.

nf is easily seen to be continuous.
We thus have a model for this flow-diagram-like language. It can be seen, for

example, that

while b do s if b then s; while b do s else null,

by substituting inf on both sides of this equation. In general, in fact, any recursive
function can be treated in a similar way, thus giving rise to a logic for reasoning about
recursive functions.

214 M.R. LEVY AND T. S. E. MAIBAUM

This reasoning could then be applied, for example, to formalize the (informal)
logic of systems of recursive definitions outlined in Burstall and thus give a formal
basis for their program transformation system. Similarly, the establishment of a library
of pairs of equivalent recursive functions, as suggested in Burstall and Courcelle [3],
could be based on such a logic.

5. Relation to other work. Several authors have studied quotient algebras in
some form (ADJ [1], [3], Courcelle [1], Lehmann and Hennessy). ADJ [1] is concerned
with the class of all -algebras (rather than of continuous -algebras), and it is the
main results of ADJ [1] that have been generalized here, using the notion of normal
forms. In Courcelle [1], Courcelle and Nivat investigate quotients of -algebras taken
from congruences that have been defined in terms of pre-orders (rather than simply
the least congruence generated by a set of equations), but they do not examine the
initiality of CTr./q. Hennessy has shown, independently of the present work, that the
completion of Tr./q is initial in the class of -algebras satisfying q, where q is the
congruence obtained using Courcelle and Nivat’s construction on pre-orders and the
class of algebras of interest is expressed in terms of a set of inequalities rather than
with equations. As a consequence of the main theorem of this paper (Theorem 12),
the initial algebra of Hennessy will be isomorphic to CTr./q when normal forms exist.
(Note that a set of equations {tl t, t2 t&,..., tn t’} may be regarded as the set
of inequalities {tl -< t, t <_- tl, t2 -< t, t _-< t2," ’, tn _-< t’, t’ _-< t,}.)

Lehmann has also investigated independently the initial algebra in a continuous
equational class using a categorical framework, and has shown that the completion
of Tr./q is initial in this class. This result is essentially the same as that of Hennessy.
ADJ [3] have investigated quotients in so-called rational algebraic theories. In Cour-
celle [2], Courcelle has independently shown the initiality of CTr./q also using normal
forms. The major difference between Courcelle [2] and this paper is in the characteriz-
ation of the congruence q and in the notational framework. We take q to be the least
(continuous) congruence containing some relation where Courcelle defines q in terms
of a preorder derived from the preorder on CTr. and the given relation. In this paper
we illustrate the usefulness of using minimal continuous congruences, which are simply
and elegantly characterized. Furthermore the idea of continuous congruences is
described independently of normal forms, this concept being natural and interesting
in its own right. For example, it is easy to see that the kernel of a continuous
homomorphism is a continuous congruence and that the class of continuous congruen-
ces on a given continuous algebra is a complete lattice. We believe that using minimal
congruences provides a simpler mechanism for defining quotients than the preorder
cum completion construction used in Courcelle [1], [2].

The results in this paper were strongly motivated by the consideration of types
where either it would be desirable for normal forms to exist or it was clear that they
did exist (see, for example, Levy [1], [2]). Normal forms are also important for
expressing simply the "value" of a computation or when considering the problem of
decidability of two expressions. Huet has investigated the existence of normal forms
in a noncontinuous framework, and Berry and Courcelle (in Berry) have investigated
classes of interpretations where normal forms (called canonical terms by them) exist.
In addition, Courcelle (in Courcelle [2], [3]) has studied conditions under which (what
are essentially our) normal forms exist for an equationally specified continuous class
of algebras.

The present paper thus provides a simple extension of ADJ [1], avoiding the
more complex constructions of Lehmann, Hennessy, Courcelle [2], [3] and ADJ [3]

CONTINUOUS DATA TYPES 215

in the useful case where normal forms exist. In practice, the biggest advantage of this
approach is that the congruence q considered is just the "usual" least congruence
containing a set of equations, or possibly the least continuous congruence containing
a set of equations. Further, the algebra CTv./q is just the quotient of CT by q in the
usual algebraic sense rather than being a more complex completion. This minimality
of q is an extremely useful fact that can be used for proving various properties of
continuous data types, a property in general absent from congruences derived from
completions of pre-orders. (See ADJ [1] and Levy [1], [2] for some more uses of
minimality of congruences in proofs.) Thus the main thrust of this paper differs from
the other papers cited in that the concern is not so much "Does initial algebra exist
in a continuous equational class?" but "Is CT/q initial in this class?".

6. Conclusions. Continuous data types arise naturally in many settings when one
is studying the semantics of programs and data. Data types are elegantly characterized
by universal algebras, where one of the most powerful tools used in the study of
universal algebra is the construction of quotient algebras. It would have been useful
to be able to use this technique in the more restricted domain of continuous algebras.
This, however, turned out to be impossible as the quotient of a continuous algebra
by an arbitrary congruence may not yield a continuous algebra (as the quotient set
may not admit a partial order or, even if it does, the partial order may not be complete).

Our purpose in this report was to characterize continuous data types by finding
conditions under which the quotient of the initial continuous algebra by some con-
gruence would yield a continuous quotient algebra. We were particularly interested
in the case where the congruence was generated by a set of equations (axioms). Two
simply stated conditions suffice for this purpose. Firstly, the congruence has to have
a special property called continuity. A continuous congruence is one which relates
(puts in the same congruence class) upper botmds of directed sets if the elements of
the directed sets are pairwise related by the congruence. This seems to be a highly
desirable and natural property of congruences. For example, we showed that the
kernel of a continuous homomorphism between continuous algebras is a continuous
congruence.

Secondly, the congruence has to be such that from each congruence class a unique
representative can be chosen by using a (continuous) map called a normalizer. The
normal form (image under the normalizer) of an expression is a generalization of the
canonical form of an expression introduced in the study of abstract data types (see
ADJ [1]). (In contrast to canonical forms, however, normalizers do not always exist.)
Since our motivation for studying quotients was to generalize the work on abstract
data types to the setting of continuous algebras, this was a natural place to start.
Moreover, continuous data types which did not have normal forms would be impossible
to represent (even aside from problems of representing infinite objects by finite ones).

As indicated above, the motivation for this work was the need to generalize the
work on abstract data types to the continuous setting in order to handle "naturally
infinite" objects (such as lists represented by equations of the form x- cons (a, x)).
The "list" represented by this equation is clearly cons (a, cons (a, cons (a,...)...)).
Such objects do not exist in the usual algebras of finite objects studied in the theory
of abstract data types. Moreover, it turns out that concepts such as sharing and
circularity in the definition of structures are best handled by resorting to continuous
data types. These ideas are developed further in Levy [1] and Levy [2].

The second example in the preceding section illustrates how the results in this
paper may be applied to define an equational logic for recursive function definitions.

216 M.R. LEVY AND T. S. E. MAIBAUM

ADJ [1].

ADJ [2].

ADJ [3].

Berry.

Burstall.

Cohn.
Courcelle [1].

Courcelle [2].

Courcelle [3].

Gr/itzer.

Guttag.

Hennessy.

Lehman.

Levy].

Levy [2].
Reynolds.

Scott.

REFERENCES

J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER AND J. B. WRIGHT, An initial
algebra approach to the specification, correctness and implementation of abstract data
types, Current Trends in Programming Methodology, Vol. IV, R. T. Yeh, ed., Prentice-
Hall, Englewood Cliffs, NJ, 1978.

Initial algebra semantics and continuous algebras, J. Assoc. Comput. Mach., 24
(1977), pp. 68-95.

Rational algebraic theories and fixed point solutions, Proc. 17th IEEE Symposium
on Foundations of Computer Science, Houston, 1976, pp. 147-158.

G. BERRY AND B. COURCELLE, Program equivalence and canonical forms in stable
discrete interpretations, Proc. 3rd Colloquium on Automata, Languages and Program-
ming, University of Edinburgh, 1976.

R. M. BURSTALL AND J. DARLINGTON, Some transformations for developing recursive
programs, Proc. International Conference on Reliable Software, SIGPLAN Notices (10)
(1975), pp. 465-472.

P. M. COHN, Universal Algebra, Harper and Row, New York, 1965.
B. COURCELLE AND M. NIVAT, Algebraic families of interpretations, Proc. 17th IEEE
Symposium on Foundations of Computer Science, Houston, 1976, pp. 137-146.

B. COURCELLE, On recursive equations having a unique solution, Proc. 19th IEEE Symp.
on Foundations of Comp. Sci., Ann Arbor, 1978.
, Infinite trees in normal form and recursive equations having a unique solution,

Mathematical Systems Theory 13 (1979), U. de Bordeaux I, 1979, pp. 131-180.
G. GRA.TZER, Universal Algebra, D. Van Nostrand, New York, 1968.
J. GUTTAG, Abstract data types and the development ofsoftware, Comm-ACM, 20 (1977),
pp. 396-404.
M. C. HENNESSY, lnitial algebras and Herbrand interpretations, Technical Report, Univer-
sity of Pernambuco, Recife, Brazil, 1978.
D. J. LEHMAN, On the algebra of order, Proc. 19th IEEE Symposium on Foundations of
Computer Science, Ann Arbor, 1978.
M. R. LEVY, Data types with sharing and circularity, Ph.D. thesis, Technical Report
CS-78-26, Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 1978.
M. R. LEVY AND T. S. E. MAIBAUM, in preparation.
J. C. REYNOLDS, Notes on a lattice theoretic approach to the theory of computation, Course
Notes, Syracuse University, Syracuse, NY 1972.
D. S. SCOTT, The lattice of flow diagrams, Symposium on Semantics of Algorithmic
Languages, Lecture Notes in Mathematics, 188, Springer-Verlag, New York, 1971.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0002 $01.00/0

GEOMETRIC PROBLEMS WITH APPLICATION TO HASHING*

DOUGLAS COMERS" AND MICHAEL J. O’DONNELLS"*

Abstract. Efficient algorithms are presented for two geometric problems. Both problems involve finding
the best projection of a set of points from two-space onto a line, with two different notions of "best". The
key technique is to identify critical angles in between which the functions to be optimized have nice
trigonometric forms that can be solved exactly. Applications to hashing arise when we look for the best
linear combination of two hashing functions.

Key words, hashing, geometry problems, geometric complexity, geometric algorithms

1. Introduction. Recently researchers have found efficient algorithms for several
geometric problems [GRAH72], [SHAM75], [SHAM75a], [JARV73], [PREP77].
These include convex hull in 2- and 3-dimensions as well as nearest neighbor problems.
This paper presents algorithms for two new geometric problems. Both problems have
applications to the choice of good hashing functions.

The first problem is motivated by Sprugnoli [SPRU77], who studies perfect
hashing functions for a static set of keys, proposing solutions which seem to require
large amounts of space. No analysis of the space requirements is given, however, so
a quantitative assessment is not available. Sprugnoli’s work suggests the following
problem: given a fixed set of keys $, and two functions hi, h2 which map S to Z/,
find constants el, C2 and C3 such that the hash function h(x)=[clh(x)+c2h2(x)+c3[
produces a minimum table size perfect hashing of $.

A related, practically motivated problem raised in [COME79] also concerns
finding an optimum linear combination of two functions. In this problem the hashing
function need not be perfect; however, we allow only b buckets in the hash table
(fixed b) and minimize cost based on the bucket sizes. Typical cost functions might
measure the maximum bucket size, the number of empty buckets or the uniformity
of distribution.

Section 2 defines the geometric problems underlying the hashing problems above;
3 and 4 present the basic algorithms and their analysis; and 5 discusses the

applications in greater detail. Finally, 6 concludes with a summary of open problems.

2. Definitions.
DEFINITION 1. Let S be a finite subset of R x R, and let 0 [0, r) be an angle

of profection. The pro]ection of S at angle 0 is

P0s {x cos 0 + y sin 0l (x, y) S}.

Where S is understood, we write P0s as Po.
The span of projection Po is

span (Po) max ({] u v ll u, v eo and u # v }).

The resolution of projection Po is

res (Po) min ({[u v[[u, v Po and u # v}),

* Received by the editors July 3, 1979, and in final revised form June 8, 1981.

" Computer Science Department, Purdue University, West Lafayette, Indiana 47907., The work of this author was supported by the National Science Foundation under grant MCS 7801812.

217

218 DOUGLAS COMER AND MICHAEL J. O’DONNELL

and the length of projection Po is

len (Po)
span (Po)
res (Po)

Intuitively, we think of $ as a set of n points in 2-dimensional space projected
onto a line at angle 0. The resolution of a projection gives the minimum distance
between projected points along the line; the length gives the distance between
endpoints after the resolution has been normalized to unity.

Problem 1. Given S, a finite subset of R R, find 0 [0, 7r) which minimizes
len (Po).

In the second problem we think of a finite set of points in 2-dimensional space
projected onto a line. Using the minimum and maximum projected points to determine
a line segment, mark off b equal size buckets 0, 1,. , b- 1 such that bucket 0 starts
with the minimum projected value and bucket b 1 ends with the maximum projected
value. Some number of projected points lie within each bucket; this number is called
the size of the bucket. The problem then is to find an angle of projection which
minimizes the cost of the resulting distribution of bucket sizes according to a given
cost function C. For example, a typical cost function might be the maximum number
of objects in a bucket or the number of nonempty buckets. In any case, T(b) denotes
the complexity of computing the cost function given the b bucket sizes. Usually T(b)
is small.

DEFINITION 2. Let S be a finite subset of R R; let 0 [0, 7r) be an angle of
projection; and let b Z+. Using min (Po) and max (Po) to denote the minimum and
maximum elements in Po, the scale of Po with b buckets is

max (Po) min (Po)
scale (Po, b)-

b

The size of bucket under projection Po scaled to b is size (Po, b, i)= IPbo’il, where
pbo’i ={sis Po and s [min (Po)+(i) scale (Po, b),

min (Po)+(i+ l) scale (Po, b)]} for0<-i<b-1,

pbo’b-a ={SIS Po and s [min (Po)+(b- 1) scale (Po, b),

min (Po)/(b) scale (Po, b)]}.

Note that size (Po, b, i)>0 only if 0_-< i_-<b. All of the buckets are half-open
intervals except the last, which is closed. The distribution o] projection Po into b
buckets is

distr (Po, b) (size (Po, b, 0),..., size (Po, b, b 1)).

Let C"zbZ+ be a cost function. Then the cost of a distribution is

cost (C, Po, b)= C (distr (Po, b)).

By convention, T(b) will denote the time complexity of computing C(distr (Po, b)),
given that distr (Po, b) has been computed.

Problem 2. Given S, a finite subset of R R, b Z+ and a cost function C :Zb

Z+, find 0 [0, 7r) which minimizes cost (C, Po, b).

3. Finding minimum length proections. This section presents an efficient
algorithm for Problem 1. First, we give an overview of the algorithm and data
structures. Then we discuss each piece in more detail. Finally, we show a simple lemma
needed for correctness and conclude with a discussion of the algorithm’s complexity.

GEOMETRIC PROBLEMS WITH APPLICATION TO HASHING 219

Basically, our algorithm forms two lists, SPANLIST and RESLIST, corresponding
to span (Po) and res (Po). Elements in these lists, ordered by increasing angle 0, consist
of an angular interval [a,/3) and a pair (Sl, s2)SS, with the interpretation that
for 0 [a,/3) the projections of S and s2 determine span (Po) and res (Po), respectively.
From SPANLIST and RESLIST, the algorithm forms a single list, LENLIST, which
is, again, ordered by angle. LENLIST contains enough information to compute
span (Po) and res (Po) for each angle 0 [0, 7r), from which len (Po) can be determined.

Throughout the development, we note the time complexity of each step, explaining
the analysis later and summarizing at the end.

ALGORITHM I.
input" $ a finite subset of R x R
output: (9 [0, -) and len (Po) such that fen (Po) is minimum
method:
I. compute SPANLIST O(n log n)
2. compute RESLIST O(n 2 log n)
3. merge SPANLIST and RESLIST to form LENLIST 0(/’/2)
4. find an element of LENLIST for which len (Po) is minimum

and output it O(n 2)
SPANLIST can be formed by first extracting a convex hull of the points in $ and

ordering the points of the hull counterclockwise, with respect to an interior point.
Starting from an arbitrary point, search for another point of maximum separation to
get two points which appear in SPANLIST. From these first two points, walk the hull
counterclockwise to determine the angle over which each pair of points dominates.
Finding the hull and ordering it requires O(n log n) time [GRAH72]; walking takes
O(n) time and produces a SPANLIST of O(n) entries.

FIG. 1. The angle 0 such that the proiections oils1 and s2 coincide. There is such an angle [or each pair o]’points.

Finding RESLIST is a bit trickier and requires some explanation. The key to
understanding the algorithm lies in the following observation. Let L be the set of all
possible unordered pairs of distinct points from $, and consider a particular pair
(Sl, s2) L. For some angle 0z [0, zr), sl and s2 project to the same point as shown
in Fig. 1. We call the angle for which s and s2 project to the same point the zero
angle for the pair.

The interval [a,/3) is taken clockwise from a to/3. Since len (Po) len (P0+=), we consider angles in
[0, r), instead of the usual [0, 2zr), and all angle arithmetic is performed mod

220 DOUGLAS COMER AND MICHAEL J. O’DONNELL

If we think of the distance between projections of two points s and $2 as the
angle of projection increases from 0 to rr, we see that it is a reflected sine wave of
period ,r and amplitude equal to the distance from S to s., as shown in Fig. 2. When
another pair of points (s3, s4) L with larger separation is added, the distance of their
projection forms a reflected sine wave with period ,r, greater amplitude and possibly
different phase. The distance between projections of s3 and s4 will be less than the
distance between projections of Sl and s2 only around the zero angle of (s3, s4). This
fact, expressed in Lemma 1, is the basis for computing RESLIST.

PROJECTED
DISTANCE

0 ANGLE rr

FIG. 2. The distance between the pro/ection of two points as a]:unction of the angle of pro/ection. The
curve is a reflected sine wave ofperiod r and amplitude IIs- s=ll.

LEMMA 1. Let (Sl, s2) be an element of a finite set S
_
(R R) (R x R), Isl 2,

(Sl, s2) s with Ilsl-s2[[maximum, and let O be the zero angle for (Sl, s2). Then the
angles 0 for which the distance res (Pos’’s2) between projections of s and s2 is strictly
minimum form an open interval (a, B) containing 0, with -a /2.

Proof. First, let (s, s2) and (s3, s4) be two pairs of points with

dla IIs - s211 IIs - s4ll d34.
Let 02, 034 be the angles of the segments xs2, $3S4, respectively. Then

res (p,,s:})= [d2 cos (0-

res (P’’)= [d34 cos (0- 034)1.
Since the lengths of the projections of sxs2 and s3s4 depend only on the lengths

and directions of these segments, not their positions, we can consider instead the
projections of the corresponding vectors sxsz and $3S4 positioned at the origin. The
angles for which res (Psx’s2}) res (P’’)) are the angles 0e, 0re [0,), perpendicular
to the vectors sxsz-s3s4 and sxsz-s4s3 (see Fig. 3).

Order 0e, 0’e SO that res (Px’)<res (es3,s4}) for 0e(0e, 0’e). Of course, Oz
(0e, 0re). 0re 0e /2 may be proved geometrically from Fig. 3. Intuitively the longer
segment sxs2 must produce the longer projection for at least one half of the angles
in [0,).

Now the region over which res (p.s) is minimum is the intersection of all the
intervals (0e, 0’e) for all choices of (s3, s4). The intersection of open intervals containing
Oz of length /2 must itself be such an interval. (The fact that the interval lengths
are no greater than /2 prevents two intervals from wrapping around the circle to
intersect twice.)

GEOMETRIC PROBLEMS WITH APPLICATION TO HASHING 221

FIG. 3. Angles 0 and O’e where s152 and s3s4 project to equal lengths. Oz is the zero angle for (sl, $2).

From Lemma 1, we can form a procedure for computing RESLIST. Order the
set L of all pairs of points in S by increasing distance between the points in a pair.
To initialize, select a minimum distance pair, making its zero angle the origin for
measuring angles. Place the pair on RESLIST with interval [0, r).

Then insert each pair (sl, s2) from L into RESLIST by locating the interval which
includes the zero angle of (s l, s2) and updating RESLIST. The updating of RESLIST
involves creating a new entry to represent the interval [a, fl) in which s and s2
determine the resolution, possibly splitting an existing interval containing [c,/3) as a
subinterval into two pieces, possibly reducing existing intervals which overlap [c, fl)
on either end and possibly deleting existing intervals which lie entirely within [a,/3).
All of these operations are handled together by starting with the existing interval
containing the zero angle of (s, s2), checking to the left until an existing interval is
found which contains a, checking to the right to locate/, deleting all intervals which
fall entirely between a and/ and shortening those which overlap. The interval [c’,/T),
with associated points s and s containing a, may be identified by the fact that (ss2)
has a shorter projection than (s s’ ’.2) at angle/T, but a longer projection at angle c

Then the exact value of c is determined analytically as the angle for which the two
projections have the same length, fl is located in a similar fashion.

Observe that each new pair of points increases the length of RESLIST by at most
two, in the case that the added interval splits an existing interval. In other cases, the
length of RESLIST may increase by one, remain the same or even decrease because
of deletions. Thus, RESLIST contains at most O(n 2) entries corresponding to O(n 2)
pairs in L. By keeping the entries in the leaves of a balanced tree, such as a 2-3 tree,
and linking the leaves in a list, we can find an interval including a zero angle in
O(log n) time. Then, moving right and left in the list, we can determine how many

222 DOUGLAS COMER AND MICHAEL J. O’DONNELL

existing entries to delete. Note that while deletion costs O(log n), each entry will be
added and deleted at most once, so we charge it both the cost of its insertion and
deletion. Therefore, the running time is O(log (HE))= O(1og n) per entry.

procedure compute RESLIST
1. Generate L, a list of all unordered pairs of distinct points in

S ordered by increasing distance of separation between points
in the pair O(n 2 log n)

2. for each pair (Sl, S2)E L do O(n E) iterations
3. find interval in RESLIST containing the zero angle of

(Sl, s2) using a balanced tree O(log n)
4. update RESLIST possibly removing old intervals that are

subsumed and updating the balanced tree (see note in text)
Merging SPANLIST and RESLIST into LENLIST is straightforward and requires

at most O(rt 2) time since there are at most O(n 2) entries in RESLIST and O(n)
entries in SPANLIST. Once LENLIST is known, the minimum value for len (Po) may
be found in O(n 2) time by checking only the endpoints of intervals in LENLIST, as
shown below. The following lemma shows that len (Po) must be minimized at the
endpoint of some interval in LENLIST.

LEMMA 2. Within each interval of LENLIST, len (Po) achieves its minimum at
one of the endpoints of the interval.

Proof. Notice that, within each interval [a, fl) of LENLIST, the span and resol-
ution of all projections is determined by the same two pairs of points. Let the pair
of points (Sl, s2) determining the span be joined by a line segment of length dl at
angle a l, and let the pair (tl, rE) determining the resolution be joined by a segment
of length d2 at angle a2. Thn within the given interval,

len (Po) span (Po)/res (Po) Id cos (al-O)/dE cos (te2- 0)1.
The minimum value for len (Po) will be found at either an endpoint of the interval (a
or /3) or at a zero of the derivative or at an angle with no derivative, len (Po) is
nondifferentiable when span (Po)= 0 (because of the reflection by the absolute value
operation) and when res (Po)= 0 (because of the division by 0); span (Po)= 0 only at
the zero angle of (s l, s2). This zero angle may not be in the interval [a,/3) because
when s and s2 project to the same point they do not determine the span. When
res (Po) 0, len (Po) is infinite, so the minimum cannot occur there.

The derivative of len (Po) with respect to 0 is

COS (tel- 0) sin (teE-- 0)-- COS (teE-- 0) sin (tel 19)
cos (c2- 0)

This derivative is zero if and only if tan (tel-0)=tan (te2--19). Two angles have the
same tangent if and only if their difference is a multiple of zr. So we either have no
zeros of the derivative (when tel # tee mod 7r) or the derivative is everywhere zero
(when al -te. mod zr), and len (Po) is a constant. In either case, the minimum value
of len (Po) is found at an endpoint of one of the intervals in LENLIST.

The analysis above, with Lemmas 1 and 2, allows us to conclude the correctness
and time complexity of Algorithm 1.

THEOREM 1. Algorithm 1 solves Problem 1 in O(n E log n) time.

Proof. Immediate from the discussion above.

4. Finding minimum cost distribution into buckets. This section presents an
efficient algorithm for finding an angle of projection which minimizes the cost of a

GEOMETRIC PROBLEMS WITH APPLICATION TO HASHING 223

distribution. It relies heavily on the reader’s knowledge and intuition from the previous
section, concentrating on differences between the two algorithms. As before, we
present an overview of the solution first, followed by a more detailed discussion of
each piece. Also as before, we note the complexity of each section as we present it,
justifying the claims later.

Our algorithm for finding a minimum cost distribution begins, like Algorithm 1,
by computing SPANLIST. Recall that SPANLIST, ordered by angle, contains angular
intervals [a,/3) and pairs of points (s, s2) S that define min (Po) and max (Po) for
0 [a,/3). In terms of the distribution, s is the start of bucket 0 and s2 is the end of
bucket b 1 for 0 [a,/3). Assuming that the special case of 3 or more collinear points
has been taken care of, the algorithm proceeds as follows:

ALGORITHM 2. O(nEb log (nb)/ nEbT(b))
input" S, a finite subset ofR R, anintegerb >OandacostfunctionC’Z bZ+

output: an angle of projection 0[0, 7r) and cost(C, Po, b) such that cost
C, Po, b) is minimum

method:
1. form SPANLIST
2. mincost -3. for each ([a,/3), (Sl, s2)) SPANLIST do
4. mincost min (mincost, cost (C, P, b))
5. find all distributions in [a,/3)
6. for each distribution in [a, fl) do
7. mincost min (mincost, cost (C, Po, b))
8. output mincost and angle giving that cost

Steps 5-7 each require further explanation; we begin with step 5.

O(n log n)

O(n iterations
O(T(b)+n)
O(nb log (nb))
O(nb) iterations
O(T(b))
o()

The key to finding all distributions in an interval [a, fl) lies in thinking of a line
of projection with b buckets marked off rotating from a to/ as shown in Fig. 4. One
can easily construct such a line at angle c by projecting all points and marking off b
equally spaced intervals between the smallest and largest.

FIG. 4. A line rotating from angle a to with b buckets marked off.

224 DOUGLAS COMER AND MICHAEL J. O’DONNELL

Think of the b interval marks as the projection of a set of b- 1 equally spaced
dummy points along a line from s to s2 (sl and s2 mark the left end of the first and
the right end of the last bucket). As the imaginary line of projection rotates from a

to/3, the distribution changes whenever the projection of an element from S crosses
a projection of one of the b 1 dummy points (i.e., a bucket mark). Thus, if D denotes
the set of b- 1 dummy points, a crossing corresponds to a zero angle of a pair from
D x S. To be more precise, our definition of buckets as half-oened intervals means
that crossings may either occur exactly at the zero angle or just beyond it, depending
on the direction of the crossing. The algorithm simply forms a list, CROSSLIST,
consisting of bn triples (0, d, s), where 0 is the zero angle for (d, s) D x S, marking
those triples that correspond to exact crossings and those that correspond to crossings
just beyond the zero angle. Of course, only those triples with 0 [a,/3) are saved.
Sorting CROSSLIST by 0 value requires O(nb log (nb)) time and produces a list of
all angles in [a,/3) where the distribution changes, as well as a record of which point
changes buckets at that angle.

We summarize the procedure for step 5"
procedure step 5: find all distributions in [a,/3)
1. Form D, a set of b- 1 equally spaced dummy points on the

line segment where s and s2 determine min (Po) and
max (Po) for 0 [a,/) O(b)

2. Find size (P, b, i) for 0 <=i < b O(n)
3. Form CROSSLIST by finding all zero angles Oz [c,/3) for pairs

in D S and sorting O(nb log (nb))
Given CROSSLIST, steps 6-7 become simple: remove the next element or

elements (0, d, s) with exact crossing at angle 0 from CROSSLIST, update the
appropriate bucket counts, compute the cost of the new distribution and record it in
case the new cost is lower than the minimum’found so far. Do the same for crossings
that occur just beyond angle 0. The O(nb) elements on CROSSLIST each require
O(T(b)) time to process yielding a bound of O(nbT(b)). The loop in step 3 iterates
steps 5-7 for each of the O(n) items in SPANLIST, however, so the total processing
in steps 5-7 requires O(n2bT(b)). Similarly, step 5 requires a total of o(neb log (nb))
because it is repeated O(n) times. Thus, the total running time of Algorithm 2 is
O(n2b log (nb)+ nbT(b)).

THEOREM 2. Algorithm 2 solves Problem 2 in O(n2b log (nb)+ nbT(b)) time.

Proof. Immediate from the discussion above.
In many cases, a cost function may be updated after a point crosses from one

bucket to the next much more quickly than O(T(b)), the time to recompute the cost
from scratch. For example, if the cost of a distribution is the sum of some fast (i.e.,
O(1)) function of the bucket sizes, then T(b)= O(b). But, we may update the cost in
time O(1) by merely adding in the changes in function values of the two bucket sizes
which have changed. In general, if U(b) is the time required to update the cost function
after one bucket crossing, Algorithm 2 may easily be improved to run in time
O(nb log (nb)+ n2bU(b)+ T(b)).

5. Applications to hashing. This section describes how Algorithms 1 and 2 apply
to the hashing problem mentioned in the Introduction. The first problem, concerned
with finding a minimum table size perfect hashing function, can be defined as"

Problem HI. Given a set S of n keys and two functions hi and h2 which map S
to Z+, find constants c, C2, c3ER such that for h(x)=lClh(x)+c2h2(x)+c31 the
following hold:

GEOMETRIC PROBLEMS WITH APPLICATION TO HASHING 225

(1) kl, k2 S, h(kl) h(k2) if and only if kl k2.
(2) min ({h (k)l k S}) 0.
(3) max ({h(k)lk $}) is minimized.
Property 1 guarantees that h is a perfect hashing, while Properties 2 and 3 assure

a minimum table size.
Problem H1 is similar to the geometric problem of finding an angle of projection

such that the length of projection is minimized when each pair of projected points is
separated by an integer. Note, however, that Algorithm 1 does not always produce
such a minimum projection. Instead it minimizes the length of projection while
simultaneously placing the closest pair of projected points distance 1 apart.

To see the difference between the unit distance stipulation imposed by Algorithm
1 and the distinct cell stipulation given in the problem statement, consider three
collinear points as shown in Fig. 5. Trouble arises when an integer separates two

3 4 k-2 k-I k

FI. 5. A case where Algorithm can produce a projection that is arbitrarily far from the optimum hash
table size. The points Pl, P2 and P3 are collinear.

projected points pl and p2. Using real arithmetic, one could squeeze pl and p2 arbitrarily
close together, forcing p3 to move close to p2. Clearly the optimum solution requires
only 3 cells in a hash table. Algorithm 1, which places pl and p2 unit distance apart,
requires more than 3 cells. Even using floating point hardware to approximate the
real number solution may still lead to anomalies, like the one in Fig. 5, if the floating
point approximations for pl and P2 happen to lie on either side of an integer.

We can define the second hashing problem as:
Problem H2. Given S, a set of n keys, b Z+, hi and hE which map S to Z+

and a cost function c:zbz+, find constants c, c2, c3R, such that for h(x)=
[clh(x)+ CEh2(x)+ c31 the following hold:

(1) min ({h(k)lk S})-0.
(2) max ({h(k)lk S})= m-1.
(3) The cost of h as given by C is minimum.

Algorithm 2 solves Problem H2 exactly.
In particular, the problem formulated in [COME79] requires finding a projection

that distributes keys as uniformly as possible into buckets. In the particular problem
described, the cost of searching a bucket with entries is O(log (t)). Assuming that
the complexity of computing log for small integer is constant, so T(b)-b; this
yields a complexity of O(rtEb log (nb))+ rtEb 2) for finding an optimum projection. We
can do slightly better by noticing that when only two bucket sizes change, the cost
may be updated in constant time (U(b) O(1)); so Algorithm 2 may easily be modified
to find the optimum projection in time O(nEb log (nb)/ n2b).

6. Conclusions and further research. In order to be used in graphics applications,
the algorithms of this paper must be adapted to find optimal projections from 3
dimensions to 2 dimensions, instead of 2 to 1. A major component of the adapted
algorithm, a solution to the 3-dimensional convex hull problem, is already known
[PREP77]. The major remaining difficulty is to find a higher-dimensional analogue
to the search tree representation of RESLIST.

226 DOUGLAS COMER AND MICHAEL J, O’DONNELL

Given two hashing functions h and ha and a fixed set of keys, the algorithm of
this paper may be used to choose a good hashing function of the form h(x)=
IClhl(X)+c2h2(x)+c31. The question of how good is the best hashing function in such
a class is open. Very little is known about hashing with predetermined, static sets of
keys; the only treatment of this problem seems to be Sprugnoli’s [SPRU77]. A
combinatorial analysis should at least settle the question of how large a class of hash
functions is needed to guarantee a given level of performance for any set of keys.

Acknowledgments. The two anonymous referees were especially helpful in
improving the style and the content of this paper. In particular, they corrected our
errors in Lemma 1 and suggested the improvement to Algorithm 1 using fast updates
to the cost function.

[COME79]

[GRAH723

[JARV73]

[PREP77]

[SHAM75]

[SHAM75a]

[SPRU77]

REFERENCES

D. COMER AND V. Y. SHEN, Hash-binary search. A fast technique for searching an English
spelling dictionary, Tech. Rep. TR-CSD-304, Dept. of Computer Science, Purdue Univer-
sity, West Lafayette, IN, 1979.

R. L. GRAHAM, An efficient algorithm for determining the convex hull of a finite planar set,
Inform. Proc. Letters, (1972), pp. 132-133.

R. JARVIS, On the identification of the convex hull of a finite set of points in the plane,
Inform Proc. Letters, 2 (1973), pp. 18-21.

F. PREPARATA AND S. HONG, Convex hulls of finite sets of points in two and three
dimensions, Comm. ACM, 20 (1977), pp. 87-93.

M. SHAMOS, Geometric complexity, Proc. 7th Annual ACM Symposium on Theory of
Computing, 1975, pp. 224-233.

M. SHAMOS AND D. HOEY, Closest point problems, Proc. 16th Annual IEEE Symposium
on Foundations of Computer Science, IEEE, New York, 1973, pp. 151-162.

R. SPRUGNOLI, Perfect hashing functions: A single probe retrieving method for static sets,
Comm. ACM, 20 (1977), pp. 841-850.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0003 $01.00/0

GRAPHS THAT ARE ALMOST BINARY TREES*

JIA-WEI HONGt AND ARNOLD L. ROSENBERG$

Abstract. This paper studies embeddings of graphs in binary trees. The cost of such an embedding is
the maximum distance in the binary tree between images of adjacent graph vertices. Several techniques
for bounding the costs of such embeddings from above are derived; notable among these is an algorithm
for embedding any outerplanar graph in a binary tree with a cost that is within a factor of 3 of optimal.
A number of techniques for bounding the costs of such embeddings from below are developed; notable
here are two techniques for inferring the presence of large separators in graphs. Finally, a number of
characterizations are established of those families of graphs that are almost binary trees, in the sense that
every graph in the family is embeddable in a binary tree within bounded cost.

Key words, graph embeddings, binary trees, graph separators, proximity preservation, similarity of
graphs, reticulated graphs, stratified graphs

1. Introduction.
Motivation. A large variety of computational problems can be formulated

mathematically as graph embedding problems. Included here are problems concerning
representing data structures in computer storage [1], [5]-[11], organizing computations
on networks of processors [4], studying the relative efficiencies of program control
structures [5], and laying out circuits in standard formats [12]. In all of these problem
areas, one has a source graph that represents well the structure of the computation
one wants to perform, and a target graph that is better suited to implementation or
manipulation or analysis in the computer environment at hand. One’s task is to embed
the source graph in the target graph in a way that preserves adjacencies as well as
possible. In all of the cited problem areas, one often seeks a target graph that is
tree-like in structure, since trees are so easily implemented in both hardware and
software, and because trees are relatively easy to analyze and to manipulate (in
software). But the desire for efficient, adjacency-preserving embeddings often makes
true trees (apparently) unsuitable target graphs, so one seeks target graphs that are
augmented trees, i.e., trees with auxiliary edges that augment the set of adjacencies.
Consider three examples aimed at simplifying tree traversals (cf. [3, 2.3.2]): (1) if
one anticipates repeated preorder tree traversals, one might add auxiliary edges
connecting each leaf node x 12 (x {1, 2}*, n => 0) with node x2, as in Fig. 1 (thereby
making preorder traversal a Hamiltonian path); (2) if one anticipates repeated inorder
tree traversals, one might add auxiliary edges connecting each pair of adjacent leaves
(in the natural left-to-right ordering) to their least common ancestor, as in Fig. 2; (3)
if one anticipates repeated breadth-first tree traversals, one might add auxiliary edges
going across each level of the tree, as in Fig. 3. A basic issue raised by this scenario
is" Which embellishments of trees make a substantive improvement in adjacency-
preservation and which make only inconsequential improvements? This paper is
devoted to studying this issue via the two basic questions" How far is a graph G from
being a tree? How "well" can a graph G be embedded in a tree, where we measure

* Received by the editors July 14, 1980 and in revised form May 21, 1981. A portion of this paper
was presented at the 13th ACM Symposium on Theory of Computing, Milwaukee, Wisconsin, May 11-13,
1981.

" Peking Municipal Computing Centre, Peking, China.
t Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New

York 10598. Present address: Department of Computer Science, Duke University, Durham, North Carolina
27706.

227

228 J.-W. HONG AND A. L. ROSENBERG

FIG. 1. The depth-4 complete preorder tree.

FIG. 2. The depth-4 complete inorder tree.

FIG. 3. The depth-4 complete breadth-first tree.

the quality of an embedding by the extent to which the images of adjacent vertices
of G are close together in the tree? Our major results answer these questions for a
variety of families of graphs. In particular we show that preorder and inorder trees
are both equivalent to trees! Breadth-first trees are strictly more efficient than true
trees, but by exponentially less than one might expect.

The formal setting. The vehicle for our investigation is a simple notion of a graph
embedding and its cost. An embedding of a graph G in a graph H is a one-to-one
association of the vertices of G with vertices of H. The cost of the embedding is the
largest distance in H between images of adjacent vertices of G. We say that one
proposed target graph H’ can simulate another one H to within the factor c > 0 if the
cost of embedding any graph G in H’ is at most c times the cost of embedding G in
H. This condition is easily shown to be equivalent to the ability to embed H in H’
within cost c [8]. We extend the notion of simulation to families of graphs in the
obvious way" the family ’ can simulate the family (equivalently, is almost ’),
if there is a constant c > 0 such that each H can be simulated by some H’ ’

GRAPHS THAT ARE ALMOST BINARY TREES 229

to within the factor c. The families and ’ are similar if each can simulate the
other (this is our notion of equivalence). One verifies easily that our notions behave
well: costs of composed embeddings multiply; "can simulate" and "is almost" are
transitive; and "is similar" is an equivalence relation [8]. (None of these facts need
be true when some average measure of the cost of an embedding is used.) The relations
we have just defined are very basic ones" just as algebra studies mappings that preserve
structure, and topology studies mappings that preserve neighborhoods, a prime theme
in graph theory should be mappings that preserve "closeness." In fact, when the
simulation constant c 1, our notion of similarity is just graph isomorphism.

Synopsis. Our main results describe (1) techniques for bounding from above the
factor to within which binary trees can simulate other families of graphs (these
techniques yield bounds that are within a small factor of optimal); (2) techniques for
bounding from below the factor to within which a large variety of families of graphs
can be simulated by binary trees; (3) a number of necessary-and-sufficient conditions
for a family of graphs to be almost a family of binary trees. One of our main results,
for example, can be stated:

The bounded-degree family of graphs (is almost a family of binary trees if
and only if c is almost outerplanar.

Applications. Although our main goal here is to understand better what makes
a graph tree-like, our positive results do have application to certain of the motivating
problems. For example, with regard to circuit layout, the embedding techniques of
Valiant [12] require one to find a small separator for the graph to be laid out, then
for the induced subgraphs, and so on. If one’s graph is irregular in structure, finding
these separators may be difficult. If, however, one’s graph can be simulated by a
binary tree (e.g., if the graph is outerplanar), then one can use our results to embed
the graph in a tree and then use Valiant’s techniques to lay the tree (which now has
fat edges) out in a grid. Similar considerations apply to the problem of laying out
large VLSI systems over several chips which have to be interconnected.

Related work. The already cited sources and work cited in them trace the history
of the use of graph embeddings to model computational situations. The most relevant
precursors of this work are the studies in [1], [5] [6], [8]-[11] of embeddings of graphs
in trees. Among these, only [5], [10] study the present cost measure; all others study
some notion of the average cost of an embedding. Only [6], [10] study general criteria
for bounding costs; all others study embeddings of specific families of graphs in trees.
[10] concentrates on general criteria for bounding from below the costs of embeddings
of arbitrary G in arbitrary H; hence the results there cannot be as sharp as ours.
Section 6 of [6] characterizes families of graphs that can be embedded efficiently in
trees relative to an average-edge notion of adjacency preservation (with all edges
weighted equally). Indeed, certain of our results can be viewed as doing for the
worst-case cost of embeddings of graphs in trees what [6, 6] does for the average-case
cost. It appears that the worst-case cost is more difficult to treat definitively; and we
feel that it is also the more basic notion in terms of the motivating computational
problems.

2. Upper bounds on simulation costs. We derive in this section a variety of
techniques for efficiently embedding a graph G in a binary tree, and we illustrate
these techniques on sample graphs. Results in 3 will show that these techniques
yield embeddings that are close to optimal in cost. We stress that we are not supplying
an efficient procedure that will announce, given an arbitrary graph G, whether or not

230 J,-W, HONG AND A. L. ROSENBERG

G is efficiently embeddable in a binary tree. It remains an open problem whether or
not such an efficient decision procedure exists.

Several results in this section can be stated most succinctly with the aid ot the
following formalism. A graph G comprises a set of vertices and a set of two-element
sets of vertices called edges. (Note that we prohibit self-loops here.) We denote by
IGI the size of the set Vertices(G). An n-ary tree is a graph whose vertices are a
prefix-closed set of strings over the alphabet In] =def{1, 2,..., n} (so that string x is
in the set whenever any extension xtr of x is), and whose edges connect all vertices
x and xtr. A 2-ary tree is termed binary.

A. Techniques based on planarity considerations. Our first family of embedding
strategies is applicable in a wide variety of situations.

The graph G is outerplanar if it has a planar embedding that places all vertices
in one face. If a graph is outerplanar, then (and only then) it can be embedded in a
convex polygon in the plane so that the vertices of the graph are the vertices of the
polygon, and the edges of the graph are either edges or noncrossing chords of the
polygon.

THEOREM 2.1. (One-way outerplanar theorem) IfG is an outerplanar graph, then
there is an embedding e ofG in a binary tree with Cost(e) <_- 3. log2 (2 maxdegree(G))].

Proof. We shall show how to embed any outerplanar graph G in a 2d-ary tree,
where d =maxdegree(G), within Cost 3. The Theorem will then follow from the
obvious embedding of a 2d-ary tree in a binary tree.

We assume that the graph G is presented to us embedded in its polygon; and
we view the vertices of the polygon (hence the vertices of G) as oriented in a clockwise
fashion. (This is the only nonconstructive part of the proof.) We begin our embedding
process by labelling G’s vertices with distinct strings over the alphabet [2d] in a way
that in fact embeds G in a 2d-ary tree. We proceed as follows (see Fig. 4):

1422

1421

142

1411

i41

14

1322

Illl

Ill5

Ill4

112

115

1151

114

1141
1521

152 1142
151 15 12 115

FIG. 4. The depth-4 complete preorder tree labeled by the procedure ol Theorem 2.1. Auxiliary (= nontree)
edges are cross-hatched; the root of the preorder tree is labeled A.

GRAPHS THAT ARE ALMOST BINARY TREES 231

We select some vertex of G to be the patriarch of the graph, and we label this
vertex with the unique length-0 string h. The neighbors of the patriarch will be his
sons and will be labelled with the length-1 strings 1, 2, 3,.. in a clockwise direction;
the unlabelled neighbors of each son will be the patriarch’s grandsons and will be
labelled with length-2 strings; and so on. A vertex’s seniority in the graph G is
determined by its proximity to the patriarch in G; a vertex’s seniority among its
brothers is determined by its proximity to the patriarch in the clockwise direction
around the polygon. Before specifying the sought labelling, we must transfer some
sons to new fathers. The rules of this transfer are specified by the Chinese Adoption
Algorithm"

In ancient China there was a custom that a younger brother’s sons would be
adopted by an elder brother. The Chinese Adoption Algorithm codifies this custom
by demanding that, in our graph,

a son that precedes its father in clockwise order should be adopted by its

father’s next more senior brother.

Once the prescribed adoptions have taken place, the remaining sons of the vertex
labelled x are labelled x l, x2, x3,.., in clockwise order. Formally the algorithm is
as follows.

Step O. Label one vertex of G with the empty (null) string h.
Step 1. Label the neighbors of vertex with 1, 2, 3, etc., in clockwise order.
Step + 1. Label all unlabelled neighbors of length-/vertices (=vertices having

length-/labels) with length-(/+ 1) strings in such a way that: (a) the length-(/+
1) strings are in lexicographic order when read clockwise; (b) the following
rule is maintained (where x denotes a string and r, a denote symbols in [2d]):

a neighbor u of vertex v xr has a label of the form x(r-1)a or of the
form xcra, the former obtaining if and only if both u precedes v in clockwise
order and r > 1.

(c) if k vertices get labels of the form xcr, then their labels are
xl, x2, x3, ,xk.

One verifies easily that the labelling produced by this algorithm is, in fact, an
embedding of G in a 2d-ary tree. We show now that this embedding has Cost at
most 3.

Let v and w be vertices of G such that (i) there is an edge between v and w;
(ii) v precedes w in clockwise order. Clearly v and w differ in seniority by at most
1, since we are looking at a planar embedding of G. Three possibilities arise.

(1) v is w’s father. Since w succeeds its father in clockwise order, v remains w’s
father (i.e., no adoption takes place); hence v and w are distance 1 apart in the tree.

(2) w is v’s father. Since w precedes its father in clockwise order, w is adopted
by v’s elder brother should one exist; hence v and w are distance 1 or distance 3
apart in the tree.

(3) v and w have the same seniority in G. Then we find their least common
ancestor u. In the course of finding u, we find a polygon with vertices (in clockwise
order)

U --lAk --Vk-1)I--V W- W1 Wk-1-- Wk

having an odd number of edges. Now, vk and wk are brothers; after one adoption,
v-i and w-I become brothers; and eventually, after a chain of adoptions, v and w
become brothers. When they are labelled (i.e., embedded in the tree), therefore, v
and w are distance 2 apart in the tree.

232 J.-W. HONG AND A. L. ROSENBERG

In any case, v and w are placed at distance at most 3 apart in the tree.
We now compose this Cost-3 embedding of G in a 2d-ary tree with the natural

Cost-flogs. 2d] embedding ot the 2d-ary tree in a binary tree. Since the Costs of
composed embeddings multiply, this completes the proof, l-1

Example 2.1. Preorder trees. Preorder trees are outerplanar graphs; hence, we
can use Theorem 2.1 directly to embed any preorder tree in a binary tree with Cost
-< 9. (This is the embedding indicated in Fig. 4.)

Example 2.2. Inorder trees. Inorder trees are outerplanar graphs also; we can
again use Theorem 2.1 directly to embed any inorder tree in a binary tree with
Cost =< 6.

The constant in Example 2.2 is somewhat smaller than the conservative estimate
of Theorem 2.1 would suggest. We feel it was not clear a priori that binary trees could
simulate these embellished trees to within any factor independent of the depth of the
tree.

We look now at a number of consequences of Theorem 2.1. We begin with an
easy one.

COROLLARY 1. If the graph G is embeddable in the outerplanar graph H
with Cost <-_ c, then G is embeddable in a binary tree with
Cost <_-3c flog2 (2 maxdegree(H))].

Proof. Immediate from Theorem 2.1 since the Costs of composed embeddings
multiply.

The next result is oriented more directly to the question that motivated this study
initially: How much do auxiliary edges added to trees help? We answer the question
by considering how efficiently the embellished trees can be simulated by true trees.

Any maxdegree-n graph G can be viewed as an n-ary tree (one of its spanning
trees) augmented with nontree "auxiliary" edges. From this vantage point, G’s
vertex-set is a (prefix-closed) subset of [n]*.’When G has a binary spanning tree, we
can build on this observation to find an often efficient embedding of G in a binary tree.

Say that the graph G has deviation (from binary tree-hood) (c, q), where c, q >= 0
are integers, if G has a spanning tree T such that"

(a) T is binary, so each vertex is in the set [2]*.
(b) If the vertices v and w of G are ends of an auxiliary edge of G, then the

path in T from the least common ancestor of v and w to either v or w changes
direction (from "1" to "2" or from "2" to "1") at most c-1 times. Symbolically,
this is equivalent to the assertion that v is of the form v xy and w is of the form
w xz where, letting A 1" + 2", we have y Ad and z A for some d, e =< c.

For v xA d, we call the longest prefix of v that is in xA the head of v starting at x.
(c) For all vertices x of G, there are at most q vertices that are heads of some

termini of auxiliary edges of G starting at x.
COROLLARY 2. If the graph G has deviation (c, q), then G is embeddable in a

binary tree with Cost -< 6c flog2 2(q + 2)].
Proof. A graph G with deviation (c, q) can be embedded in a maxdegree-(q + 2)

outerplanar graph with Cost-< 2c. The embedding can be viewed as turning G into
an outerplanar graph by adding edges to G in a way that replaces each auxiliary edge
by a path of length -< 2c. This outerplanar graph is then embedded in a binary tree
via the algorithm of Theorem 2.1. We describe very informally the method of adding
new edges to make the original graph outerplanar. Take the spanning tree of G and
add to it the following edges. (In what follows, x is an arbitrary string in [2]*.) (a)
Each vertex of the form x 1 gets new edges connecting it to all vertices of the form
x 12a, a > 1; (b) each vertex of the form x2 gets new edges connecting it to all vertices

GRAPHS THAT ARE ALMOST BINARY TREES 233

of the form x21a, a > 1; and (c) vertex gets new edges connecting it to all vertices
of the form 2 or 1, a > 1. This shaggy tree is clearly outerplanar; and it contains,
for each auxiliary edge of G, a path of length -< 2c connecting the endpoints of that
edge (a consequence of the direction-changing properties of G’s auxiliary edges). If
one now prunes this shaggy tree, removing all of its auxiliary edges that do not enter
into any of these length-(=< 2c) paths, one is left with an outerplanar graph of maxdegree
<-q + 2 (a consequence of the "head" properties of G’s auxiliary edges). Moreover,
we have pruned this shaggy tree in such a way as to retain G’s embeddability within
Cost 2c. It is thus the desired outerplanar graph. The details of our construction
should become clearer from the following detailed example. [3

Example 2.3. Leap trees. The depth-d leap tree is obtained from the depth-d
complete binary tree by adding auxiliary edges connecting each node of the form
2 lb--a {0} kl [d-1], b [d], a +b =< d--to node 2"/11 -1’, see Fig. 5. The least com-
mon ancestor of the auxiliary edge (2 1 , 2a/l 1-) is node 2", so the deviation constant
c 2; and every node in the set 1" is the head of some auxiliary edge, so the deviation
constant q d. Therefore the graph has deviation (2, d) and so, by Corollary 2, is
embeddable in a binary tree with Cost =< 12. [log2 2(d + 2)]. (The constant here is at
least a factor of 2 too large.) The embedding into a binary tree proceeds as in the
proof of Corollary 2’ we embed the leap tree in a structurally similar outerplanar
graph, and then embed this outerplanar graph in a binary tree. The first embedding
can be viewed as replacing each auxiliary edge (2"1 , 2/1-) with the pair of edges
(21, 2) and (2a/, 2/11b-), thereby converting the graph into a degree-(d +2)
outerplanar graph. Since the auxiliary edge termini 2’1 b and 2/1- are distance 3
apart in the outerplanar graph (via the path 21 b, 2a, 2’+, 2+1b-l), it follows that
the Cost of the indicated embedding is 3, whence the result.

FIG. 5. The depth-4 leap tree.

Our final result in this family of techniques is the main result of this section. It
employs yet another strategy to embed graphs in trees by first embedding them in
outerplanar graphs and then employing the algorithm of Theorem 2.1.

Let G be an arbitrary graph. Embed G in the plane. Now, G may not be planar,
so there may be crossovers among G’s edges. In this contingency, replace G by the
planar graph G* obtained by adding a pseudo-vertex (p-vertex, for short) at each
crossover point in the embedding: if in G’s embedding the edges (Vl, v2) and (v3, v4)
crossed, G* would have a p-vertex v and edges (Vl, v), (v, v2), (v3, v), (v, v4); and
edges (vl, v2) and (v3, v4) would be deleted. The planarity numberP of this embedding
of G is the largest number of p-vertices added along any single edge of G; and the

fanout number F of the embedding is maxdegree(G*). Although the graph G* is

234 J.-W, HONG AND A. L. ROSENBERG

planar, it may not be outerplanar. We make it outerplanar as follows. Each interior
(in the embedding) vertex of G* must cross some number of edges of G* in order
to reach the exterior. We consider only independent "escape" routes for the interior
vertices of G*, that is, routes that never cross each other. Having chosen some
independent set of escape routes, let E be the escape number of the set of routes,
i.e., the maximum, over all edges e of G*, of the number of interior vertices of G*
whose escape routes cross edge e. Dually, let D be the maximum, over all vertices v
of G*, of the number of edges that v crosses to reach the exterior. Say that vertex v
(possibly a p-vertex) must cross edges (vl, Va), (v3, v4),"’ ", (Yak-l, Yak) in order to
reach the exterior. We replace these k edges by the 2k edges (rag-l, v), (v, v2i) for
1 <-i <-k. Vertex v is now an exterior vertex of the altered graph. We repeat this
process for every interior vertex of G*, thereby obtaining an outerplanar graph G**,
which we embed in a binary tree via Theorem 2.1.

In essence, we have described here an embedding e of G in the outerplanar
graph G**, via an embedding e* of G in the planar graph G*. We note the following
facts about these embeddings.

(a) The Cost of the embedding e* of G in G* is P + 1 (P planarity number).
(b) The Cost of the embedding e** of G* in G** is E + 1 (E escape number).
(c) The graph G** has maxdegree <-F + 2D (F fanout number, D dual

escape number).
These properties of the graphs and embeddings we have been discussing yield our
most general embedding result.

THEOREM 2.2. (one-way planar embedding theorem) If the graph G is embed-
dable in the plane with planarity number P, fanout number F, escape number E, and
dual escape number D, then there is an embedding e of G in a binary tree with

Cost (e) =< 3(P + 1)(E + 1). [log2 2(F + 2D)].

Proof. We obtain e as the composition of the embeddings e*: G G*, e** G*
G**, and e’: G** - Binary Tree, the last embedding coming from Theorem 2.1. The
Cost of e is obtained by multiplying the Costs of its constituent embeddings. ?1

We have chosen to derive Theorem 2.2 from Theorem 2.1 so as to separate into
two parts the relatively complicated algorithms for the embeddings e’ and e’e**.
(Also, Theorem 2.1 on its own has the two interesting Corollaries we have noted.)
We could, of course, have opted to make Theorem 2.2 the focus of the section; in
this case, Theorem 2.1 would have followed by noting that when (3 is outerplanar,
it can be embedded in the plane with P E D 0.

Example 2.4. Breadth-first trees. Let us consider a natural (hence planar) embed-
ding of the depth-d breadth-first tree in the plane, such as is depicted in Fig. 3. For
this embedding, the planarity number P 0, and the fanout number F 5. In order
to determine the escape and dual escape numbers, imagine that the breadth-first tree
is held vertically by the root so that all of its interior vertices fall to the ground;
clearly, these gravity-induced escape routes are all independent. Each horizontal edge
of the tree is crossed by just one escaping vertex, and no slanted edge is crossed at
all; hence the escape number of the embedding is E 1. Each interior vertex at level
of the tree (the root being at level 0) falls through d horizontal edges in its escape;

hence the dual escape number of the embedding is D d 2. It follows from Theorem
2.2, then, that the depth-d breadth-first tree is embeddable in a binary tree with
Cost <_-6. [log2 2(2d + 3)] (which is O(log log n) where n is the size of the tree).

B. Techniques based on graph splitting. Our second family of techniques mirrors
somewhat more closely one’s notion of how trees are constructed.

GRAPHS THAT ARE ALMOST BINARY TREES 235

A split tr of a graph G is a (vertex-) partition of G into two disjoint subgraphs,
call them G(L; tr) and G(R; or). Two splits trl and tr2 of G are consistent if one of
the sets G(L rl) f’l G(L or2), G(L rl) f’l G(R or2), G(R r) f-1 G(L or2), G(R 17"1) ’G(R; o’2), is empty. An edge e of G belongs to the split r of G if e must be "cut"
in order to effect the partition.

A splitting of the graph G is a set of mutually consistent splits of G. If the splitting
comprises n splits, then it can be viewed as partitioning G into some number -< 2" of
subgraphs. The splitting is total if each of these subgraphs has only one vertex. The
rank of a splitting of G is the largest number of splits that any one edge of G belongs
to. Each subgraph created by the splitting can be represented in a natural way as an
intersection f’) G(Di; o’i), Di {L, R }, over some subset of the n splits. The dimension-
ality of the splitting is the smallest number d such that each created subgraph is the
intersection of d or fewer G(D; cr)’s.

THEOREM 2.3. (one-way splitting theorem) If the graph G admits a total splitting
of rank r and dimensionality d, then there is an embedding e of G in a binary tree with
Cost (e)<_-r log d.

Proof. Any set E of splits of G gives rise in a natural way to a graph E(G) whose
vertex-set is the set of pieces of G created by the splits, and whose adjacency structure
is given by the "distance" function

6(P, Q)= the number of distinct splits that separate the pieces P and Q of G;

by convention, 6(P, P) 0. One verifies easily the following properties of this function:

(1) 6(P, O) 0 iff P O,

(2) 6(P, (2) 8(0, P),

(3) 6(P,R)<-6(P, Q)+6(Q,R),

so 6 is a valid notion of distance. The graph E(G) connects two parts of G [=vertices
of E(G)] just when 6(P, Q)= 1. There is a natural (possibly many-one) embedding
of G in E(G), with Cost r the rank of the set of splits. To see this last point, note
that if the edge e -(v, v’) of G belongs to r splits, then 6(P, Q)>-_ r, where v P and
v’ Q; hence, the edge e is replaced under the embedding by a path of length _->r in
(O).

When the set of splits is a splitting of G, then the split-graph Z(G) is a tree
each of whose nodes has degree -< d the dimensionality of the splitting. Moreover,
in this case the embedding of G in (G) is a true embedding, since the pieces of G
are of unit size. (By the previous paragraph, we will then have access to an embedding
of G in a binary tree, with the right Cost, by composing this embedding with the
obvious embedding of a d-ary tree in a binary tree.) These consequences of the
consistency of splits in a splitting follow by induction on the number of splits in . If
there is only one split, then Z(G) is a two-node tree. Assume for induction that any
n-split splitting gives rise to an (n + 1)-node tree. Say that we have an n-split splitting
try, tr2," , trn, and we add to it a nonredundant split tr that is consistent with all the
tri. If we look at the action of tr on the n + 1 parts P, P2,’" ", Pn of G produced by
the n splits, we find that tr partitions precisely one of them into two parts, say P into
PI and PR: since tr is nonredundant it must split at least one Pi, and since it is
consistent with all the tri, it cannot split more than one. Therefore, tr partitions the
sets Pi, > 1, into two groups: say P2, ’, P, reside in G(L; tr) together with P;
and P,,+x,..., P,+t reside in G(R; r) together with PIR. Since each tri is consistent
with tr, it follows that each cri splits either the set G(L; tr) (and is a left split) or the

236 J,-W. HONG AND A. L. ROSENBERG

set G(R; tr) (and is a right split), but not both. Thus tr divides the splitting
try, tr2," ’, tr, into a left sub-splitting and a right sub-splitting. By induction the left
sub-splitting gives rise to a split-graph that is a tree with nodes PL, P2,""", P,,, and
the right sub-splitting gives rise to a split-graph that is a tree with nodes
PR,P,,+,’’’,P+. We claim that the split-graph for the entire splitting,
tra, tr2," , tr,, or, is obtained from these two trees by joining nodesP and PIR with
an edge. This new edge is justified since the split tr is the only one in the entire
splitting that separates P from PaR, SO 8(P, PR)= 1. No additional edges are
justified since any other (left node)-(right node) pair is separated by both tr and at
least one try, and hence has distance at least 2 in the split-graph. Thus the split-graph
is a tree with n + 2 nodes, so the induction is extended.

Finally we note that no vertex of the split-graph can have degree exceeding d,
the dimensionality of the splitting: one verifies easily that if 6(P, Q)= 1, and tr is the
one split that separates P from Q, then tr must enter into any expression for P as an
intersection of the G(D; tr)’s. Details are left to the reader.

By our previous remarks, the theorem follows.]
The main purpose of Theorem 2.3 is to facilitate the proof of the more easily

applied Theorem 2.4.
To reduce a graph G:
(a) If G has at most three vertices, it is reduced.
(b) Otherwise, replace G by two graphs G1 and G2, as follows.

By cutting edges of G, partition it into two induced subgraphs G and G&. Adjoin
to G a new vertex that is adjacent to each vertex of G that was (in G) adjacent to
a vertex in G’2, the resulting graph is G. Do the same to G to obtain G2.

(c) Reduce G1 and G2.
If this process terminates, we call the resulting collection of graphs a reduction of G.
The family of graphs produced in this process is graded in a natural way" G is a
grade-0 graph, and the graphs produced in step (b) from grade-/graphs are grade-(/+ 1)
graphs. An edge e of a grade-(i>0) graph represents an edge e of G if either (1)
edge ei replaces edge e in step (b) (by replacing a G- G2 adjacency by a Gi -- (newvertex) adjacency); or (2) edge eg replaces a grade-(/- 1) edge that represents edge e.

THEOREM 2.4. (one-way graph reduction theorem) If the graph G admits a
reduction for which no edge of G has more than r representatives, then there is an
embedding e of G in a binary tree with Cost(e)-< 2r.

Proof. Every execution of Step (b) in the reduction procedure effects a split of
the guest graph G; and the ensemble of such executions effects a splitting of Gwith
the easily patched defect that the final parts in the splitting may contain as many as
three vertices each, a mere technicality whose resolution is left to the reader. The
rank r of the splitting is easily seen to be the maximum number of representatives of
any edge of G. The dimensionality d of the splitting is easily verified to be the largest
number of "new" vertices (from Step (b)) that any vertex ends up adjacent to in the
completely reduced version of G; but easily, d-< 3 since the reduction procedure
doesn’t stop until each component of G has at most three vertices. Thus, Theorem
2.3 would lead us to believe that G is embeddable in a binary tree with Cost-<r. In
fact, we must double this estimate in order to resolve the technical problem that each
part of G in the final reduction can have as many as three vertices.]

Example 2.5. Thick trees. A k-tree, k >_-1, is defined recursively as follows. A
k-tree on k nodes is just a k-clique (= a copy of the complete graph on k vertices).
A k-tree on n + 1 nodes is obtained from a k-tree on n nodes by connecting the
(n + 1)th node to some k-1 mutually adjacent nodes in the n-node k-tree. It is easy

GRAPHS THAT ARE ALMOST BINARY TREES 237

tO reduce a k-tree by successively cutting off the last-added node v, together with the
latest added node among those that are adjacent to v. Since the reduction procedure
adds one node to replace the two just cut off, we have effectively cut off only one
node. Clearly, then, the number of representatives of an edge of the k-tree G is at
most maxdegree(G). Thus, the Cost of the derived embedding of G in a binary tree
will be proportional to log maxdegree(G).

This completes our study of techniques for bounding from above the Costs of
embeddings of graphs in binary trees. It is now time to turn to the complementary
study of techniques for bounding these Costs from below.

3. Lower bounds on simulation costs.
A. Techniques]’or lower bounds. Two basic techniques are known for bounding

from below the costs of embeddings in trees. First, we have the vertex-degree bound,
which follows from consideration of the sizes of "balls" in binary trees.

THEOREM 3.1. (vertex-degree bound) Ife embeds the graph G in a binary tree,
then

Cost(e) -> log (maxdegree(G) + 3).

Proof. Given any node v of a binary tree and any distance d > 0, at most 3 2a 3
nodes of the tree lie within distance d of v. Vl

The second technique uses the sizes of G’s separators to bound the costs of
embeddings of G in binary trees.

Let s(x) be any function from the real interval [0, 1] into the set of positive
integers. The graph G has an s (x)-separator if for all a [0, 1], any partition of G
into subgraphs of sizes alGI and (1-a)lGI must cut s(a) edges of G.

The following generalizes a result of [10].
THEOREM 3.2. (separator bound) Say thqt the graph G has an s(x)-separator.

For any embedding e of G in a binary tree" for each a [0, 1/2), there is a/3 e [a, 2a)
such that

Cost(e)_> 1/2 log s(fl).

Proof. Let G be embedded in the binary tree T. By a now-standard argument
[5], [10], one verifies that, for each a [0, 1/2), there is a/3 [a, 2a) and a subtree T’
of T such that T’ holds BIG[images of G’s vertices under the embedding. By definition
of separator, at least s(/3) edges connect those vertices of G whose images reside in
T’ with those vertices of G whose images reside in T-T’. One shows easily that
these "cross-edges" have at least /s(/) distinct sources in either T or T’. The size
of "balls" in binary trees forces at least one source vertex to have an image residing
at distance ->1/2 log s (/3) from the root of T’, hence at least this distance from the image
of its other end. 1

Of course, Theorem 3.2 can be used only in conjunction with a technique for
bounding from below the separator functions of the graphs in question. This bounding
problem is likely to be computationally infeasible in general, since the problem" given
G, k, a, to decide if G can be cut into the proportions a:(1- a) by cutting at most
k edges, is NP-complete [2]. But we can prove that certain properties of G guarantee
big separators (though these conditions may themselves be hard to detect). We now
present two such structural properties.

The graph G is n-reticulated if Vertices(G) contains two disjoint n element
subsets A and B, called the inputs and outputs of G, such that: for all k <= n, for all
choices of a k-element subset A’ of A and a k-element subset B’ of B, there exist k

238 J.-W. HONG AND A. L. ROSENBERG

edge-disjoint paths in G connecting A’ and B’. (Note that if we change the phrase
"edge-disjoint" here to "vertex-disjoint," then we would be defining an n-supercon-
centrator.)

Examples of n-reticulated graphs are: side-(n + 1) grids, side-2n pyramids, any
graph containing a homeomorph of such a grid, hence depth-2n breadth-first trees,
depth-2n leap trees, and so on; see Fig. 6.

(a)

(b)

FIG. 6. (a) The leap tree and (b) the breadth-firSl tree redrawn to emphasize their reticulation.

THEOREM 3.3. (reticulation bound) If G is n-reticulated, then any embedding e

of G in a binary tree has Cost(e) _-> 2a- log n 1.
Proof. One can prove that any partition of an n-reticulated graph G into two

subgraphs containing m (<-n/2) and n-m of G’s inputs, respectively, must "cut" at
least m edges of G; and one can prove the Theorem as a consequence. We opt instead
for the simpler (in this case) course of proceeding from first principles.

When one lays G out in a binary tree T, there must be a subtree T’ of T that
receives between n/4 and n/2 outputs of G. (This follows from the same considerations
from [5], [10] cited in the proof of Theorem 3.2.) This subtree effectively separates
at least n/4 inputs of G from a like number of outputs, in the sense that one of the
sets resides in the subtree, while the other set resides outside the subtree. But since
G is n-reticulated, at least n/4 edge-disjoint paths in G connect the isolated inputs
with the isolated outputs. Hence, there are at least n/4 edges of G connecting vertices
whose images lie within the subtree T’ with vertices whose images lie outside that
subtree. The bound now follows from the existence of these "crossing edges" just as
in the proof of Theorem 3.2. E]

We use our second property to bound explicitly the sizes of G’s separators.
The graph G is stratified if its vertices can be partitioned into strata S, $2, , S,,

in such a way that
(1) each ISI -< Is + l;
(2) the induced graph on each S is connected;
(3) the only edges between strata are between adjacent ones (Si and Si+).

GRAPHS THAT ARE ALMOST BINARY TREES 239

Associate with each vertex of each stratum Si a finite family of subgraphs of G in any
way so that for each v Si and its associated graph Gv:

(4) v s Vertices(Gv);
(5) G is connected;
(6) the vertex-sets of the graphs G partition the set LI j_g Sj.

The integer m is called the number of levels in the stratification. As an example, let
each stratum of the depth-d breadth-first tree be one of its (tree) levels, and let each
graph G be the sub-breadth-first tree rooted at v. This specifies a (d + 1)-level
stratification of the tree.

Call any partition of G into strata plus an association of graphs G with each
vertex v, a stratification of G. A stratification of G is progressive if the size g(i) of
the largest Gv with v Si decreases as increases. The indicated stratification of the
breadth-first tree is clearly progressive.

THEOREM 3.4. (stratification bound) For every progressive m-level stratification
that the graph G admits: if G has an s(x)-separator, then for all a (0, 1) and all strata
S with <- m s (a),

{ 161-ils/1}s(a)=>Min m,
g(i)/lS/l

Proof. Say that we want to cut the graph G into subgraphs G1 and G2 whose
sizes are in the proportion a’ (1 a) for some a (0, 1/2]. Assume that s (a) < m. Look
at any consecutive s(a)+ 1 strata of G, say strata i, / 1, , + s(a). By definition
of separator and by the connectivity of strata, some one of these strata, say S., lies
entirely in one of the Gg, say in G2. But now, the only way we can have vertices from
strata Sk, k >], go into G1 is to have edge-"cuts" below stratum j. Since these cuts
cannot exceed s(a) in number, it follows that

celO[=def loll (i + s(a))lSi+s<)[+ s(a)g(i).

The first summand places all strata k <-i + s(a) into G1 (perhaps overestimating by
assuming that all of these strata have maximum possible population); the second
summand places into G1 s (a) copies of the biggest G with v S. This very conservative
accounting clearly can only overestimate the size of al, whence the theorem. El

Remark. The same proof technique proves that if each [S;[_-> [S;+1[, then

s(a)_-> Min {m, g(i)/lS[

B. Applications.
Application 3.1. The construction of Theorem 2.1 is within a factor of 3 of being

optimal.
Proof. Theorem3.1.
Application 3.2. For any embedding e of the depth-d leap tree in a binary tree,

Cost(e) >_- 1/2 log d .
Proof. The depth-d leap tree contains as a subgraph the side-(d + 1) pyramid:

the horizontal edges of the pyramid are the horizontal edges of the tree; and the
vertical edges of the pyramid all have the form (2al b, 2alb/) in the tree [see Fig.
6(a)]. Thus the leap tree is d/2 -reticulated. lq

240 J.-W. HONG AND A. L. ROSENBERG

Application 3.3. For any embedding e of the depth-d breadth-first tree in a
binary tree,

Cost(e _-> log d .
Proof. This application follows from two of our bounding techniques.
First, the depth-d breadth-first tree contains as a subgraph a homeomorph of the

side-(d + 1) pyramid: the horizontal edges of the pyramid are horizontal paths in the
tree; and the vertical edges of the pyramid all have the form (2al b, 2al b/l) in the tree
[see Fig. 6(b)]. Thus the breadth-first tree is d/2-reticulated.

Second, as we noted earlier, the depth-d breadth-first tree admits a progressive
d-level stratification: each stratum is a level of the tree, and each Go is the sub-breadth-
first tree rooted at v. Assume that the tree has an s(x)-separator, where s(a)< (1- 8)d
for some ce (1/4, 1/2] and 6 > 0. Then, invoking Theorem 3.4 for level k d/2, we have

a2a+’ -a (-)2(-/2)a

s(a) >= "2(1,/2)a+ 1 + 2 (1-/ff)d

> (const)2/2

> (1-3)d

for sufficiently large d. This contradicts our assumed inequality on s(a). Since 6 was
arbitrary, we can now conclude that any sufficiently deep breadth-first tree has no
s (a)-separator smaller than its depth for any a (1/4, 1/2]. (This is easily shown to be true
for any a bounded away from 0 and 1.) An appeal to Theorem 3.2 completes the
proof. [3

4. Graphs that are almost binary trees. Let q3 and Yt’ be families of graphs. Recall
that the family 3 is almost Y if can be sirffulated by Yt’. We build on the results in
2 to establish "two-way" versions of the one-way results of that section. These

results all yield to extensions of the proofs of the "one-way" results of that section.
THE OUTERPLANAR THEOREM. The bounded-degree family of graphs q is almost

a family of binary trees iff it is almost outerplanar.
Proof. Sufficiency follows from Theorem 2.1, and necessity from the fact that

trees are outerplanar graphs, i-]

Example 4.1. The following three families of graphs are similar" Binary trees,
Preorder trees, and Inorder trees.

THE PLANAR EMBEDDING THEOREM. The family of graphs f is almost a family
of binary trees iff there is a constant k such that every G (is embeddable in the plane
with planarity number, fanout number, escape number, and dual escape number all less
than or equal to k.

Proof. Sufficiency. Theorem 2.2.
Necessity. We merely sketch the proof. Suppose the graph G can be embedded

in a binary tree within Cost c. For each edge e of G, we draw the image e’ in the
binary tree in such a way that (1) the image e’ is very close to the tree-edges, and (2)
any two images e and e cross at no more than one point; see Fig. 7. In fact, this
drawing is the planar embedding needed. It is easy to verify that (a) every image e’
has a bounded number of crossing points, because the number of edges that cross
any given point is bounded, so the planarity number is bounded; (b) every inner point
-(including crossing points) can escape to the exterior by crossing a bounded number
of edges, so the escape number is bounded, and, dually, the dual escape number is
bounded; and (c) the fanout number is bounded. !-]

GRAPHS THAT ARE ALMOST BINARY TREES 241

FXG. 7. Illustrating the proof of the planar embedding theorem.

Example 5.2. The family of triple binary trees, and its higher-index relatives,
like quadruple binary trees, etc., are all similar to the family of binary trees.

THE GRAPH SPLITTIrG THEOREM. The bounded-degree family of graphs is
almost a family of binary trees iff there is a constant k such that every G f admits a
total splitting of rank r <- k and dimensionality d <- k.

Proof. Sufficiency. Theorem 2.3.
Necessity. By cutting every edge of a host binary tree, we obtain a total splitting

of any graph G that is embedded in the tree. The dimensionality of the splitting is at
most 3; and its rank is not more than the Cost of the embedding. q

THE GRAPH REOUCTION THEOREM. The bounded-degree family of graphs f is
almost a family of binary trees iff there is a constant k such that every G f admits a
total reduction for which no edge of G has more than k representatives.

Proof. Sufficiency. Theorem 2.4.
Necessity. By cutting in a host tree every edge that is not incident to a leaf, we

obtain in a natural way a series of reductions of any graph G that is embedded in the
tree. The resulting graphs have at most 4 nodes each; and each edge has at most c
representatives, where c is the Cost of the embedding. It is a simple matter to reduce
the resulting 4-node graphs to obtain a total reduction of G. I-1

Acknowledgments. The major portion of the research reported here was done
while the authors were visiting the Department of Computer Science, University of
Toronto, Toronto, Canada. A portion of the second author’s research was done while
visiting the Department of Mathematical Sciences, University of Tel-Aviv, Tel-Aviv,
Israel. The authors are grateful to Romas Aleliunas for several stimulating conversa-
tions on the topics reported here.

REFERENCES

R. A. DEMILLO, S. C. EISENSTAT AND R. J. LIPTON, Preserving average proximity in arrays, Comm.
ACM, 21 (1978), pp. 228-231.

242 J,-W, HONG AND A. L. ROSENBERG

[2] M. R. GAREY, D. S. JOHNSON AND L. J. STOCKMEYER, Some simplified NP-complete graph
problems, Theoret. Comput. Sci., (1976), pp. 237-267.

[3] D. E. KNUTH, The Art of Computer Programming I: Fundamental Algorithms, Addison-Wesley,
Reading, MA, 1968.

[4] H. T. KUNG AND D. STEVENSON, A software technique]’or reducing the routing time on a parallel
computer with a fixed interconnection network, in High Speed Computer and Algorithm Optimiza-
tion, Academic Press, New York, 1977, pp. 423-433.

[5] R. J. LIPTON, S. C. EISENSTAT AND R. A. DEMILLO, Space and time hierarchies for classes of
control structures and data structures, J. Assoc. Comput. Mach., 23 (1976), pp. 720-732.

[6] R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, Proc. 18th IEEE
Symposium on Foundations of Computer Science, (1977), pp. 162-170.

[7] A. L. ROSENBERG, Preserving proximity in arrays, this Journal, 4 (1975), pp. 443-460.
[8],Data encodings and their costs, Acta Inform., 9 (1978), pp. 273-292.
[9] ., Encoding data structures in trees, J. Assoc. Comput. Mach., 26 (1979), pp. 668-689.

[10] A. L. ROSENBERG AND L. SNYDER, Bounds on the costs of data encodings, Math. Syst. Theory, 12
(1978), pp. 9-39.

[11] A. L. ROSENBERG, D. WOOD AND Z. GALIL, Storage representations for tree-like data structures,
Math. Syst. Theory, 13 (1980), pp. 105-130.

[12] L. G. VALIANT, Universality considerations in VLSI circuits, IEEE Trans. Elec. Comp., C-30 (1981),
pp. 135-140.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

() 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0004 $01.00/0

AN ASYMPTOTICALLY OPTIMAL ALGORITHM FOR THE
DUTCH NATIONAL FLAG PROBLEM*

JAMES R. BITNER"

dedicate this paper to my father, Richard Bitner (1922-1981).

Abstract. We develop an algorithm for the Dutch National Flag problem that has an adjustable integer
parameter smax= 0 allowing a time/space tradeoff. (Let n be the length of the input to be ordered.) The
space required is proportional to smax (but independent of n), and the average number of swaps required
is ((6 smax+ lO)/(18smax+27))n+o(n). We show 1/2n+o(n) is a lower bound. Hence as smax, the
performance can be made arbitrarily close to the lower bound. This is a significant improvement over
previous algorithms due to the use of a different invariant. We show that an algorithm using Dijkstra’s
invariant must use at least n swaps. We also study the problem of more than three colors.

Key words. Dutch National Flag problem, eulerian digraphs, algorithm design, loop invariant, stepwise
refinement, probabilistic analysis of algorithms.

1. Introduction. In the Dutch National Flag problem, we are given a sequence
of n pebbles, each of which is either red, white, or blue, and we are to rearrange
them such that all the red pebbles occur first in the sequence, followed by all the
whites, followed by all the blues. We are restricted to using the following two primitive
functions in accessing the sequence: buck(i) which gives the color of the ith pebble
in the sequence, and swap(i,]), which interchanges the ith and flh pebbles. Buck is
deemed a very expensive operation and hence may be applied only once to each
pebble in the sequence. Our objective is to find an algorithm to solve the problem
which uses as few swaps as possible in the average case, where each of the 3" initial
sequences is equally likely. Also, the algorithm must operate using a constant amount

of space, independent of the length of the sequence.
Notation. Through this paper n will denote the length of the sequence to be

ordered and c will denote the number of possible colors (unless otherwise noted, c 3).
This problem was originally posed by Dijkstra [1] as an example of how the

technique of refinement leads logically from a naive solution to a more efficient one.
McMaster [3] analyzed both of Dijkstra’s solutions and showed that the original naive
solution required 32-n swaps, while the refined solution required n- 1/4 + 1/4(-)" swaps.
Thus, the improvement, bought by considerably complicating the algorithm, is
asymptotically only 1/4 of a swap. McMaster’s result stresses that gains from refinements
may be deceptive and that careful analysis is required.

An additional solution was later given by Meyer [2] which avoided swapping
uninspected pebbles. Although not immediately apparent, Meyer’s solution can also
be derived from Dijkstra’s by a sequence of refinements. McMaster also analyzed
Meyer’s solution and found it required n swaps.

In this paper, we will solve the problem using a different invariant which will not
be naive, but carefully chosen based on an analysis of the problem. Our refinements
will not be used to make major improvements in the efficiency, but to simplify our
solution. This will lead to an algorithm asymptotically requiring 1/2n swaps, which is
proven to be optimal.

* Received by the editors January 17, 1980, and in final revised form April 1, 1981. This work was
supported in part by the National Science Foundation under grant MCS 77-02705.

" Department of Computer Science, University of Texas, Austin, Texas 78712.
See below for an exact definition.

243

244 JAMES R. BITNER

Another of our results shows the limitation of refining an "obvious" but naive
invariant in this problem. We show in 6 that the figure of 95-n achieved by Meyer is
a lower bound on the number of swaps required by any solution using Dijkstra’s
invariant. Thus, no matter how long or cleverly one refines a solution using this
invariant, it must use 66% more swaps than is required.

The paper is organized as follows’
In 2, we develop a correspondence between sequences of pebbles and eulerian
digraphs, which is then used to give a lower bound on the number of swaps required
to order any given sequence for arbitrary c. We study the expected value of this lower
bound to get a lower bound of ((c- 1)/2c)n on the average number of swaps required
to order a sequence. In 3 we study algorithms to solve the problem for arbitrary c
which use more than a constant amount of space. One is the shortest cycle first algorithm,
which for c =< 5, orders any given sequence using the minimum number of swaps. For
c > 5, we prove the average number of swaps used by this algorithm is asymptotically
optimal as n - o. We also study worst case bounds for c > 5.

In 4, we use some ideas from the proof of the lower bound to develop an
algorithm which solves the problem using constant space. The algorithm has a para-
meter, smax, that allows a time/space tradeoff. Increasing smax will reduce the number
of swaps at the expense of requiring more space. It should be stressed that smax does
not depend on n; therefore no matter what the value of smax, the algorithm still uses
constant space (an amount proportional to smax). What we actually have is an infinite
sequence of algorithms, each requiring constant space and each giving better and
better performance.

Section 5 analyzes the algorithm. Asymptotically, for any smax=>0, ((6 smax +
10)/(18 smax+27))n swaps are required on the average. Even for smax=0, the

10average of 2qn swaps is better than Meyer’s algorithm, and as smax c, the average
number of swaps can be made arbitrarily close to the lower bound and, hence, is
asymptotically optimal in some sense.

Finally, 6 shows that 95-n is a lower bound on the number of swaps used by any
algorithm which uses Dijkstra’s invariant.

2. Lower bounds. In this section we develop a correspondence between sequen-
ces of pebbles and eulerian digraphs (see below for definition). We first use this
correspondence to derive a lower bound on the number of swaps required to order
any given sequence. We also use this correspondence to study the number of swaps
required in the average case.

DEFrqTON. An eulerian digraph is a directed graph in which every vertex has
its indegree equal to its outdegree. We allow a digraph to have multiple edges and
self-loops. (Unless otherwise noted all our digraphs will be eulerian.) For an eulerian
digraph G, let e(G) be the number of edges in G, and index (G) be e(G)-M(G),
where M(G) is the number of cycles in a maximal decomposition of G into edge
disjoint cycles. A cycle is a path in the digraph whose initial and final vertices are
identical. It may pass through a vertex more than once. If a cycle passes through each
vertex only once, it is a simple cycle. It is simplest to consider decompositions of
digraphs into cycles and not require that the cycles be simple. (A maximal decomposi-
tion will, however, consist solely of simple cycles.)

To develop a correspondence between sequences of pebbles and eulerian digraphs,
we first divide a sequence into "regions." If there are a total of xi pebbles of color
in the sequence, let the first x positions be region 1, the next x2 in region 2, and so
on. The digraph corresponding to this sequence has c vertices and is created by adding

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 245

one edge from vertex to vertex] for every pebble of color in region]. Note that
a sequence is completely ordered if and only if for all i, all pebbles of color are in
region i. Hence, the digraph corresponding to the completely ordered sequence consists
solely of self-loops.

THEOREM 2.1. A digraph constructed trom a sequence as described above is a
eulerian digraph.

Pro@ For any i, the indegree of vertex is the number of pebbles in region i,
and the outdegree is the number of pebbles of color i. These quantities are equal by
the definition of the regions. [3

To order a sequence, given any decomposition of the corresponding digraph (call
it G) into edge-disjoint cycles2, we ignore the self-loops and sequence through the
remaining cycles in any order. If the current cycle is vii, vi,_,’", vik, there must be a
pebble of color ij in region ij+l for] 1,..., k- 1 and a pebble of color ik in region
l. Clearly, k- 1 swaps can be used to put each of these k pebbles in the correct
region. Also note that after processing all the cycles, the sequence will be ordered.
If the decomposition has k cycles with the ith having length Li, the total number of
swaps done is Y. k [L-1]= e(G)-k. Clearly, this quantity is minimized by using ai=1

maximal decomposition.
We now show that using the above procedure with the maximal decomposition

uses the minimum number of swaps over all possible algorithms, not just those using
this strategy. We use an "entropy argument", where index (G) is the entropy function.
(G is the digraph corresponding to the current sequence in the execution of some
algorithm.) Index (G) must be decreased using swaps from its initial value down to
zero. (A sequence is ordered if and only if every pebble is in the correct region, i.e.,
its corresponding digraph has index equal to zero.) Lemma 2.1 shows that a swap
cannot decrease index (G) by very much.

LEMMA 2.1. Let S be any sequence and S’ be any sequence obtained ’rom S by
doing one swap. Let G and G’ be the digraphs corresponding to, respectively, S and S’.
Then index (G’) >_- index (G)- 1.

Proof. The effect on G of swapping a color pebble in region/" with a color k
pebble in region is shown in Fig. 2.1 (i,], k, and are not necessarily distinct). Edges
e and e2 in G are replaced by e and e’2 to form G’. Since e(G)= e(G’), proving
M(G’)<-M(G)+I will prove the theorem. Suppose M(G’)>M(G)+I and let a
maximal decomposition of G’ be C,.. , C, (where m M(G’)).

i k

G

FIG. 2.1. The effect of a swap on the corresponding digraphs.

2 It is easy to show that every eulerian digraph has such a decomposition, see for example [4].

246 JAMES R. BITNER

We consider two cases.
Case 1 (e and e are on the same Ch). Let Ptk be the portion of Ch from to k

and Pig the portion from/" to i. Form two cycles in G" C,, which consists of e and
Pii, and C7,, which consists of e2 and Plk. Hence C1," , Ch-1, C’h, C, Ch/a,’’’, C,
is a decomposition of G into rn + 1 cycles, a contradiction.

Case 2 (e and e are on different Ch’S, say, Ca and C2). Let Pli be the portion
of Ca from to and Pig be the portion of C2 from/" to k. Form a cycle C in G
consisting of ea, Pik, e2, Pli. Then C, C3,’", Cm forms a decomposition of G into
m-1 cycles, again, a contradiction. Hence M(G’)<-M(G)+I and the lemma is
proved.

THEOREM 2.2. Given a sequence So, let Go be the corresponding digraph. Then
at least index (Go) swaps must be used in order So.

Proof. Suppose k swaps are used. Let Si be the sequence after swaps and Gi
be the corresponding digraph. Since Sk is ordered, Gk consists solely of self-loops,
and index (Gk) O.

By Lemma 2.1, index (G)->index (Gi-i)- 1 and clearly k ->index (Go). [-1

COROLLARY 2.1. Using a maximal decomposition in the manner previously des-
cribed orders any given sequence in the minimal number of swaps.

Theorem 2.2 provides a lower bound and Corollary 2.1 shows it is achievable
(though not necessarily by an algorithm using constant space). We will discuss the
problem of actually finding a maximal decomposition in the next section.

Before considering the average value of index (G) in order to obtain a lower
bound on the average number of swaps, we introduce some notation and prove several
lemmas.

DEFINITION. For any n-->_ 1 and c -> 1 and 1 <_-i, <_-c let the random variables
be the number of edges from to] in the digraph corresponding to a random

(n) also depends on c,arrangement of n pebbles with c possible colors. (Note that
but we omit this to simplify the notation.)

DEFINITION. By the phrase number of 2-cycles in a digraph, we mean the
maximum number of 2-cycles possible in any decomposition of that digraph.

This quantity can be simply expressed in terms of the I)’s. The key is the
following lemma.

LEMMA 2.2. Given an eulerian digraph G, there exists a maximal decomposition
such thatfor any edge e (u, v) with u v, if the cycle containing e in the decomposition
has length greater than 2, then every edge of form (v, u) is contained in a 2-cycle in
the decomposition.

Proof. Suppose the lemma does not hold for some digraph. Choose any maximal
decomposition of G having the smallest number of edges which violate the lemma.
For this decomposition, there exist edges ea (u, v) and e (v, u), each contained in
a (distinct) cycle of length greater than 2. (See Fig. 2.2). Then a new decomposition
can be formed by replacing Ca and C by the 2-cycle consisting of 1 and e and the
cycle consisting of the remaining edges in Ca and C. Since this decomposition has
at least as many cycles as the original, it too is maximal, and then, since it has fewer
edges which violate the lemma, it provides a contradiction.

COROLLARY 2.2. The number of 2-cycles in a digraph equals i<l min (II’), II.’)).
COROLLARY 2.3. Given an eulerian digraph G, there exists a maximal decomposi-

tion which contains all the self-loops. In addition, the number of 2-cycles in the
decomposition equals the number of 2-cycles in G.

We now begin our analysis of the average case, which relies heavily on the law
of large numbers. For three colors, we expect with high probability, a nearly equal

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 247

FIG. 2.2. The 2-cycle s not in this maximal decomposition. C and C2 are the two cycles in the
decomposition which contain the 2-cycle’s edges.

number of red, white and blue pebbles. Hence, we expect the three regions to be of
nearly equal length and to contain approximately the same number of red, white and
blue pebbles. For c colors, we have c regions of nearly equal length, with the fraction
of pebbles of each color in each region nearly equal to 1/c. This idea is formalized
in Theorem 2.3. Note that this theorem is not just a trivial application of the law of
large numbers, since the size of each region is unknown and, even worse, depends
on the number of pebbles of each color. After proving Theorem 2.3 it is easy to prove
that there exists a maximal decomposition of the digraph which consists nearly
exclusively of self-loops and 2-cycles (Lemma 2.5), and hence, the required number
of swaps is easily analyzed (Theorem 2.4).

Before proceeding, we need 2 easy lemmas whose proofs are omitted.
LEMMA 2.3. Let El, ’2,’ and F1, F2,’" be sequences of events such that

Prob (E,) 1 and Prob (F,) 1. Then Prob (E, and F,) 1.
LEMMA 2.4. Let A i, A2," and BI, B2," be sequences of random variables

such that A,/n and B,/n are bounded above ad below (by constants) for all n. Further,
suppose, for all e > O,

Prob (<e)--,1 and Prob(
Then

THEOREM 2.3. For any n >= 1, c --> 1, e > 0, and 1 <= i, f <= c,

Prob (
T(n 1.2-ij

n c

Proof. Define the following random variables:
Jl’)mthe number of pebbles of color in positions (]- 1)n/c through in
Bn)mthe total number of pebbles of colors 1,. ., i- 1,
Bthe total number of pebbles of colors 1,..., i,
U() IB(L’) --(]-- 1)n/c[, and U [B -]n/cl.
j(n) r(-) r r(") and U(n) measure how near the actual boundaries0 is our estimate of_0. L

of region (B") and B(n)) are to their means, giving a measure of how accurately
l(n lr(nq measures -i Note that-gi B") and B are all sums of a fixed number of

Bernoulli random variables, hence the law of large numbers applies to them. Choose

248 JAMES R. BITNER

any e > 0. By the law of large numbers, we have

t!.)
 rob <e)+ 1,

-(n)

so Prob (UnL <e)- 1,

(3) Prob (<e +1
n

<e +1.
n

From the definition of our random variables, it is clear that

or, equivalently,

r(’) 1 Jij(4) Ji(; 1 U") u(Rn)<., i] <------++
n c n n c n c n

We define two sequences of events: En occurs if and only if
(n 1.

2
i/

n c

rr(n)
t-L 8 U E

and
n <-4 and <n"(-> l/cl <Fn occurs if and only if II,/n e.

Clearly, by (4), if E, occurs, F, must also occur. Hence Prob (F,)_->Prob (E,).
Since Prob (En)--> 1 (by (1), (2), (3) and two applications of Lemma 2.3), we have
Prob (F,)-+ 1, proving the theorem. E]

Notation. By o(n) we mean some function f(n) such that lim,_.oo f(n)/n O.
DEFINITION. For a given n and c, let G be the digraph corresponding to a random

arrangement of n pebbles of c colors. (G is actually a random variable.) Also define
the functions"

S(G)mthe number of self-loops in G,
T(G)mthe number of 2-cycles in G,
U(G)--the maximum number of cycles in a decomposition of G’, the graph

resulting from G after removing all self-loops and 2-cycles.
(Note: Usually we will simply write "E(S)" instead of "E(S(G)).")
LEMMA 2.5. E(S)= n/c +o(n), E(T)=(c- 1)n/2c +o(n), E(U)=o(n).
Proof. By definition, E(S) E(Y. l(n),). Then, since Theorem 2.3 shows

(1(n)
C
2E,,_,)=n/ +o(n), E(S)=n/c+o(n) as claimed. By Corollary 2.2, E(T)=

Yi<jE(min r(’) (n)
,-q li)). By Theorem 2.3 and Lemma 2.4, E(minr(’),_q, _ir(")))=

n/c 2 +o(n). Therefore E(T)=c(c-1)/2x[n/c2+o(n)]=(c-1)n/2c+o(n) as
claimed. The self-loops and 2-cycles account for n / o(n) edges, leaving at most o(n)
edges in G after the self-loops and 2-cycles have been removed. Hence E(U)=
o(n). E]

THEOREM 2.4. The average number of swaps required to order an arrangement
with c colors is ((c- 1)/2c)n +o(n).

Proof. For any eulerian digraph G

0. S(G)+I. T(G)<=index(G)<=O S(G)+I. T(G)+(c-1). U(G).

By Lemma 2.5, E(index (G))=(c-1)n/2c +o(n). By Corollary 2.1 this gives the
average number of swaps required to order the arrangement, gl

COROLLARY 2.4. The average number of swaps required to order an arrangement
with 3 colors is n/3 + o(n).

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 249

3. Algorithms for finding a maximal decomposition. In this section, we discuss
algorithms to solve the Dutch National Flag Problem where an arbitrary number of
colors are allowed. We will drop the constant space assumption and study algorithms
that first count the number of pebbles of each color, then construct the digraph
associated with the given sequence and decompose it in some manner into cycles,
then sequence through the cycles and perform the appropriate sequence of swaps to
"remove" each cycle. Hence, the problem reduces to one of finding a maximal or
near-maximal decomposition. Though finding a maximal decomposition for arbitrary
c appears to be a hard problem, we present a sirnpl, "greedy" algorithm, the shortest
cycle/rst algorithm, which, at each step, arbitrarily removes any of the shortest cycles
remaining in the digraph. (The algorithm can either be thought of as nondeterministic,
or as specifying a class of algorithms.) We prove that if the digraph has at most five
vertices (i.e., c _-< 5), the shortest cycle first algorithm finds a maximal decomposition.
If 6 <= c-<_ 8, the shortest cycle first algorithm might find a maximal decomposition
(i.e., some "shortest cycle first" decomposition exists for every digraph). We prove a
very general class of algorithms gives an asymptotically optimal decomposition in the
average case and conclude with a worst case bound on the performance of this class.

THEOREM 3.1. For an eulerian digraph with at most 5ve vertices (i.e., c <= 5) the
shortest cycle first algorithm finds a maximal decomposition.

Proof. Consider any digraph G. If M(G)=0, the shortest cycle first algorithm
will trivially be successful. We proceed by induction on M(G). Suppose C is the first
cycle chosen by the shortest cycle first algorithm and let x be the length of C.

We first show that M(G- C) M(G)- 1 (i.e., C was not a bad first choice). This
is trivially true if C is contained in some maximal decomposition, so suppose no
maximal decomposition contains C. Choose any one. Though it does not contain C,
every edge in C must be included in one of its cycles. Suppose y cycles in this
decomposition have edges in common with C. Consider a new decomposition (see
Fig. 3.1) where we choose C, then the long cycle consisting of the remainder of the
y cycles (call this C’) and then choose the remainder of the original decomposition.
Since each of the y original cycles has length at least x (the length of the shortest
cycle), C’ must have length at least xy-x (x must be subtracted because C has been
removed). Hence there must be a vertex occurring at least [(xy-x)/c] times on C’,
and C’ can be split into at least [(xy- x)/c] simple cycles. The new decomposition
has at least 1 + [(xy- x)/c] cycles in place of the y of the original decomposition.
Since it is easy to verify that l+[(xy-x)/c]=y for 2<=y <-x <=c <=5, the new
decomposition has as many cycles as the original, providing a maximal decomposition
containing C, a contradiction. Hence M(G-C)= M(G)-1.

C C’

FIG. 3.1. A cycle not in the decomposition and the cycles in the decomposition which contain its edges.
The situation is not necessarily this simple; the dotted cycles may contain more than one edge of the other
cycle and these edges need not be adjacent. However, C’ is a cycle in any case.

250 JAMES R. BITNER

By induction, applying the shortest cycle first algorithm to G- C will correctly
give a decomposition into M(G-C)=M(G)-1 cycles. This added to C gives a
decomposition into M(G) cycles for G, proving the theorem. 1

If c 6, more care is required. If we arbitrarily choose from among the shortest
cycles, an optimal decomposition might not result (see Fig. 3.2). However, we can
prove the following, weaker, result.

1

4 5 6

FIG. 3.2. A digraph]:or which the shortest cycle first algorithm might not find a maximal decomposition.
The algorithm might choose cycle 2-5-3 first and obtain a decomposition into two cycles. However, a
decomposition into three cycles (2-5-4, 1-3-2, 3-6-5) is possible.

THEOREM 3.2. Given any eulerian digraph with 6, 7, or 8 vertices, there exists a
maximal decomposition whose cycles can be ordered, such that, if the cycles are removed
in that order from the digraph, a shortest cycle is removed at each step (i.e., there is
some "shortest cycle first" decomposition).

Proof. (Similar to Theorem 3.1). Consider one of the shortest cycles in a given
digraph. Call it C and suppose it has x nodes. If C does not occur in any maximal-
decomposition, consider the y cycles that intersect C. If any has length x, it can be
chosen, and the theorem can be proven by,induction as Theorem 3.1. If none do,
then we proceed as in Theorem 3.1, forming C’, which now has y (x + 1)-x vertices
and must form [(y(x + 1)-x)/c] cycles. Verifying that

l +[Y(x + l)-x] >= fr 2 <- y <-x <=c <-7

proves the theorem for c 6 and 7.
The above proof "almost works" for c 8; the inequality is violated only when

x =y 4. We analyze this situation as a special case. Suppose the theorem is false.
Then there exists a digraph (G) whose shortest cycle, C (vl, v2, v3, v4), has length
4, and C is not in any maximal decomposition. Further, since y 4, each edge of C
is in a different cycle in the optimal decomposition. The length of each of these four
cycles is at least 5.

Consider the graph (G’) consisting of these four cycles with the edges in C
removed. Note that G’ is a cycle. We repeatedly use the fact that G’ can be partitioned
into at most 2 cycles. (Otherwise its decomposition plus C would give at least 4 cycles
and choosing C would provide a maximal decomposition.) We number the vertices
in G’ xl, x2,’", Xk by tracing the path from v to v4 to/)3 to/)2 to /)1. (Since c 8
the x’s are not all distinct.) Since each of the original cycles intersecting C had length
at least 5, k -> 16. However, we cannot have k > 16 because then a vertex would occur
at least three times in x1,’’’, Xk, providing a decomposition of G’ into at least three
cycles. Also, there cannot be a cycle in G’ of length less than 8. Otherwise, removing
this cycle would result in a cycle with at least 9 vertices. Hence one must occur twice,
giving two cycles for a total of three.

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 251

Therefore, G’ consists of two cycles of length 8; its form must be as shown in
Fig. 3.3. Assume without loss of generality that vl is the vertex marked x. Then /-)4

must be the vertex marked y since it is at distance 4 from vl along the cycle, and v3
must be the vertex marked x since it is at distance 4 from v4. However, this implies
v v3, a contradiction. Hence, the conjectured digraph cannot exist, and the theorem
is proved.

()
FIG. 3.3.

For c->9, no such theorem can be proved. Figure 3.4 provides a digraph for
which no shortest cycle first decomposition exists.

1 3

2
9 4

7 -6

FIG. 3.4. A digraph for which the shortest cycle first algorithm does not find a maximal decomposition.

If we consider the average case, the analysis is especially simple since the associated
digraph is nearly all 2-cycles. We consider the all 2-cycles first algorithm, which first
removes all self-loops and 2-cycles then arbitrarily decomposes the digraph.

THEOREM 3.3. The all 2-cycles first algorithm is asymptotically optimal in the
average case.

Proof. Immediate from Corollary 2.3 and Lemma 2.5. [q

COROLLARY 3.1. The shortest cycle first algorithm is asymptotically optimal in
the average case.

We now consider worst case performance. Rather than study the size of the
decomposition, we study the number of swaps required in ordering a sequence based
on this decomposition (i.e., e(G)-k where k is the number of cycles in the
decomposition).

252 JAMES R. BITNER

TI-IEOgZM 3.4. Given any sequence, let COST be the number of swaps required
using the all 2-cycles first algorithm and let COSTopw be the optimal number of swaps,
then COST/COSTop-< . Further, is the smallest possible constant bound.

Proof. Let $ and T be the number of self-loops and 2-cycles in the digraph. The
all 2-cycles first algorithm results in a decomposition of at least $ + T cycles. Hence
COST _-< n $ T. Using Corollary 2.3, there is a maximal decomposition with $ + T +
U cycles, where U is the number of cycles of length greater than two. Clearly,
U <- (n S T)/3 and COSToPT n $ T U >- n $ T (n $ T)/3
[n S T]. Hence COST/COSTop -< .

To prove this bound is tight, consider the eulerian digraph in Fig. 3.5, an n-cycle
where each edge of the n-cycle is the base of a triangle. The digraph has 3n edges,
and the optimal decomposition is clearly the n triangles. However, the all 2-cycles
first algorithm might decompose the digraph into two cycles, the n-cycle and the cycle
consisting of the remaining 2n edges. Hence COST/COSToPT=(3n-2)/(3n-n),
which approaches as n c. I3

FIG. 3.5. A worst case digraph for all 2-cycles first algorithm.

This bound does not appear to be tight for the shortest cycle first algorithm.
The next theorem gives the worst example found so far, which would require a
bound of 1/4.

THEOREM 3.5. Let COSTsc be the number of swaps using the shortest cycle first
algorithm. Then for any n >-_ 1 there is an eulerian digraph (and hence a sequence)
where COSTsc/COSTopx (Sn -3)/(4n -2).

Proof. Consider the eulerian digraph in Fig. 3.6, which has 6n- 3 edges. Its
maximal decomposition is into the 2n 1 triangles pointing down. However, a possible
shortest cycle first decomposition is into the n- 1 triangles pointing up, and the long
cycle along the perimeter. In this case,

COSTscF 6n 3 n

COSToex 6n 3 (2n 1)
5n-3

["1
4n -2"

4. A constant space algorithm. In this section we describe a constant space
algorithm to solve the Dutch National Flag problem. (A PASCAL implementation
of the algorithm can be found in the Appendix.) The algorithm has an adjustable

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 253

edges

FIG. 3.6. The worst case digraph for the shortest cycle first algorithm found so far.

integer parameter smax, which may be any nonnegative integer. For any value of
smax, the algorithm uses space proportional to smax (and independent of n). We show
in the next section that a time/space tradeoff results; as smax- oo, the average number
of swaps required 1/2n, the optimum. Since we can get arbitrarily close to the lower
bound by choosing smax sufficiently large, the algorithm is "asymptotically optimal"
in some sense.

The algorithm has two phases. In the first, three pointers, r, w, and b are used
to delimit regions consisting solely of, respectively, red, white, and blue pebbles
according to the invariant:

"(1 <_- < r buck (i) red) and
(n/3 <= < w - buck (i) white) and
(2n/3 <- < b buck (i) blue) and
buck (r) red and buck (w) white and buck (b) blue."

Initially, r= 1, w =n/3, and b =2n/3. Then r is successively incremented until
buck (r) red. (We refer to this operation as "advancing r".) w and b are advanced
in a similar manner. The algorithm then iterates, advancing the pointers and performing
swaps when necessary to preserve the invari’ant. The first phase ends when r n/3 or
w 2n/3 or b n + 1. The second phase merges the unexamined regions (from r to
n/3-1, w to 2n/3-1 and b to n) into the red, white, and blue regions, and possibly
shifts the white region left or right. By the analysis in Theorem 2.3, the average size
of the unexamined regions and the average distance the white region must be shifted
is o(n). Thus, any algorithm (such as a straightforward extension of Dijkstra’s [1]
algorithm or Meyer’s algorithm [2]) can be used in the second phase without affecting
the asymptotic performance of the algorithm. Hence, for simplicity, we examine only
the first phase.

Two important ideas are used to reduce the number of swaps. First, w is initially
n/3, not n as in the algorithms of Dijkstra and Meyer. Hence the white region will
be from n/3 to w instead of from w to b- 1. By Theorem 2.3, the final positions of
the white pebbles will, with probability approaching one, be approximately from n/3
to 2n/3. Hence white pebbles moved into the white region have, most likely, come
to their final resting place.

Before discussing the second idea, we describe the only two situations in which
the algorithm swaps pebbles. If buck (r)= white and buck (w)= red, then swap (r, w)
is called a "single swap" (and similarly for the other two pairs of pointers). On the
other hand, if buck (r) white, buck (w) blue, and buck (b) red, then the sequence
swap (r, b); swap (w, b) is called a "double swap" (and similarly if buck (r)= blue,
buck (w)= red and buck (b)= white). The second idea then is to avoid double swaps
as much as possible, preferring a single swap, which puts two pebbles in place at the
cost of one swap, to a double swap, which puts three pebbles in place at the cost of
two swaps. Clearly, this is motivated by the idea of finding a maximal decomposition.

254 JAMES R. BITNER

The general strategy is as follows: A single swap is done on each interation, if
one is possible. Otherwise, a "scout" is advanced from r in an attempt to find a pebble
that will permit a single swap. (This scout is referred to as the "lead scout".) If such
a pebble is found, a single swap with the lead scout will be performed on the next
iteration. Otherwise, each successive iteration will advance a scout from the lead scout
(with this new scout becoming the lead scout), until either a single swap becomes
possible, or the maximum number of scouts has been reached and there is no alternative
to doing a double swap. Now, instead of preserving the relation "(1 -< < r)- buck (i)
red" we preserve "((1 -< < Is) and is not a scout) buck (i) red)" where Is is the
lead scout. Using the scouts in this manner avoids multiple calls to buck, as we only
need to store the color of each scout (requiring only constant space) to know the color
of all the pebbles in the region 1... Is.

We now informally motivate the actual invariant. The following terminology is
used" "smax" is the maximum number of scouts, and "s" is the number of currently
active scouts. The scouts are kept in an array "scout", and "scout Is]" is the lead
scout. It is convenient to store the value of "r" in scout [0]. Finally, rcolor, scolor,
wcolor, and bcolor record the color of the pebble pointed to by, respectively, r, the
lead scout, w and b.

Two other terms can be added to the previously stated invariant which simplify
the program. The first is "0 <- < s buck (scout [i]) buck (r)". Basically, the reason
this relation is preserved is as follows" When a single swap is not possible, we repeatedly
advance scouts. If the lead scout has the same color as r, a single swap is still not
possible, and another scout is advanced from this scout. However, once a different
color is found, a swap is possible, and we immediately discontinue advancing scouts
and swap the lead scout. Thus, all the scouts, except perhaps the lead scout, have the
same color as r. This means we only need to store the color of r and the lead scout
to know the color of all the scouts. Also, we only need to consider r and the lead
scout in determining whether a single swap is possible.

Another term which is added to the invariant is:

"((rcolor white and scolor blue) (wcolor blue and bcolor red))

and

((rcolor blue and scolor white) (wcolor red and bcolor white))"

This is another consequenceof advancing a scout only when a single swap is not
possible and of swapping the lead scout immediately when a swap becomes possible.
We will see below how this simplifies the procedure for performing single swaps.

The preceeding discussion gives the general strategy of the algorithm. To aid in
understanding the program a brief, informal description of each procedure follows.
This is not to imply the program cannot be formally verified; the reader can verify
the program from the pre- and post-conditions given for each procedure.

Function swap possible returns true if and only if a single swap is possible. All
four of r, the lead scout, w and b are considered in this determination. Procedure
advance advances a pointer over pebbles of a given color and returns the color of the
first pebble encountered which is not of that color.

Procedure single_swap performs a single swap, given that one is possible. Since
it could involve either r or the lead scout, a test is made at the beginning of the
procedure to determine which, if either, is involved. The lead scout is used unless it
has already been swapped and hence scolor red. (Note that if s 0 and scolor
rcolor, either r or the lead scout could be used. However, the algorithm is simpler if

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 255

we choose to use the lead scout in this case. If s 0 they are identical, so it makes
no difference. If scolor red and scolor rcolor, the last two terms in the invariant
state that a swap is possible with the lead scout.) The procedure then determines
which pair of pebbles is to be swapped, swaps them, and advances the appropriate
pointers. Procedure double-swap is similar.

Advance_r advances the r pointer and the scouts immediately after a red pebble
has been swapped. Note that it does not advance the lead scout; this is done only in
advance scout. Four cases, based on whether or not scolor=red and whether or
not s 0, are conceivable. However, one case (scolor red and s 0) is impossible,
as it would imply buck (r) red. This fact is stated in the third term of the precondition.
If scolor red and s 0, the lead scout was swapped and r was unaffected. All that
is needed is to record this fact by setting scolor := red. In the other two cases, we
know r was swapped" Either we have scolor red and s 0, and since scolor red
single-swap chose to use r, or we have scolor red and s 0 and single-swap chose
to use the lead scout which, since s 0, was the same as r. Since buck (r)= red, r
provides no useful information. If s 0, each scout (including r, which is scout [0])
can be "advanced" by setting scout [/]:=scout [i + 1] for 0, ., s 1. Scout Is] is
no longer needed and is discarded by setting s := s- 1. If s is now zero, r must be
advanced to the next nonred pebble by calling advance.

Procedure advance scout advances a scout from the lead scout. If scolor red,
the lead scout itself can be advanced, since buck (scout Is])= red, and hence scout Is]
contains no useful information. Otherwise a new scout is advanced.

5. Analysis of the algorithm. The algorithm is analyzed in the following theorem.
Theorem 5.1. The average number of swaps required by the algorithm o1 4 is

[(6 smax + 10)/(18 smax + 27)]n + o(n)]or any smax >-_0.

Proof. We consider only smax> 0. For s.max 0 the Markov chain we will con-
struct degenerates to two states. With the techniques used below, it is easily shown

10the algorithm will require n + o(n) swaps, and hence the theorem is true in this case.
DEFINITION. The predicate hascolors (x, y, z) is defined to be true if and only if

(rcolor x) and (wcolor y) and (bcolor z).
To model the algorithm by a Markov chain, we examine the program variables

each time control reaches the top of the while loop in the main program. The values
of the variables determine the current state (see Fig. 5.1). We briefly discuss the
motivation for these definitions. To predict the behavior of the algorithm, we must
know the values of rcolor, wcolor and bcolor. (Note that for each triple of values with
rcolor white, there is a corresponding "equivalent" triple with rcolor blue. Thus
the eight possible triples result in only four types of states.) In addition, if has-
colors (white, blue, red) or hascolors (blue, red, white), we must know whether the
lead scout can be swapped (i.e., scolor red and scolor rcolor) since this determines
whether a swap is possible. Finally, we need defined by

{ s if scolor red,
s 1 if scolor red.

(Note that for analysis purposes s scouts when the lead scout has been swapped (i.e.,
scolor red) is equivalent to s- 1 scouts when the lead scout has not been swapped.
In both cases, there will be s scouts after a call to Advance r.) As a simplification, we
note that all states satisfying 0 and swap-possible are equivalent and these are
merged to form only one state.

256 JAMES R. BITNER

state conditions

A
Bi 0--< i--<smax

Ci <- <= smax

Di 1 <- <= smax-

Ei <- <-smax-

F _-< i_-<smax-

-0 and swap_possible
(hascolors(white,blue,red) or hascolors(blue,red,white))
and
and (scolor rcolor or scolor red)

(hascolors(white,blue,red) or hascolors(blue,red,white))
and
and (scolor rs rcolor and scolor rs red)

(hascolors(white,blue,white) or hascolors(blue,blue,white))
and

(hascolors(white,red,red) or hascolors(blue,red,red))
and

(hascolors(white,red,white) or hascolors(blue,blue,red))
and

FIG. 5.1. The states of the Markov chain.

The state transition probabilities (shown in Fig. 5.2) can be calculated from several
simple observations. In states Di, Ei, and F/, swap_possible is true, and a single swap
is done. If w is swapped, wcolor becomes arbitrary (by this we mean wcolor red
with probability 1/2 and wcolor blue with probability 1/2): Similarly, if b is swapped,
bcolor becomes arbitrary (i.e., equal to red or white, either with probability 21-). If r
or the lead scout is swapped (it makes no difference which for purposes of analysis),
rcolor is unchanged and is decremented. A single swap is also performed in state
A, but here the colors of both the pointers swapped (including r) become arbitrary.

In state Bi, 0 <= <= smax-1, swap-possible is false, and advance_scout is called.
With probability 1/2, it is successful (i.e., afterwards scolor rs rcolor and scolor # red).
A single swap is now possible, and a transition to state Ci+x results. Otherwise, a
transition to Bi/l results. In state Bsmax, double_swap is called, resulting in wcolor
and bcolor becoming arbitrary (though rcolor remains the same), and being decre-
mented by one. Finally, in state Ci, 1 <- <- smax, we have scolor # rcolor and scolor #
red. This results in the lead scout being swapped. Scolor becomes red, and hence is
decremented, and the color of the pointer with which the lead scout was swapped
becomes arbitrary.

A system of equations can be constructed to determine the steady state prob-
abilities (see Fig. 5.3). We use lower case letters to denote the probability of the state
named by the same upper case letter. Solving it, we get:

a
5 smax + 4’

bo bsmax-1 5 smax + 4’

C Csmax
1

dx dsmax-1 bsmax 5 smax+ 4’

1
ex esmax-1----fl fsmax-1 2(5 smax+4)

From these probabilities, we determine the expected number of swaps. Define
the following random variables" Let S be the total number of swaps performed by
the algorithm, and let Sx and $2 be, respectively, the number of single and double
swaps performed by Phase 1, and $3 be the number of swaps required in Phase 2.

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 257

1/4

3/4

FIG. 5.2. The Markov chain used to model the algorithm [or smax 3. The general]orm should be
clear. Except where otherwise indicated, all transitions from the same state are equally likely.

Let R be the sum of the lengths of the red, white and blue regions at the end of
Phase 1, that is, R r + (w n/3) + (b 2n/3) s. Finally, let ! be the number of
pebbles that Phase 1 examined but did not swap. We clearly have:

$ $1 + 2S2 + $3, R 251 + 352 + L

Using the notation x =y to mean x =y +o(n) and the relations E(S3)0, E(R)n,
and E(I) n/3 (derivable in a manner used in the proof of Theorem 2.3) gives

(1) and (2) E(S)E(S1)+2E(S2), -n 2E(S1)+3E(S2).

258 JAMES R. BITNER

FIG. 5.3. The steady-state equations.

1 <= <_- smax- 2

1 _-< _-< smax
1 -<_ -<_ smax- 2

1 -<_ -<_ smax- 2

=< _-< smax- 2

As n oo, the fraction of time spent in each state approaches the steady-state probabil-
x-,smaxity. The probability the chain is in a state which does a single swap is a + zi--1 ci +

smax-1
i=i (di ei +fi) (3 smax + 3)/(5 smax + 4). A double swap is done with probability
bsmax 1/(5 smax + 4). Hence

(3) E(S1) (3 smax + 3)E($2).

Substituting (3) into (2) gives

E(&)
2n

18 smax + 27

and

6 smax + 6
E(S1) n.

18 srnax + 27

Therefore

E(S) E(S1) + 2E($2)
6 smax + 10
18 smax + 27

6. A lower bound for algorithms using Dijkstra’s invariant. In this section we
derive a lower bound of n swaps for any algorithm which uses Dijkstra’s invariant.
The significance of this result is discussed in the introduction. By the phrase "using
Dijkstra’s invariant", we mean that at any time, the sequence of pebbles can be
divided into four regions"

1 _-< < r pebble is red,
r <_-i <_-w pebble has not been examined,
w < =< b pebble is white,
b < -<_ n pebble is blue.
Let us assume the algorithm has been running for a while and that 3x pebbles

have been examined. Obviously, by the law of large numbers, each of the red, white
and blue regions will be of size x + o(x). As a good approximation, we assume each
is of size x. Now suppose the algorithm is allowed to execute and examine 3Ax pebbles
from the unexamined region. Of course, we see approximately Ax of each color. How
many pebbles are out of place and will have to be moved? (see Fig. 6.1). The final
red region initially contained x red pebbles and Ax unexamined pebbles. The final
white region initially contained x- Ax white pebbles and 2Ax unexamined pebbles.
The final blue region initially contained x blue pebbles and Ax white pebbles. If we

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 259

BEFORE

AFTER

red ?--- x ------. 2Ax/ +x Ax Ax +-----x

white blue

FIG. 6.1. The arrangement of pebbles before and after the partial execution of any algorithm using
Dijkstra’s invariant.

assume of the unexamined pebbles are of each color, we can construct an eulerian
digraph which describes the changes required to get from the first to the second
arrangement (see Fig. 6.2). By Theorem 3.1, the maximal decomposition is into 3x
1-cycles, Ax 2-cycles (1/2Ax from vertex "R" to "W" and 32-Ax from "W" to "B") and
-Ax 3-cycles. By Theorem 2.2, the number of swaps required is e(G)-m(G)=Ax.
Thus 35-Ax swaps must be used to put 3Ax pebbles into place. Clearly by choosing Ax
sufficiently small and repeatedly using this argument, we can prove that to put n
pebbles into place must require n swaps.

i i Axx+Ax

2 Ax

i Ax Ax 2- Ax

X

FIG. 6.2. The eulerian digraph corresponding to the execution shown in Fig. 6.1. The number beside
ach edge gives the number o[edges between the two vertices.

Appendix.
const SMAX <maximum number of scouts; smax >= 0.>;

N <size of the sequence to be sorted>;
NPLUS1 N + 1;

type colortype (NONE,RED,WHITE,BLUE);
indextype 0.. NPLUS1;

We use the following predicates:
"I" is defined to be

((0 <= < scout[s] and (0 <=j < -> <> scout[j])) ->
buck(i) RED) and

((N div 3 < < w) -> buck(i) WHITE) and
((2*N div 3 < < b) -> buck (i) BLUE) and
rcolor <> RED and wcolor <> WHITE and bcolor <> BLUE and
((0 < < s) -> buck(scout[i]) rcolor) and
0 < < SMAX and

260 JAMES R. BITNER

((rcolor WHITE and scolor BLUE) ->
(wcolor BLUE and bcolor RED)) and

((rcolor BLUE and scolor WHITE) ->
(wcolor RED and bcolor WHITE)).

"J" is defined to be
rcolor buck(scout[0]) and wcolor buck(w) and
bcolor buck(b) and scolor buck(scout[s])
"I and J" is the loop invariant of the main program.

procedure dnf;
var w, b indextype;

scout :array[O. SMAX] of indextype;
scolor,rcolor,wcolor,bcolor colortype;
s:O.. SMAX;
limitr,limitw,limitb indextype;

ptr pO}
procedure advance (vat ptr indextype; skipcolor colortype;

vat finalcolor colortype; limit indextype);
vat x colortype;
begin advance
repeat

ptr := ptr + 1;
if ptr < limit then x := buck(ptr)

else x := NONE;
until x <> skipcolor;
finalcolor := x;
end; advance
((p0 + 1 < <= ptr- 1) -> buck(i) skipcolor) and
(buck(ptr) finalcolo.r <> skipcolor) and
(ptr > limit <--> finalcolor NONE)

procedure initialize;
begin initialize
limitr := N div 3;
limitw := 2 N div 3’
limitb := N+1;
:= O;

scout[0] := 0;
advance(scout[0],RED,rcolor,limitr);
scolor := rcolor;
if limitr 0 then w := 0

else w := limitr- 1;
advance(w,WHITE,wcolor,limitw);
if limitw 0 then b := 0

else b :- limitw- 1;
advance(b,BLUE,bcolor,limitb);
end; initialize

function pointers_valid:boolean;
begin pointers_valid
pointers_valid := (scout[s] < limitr) and (w < limitw) and (b < limitb);
end; pointers_valid

function swap_possible boolean;
function has_pair(r,w,b colortype) boolean’
begin has_pair
has_pair := ((r WHITE) and (w RED)) or

((r BLUE) and (b RED)) or
((w BLUE) and (b WHITE))

end; has_pair

DUTCH NATIONAL FLAG PROBLEM ALGORITHM 261

begin swap_possible
swap possible := has_pair(rcolor,wcolor,bcolor) or

has_pair(scolor,wcolor,bcolor);
end; swap_possible

and buck(scout[s]) RED and
(scolor red-> <> 0) and

scolor <> RED and <> 0) -> buck(scout[0]) rcolor) and
(not scolor <> RED and <> 0) -> buck(scout[0]) RED)

procedure advance_r"
var 0.. SMAX;
begin advance_r
if (scolor <> RED) and (s <> 0) then scolor := RED

else begin
if 0 then begin

for :-- 0 to do scout[i] :- scout[i /]"
s:=s-l’

end;
if 0 then begin

advance(scout[0],RED,rcolor,limitr);
scolor := rcolor’

end;
end"

end; advance_r
and rcolor buck(scout[0]) and scolor buck(scout[s])

not swap_possible and and J and (s < SMAX or scolor RED)
procedure advance_scout;
begin advance_scout
if scolor <> RED then begin

s:=s+l;
scout[s] := scout[s- 1];

end;
advance(scout[s],RED,scolor,limitr);
end; advance_scout

and J

and J and swap_possible
procedure single_swap;
vat 0.. SMAX;

tcolor colortype;
begin single_swap
if scolor RED then begin

:= 0;
tcolor := rcolor;

end

else begin
t:=s"
tcolor :- scolor;

end’

if (tcolor WHITE) and (wcolor RED) then begin
swap(scout[t], w)’
advance_r"
advance(w, WHITE,wcolor,limitw);

end

else if (tcolor BLUE) and (bcolor RED) then begin
swap(scout[t], b)"
advance_r;
advance(b,BLUE,bcolor,limitb)"

end

262 JAMES R. BITNER

else (wcolor BLUE) and (bcolor WHITE) begin
swap(w, b)
advance(w,WHITE,weolor,limitw);
advance(b,BLUE,beolor,limitb)’

end;
end;

and J

and J and not swap_possible and SMAX and scolor <> RED
procedure double_swap"
begin double_swap
if scolor WHITE then swap(scout[SMAX], b)

else swap(scout[SMAX], w);
swap(w, b);
advance_r;
advance(w,WHITE,wcolor,limitw);
advance(b,BLUE,bcolor,limitb);
end; double_swap

and J

begin dnf
initialize"
while pointers_valid do begin

if swap_possible then single_swap
else if (s < SMAX) or (scolor RED) then advance_scout
else double_swap’

end;
end; dnf

Acknowledgment. I am grateful to Jay Missa for his helpful discussions on this
problem, and to both referees for exceptionally careful and helpful reviews.

REFERENCES

[1] E. W. DIJKSTRA, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[2] S. J. MEYER, A failure of structured programming, Zilog Corp., Software Dept. Technical Report No.

5, Cupertino, CA, 1978.
[3] C. L. MCMASTER, An analysis of algorithms for the Dutch National Flag problem, Comm. ACM, 21

(1978), pp. 842-846.
[4] C. L. LIU, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968, pp. 176.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

(C) 1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0005 $01.00/0

SOME PROPERTIES OF DISJOINT SUMS OF TENSORS
RELATED TO MATRIX MULTIPLICATION*

FRANCESCO ROMANI’

Abstract. Let be a disjoint sum of tensors associated to matrix multiplication. The rank of the
tensorial powers of is bounded by an expression involving the elements of and an exponent for matrix
multiplication. This relation leads to a trascendental equation defining a new exponent for matrix multipli-
cation.

Key words, computational complexity, matrix multiplication, tensor rank, exponent

1. Introduction. In 1969 V. Strassen showed that the complexity of matrix
multiplication is lower than O(n 3) operations [7]. Then the question arose of determin-
ing the intrinsic complexity of the problem. A lower bound to the number of operations
is n 2, but for ten years the best known upper bound was O(nTM). Recently the use
of new techniques has considerably reduced this upper bound. The methods of trilinear
uniting, aggregating and canceling [4], [5], the introduction of approximate algorithms
(also called the field extension method) 1], 2], 3], and the powerful theory of partial
matrix multiplication [6], have led to several improvements in the upper bound, down
to the exponent 2.5218.

In this paper we start from the final argument of A. Sch6nhage in [9] to derive
some theorems on the rank of the sth tensorial power of disjoint sums of tensors. The
application of these theorems results in an exponent of 2.5166 for matrix multipli-
cation.

2. Notation and preliminaries. The reader is assumed to be familiar with the
theory of matrix multiplication algorithms. For a survey see [6], the notation of which
is followed here with some minor changes.

Let mam (n) be the total number of arithmetic operations needed to compute
the product of two square real matrices of order n. The quantity inf {x: mam (n)=
O(nX)} is denoted by w.

To any matrix multiplication problem is associated a 3-dimensional array called
a tensor. The length of the minimal decomposition of a tensor into triads is called
the rank of and denoted rk (t). The number of nonscalar multiplications needed to
compute any matrix product in the bilinear noncommutative model is exactly the rank
of the associated tensor.

Given two tensors t’ and t", t’(R) t" denotes their tensor product and t’ t" their
disjoint sum. For our purposes the two operations are assumed to commute.

We use the notation t for (R)=1 and k for =1 t; the tensor associated to
the product of a matrix rn x n with a matrix n x p is denoted (m, n, p).

The following properties hold:
(m, n, p) (R) (m’, n’, p’) (ram’, nn’, pp’).
(m,n,p)S=(m,n,p).
rk ((m, n, p)) is symmetrical in m, n, p.
rk ((m, n, p)) <_- r implies w -<_ 3 log r/log mnp.
(m, n, p)(m’, n’, p’) is associated to two distinct multiplications of matrices,
rn n by n p and rn’xn’ by n’p’.
rk((rn, n, p)(rn’, n’, p’))-< rk ((m, n, p)) +rk ((m’, n’, p’)).

* Received by the editors March 21, 1980, and in revised form February 1, 1981.
5" Istituto di Elaborazione dell’Informazione, via S. Maria 46, 56100 Pisa, Italy.

263

264 FRANCESCO ROMANI

By an approximate decomposition of order h and length r]’or a tensor t, we mean
a representation

T(l) i xj(/) (R) yj(/) (R) zi(/) lht + o(lh+l),
=1

where xi, yi, zj, are vectors of polynomials in I. rh(t) is the minimal length of a
decomposition of order h and ro(t)=rk (t). minh rh(t)=rk(t) is called the border
rank of t.
The following properties hold’

rk (t) <- rk (t).
rh,+h,,(t’ t") <_-- rh,(t’) + rh,,(t").
rsh (t <---- (rh (t)) s.
rk (t) <-- (1 +2h)rh(t) (see [2]).
rk ((m, n, p))-< r implies w <-3 log r/log mnp.

3. The rank of powers of disjoint sums of tensors. We begin with two simple
lemmas.

LEMMA 1. Let b > w. Then there exists a constant c’ such that for any n

rk ((n, n, n)) <= c’nb.

Proof. There exist Co and no such that for n > no rk ((n, n, n)) -< con b. On the other
hand for n -<nork ((n, n, n))<=n and rk ((n, n, n))<=n3ocon b <=c’n b for any n.

LEMMA 2. Let b > w, m <-_ n <-p. Then there exists a constant c such that

rk ((m, n, p)) <- cmb-2np.
Proof. Since

rk ((m,n,p))<=rk ((m,m,m)(R)(1, rnlmq, rplmq))<-_c’mrnlm] rplml

and [n/m] >-1, [p/m] >_--1, then rk ((m, n, p))<=4c’mb(n/m)(p/m)=cmb-2np. [3

Now we can prove the central theorem of the paper.
THEOREM 1. Let = (m, n, p), b > w. Then there exists a constant c such that

rk (ts)<-c($ + 1)k[max (mbi-2nip
i=1

where the maximum is taken over the permutations of m, n, p.
Pro@

rk (ts)-<rk [s+s2+"’+sk=SSl!S2! Sk
i, l-I n,,1-I pi’)

S
sl+s2+...+Sk=$ S1!$2! Sk

rk ((II m s’ s, s,l-Ini,Ilpi)).

Let Sx, s2,’’’, Sk be the k-tuple for which the corresponding term in the above
expansion is maximal, and assume that

(1) I-I m ’ < l-I nS’ < I-I pSi
Then

rk (ts) <- (S + 1)
S!

sx !s2 s
rk ((It m s’ I-In ’,,

-<c(S+l)
S! k

(b-2)s. s1-I m ’n i’p
sx !s2! Sk i=

PROPERTIES OF DISJOINT SUMS OF TENSORS 265

Obviously, since one term of a sum is less than the whole expression, then

rk (ts) <-_ c($ + 1)(m-nip

This formula holds under assumption (1), but it is not known for which permutation
of (m, n, p) (1) is true, hence

b-2 -2rk(tS)<-_c(S+l)k max , m-2niPi, mini Pi, miniPbi
i=1 i=1

COROLLARY 1. If the set of disjoint tensors in is symmetrical in m, n, p, the three
expressions are equal and

rk (ts) <-c($ + 1)(m-np
i=1

Sch6nhage [6] proved the following theorem.
THEOREM 2. Let ki= ti, ti mi, ni, Pi), minipi, rk (t) <- r. Then w <- 3x,

where x is the solution of the equation Yi=I fi r.
Theorem 1 can be considered to be a weak converse of Theorem 2. For example,

let /k= (mi, mi, mi). Then from Theorem 1 it follows that

k

rk (t) <- r m implies w -<_ 3x,
i=1

and from Theorem 2

w =< 3x implies

COROLLARY 2. Let

)srk (tS) <_c(s + l)k(m3i
i=1

Then

t=d.(1 1 1), t2 e.(1,1, q), t’2=e*(1, q, 1), t=e,(q,l, 1),

(t t2) (R) (tl)t) (R) (tl t), b > w.

rk (ts) _-< c(s + 1)8[(d + eq)2(d + eqb-2)].
Proof. The set of elements of is symmetrical; in fact,

t= d3 (1, 1, l>0)d2e ((1, 1, q>0)(1, q, l>0)(q, 1, 1>)

O)de2 ((1, q, q>(q, 1, q>O)(q, q, 1)))e 3
* (q, q, q>.

Applying Corollary 1 we get

rk (t) =< c(s + 1)8[d3 + d2e(2q + qb-2) + de2(2qqb-2 + q2) + e3(q2qb-2)]

C(S + 1)8[(d + eq)2(d + eqb-2)].
4. Application to matrix multiplication. A sum of r triads T can be viewed as

the homomorphic image of the tensor r, (1, 1, 1). In such a case we write T--> t.
Analogously we have

q

x(R)yi (R)zj-->(1, 1, q).

266 FRANCESCO ROMANI

Obviously T implies rk (T) <_- rk (t); moreover, T’ t’, T" t" implies
T’ (R) T" t’ (R) t".

The same considerations can be made for sums of triads depending on a variable
I. Thus the following theorems can be stated.

THEOREM 3.

T’(l) lh’t -t- o(lh’+) t’2, T"(I) lh"t + o(lh"+)
imply

rk (t (R) t) < rk (t (R) ’’:2/.
Proof. From the definitions of and of border rank it follows that

rk (t’l (R) t’)<=rh,+h,,(tl (t)--<rk (T’(I) (R) T"(/))_-< rk (t (R) t).

TI4EOREM 4. Let 0)-_ ?, ? (m, ni, Pi), mnip , and let

T(1) lht q- o(lh+) d * (1, 1, 1)e (1, 1, q).

Then the solution of the equation
3

(f) =(d+eq)2(d +eq3x-2)
i=1

satisfies w <- 3x.
Proof. Let t d (1, 1, 1), t2 e * (1, 1, q), t e * (1, q, 1), t{ e (q, 1, 1), and

let t’, t" be the tensors obtained from with the corresponding permutations. Then

T’(I) 13h (t () t’ (t") + 0(13h+l) --) (tl () t2) () (tl) t () (tl t) t3

and

T’(l) 13h(t (R) t’ (R) t") + O(13h+)- t.
Applying Corollary 2 we obtain

rk [(t (R) t’(R) t")]-< rk (t)-< c(s + 1)8[(d + eq)E(d + eqbO-2)]
for any s and b(0)> w.

Now (t (R) t’ (R) t") has z3 independent components. Their volumes are given by
the terms of the expansion of (Y.= f)3.

Then by Theorem 2 the solution of
3s

(f) c(s + I)8[{d + eq)2(d + eqb’-2)] satisfies w --< 3x.
i=1

The solution o this equation depends on s. Note that x’ =in {x(s), sN is the
solution of the equation

3

(. f’) (d + eq)2(d + eqb-2) and w <- x ’.
i=1

It is easy to see that substituting the new value b= 3x’ for b and iterating
the process results in values which converge to the unique solution of

3

(fbi/3) =(d+eq)2(d+eqb-2),
i=1

and any value of the sequence {b (), b(), .} is an upper bound for w.

PROPERTIES OF DISJOINT SUMS OF TENSORS 267

COROLLARY 3. W <-- 2.516648 ’.

Proof. Pan [4] presented a decomposition T(l) for the tensor t=(1, k, 2n)
(n, 2, k)0)(2k, n, 1) [5] and Sch6nhage noted that T(1)[2(n+l)(k+l).
(1, 1, 1)q)(k + 1) (1, 1, 2)] [6]. Then, from Theorem 4, w <_-b, where b is the solution
of 27(2kn)b =[2(n /2)(k + 1)]212(n + 1)(k / 1)+(k / 1)2b-2]. In fact, the symmetriz-
ation of yields 27 independent components of the same volume (2kn)3.

The minimal value of b is attained for n 10, k 5; i.e.,

100b 1442 (132 /vz.,b-2!gOa
gives b 2.516648.

27

Acknowledgment. The same exponent has been independently derived by Dr.
Don Coppersmith of IBM T. J. Watson Research Center, Yorktown, NY.

REFERENCES

[1] D. BINI, M. CAPOVANI, G. LOTTI AND F. ROMANI, o(n 2"7799) complexity for n n approximate
matrix multiplication, Inform. Processing Lett., 8 (1979), pp. 234-235.

[2] D. BINI, Relations between exact and approximate bilinear algorithms applications, Calcolo, 17 (1980),
pp. 87-96.

[3] D. BINI, G. LOTTI AND F. ROMANI, Approximate solutions for the bilinearform computational problem,
this Journal, 9 (1980), pp. 692-697.

[4] V. YA. PAN, New fast algorithms for matrix operations, this Journal, 9 (1980), pp. 321-341.
[5], New combinations of methods for the acceleration of matrix multplication, Comp. and Maths.

with Appl., 7 (1981), pp. 73-125.
[6] A. SCHNHAGE, Partial and total matrix multiplication, this Journal, 10 (1981), pp. 434-455.
[7] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0006 $01.00/0

ON TRANSFORMING CONTROL STRUCTURES*

JOHN KEOHANE,- JOHN C. CHERNIAVSKY AND PETER B. HENDERSON

Abstract. Transformations of reducible flowcharts to REPEAT-EXIT or REn-charts and transforma-
tions of REn-charts to more structured forms are investigated. In particular, transformations within the
hierarchy of flowcharts (D-charts, REl-charts, RE2-charts,.. , RE,-charts,...) studied by Kosaraju [J.
Comput. System Sci., 9 (1974), pp. 232-255] are presented. It is shown that the transformation of RE,-charts
to D-charts requires at most [log2 (n + 1)] auxiliary Boolean variables (flags), and that for each n >- this
bound is tight for at least one RE,-chart. The existence of a hierarchy of flowcharts with respect to the
number of flags needed for conversion into equivalent D-charts is also shown.

Key words, control structures, structured programming, reducible flowgraphs, data flow analysis, graph
grammars

1. Introduction. The development of structured programming as a discipline has
stimulated a great deal of research in the area of abstract control structures. Most
research on abstract control structures has been conducted by comparing various
classes of flowcharts or flowgraphs. The results have usually been a measurement of
the relative powers of control structures with respect to various notions of equivalence
[11].

In this paper, we examine the relationships among classes of flowcharts within a
hierarchy studied by Kosaraju [10]. We first examine the relationship between reduc-
ible [8] flowcharts and REPEAT-EXIT flowcharts (REn-charts 10]). We then examine
transformations for restructuring REn-charts by introducing auxiliary Boolean vari-
ables (flags) [4], [5]. Techniques for converting RE,-charts to while-charts or D-charts
(after Dijkstra) are presented. Furthermore,, we show that one of these techniques
results in the introduction of the minimal number of flags required for the conversion.
Finally, we demonstrate the existence of a hierarchy of flow charts with respect to
the number of flags required for their expression as D-charts.

The transformations presented in this paper are in no way intended to be applied
to actual programs, in contrast to those in [3]. We feel that the application of such
transformations would contradict the intent of structured programming. Our purpose
is to examine the relative powers of various control structures in their limits and,
thereby, provide the programming language designer with a set of objective facts to
aid in his decision as to which control structures to include in his language.

2. Flowcharts and flowgraphs. We will use concepts from both the area of abstract
control structures and that of data flow analysis. Most research on abstract control
structures has been conducted using either flowcharts [5], [10] or flowchart schemas
[12], and most research on data flow analysis has been conducted using flowgraphs
[1], [8]. Flowcharts and flowgraphs are quite similar; both are instances of finite,
labeled directed graphs.

* Received by the editors September 30, 1977, and in revised form March 18, 1981. This research
was supported in part by the National Science Foundation under grant MCS 7702708.

" Department of Computer Science, State University of New York, Stony Brook, New York 11794.
Current address: Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506.

t Computer Science Section, National Science Foundation, Washington, DC 20550.
Department of Computer Science, State University of New York, Stony Brook, New York 11794.

268

ON TRANSFORMING CONTROL STRUCTURES 269

DEFINITION. A finite labeled directed graph is a 5-tuple G (N, E,L, ON, 0E),
where:

(1) N is a finite set of objects called nodes.
(2) E N N is a set of objects called edges.
(3) L is a set of symbols called labels.
(4) 0N is a partial node labeling function such that 0N :N L.
(5) 0E is a partial edge labeling function such that 0 :E - L.
Following Kosaraju [10], we assume the existence of two disjoint, infinite

denumerable sets of symbols A {/, g,...} and P {p, q,...}. An element of A is
called a basic action, and an element of P is called a basic predicate.

DEFINITION. A flowchart F is a finite, labeled directed graph composed of:
(1) nodes labeled with basic actions and basic predicates;
(2) auxiliary nodes, which are

(a) nodes labeled RPT, END and EXIT(i), where is a positive integer,
(b) unlabeled nodes called merge nodes;

(3) two distinguished nodes, one of which is labeled START and the other is
labeled STOP;

(4) paths, such that for any node n N, there is a path in F from the START
node to the STOP node which contains n.

The START node has in-degree zero, and the STOP node has out-degree zero.
Nodes labeled with basic actions, auxiliary nodes and the START node have out-degree
one. Nodes labeled with basic predicates have out-degree two. One of the edges from
a node labeled with a basic predicate may be labeled T (true) and the other labeled
F (false). All other edges are unlabeled.

The use of auxiliary nodes in flowcharts will be restricted and clarified in what
follows. Nodes that are not auxiliary nodes are called nonauxiliary nodes. Edge labels
will be disregarded whenever the labeling is either obvious or irrelevant. We will be
concerned with the following classes of syntactically structured flowcharts.

DEFINITION. The class of D-charts, denoted D, is the class of flowcharts contained
in the language of the following graph grammar:

(1)(D-chart) "’=@ --)<D)-).
(2) (D) ::= -,(D)--,(D)--,.

(3) --’(D)- --,, where

(4) -,(D)--, "’=-,-’ wherepP.

(5) --,(D)-, --, (,--,, where E A.

(6) --)<D>--) ::=

DEFINITION. For any integer n _--> 0, the class of REn-charts, denoted REn, is the
class of flowcharts in the language of the following graph grammar:

270 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

(1) (RE-chart)"=0(RE)-@.
(2) -(RE,) "= (RE,,)-(RE,).

(3) -(RE) 0-,wherepeP.

(4)

(5) -*(RE,)--, --*Q-*, wherefeA.
(6) -,(RE,)--," --*, where _<-i n.

(7)

The unlabeled nodes in production (3) of the two definitions above are merge
nodes. The nodes labeled RPT, END and EXIT(i) in the productions above are
auxiliary nodes whose semantics will soon be clarified. Note, however, that nodes
labeled RPT and END form pairs, which we call RPT-END pairs. Each node in an
(RE,) G is said to be surrounded by the RPT-END pair shown in RPT --, G --, END -..
The number of RPT-END pairs surrounding a node in an (RE,) or RE,-chart G is its
depth of nesting in G.

We use RE to denote U ,_-o RE,. In what follows, the inclusion of auxiliary nodes
other than merge nodes is restricted to flowcharts in RE, and the inclusion of merge
nodes is restricted to RE U D.

The following definitions are necessary for the presentation of various notions of
equivalence between classes of flowcharts.

DEFINITION. A computation path in a flowchart F is a finite sequence of nodes
P--nln2"’’nk such that nl is the STAR:T node, nk is the STOP node, and for
1 -< k 1, the following hold"

(1) If ni is a nonauxiliary node, a merge node or a RPT node, then ni+l is a
successor of ni in F.

(2) If ni is an END node, then ni+l is the RPT node with which it forms a
RPT-END pair.

(3) If n is labeled EXIT(j) and its depth of nesting in F is at least j, then n+l is
the successor of the END node of the jth innermost RPT-END pair surround-
ing n.

(4) If n is labeled EXIT(j) and its depth of nesting in F is less than j, then n+l is
the STOP node.

Note the convention adopted in (4) above.
DEFINITION. The execution sequence resulting from a computation path P-

nln2"’" nk in a flowchart is the string that is the sequence of basic actions and
predicates along the computation path. For 1 <_-i <_-k- 1, the instance of a basic
predicate that is the label of a node n is subscripted with the label of the edge (n, hi+l).

Note that the primary difference between computation paths and execution
sequences is that auxiliary nodes are included in computation paths and not represented
in execution sequences. Consider the REE-chart F shown in Fig. 1. Here the node set
N {nl, n2, n3," n13}, the basic action set A {f, g, h}, the basic predicate
set P={p, q}, and edge label set for basic predicates={T, F}. The set of compu-
tation paths may be represented by the regular expression
nl(n2n3n4nsn6n7nsn9)*n2n3n4(nsnonl / nx2)nx3, and its set of execution sequences
may be represented by the regular expression (fPvqr’g)*f(pvqT’h + PT).

ON TRANSFORMING CONTROL STRUCTURES 271

n7

ha3

FIG.

The following definitions of equivalence between flowcharts and classes of
flowcharts are two of those compiled by Ledgard and Marcotty [11].

DEFINITION. Two flowcharts F and G are said to be pathwise equivalent, denoted
F--pwG, provided that their sets of execution sequences are identical.

DEFINITION. Two flowcharts F and G are said to be very strongly equivalent,
denoted F vsG, provided that F pwG and given any basic action b A (respectively
basic predicate q P), both F and G have the same number of nodes labeled with b
(respectively q).

These two notions of equivalence may be extended to relations between classes
of flowcharts.

DEFINITION. A class of flowcharts C1 is said to be no more powerful underpathwise
equivalence than a class of flowcharts C2, denoted C pwC2, provided that, for any
F C, there exists G C2 such that F pwG.

DEFINITION. A class of flowcharts C is said to be pathwise equivalent to a class
of flowcharts C:, denoted C1 --pwC2, provided that C _-< pwC2 and Ca-<-pwC.

DEFINITION. A class of flowcharts C is said to be less powerful under pathwise
equivalence than a class of flowcharts C2, denoted C < pwC, provided that C1 _<-pwC2
and there exists G C2 such that for no F C is it true that F pwG.

The relations <--vs, --v and <v may be defined analogously to those above and will
be assumed in what follows.

Flowgraphs are similar to flowcharts and have been studied extensively because
of their utility in performing data flow analysis [8]. For each positive integer k, we
assume the existence of a distinct infinite denumerable set Sk ={ak, bk,’" "}, the
elements of which are called k-ary actions. We call S- t.J k= Sk the set of actions. An
action represents a basic block or extended basic block in the sense of [1].

DEFINITION. Aflowgraph G is a finite, labeled directed graph G (N, E, L, 0v, tb)
composed of

(1) nodes labeled with actions;
(2) auxiliary nodes (as in flowcharts);
(3) two distinguished nodes, one of which is labeled START and the other is

labeled STOP;
(4) paths, such that for any node n N, there is a path in G from the START node

to the STOP node which contains n.

272 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

The START node has in-degree zero, and the STOP node has out-degree zero.
The START node and all auxiliary nodes have out-degree one. For any positive integer
k, all nodes labeled with k-ary actions have out-degree k. All edges are unlabeled, and
hence 0E b. Also, we intend this to imply that given nl, n2 N, there is a most one
directed edge (n l, n2) in E. This restriction does not apply to flowcharts, as the
subfiowchart below is a valid flowchart.

T F

Classes of structured flowgraphs may be defined analogously to classes of struc-
tured flowcharts.

DEFINITION. For any integer n >--0, the class of CREn-flowgraphs (CASE-
REPEAT-EXIT), denoted CREn, is the class of flowgraphs contained in the language
of the following graph grammar:

(1) (CRE,,-flowgraph)"’=O--,(CRE.)--,(.
(2) -.(CRE.)--, ::= -,(CRE,,)--,(CRE,,)-..

(CRE,,)--
(3) (CRE,,)- "’= - O-,whereakS,withk>-2.-(CRE.)--
(4) (CRE,)- "’= - -(CRE,,)- -.

(5) -(CRE,)- "’=- (,whereaeSl.

(6) -(CRE,) , where _-<i =<n.

(7) (CRE,) ::= -.

We use CRE to denote ,=0 CRE,. Everything defined with respect to RE may
be defined with respect to CRE and will be assumed. Furthermore, everything that has
been defined with respect to flowcharts may be defined with respect to flowgraphs.
Those definitions will be assumed although not explicitly stated. A formalization of the
relationship between flowcharts and flowgraphs may be found in [9].

In what follows the term flowgraph is used to refer only to those flowgraphs
containing no auxiliary nodes. CRE,-flowgraphs will be referred to explicitly.

3. Reducibility. The class of reducible flowgraphs was introduced by Allen and
Cocke [1] and was further characterized by Hecht and Ullman [8]. We will, in fact, use
one of Hecht and Ullman’s characterizations as our definition. The following is
necessary for its presentation.

DEFINITION. A trivial flowgraph is a flowgraph consisting of a START node, a
STOP node, and a node labeled with a unary action, which is the successor of the
START node and the predecessor of the STOP node.

ON TRANSFORMING CONTROL STRUCTURES 273

Hecht and Ullman characterized the class of reducible flowgraphs as those
flowgraphs which can be "collapsed" into a trivial flowgraph using two graph transfor-
mations T1 and T2. Informally, T1 deletes a self-loop.

DEFINITION. For a flowgraph G (N, E, L, ON, qb) with (n, n) E, the flowgraph
T(G, (n, n)) (N, E-{(n, n)}, L, 0v, &). Note that 0v 0v since, if in G node n was
a k-ary action, then in TI(G, (n, n)) n will be a (k-1)-ary action.

Informally, the transformation T2 merges two nodes into a single node.
DEFINITION. For any flowgraph G- (N, E, L, 0N, &), with n l, n2 N such that

neither nl nor n2 is the START or STOP node and nl is the unique predecessor of n2
in G, the flowgraph TE(G, (nx, hE)) (N’, E’, L, 0v,), where"

(a) N’=(N-{nl, nE}) t_J {n l/n2}. Here nl/n2 is a new node which represents the
merge of n and rt2.

(b) The new edge set E’ is more difficult to define formally, since edges to/from
the nodes n and n2 must be deleted, and new edges to/from n and rt2 must
be added.

E’= (E -({(n 1, n) e E} {.,/{(nz, n) E} U {(n, n 1) 6 E}))

U{(n, nl/nz)[for all n such that (n, nl)eE}

U{(nl/nz, n)[for all n such that (n)., n)eE}

U{(nl/nz, n)l for all n such that (nl, n)eE andn

Again 0, 0r, since two nodes have been deleted and one added.
DEFINITION. The class of reducible flowgraphs, denoted RFG, is the class of all

flowgraphs G such that there exists a finite sequence of flowgraphs Go, G1,’ ", Gk,
where"

(1) Go is G.
(2) For O<=i<=k-1, either Gi+l=Tl(Gi,(n,n)) for some (n,n) or Gi+I

T2(Gi, (nl, n2)) for some (nl,
(3) Gk is a trivial flowgraph.
Hecht and Ullman [8] showed that, for any G RFG, if TI(G, (n, n)) is defined

for any (n, n), then TI(G, (n, n)) RFG, and if T2(G, (nl, n2))is defined for any (nl, n2),
then T2(G, (nl, n2)) RFG. We define an object of the form (T1, (n, n)) an application
of T1 and an object of the form (T2, (n 1, n2)) an application of T2.

DEFINITION. A parse r of G RFG is a sequence of applications of T1 and T2
defined recursively by:

(1) If G is a trivial flowgraph, then the empty sequence is a parse of G.
(2) If G’= TI(G, (n, n)), then (T1, (n, n)) followed by a parse of G’ is a parse

of G.
(3) If G’= T2(G, (nl, nz)), then (Tz, (nl, n2)) followed by a parse of G’ is a parse

of G.
In general, a reducible flowgraph may have more than one parse. The length of a

parse is the number of applications of T1 and T2 in it. A minimal parse of G RFG is
a parse no longer than any other parse of G. The following will help in determining
the length of any minimal parse of a reducible flowgraph.

DEFINITION. The reduction sequence resulting from a parse 7r of G RFG,
denoted R (G, r), is the sequence of flowgraphs defined recursively by"

(1) If r is the empty sequence, then R (G, zr) G.
(2) If zr (T1, (n,n))zr’ then R(G, zr)=G,R(TI(G, (n,n)), r’).
(3) If r (T2, (nl, nE))zr’ then R(G, 7r)=G,R(TE(G, (nl, hE)), r’).

274 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

A more complete version of the following definitions may be found in [8]. We
present only what we need.

DEFOrmaTION. For any parse zr of G RFG, with R (G, zr) Go, G1, ", Gk, each
node in Gi, 0 <- -< k, is said to represent with respect to zr a subset of the nodes of G as
follows, where REP,(n, Gi) denotes what n in Gi represents with respect to zr:

(1) For any node n in G, REP,(n, G)= {n}.
(2) For O<-i<-_k-1, if G/I=TI(Gi,(n,n)), then for any n in G/,

REP,(ni, Gi+)= REP,(ni, Gi).
(3) For O<-i<-k-1, if Gi/ T_(Gi, (nl, n)), then for any n in Gi+x, n nx/n:z,

REP,(n, Gi/)= REP,(n, Gi). For n nx/n2, REP,(n, Gi+I)
REP,(nl, Gi) 1,3 REP,(n, Gi).

DvNrro. For any parse zr of G RFG with R (G, ’) Go, G1, G, each
edge in Gg, 0_-< -<_ k, is said to represent with respect to 7r a subset of the edges of G
as follows, where REP,(e, G) denotes what e in Gi represents with respect to r (by
convention if an edge e is not in G then REP,(e, Gi) is the empty set):

(1) For any e in G, REP,(e, G)= {e}.
(2) For O<=i<-k-1, if G/=T(Gi,(n,n)), then for any e in G/I,

REP.(e, Gi/I)= REP,,(e, Gi).
(3) For 0=< -< k 1, if Gi+ T(Gi, (nl, n2)), then depending upon the edge e in

Gi/, we have the following cases:

e (m, n), m, n nl. REP.(e, Gi+ 1) REP,(e, Gi),
n2

(n___) nl
e m, m, REPa.,(e, Gi/) REP.,((m, n), Gi),

2

=(nl,),e \-2 m m nl"REP’(e’n2 Gi/x) REP,((n l, m), Gi)REP.((n2, m), Gi)),

(__2. n___)e REPa.,(e, Gi/I)= REPa,,((n, n), Gi)UREPa,,((n2, n), Gi)).
\n2

DEFINITION. For any parse r of G e RFG with R (G, r) Go, G, , G, an
edge e of G is called a backward edge with respect to " provided that for some i,
ON - k- 1, Gi/ T(Gi, (n, n)) and e

Hecht and Ullman [8] showed that the set of backward edges of any G e RFG
is independent of any parse of G. Thus we may speak of the set of backward edges
of a reducible flowgraph without any reference to a specific parse of it. Hecht and
Ullman also characterized the set of backward edges of any G e RFG as those edges
from descendants to ancestors in any spanning tree created by a depth-first search
(see 14]).

Notation. For s_->3 and b_->0, let IIFG.0 denote the class of all reducible
flowgraphs having s nodes of which b -<_ s nodes have backward edges to them.

We obtain a characterization of all minimal parses of a flowgraph in llFG,with
the following lemmas.

LEMMA 1. For any parse zr of G e RFG with R (G, zr) Go," , Gk and for any
node nk in any G, 0 <-i <-k, the backedges incident upon n represent, with respect to
zr, a subset of those edges in G incident upon a single node in REP.(n, Gi).

Proof. For any n in Go the conclusion is immediate.
Inductive case. This splits into the two subcases as to whether T1 or T2 was the

transformation applied to obtain Gi+l.

ON TRANSFORMING CONTROL STRUCTURES 275

Subcase 1. If Gi+l results from ai by applying T1, then, since the incident
backedges and the nodes in Gi+x are the same as those in Gi, the conclusion follows
from the inductive hypothesis.

Subcase 2. If Gi+ results from Gi by applying T2 to (Gi, (nl, n2)), then n2 has
no incident backedges (otherwise T2 could not be applied). Hence the backedges
incident upon n/n2 represent, with respect to 7r, in Gi+x, the same set of edges as
the backedges incident upon n in Gi. Further, no other nodes obtain additional
backedges. Thus the induction hypothesis can again be applied.

LEMMA 2. There is a parse of G RFGs,b consisting of s- 3 applications of T2
and b applications of T.

Proof. We proceed by induction on the number of edges in G 6 RFGs,b.

Basis. Any G RFG having only two edges is a trivial flowgraph.
Induction. For G RFG,b having e edges, let zr be any parse of G, with R (G, 7r)

Go, GI," ", Gk. Let min j[Gi+I T2(Gi, (n, n2)) for some nodes n, n2 in Gi. Note
that the set of nodes of Gi and that of G are identical. Furthermore, the only edges
of G that are not edges of Gi are self-loops. Thus, the only possible predecessors of
n2 in G are n and hE. If (hE, n2) is in G, then the induction hypothesis is applied to
TI(G, (n2)nE))RFGs,b-1. If (n2)n2) is not in G, then the induction hypothesis is
applied to TE(G, (hi, n.)) RFG-I,b.

LEMMA 3. Any minimal parse of G RFG,b consists of s- 3 applications of T2
and b applications of T1.

Proof. Let G RFG,b. By Lemma 2, there is a parse of G consisting of s- 3
applications of T2 and b applications of T1. We now must show that both are necessary.
Clearly s- 3 applications of T. are necessary, for T2 applications reduce the number
of nodes by 1 for each application. We use Lemma 1 to show that at least b applications
of T are necessary. By Lemma 1, each application of T eliminates, at most, an edge
representing the entire set of incident backedges upon a single node of G. Since there
are b such nodes in G, at least b applications of T1 are necessary.

We wish to define reducibility with respect to flowcharts. There are, however,
flowgraphs having only nodes of out-degree two or less such that the application of
T2 to them results in flowgraphs having nodes of out-degree greater than two. Rather
than expand the notion of a flowchart, we take a simpler approach. It is consistent
with the notions of a basic block and an extended basic block in [1] to assume that
the set of basic actions is a subset of the set of unary actions and that the set of basic
predicates is a subset of the set of binary actions. We say that a flowchart F consisting
of nonauxiliary nodes results in a flowgraph G provided that G is simply F with all
edges unlabeled. A flowchart consisting of nonauxiliary nodes is called a reducible
flowchart provided that the flowgraph in which it results is reducible. We denote the
class of all reducible flowcharts by RFC, and for s _-> 3 and b >_-0, we use RFCs,b to
denote the class of all reducible flowcharts resulting in flowgraphs in RFG,b.

4. Reducibility and structure. In this section, we investigate the relationship
between RFG and CRE and that between RFG and RE. The following result, due
to Kosaraju [10], is reproduced here for purposes of comparison.

Result 1. [10]. For any flowchart containing k nodes labeled with basic predicates,
there is a-= pwREk-chart.

By defining inverses to T and T2, we obtain an upper bound on the minimal k
for which there is a CREk-flowgraph--pw a reducible flowgraph. As a corollary we
obtain a comparable result with respect to RFC and RE. It can be seen that our
bound is better than Kosaraju’s infinitely often, and that even for RFC, his is better

276 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

than ours infinitely often. The significance of this bound will become evident in a later
section.

The following definitions will be helpful in the presentation of the proofs of the
theorems that follow.

DEFINITION. A node labeled EXIT(i) in a (CRE,) or (RE,) G is called a]ump
node of G provided that its depth of nesting in G is less than n.

DEFINITION. In any G CRE, a sequence of nodes P m nln2’’’nk n, with
k _->0, is called an effective edge from m to n denoted Ira, n], provided that for
1 _-< _-< k, n is an auxiliary node and that there exist sequences of nodes S and T such
that SPT is a computation path in G.

THEOREM 1. RFGs.b --<pwCREb.
Proof. It is shown by induction on the length of a minimal parse of G RFGs.b

that there exist H s CREb and a surjection a from the nonauxiliary nodes of H onto
the nodes of G such that the following three properties hold:

(1) For any nonauxiliary node rn in H, a(m) and m have the same label (and,
hence, the same out-degree).

(2) For any two, not necessarily distinct nonauxiliary nodes m and m2 in H,
Ira1, m2] is in H provided that (a(ml), a(m2)) is in G.

(3) If a nonauxiliary node rn in H is as shown in a (CREb) of the form shown
in Fig. 2, then for all nonauxiliary nodes m’ in any (CREb) Fi, as shown,
ct (m t (m’).

2"

FIG. 2

If the relationship described above exists between G and H, then it can be seen
that G -= pwH.

Basis. Any trivial flowgraph is in CREo.
Induction. Let G RFGs.b be such that any minimal parse of G has a length l,

and let zr be any minimal parse of G. By Lemma 3, s + b 3.
Case 1. r (T1, (n, n))Tr’. Any minimal parse of G’= TI(G, (n, n)) has length

l-1 and G’ contains s nodes. By Lemma 3, G’sRFGs.b_I; so, by the induction
hypothesis, there exist H’s CREb_ and a surjection a from the nonauxiliary nodes
of H’ onto the nodes of G’ such that the three desired properties hold. Recall that
G and G’ differ only in the presence of (n, n). Let M be the set of all nonauxiliary
nodes rn of H’ such that c(m)= n. If the out-degree of n in G’ is one, let H be
obtained from H’ by replacing each mM with a (CREb) of the form shown in
Fig. 3a. If the out-degree of n in G’ is greater than one, let H be obtained from H’
by replacing each (CREb_) of the form shown in Fig. 2 (with m as shown such that
rn M) with a (CREb) of the form shown in Fig. 3b, where for 1 =< i-< k, INC(F/) is
the (CREb) obtained by incrementing the index of each jump node in F/ by one.
Condition (3) ensures that the index of each jump node in Fi is only incremented by
one (i.e., there is no recursive application of this induction step). Clearly, there exists
a surjection a which is from the nonauxiliary nodes of H onto the nodes of G and

Case 2. r (T2, (nl, n2))’rr’. Any minimal parse of G’ T2(G, (nl, n2)) has length
l-1, and G’ contains s- 1 nodes. By Lemma 3, G’ RFGs-I.b; so, by the inductive
hypothesis, there exist H’ CREb and a surjection a from the nonauxiliary nodes of

ON TRANSFORMING CONTROL STRUCTURES 277

a

INC(F,) INC(F,,).--INC(Fu)

FIG. 3

H’ onto the nodes of G’ such that the three desired properties hold. Let M be the
set of all nonauxiliary nodes rn of H’ such that c(m)= nl/n2.

The edges from nl/n2 in G’ may be partitioned into three sets, C1, C2 and Ca.
Let e be an edge from n/n2 in G’. From the definition of TE(G, (hi, n2)) there must
be a unique node n in G such that at least one of the following conditions hold"

(1) (hi, n) is in G and (nl/n2, n)= e.
(2) (hE, n) is in G and (nl/n2, n)= e.
(3) (hE, n) is in G and (n/n2, nl/n2) e.

The edge e E Cx provided that only (1) holds; e E C2 provided that both (1) and (2)
hold; and e Ca provided that only (2) or (3) holds.

The edges from each node mM in H’ may be partitioned into {D1, DE, D3}
according to {C, C2, Ca}. Let m and m’ be two nodes of H’ such that mM and
(m, m’) is in H’. By the first and second conditions on a, there must be a nonauxiliary
node m" in H’ such that [m, m"]-tam’mimE’., mjm" for some auxiliary nodes
ml, mE,’’’, mj with]_-> 0. For 1 _-<i _-<3, (m, m’)Di provided that (nl/n2, (m"))E Ci.

If nl/n2 has out-degree one in G’, the edge e from n/n2 must be in C2 or Ca;
otherwise, n2 has out-degree zero in G. If e C2, let H be obtained from H’ by
replacing each m M with a (CREo) of the form shown in Fig. 4a. If e Ca, let H
be obtained from H’ by replacing each m M with a (CREo) of the form shown in
Fig. 4b.

N2

a b

FIG. 4

If nl/n2 has out-degree greater than one in G’, then each node m EM must be
as shown in a (CREb) of the form shown in Fig. 2. Without loss of generality, for
each mM, assume that the edges to F,FE,..’,F are in D1, the edges to
F/, F/+2,’’’, F. are in DE, and the edges to F.+I, F/2,’’’, Fk are in D3. Let H be
obtained from H’ by replacing, for each m M, the (CREb) of the form shown in
Fig. 2 with the (CREb) of the form shown in Fig. 5.

In all cases, it can be seen that a surjection from the nonauxiliary nodes of H onto
the nodes of G exists and has the desired properties. Furthermore, H CREb.

COROLLARY. RFC,b pwREb.

278 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

FIG. 5

Note that in the proof of Theorem 1, the inversion of T1 does not produce
duplicate "copies" of nodes of G in H, while the inversion of T2 may. By modifying
the construction, this situation may be avoided. The following concept will be helpful.

DEFINITION. An edge in H E CRE that is incident upon an EXIT node, a merge
node or the STOP node is called safe.

Note that in the inversion of T2, if all edges in D2 are safe, there is no duplication
0t nodes.

DEFINITION. If there is at most one edge that is not safe from each node in
H E CRE, then H is said to have the safe edge property.

THEOREM 2. For s _--> 4, RFGs.b -<-,sCREs+b-4 and RFG3.b <_-vsCREb.
Proof. By a modification of the proof of Theorem 1, it is shown by induction on

the length of a minimal parse of G RFG that there exists H CRE such that H has
the safe edge property and that there exists a bifection a from the nonauxiliary nodes
of H onto the nodes of G such that the three properties listed in the proof of Theorem
1 hold. Furthermore, if G E RFG3,b, then H E CREb, and if G E RFGs,b for some s _-> 4,
then H CREs+b-4. Since c is a bijection, it can be seen that G -= vsH. Note that we
are, in fact, demonstrating a form of isomorphism between G and H rather than
merely --vs.

The construction is similar to that in the proof ot Theorem 1. For the base case,
our additional criteria are satisfied. For the inductive case, the inversion of T1 at most
increments the index of any EXIT node by one. Furthermore, no new nonauxiliary
nodes and only safe edges are introduced. Thus, if our additional criteria are satisfied
prior to the inversion of T1, they are satisfied afterwards. The inversion of T2, however,
may produce duplicate "copies" of nonauxiliary nodes. We will consider this case in
detail.

Assume that G E RFG,.b having a minimal parse of length /, and let r be any
minimal parse of G. By Lemma 3, s + b 3. Assume further that 7r (T2, (n 1, n2)),
and let G’= T2(G, (na, n2)). Since G’ contains s- 1 nodes, s => 4. Furthermore, since
any minimal parse of G’ has length l-1, G’ RFGs-,b by Lemma 3. Thus, by the
inductive hypothesis, there exists H’s CRE and a bijection a from the nonauxiliary
nodes of H’ onto the nodes of G’ such that the three desired properties hold.
Furthermore H’ has the safe edge property. If s =4, then H’E CREb, and if s-> 5,
then H’ s CREw/b-5. Note that there is only one nonauxiliary node rn in H’ such that
a(m)=nl/n2.

If the out-degree of rll/n2 in G’ is one, let H be constructed from H’ as in Case
2 of Theorem 1. It can be seen that/4 has the safe edge property and that there
exists a bijection a from the nonauxiliary nodes of H onto the nodes of G such that
the three desired properties hold. Finally, it s 4, then H CREb CREw+b-4, and
if s -> 5, then H E CREs+b-5 - CREs+b-4.

ON TRANSFORMING CONTROL STRUCTURES 279

If the out-degree of n 1/n2 in G’ is greater than one, recall the partition {D1, D2, D3}
of the edges from the unique nonauxiliary node m in H’ such that a(m)= nl/n2. If
all edges from m are safe or if the edge from m that is not safe is in 93, let H be
constructed as in Case 2 of the proof of Theorem 1. It can be seen that H has the
safe edge property and that a bijection exists and has the desired properties. Finally,
if s 4, then H CREb CREw+b-a, and if s >_- 5, then H CREs/b-5

_
CREs+b-4.

If the edge from m that is not safe is in D1 or D, then it can be seen that s >-5.
Without loss of generality, assume that the edge from m that is not safe is incident
upon F1 as shown in Fig. 2, where m is as shown. Let H" be constructed from H’ by
replacing the (CREs+b-5) of the form shown in Fig. 2 with the (CREs+b-5) of the form
shown in Fig. 6, where INC(F1) is as in Case 1 of the proof of Theorem 1 and for
2_-<iN k, UP(F) is EXIT(/i + 1) if F is EXIT(/i) and EXIT(I) if F is . Clearly a
bijection a’ from the nonauxiliary nodes of H" onto the nodes of G’ exists and has
the desired properties. Not only does H" have the safe edge property, but all edges
from the unique node m in H", such that a’(m)=nl/n2, are safe. Finally, H"E
CREs+b-4. Let H be constructed from H" as in Case 2 of the proof of Theorem 1.

UP(F

INC()

FIG. 6

It can be seen that a bijection from the nonauxiliary nodes of H onto the nodes of
G exists and has the three desired properties. Finally, H has the safe edge property,
and H E CREs+b-4.

COROLLARY 2. For s => 4, RFCs.b <-vsREs+b-4, and RFC3,b =< vsREb.
A result similar to Corollary 2 appears in Peterson et al. [13]. Their construction

takes an arbitrary flowchart, constructs a reducible flowchart =-pw to it if it is not
reducible, and then constructs an RE--vs to the reducible flowchart. Our construction
has the advantages of consisting of local transformations and of producing an upper
bound on the minimal k for which there is an REk-chart-=pw to the reducible flowchart.

Hecht and Ullman [8] also characterized the class of nonreducible flowgraphs as
those flowgraphs that contain a subgraph of the form shown in Fig. 7, where wavy
lines represent node-disjoint paths. From this characterization, the following corol-
laries may be obtained.

COROLLARY 3. RFG--vs CRE.
COROLLARY 4. RFCvsRE.

280 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

FIG. 7

Thus, by applying a notion from the area of abstract control structures to
flowgraphs, we obtain a characterization of RFG, and by applying a concept from
data flow analysis to flowcharts, we obtain a characterization of RE.

5. Interpretations and Kosaraju’s hierarchy. We have so far regarded flowcharts
as completely uninterpreted entities. We now provide a mechanism whereby semantics
may be associated with basic actions and predicates.

DEFINITION. An interpretation is a triple I (D, 4’a, 4’P), where:
(1) D is a set called the domain of I;
(2) a is a partial function such that a :A "{O]O :DD and a is recursive};
(3) 4’P is a partial function such that 4’P P--, {/lt3 :D -,{T, F} and/ is recursive}.
Since flowcharts are actually abbreviations for Ianov schemas [12], we assume

the concept of a Ianov schema under an interpretation or a Ianov program as defined
in [12]. We also assume the definition of the partial function computed by a Ianov
schema under an interpreation or the partial function computed by a Ianov program as
in [12], as well as all concepts related to those definitions. For reasons that will become
evident, we consider the following notions of equivalence between flowcharts.

DEFINITION. Two flowcharts F and G are said to be functionally equivalent,
denoted F =- G, provided that F and G compute the same partial function under any
interpretation of both F and G.

DEFINITION. Two flowcharts F and G are said to be semantically equivalent,
denoted F =-em G, provided that F--G and the set of basic actions and predicates
of F and that of G are the same.

Relations between classes of flowcharts based on ----sm and ---- may be defined
analogously to those based on ---pw, and those definitions will be assumed although
not explicitly stated.

We wish to examine the relationship between RE, and more structured classes
such as D and RE,, with m < n. The following results due to Kosaraju [10] indicate
that the techniques we have used so far are insufficient for describing transformations
between such classes.

Result 2 [10]. D<smREI.
Result 3 [10]. For all n ->_0, REn <semREn+l.
Thus, if we are to develop transformations from RE to D or to RE,, with rn < n,

the transformations must introduce something extraneous to the flowchart. We con-
sider such transformations in the next section.

6. Auxiliary Boolean variables. The use of auxiliary Boolean variables, or flags,
to structure flowcharts is presented in [2], [4] and [5]. The arguments for and against
the use of flags are primarily subjective and, hence, will not be considered in this paper.

A flag is a Boolean variable used exclusively to structure a flowchart or program.
A formal treatment of flags may be found in [5] and [9]. We regard assignments to
flags as basic actions and tests on flags as basic predicates; however, we require that
an interpretation of a flowchart containing operations on flags be entirely independent

ON TRANSFORMING CONTROL STRUCTURES 281

of the flags. Furthermore, the value of a flag is not a component of the function
computed by a flowchart under an interpretation. For any integer k _-> 0, we use Dk
to denote the class of D-charts containing operations on at most k flags, and we use
RE,.k to denote the class of RE,-charts containing operations on at most k flags.

THEOREM 3. REn,k fRE[n/2],k+X.
Proof. Let be a flag such that there are no operations on in F RE,,,k. Consider

the following inductively defined transformation T" REn,k--) RE[n/E],k+I. Informally,
if at any point on a computation path the value of is true, then In/2] more loops
must be exited before a basic action or predicate other than an operation on is
reached. It can be seen that, for all F RE,,k, T(F) fF,

(2) T(GH)= T(G)T(H).

(7) T()=

COROLLARY 5. lEn,k fRE1,k+ [log2 hi.
THEOREM 4. REI,k fDk+l.
Proof. Let be a flag such that there are no operations on in F lEl,k. Consider

the following inductively defined transformation U’REI,k --) Dk+I. It can be seen that
for all F REI,k, F =-f U(F).

(1) U(-G)=O-U(G).
U(H)--

(2) U(GH)= U(G) 0.

(3) U =-’U(H).__/
u(a)

(4) U(

(7) U(--,) -.

282 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

From Corollary 5 and Theorem 4, we may infer that RE,,,k ----<fl)k+[log2 n]+l. If we
allow basic predicates representing Boolean functions on flags, a slightly more efficient
result may be obtained.

THEOREM 5. REn,k fDk+flog2(n+l)].
Proof. Rather than present the transformation using operations on [log2 (n + 1)]

additional flags directly, we use a variable LEVEL, which assumes values from
{0, 1, 2, ., n}. The tests on LEVEL may be replaced by basic predicates representing
a Boolean function on [log2 (n + 1)] flags, and the assignments to LEVEL may be
replaced by (D)’s constructed from operations on these [log2 (n + 1)] flags.

Consider the following inductively defined transformation V’liE,.k-
Dk+[log2(n+l)]. Essentially the variable LEVEL holds the number of loops which must
be exited on a computation path before a basic action or predicate that is not an
operation on LEVEL is reached. If F lEn.k, it can be seen that F =-f V(F).

V(H) --(2) V(GH)= V(G)-__EVEL=(L 0--,.

!
F

(3) V 0-- O

H

(7) V(-)= -.

Note that the transformations presented in the proofs of Theorems 4, 5 and 6
do not introduce anything but operations on the flags introduced. There is no duplica-
tion of existing basic actions and predicates. The equivalence between a flowchart
and its image under one of those transformations may be viewed as "isomorphism
up to flag operations".

We now show that there exist REn-charts which require [log2 (n / 1)] additional
flags to be transformed into functionally equivalent D-charts. Hence, the upper bound
given in Theorem 5 is tight.

THEOREM 6. For any n >-- 1, there exists an RE, flowchart that cannot be =- to

any D-chart constructed from the same basic actions and predicates andfrom operations
on only [log2 (n + 1)] + 1 additional flags.

Proof. The proof is a modification of that used by Kosaraju [10] to prove Result
3. Let F be the flowchart in Fig. 8, which is drawn to resemble a grid.

Kosaraju [10] gives a construction for a G RE, such that G=owF. Note that
any cycle in F either contains at least one node from each column or contains at least
one node from each row. Thus, each cycle C intersects n + 1 node-disjoint paths
PC, l, Pc,2, Pc,n+1 such that for 1 <- <= n, P,i is a cycle and Pc,+I ends in the STOP

ON TRANSFORMING CONTROL STRUCTURES 283

FXG. 8

node. We will provide an interpretation for F whereby the basic actions record the
computation path resulting for each input. We assume that there exists G D such
that G-=F and G is constructed from the basic actions on predicates of F and from
operations on only [log2 (n + 1)] 1 llog2 n flags. We show that we may also assume
that for some input, the equivalent of a cycle C of F exists within an innermost loop
L of G. We then provide n + 1 inputs such that for each input, the loop L in G is
entered. For each of n of the inputs, the equivalent of a distinct cycle Pc,i, 1 <= <= n,
is then followed until the loop L must have been left. In each of the n cases, a distinct
basic action fi,j,i’,j’ must be the first such basic action reached when the loop is left.
For the n + 1st input, the equivalent of the path Pc,./1 to the STOP node is followed
from within L. We call a STOP node or a node labeled with a basic action fi,j,i,,i, a
relevant node. Note that for each of the n + 1 inputs the first relevant node reached
when the loop is left must be distinct. The first relevant node reached when the loop
is left is entirely determined by the values of the basic predicates pi,i and by the vector
of values of the [log2 n flags when the test of the loop is reached. However, our
interpretation will be such that for each of the n + 1 inputs, the values of all basic
predicates pi, will be the same when the loop is left. The [log2 n flags may assume
only 2 tog2.J <_ n vectors of values. Thus for at least two of the inputs, the first relevant
node reached when the loop L is left must be the same.

284 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

Following Kosaraju [10], we use the following interpretation of F"

program variable" the variable x;
input alphabet: {c, d};
output alphabet: {c, d} t.J Q, where

Q {[i,/’, + 1,/’], [i,/’, i, j + 1], [n + 1,/’, 1, j], [i, n + 1, i, 1]li,] [n]};

basic predicates"
basic actions’

pi.j p, where p "prefix of x c ?";
[i.j,,,i, "delete the prefix symbol of x and

add [i, , i’, ’] as its suffix symbol".

Note that for some inputs infinite looping may occur; however, this situation will
be of no concern. We, in fact, restrict our inputs to strings from {c, d}+ for which the
STOP node is reached with x having a prefix from {c, d}/. As mentioned before, the
basic actions of F trace the computation path followed. At any instance of a node on
a computation path, x must be of the form yz, where:

(1) y {c, d}/, and the input must have been of the form wy for some w {c, d}*.
(2) z =[il,]1, i2, /’2][i2, j2, i3,]3]’’’ fire-l, fro-l, ira, fro] for some m-->_0, where

for 1 <- k <= m, (ik+l,]k+l) (ik + 1,]k) or (ik,]k + 1), with sums "end-around at
n + 1" (i.e., n + 2 1).

Assume there exists G D such that G---fF and G is constructed from the same
basic actions and predicates as F and from operations on flog2 (n + 1)] 1 flog2 n
flags. Let k flog2 n J. The following will be helpful in presenting the proof. A node
of G is said to be relevant provided that it is labeled with a basic action f.i,,,i, or it
is the STOP node. A relevant node ni is called the relevant successor of the indicated
instance of n on a computation path P=nln2"" ni’’’nj’’’nk provided that
n+1, n+2, , ni-1 are not relevant. A node ni is said to be a potential relevant successor
of n provided that it is the relevant successor of an instance of n on some computation
path. For simplicity, we call a node labeled with a basic predicate a test node. Note
that the relevant successor of an instance of a test node n on a computation path P
is entirely determined by the prefix symbol of x and by the vector of values of the k
flags at that instance of n on P. Since the prefix symbol of x either is c or is not c
and since k flags may assume 2k vectors of values, any test node may have at most
2k+l potential relevant successors. We call a potential relevant successor of a test
node n a potential relevant c-successor provided that it is the relevant successor of
some instance of n on some computation path P and the prefix of x is c at that
instance of n on P. A potential relevant d-successor is defined analogously. Note that
any test node may have at most 2k potential relevant c-successors and at most 2k

potential relevant d-successors.
Since G ---fF, G must compute the same partial function as F under the interpreta-

tion described above.
CLAIM 1. G contains an innermost loop.
CLAIM 2. For some input Xo and some innermost loop L of G, Xo results in the

computation path P PomPlmP2 mP2+mP2++l, where m is the test ofL and for
1 <= <- 2 +1, the nodes of Pi are within the loop L.

Proof. If the claim is not true, any innermost loop L may be replaced as indicated
in Fig. 9 until either a D-chart satisfying the claim is obtained or until a D-chart
containing no loops is obtained. If the latter occurs, Claim 1 is violated.

CLAIM 3. For the computation path P PomPlmPz mPz mP2 +1 as des-
cribed in Claim 2, the relevant successor of at least two of the indicated instances of m
are the same.

ON TRANSFORMING CONTROL STRUCTURES 285

2k+l

FIG. 9

Proof. There are 2TM + 1 indicated instances of rn on P, and rn may have at most
2TM potential relevant successors.

Thus, there is an innermost loop L in G which is entered on the computation
path followed for some input Xo. Furthermore, there is an equivalent of a cycle in F
entirely within L. Let Xo y y2z, where y E {c, d}*, y2 E {c, d}/, and the two instances
of the test of L having the same relevant successor are reached with the intermediate
values x y2zy and x =zy’ly2, respectively, Note that y2{c, d}/, otherwise either
infinite looping would occur or the STOP node would be reached with x not having
a prefix from {c, d}/. By the structure of F, y2 [il,]1, i2,]2][i2,]2, i3,]3]""" [ira, ira,
i,,+1,],,+1], where for 1 _-< s _-< m + 1, (i+1, j+l) (i + 1,]) or (i, j + 1) (with sums
"end-around at n + 1") and (i,,+1,],,+1) (il, jl). Thus, there exist xl, xz," ", x,+l and
zl, zz, ", z,+l such that x0 xlzl x2z2 xn+lZn+l and the intermediate values
zw[.,., u, v] are formed within L in G with either u for 1 -<_ _-< n + 1 or v
for 1 _-< <_- n + 1. Furthermore, those intermediate values are formed within L before
the prefix symbol of each of the z’s is tested.

We consider the case in which u for 1 <_-i-<_ n + 1 (the other case is argued
analogously). Let s be any integer such that s(n + 1) is greater than the number of
relevant nodes in L. For l<-i<-n + 1, consider the n + 1 inputs x(d"+l)z, where

n+l-dz= c First consider those inputs with respect to F. Since F-=(G, for _-< _-<
n + 1 the intermediate value (d"+)’z iWi[", i, Vii will be formed. Because of the
structure of F, for 1 <=i <=n, zwi[’, ", i, vii([i, vg, i, V+l]’"’ [i, v/,, i, v+,+l]) will be
formed, where vi/l v + 1 and v/,/l v. Finally, for 1 <- -< n, the STOP node is
reached with the value of x dwi[’,’, i, vii([i, v, i, vi/l]" [i, vi/,, i, v/,/l])sz,’.’,
where zf=[i, v+,=, i+1, vi+,+l][i+l, vi+,+l, i+2, vi+,+l]" [n, vi+,+l, n+l,
v+,+l]. For the input X,+l(d"+l"sZ,/l, the STOP node is reached with the value of
x (d"+l)Wzw[’, ", n + 1, vii. Since F--fG, for each of the n + 1 inputs, the STOP in
G node must be reached with the appropriate value of x.

With respect to G, for each of the n + 1 inputs xi(d"+l)z’i, the intermediate
value (d"+l)zlw[., .,i, v] must be formed within the loop L before its prefix is
tested. Hence, for 1 -<

_
n, the intermediate value z[.,., k,

([i, vi, i, v+l]" [i, v+, iv+,+l]) must be formed if the STOP node is to be reached

286 J. KEOHANE, J. C. CHERNIAVSKY AND P. B. HENDERSON

with the appropriate value. Since in each of the n cases, s(n + 1) basic actions must
be reached before the formation of the appropriate values, the test of the loop L must
be reached because of our choice of s. In each of those n cases a distinct relevant
successor ot the test o L must be reached Furthermore, or the input xn/l(dn/l)Sz n+l
the STOP node must be reached with the value of x (dn/)Sz ’/w/[. ,. n + 1, v].
Thus, in all n + 1 cases, the test of L is reached with d as the prefix of x and a distinct
relevant successor of the test of L reached thereafter. Thus, the test of L must have
n + 1 potential relevant d-successors. However, any test node in G may have at most
2k 2 tlog2, <_ n potential relevant d-successors.

The case in which vj], for 1 =< -< n + 1 is argued analogously.
COROLLARY 6. For n >--O, there exists a D-chart containing operations on n + 1

flags that cannot be =-f to any D-chart constructed from the same basic actions and
predicates and operations on only n flags.

Proo[. The result follows from Theorems 5 and 6.

7. Conclusion. We have examined the relationship between program structure
and reducibility. We have shown that for any reducible flowchart (flowgraph) having
n nodes of which b have backward edges incident upon them, there exist a ---p, REb-
chart (CREb-flowchart) and a -=vsRE,/b_4-chart (CRE/b_4-flowgraph). We have
also shown that for any RE,-chart there is a =-f D-chart containing operations on
flog2 (n + 1)] additional flags. We have also provided a partial answer to an open
question of Ashcroft and Manna [2] concerning the minimal number of flags that
must be introduced to convert an arbitrary flowchart into a D-chart. Furthermore,
Theorem 6 and its corollaries coupled with the results found in [6] provide a case
against the exclusive use of the control structures reflected in D-charts.

REFERENCES

[1 F. E. ALLEN AND J. COCKE, A catalogue o1 optimizing translormations, in Design and Optimization
of Computers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1973.

[2] E. A. ASI-ICROFT AND Z. MANNA, Translating program schemas to while-schemas, this Journal, 4
(1975), pp. 125-146.

[3] B. S. BAKER, An algorithm]’or structuringflowgraphs, J. Assoc. Comput. Mach., 24 (1977), pp. 98-120.
[4] C. BOEHM AND G. JACOPINI, Flow diagrams, Turing machines and languages with only two formation

rules, Comm. ACM, 9 (1966), pp. 366-371.
[5] J. BRUNO AND K. STEIGLITZ, The expression of algorithms by charts, J. Assoc. Comput. Mach., 19

(1972), pp. 517-525.
[6] R. A. DEMILLO, S. C. EISENSTAT AND R. LIPTON, The complexity of control structures and data

structures, Proc. Seventh ACM Symposium on Theory of Computing, Assoc. Comput. Mach.,
New York, 1975, pp. 186-193.

[7] C. C. ELGOT, Algorithmic properties of structures, Math. Systems Theory, 3 (1976), pp. 183-195.
[8] M. S. HECHT, Flow Analysis o]’ Computer Programs, Elsevier-North Holland, Amsterdam, 1977.
[9] J. KEOHANE, On reducibility, structure and the need and use offlags, Ph.D. Dissertation, Department

of Computer Science, SUNY, Stony Brook, NY, 1978.
[10] S. R. KOSARAJU, Analysis o] structured programs, J. Comput. System. Sci., 9 (1974), pp. 232-255.
[11] H. F. LEDGARD AND M. MARCOTTY, A geneology o] control structures, Comm. ACM, 18 (1975),

pp. 629-639.
[12] Z. MANNA, Mathematical Theory ol Computation, McGraw-Hill, New York, 1974.
[13] W. W. PETERSON, P. KASAMI AND N. TOKURA, On the capabilities of while, repeat and exit

statements, Comm. ACM, 16 (1973), pp. 503-512.
[14] R. E. TARJAN, Depth first search and linear graph algorithms, this Journal, (1972), pp. 146-160.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0007 $01.00/0

A TIME-SPACE TRADEOFF FOR SORTING ON A GENERAL
SEQUENTIAL MODEL OF COMPUTATION

A. BORODIN? AND S. COOK?

Abstract. In a general sequential model of computation, no restrictions are placed on the way in which
the computation may proceed, except that parallel operations are not allowed. We show that in such an
unrestricted environment TIME.SPACE fl(N2/log N) in order to sort N integers, each in the range
[, N].

Key words, time-space tradeoffs, conputational complexity, sorting, time lower bounds, space lower
bounds

1. Introduction. Within the field of computational complexity, our inability to
establish lower bounds on the complexity of "natural problems" stands in marked
contrast to the progress that has been made in algorithmic design and analysis, and
the progress in characterizing the central issues. To be fair, there are the following
important exceptions"

1. Relative to an appropriate reducibility, a problem can be shown "hard" for
an entire complexity class. Then diagonalization can be used to infer a corresponding
complexity lower bound. For example, see the discussion in Aho, Hopcroft and Ullman
[1, Chapt. 11].

2. For certain natural but "structured" models of computation, we have a number
of interesting lower bounds. We use "structured" in the sense of Pippenger and
Valiant’s [2] use of "conservative" to mean that the computation can only proceed
within a fixed mathematical structure (e.g., a partial order for comparison based
models, a ring or field for algebraic complexity) and only uses the relations and
functions within that structure for the computation (see also Borodin [3]). For example,
using comparison trees it is well known that sorting n elements requires at least n
log n + O(n) comparisons.

3. On certain nonstructured but restricted models of computation we have a few
results. For example, to recognize the set {w # wR} on a one-tape Turing machine
requires l(n 2) steps.

A general sequential model of computation can be viewed as a string processing
machine. While the input string may arise as the encoding of a set of mathematical
objects, there is no obligation to process these objects in ways prescribed by the
mathematical structure. In this context complexity is measured as a function of the
input (plus output) length. If we ignore "diagonalization based results", the following
barriers are well recognized"

a. To establish a nonlinear lower bound on time.
b. To establish a nonlogarithmic lower bound on space.
c. To establish a nonlogarithmic lower bound on depth (= parallel time).
Having recognized these barriers, it might seem wise to see if we can at least

show that for some problem we cannot simultaneously achieve (say) linear time and
logarithmic space. Such a result already appears in Cobham [4], where he shows that
for recognizing the set of perfect squares (or for recognizing {w $ WR}) we must have
T. S l)(n 2) for any computational device (including a multitape T. M.) having a

* Received by the editors July 28, 1980, and in final form May 4, 1981.
? Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A1.
That is, prove space is not O(log n).

287

288 A. BORODIN AND S. COOK

separate one head-mad only input tape. Here T number of steps, $ "capacity"=
log2 (number of configurations the machine enters when processing all strings of length
n). The concept of "capacity" introduced by Cobham seems to capture just that
property of space which lends itself to lower bound analysis. But whereas we accept
a capacity lower bound on one of Cobham’s general machines to be an "intrinsic"
lower bound (i.e., independent of the choice of any reasonable computational models)
on space requirements, we cannot say that a T. $ f(n 2) lower bound has the same
intrinsic quality, because of the restriction of having only one input head. More
specifically, by easily adapting Cobham’s argument (based on Hennie’s [5] crossing
sequence technique), Tompa [6] shows that sorting rn numbers, each of length log rn
bits (hence n rn log m), requires T. S f(n2). But the proof literally states and
shows that merging two lists of rn sorted numbers would require the same lower
bound. But for merging, the use of (say) two input heads would trivially (via a linear
merge) permit a simultaneous linear time and logarithmic space merge. We are then
led to the following question" Given k "random access" input heads, can we sort (say
on a multitape T. M. or unit cost RAM) in simultaneous linear time and logarithmic
space? The main result of this paper shows that indeed this is not possible. In fact
we will establish a lower bound analogous to (and based upon) the lower bound of
T. S (n2) established for sorting in the structured context of "branching programs:’
by Borodin, et al. [7]. Specifically we show T. S f(N2/log N), N the number of
inputs and N I)(n/log n) where n is the input length. To the best of our knowledge
this is a unique result in that it establishes a lower bound (without diagonalization)
on a completely unrestricted general model of computation. Unfortunately, we have
not yet been able to establish a similar bound for a set recognition problem and we
should also note that our methods do not appear applicable to Knuth’s [8] problem
of in situ sorting.

2. The formal model and an outline of the proof. In a general model of computa-
tion, we might be able to solve a given problem by processing the input string in a
manner which is completely outside the mathematical domain within which the
problem has been defined. For example, consider solving for the existence of a path
on a graph by using Strassen’s matrix multiplication algorithm and modular arithmetic
(see Fischer and Meyer [9]). It seems almost impossible to make sense out of the
individual bit operations in terms of the original problems.

The "fortunate" fact for sorting is that such a problem, with its explicit requirement
for "ongoing progress" (in the sense of having to output ranks) allows us to enjoy a
structured view of the computation even though we are working within a general
computational model. Indeed we shall try to mimic the proof for the structured case
[7]. That proof was based on the following intuitive idea: if we don’t compare many
elements, then we can’t know the ranks of many elements for many input permutations.
We will need a somewhat more involved argument to show an analogous statement
for the general model.

Before discussing the model, we should define the problem formally. We consider
an input of the form x # x2 #’" # Xv where each xi is an integer in [1, N2] and is
coded in binary. Hence the total length of the input is O(N log N). The sorting
problem is to output a sequence of distinct pairs ix, r; i2, r2;" iv, rv such that xi
has rank r. (Without los of generality we can assume that xi’s are distinct.) As in
Borodin et al. [7] we can define the k-ranking subproblem; namely, output a sequence
i, rl;’’’ it, re, >-k, which correctly represents the ranks of of the xi’s. (The
indices which are assigned ranks may be different for different input values.)

A TIME-SPACE TRADEOFF FOR SORTING 289

This definition of sorting is not standard. Usually, one requires outputting the x
values in sorted order. However, for the model we are considering, any algorithm
which sorts in this usual manner can be adapted to one which outputs pairs (ii, ri) by
assuming that the index has been concatenated onto xg as the low order bits. It will
follow that a TIME. SPACE lower bound in our framework for inputs in the range
[1, N2] will imply the same lower bound in the usual setting for inputs in the range
[1, N].

Our formal models are as follows:
DEFINITION. An R-way integer tree program is an R-ary tree (hereafter called

an R tree), where each branch is labelled by elements of [1, R], and each internal
node is labelled by some index (referring to x). The interpretation is that if the
computation has proceeded to an internal node labelled by "x" then it will continue
to proceed along edge u if[x u. Output takes place at the leaves. In particular, it
should now be clear to say how a computation tree solves the k-ranking problem, or
more generally how a computation tree solves the k-ranking problem for some subset
I of the possible inputs. The time complexity of a computation tree is its depth; that
is, the maximum number of times inputs are accessed in a computation. Since we
assume all x are distinct, any branch which has two edges with the same label u for
distinct x will be inaccessible. We assume these inaccessible paths have been pruned.

An R-way integer branching program (hereafter called an R branching program)
is the nonstructured analogue of a comparison branching program [6]. Namely, it is
a directed acyclic rooted graph with each nonsink node having out-degree R, with
the R out edges labelled 1, 2,..., R. Without loss of generality, we can assume that
the graph is in levels and that an edge out of a node at level is directed to a node
at level l+ 1. (See Tompa [6] for a discussion of the analogous assumption for
comparison branching programs.) Outputs can now occur on any edge. The time
complexity is again the depth and space capacity log (number of nodes in the
graph). We can now state:

MAIN THEOREM. Let z be an R branching program for sorting N integers and let
R R (N) N2. Then T. S l-l(N2/log N) where T and S denote, respectively, the
time and space complexity of .

Before proceeding to the proof, we should comment briefly on the generality of
the model. Suppose we have a general computational machine with k read-only,
"random access" heads. It should be clear that by assuming k 1 we will only slow
down the machine by at most a constant factor (i.e., k). Our tree and branching
programs assume that we will know an entire input x if we access any bit of that
input. Hence, we are willing to ignore the log N factor it might cost to look at a given
input. Each node of the computation graph represents a distinct state of the computa-
tion. Like Cobham [4], it is profitable for us to ignore completely how (and if) the
storage can be represented and manipulated. Again, we are willing to ignore the time
spent manipulating the storage between accesses of the input. We thus argue that our
model and the time and space measures are sufficiently general that any lower bounds
do reflect an intrinsic property of the function (sorting) being computed.

Having presented and justified the model, we can now informally sketch the
proof. To do so, it is helpful to review the proof for the structured case [7]. The basic
lemma in that proof states that a {<, >} comparison tree program on n inputs of
depth (time) can solve the k ranking problem for at most (t+l)k(n-k)! input
permutations. This lemma is applied with k S space. Thus for any c > 1, by making

an for a sufficiently small, we can say that the S ranking problem has been solved
for at most a fraction (1/c)s of the n! possible input permutations. Now if r is a

290 A. BORODIN AND S. COOK

{<, > } branching program for sorting, we consider the computation at the th
"stage" (i. t)th step, <= n/S. In going from stage to stage + 1, we can only correctly
calculate S more ranks for at most n!2S.(1/c)s input permutations, since there are
at most 2s nodes at the ith stage, each of which can be considered the root of a tree
program. Thus by an appropriate choice of f(n) we have c > 2 so that in going
from stage to stage + 1 we have computed more than $ new ranks for at most a
fraction (l/d)s of all possible input permutations. It follows that we will need at least

n/S stages to complete the computation, and hence T f(n2/S).
We want to establish the analog of the basic lemma, after which the rest ot the

proof follows exactly as before. We will show that for any c > 1, we can find suitable
a such that any R-tree program (R N2) of depth cN can solve the S log N
ranking problem tor at most a fraction (1/c)S ot the the possible inputs. In our case,
that are N!(v) possible input sequences (x1,’" ,xN) since we are assuming
distinct {xi}.

In viewing the proof ot the structured case, we can observe that every path in a
computation tree can successfully solve the k ranking problem for at most a fraction
(t + 1)kiln (n 1).. (n k + 1)] of the permutations following that path. In our case,
we can see that some short paths can be very successful; indeed if we discover that
some xi 1 (or xi N2) on a given path, then we know the smallest (respectively,
largest) element for every input sequence on that path. Moreover, if we find some
x 2 (and no xj seen so far is equal to 1) we still have a pretty good chance if we
guess that x is the smallest element. But, we can also see intuitively that our chance
of guessing correctly as to which is the smallest element starts to decrease it we have
only seen a few not so small numbers.

So this will be our approach for establishing the analogous main lemma: We
assert that, with sufficiently high probability, at a leaf of an R-tree program the
elements that we have seen on this path will be "spread out" in such a way that there
is only a small probability (i.e., for only a small fraction of all possible input sequences)
that we will correctly output S ranks.

3. The proof o| the main lemma. Throughout this section we will be considering
R tree programs - such that each leaf 0 of - is labelled with a ranking sequence il,
rl;... il, rl, where lo may depend on the leaf 0. We say - solves the m ranking
problem for an input sequence (x,..., xr) provided this input leads to a leaf 0 for
which Io _-> m, and all lo ranks are correctly specified (i.e., x is the rjth smallest input,
1-<] _-< 10). The following notation will be maintained" <_-1/2N is the depth of the R
tree program - (we may asssume all paths in z have length t by extending shorter
ones if necessary), N_->2 is the number of input elements, k is a positive integer
satisfying 2[(k)<-N, and [(k) stands for k [log N]. We will see that R R (N)= N2

is sufficiently large for our purposes, and since all results hold a fortiori for larger R,
we will assume R N2. Our proofs will be formulated in the language of probability
theory and we will speak of a random input in the sense that any of the N!() possible
input sequences are considered to be equally likely.

We are now ready to state the main lemma, which says that any sufficiently
shallow R tree program (regardless of its capacity) cannot output many ranks correctly.

LEMMA 1. For all c > 0 there is an a > 0 such that for all - with <-cN and N
sufficiently large, and for all k with l(k)<-t, the set ! o] inputs]or which " solves the
2/(k) ranking problem satisfies #I/(N!(r)) <= (1/c) k. Restated: with probability at most
(1/c)k, " correctly outputs 2/(k) or more ranks]:or a random input.

A TIME-SPACE TRADEOFF FOR SORTING 291

DEFINITION. A set S {xil,"" ", xi,} of inputs is (p, k) spread out if for every
subset S’___ S with #S’ =f(k) there is a subset {yl, ’, Yk} (listed in increasing order)
of S’ such that yj+ yj 1 _-> p, for 0 <_-] -< k. (Here yo 0 and Yk+1 R + 1.)

LEMMA 2. For all integers fl > 0 there is an a > 0 such that,]’or all r with <-_ aN
and all k with f(k)<-t, P[r,k, fl]<-_(1/N) k, where P[r,k, fl] is the probability that a
random input (Xl, , Xl) to r willfollow a path along which the accessed input elements
are not (BR/N, k) spread out.

LEMMA 3. For all d > 0 them is an integerB > 0 such that]or all r with Nsuf-ficiently
large and]’or all k with 2f(k) <- N if the accessed input elements (xil," ", xi,) at a leaf
0 of r are (BR/N, k) spread out and the ranking sequence labelling 0 contains at least
2f(k) ranks, then the fraction of those inputs leading to 0 that are correctly ranked is at
most (1 /d) k.

Lemma 1 follows from Lemmas 2 and 3 as follows. Choose d _-> 2c in Lemma 3
to get fl and apply Lemma 2 to get a. By Lemma 2 it does no harm to assume all
leaves whose accessed inputs are not spread out always correctly solve the 2f(k)
ranking problem, and the remaining leaves either output fewer than 2f(k) ranks or
(by Lemma 3) are correct for too few inputs.

Proof of Lemma 2. Every leaf 0 of r uniquely determines a t-tuple (Xil,’"’,
of accessed elements, written in the order in which they are accessed on the path to
#. Conversely, every t-tuple of distinct integers in the interval [1, R] uniquely deter-
mines a leaf. Thus there is a one to one correspondence between leaves and t-tuples,
and exactly a t! to one correspondence between leaves and sets of distinct integers
from [1, R]. Further, any two leaves have the same number of input sequences
(x,..., XN) leading to them. Therefore PIt, k,/3] is just that fraction of sets of
distinct integers from [1, R] which are not (BR/N, k) spread out.

Divide the interval [1, R into N equal subintervals called bins of length N each
(recall R N2). Let /5It, N, k, 8] be the probability that, when balls are drawn
(without replacement) from an urn of R balls numbered 1, 2,..., R, there exists
some set of/(k) of the drawn balls which lie in at most 8 bins2. We claim that
[t,N, k, 8] is an upper bound on P[’,k,] where 8=k(B+l)+fl. For, if S is the
set of drawn balls and if every subset S’_ S of f(k) balls lies in 8 + 1 or more bins
B,..., B+ (listed in the order in which these intervals occur in [1, R]), then we
can choose one ball from each of the k bins Bi+l, 1 <=] <=k, to form the required
subset {y,. , Yk} in the definition of (fiR/N, k) (N, k) spread out. This is because
at least/3 bins lie entirely to the left of y l, at least/3 bins lie entirely to the right of
Yk, and any two adjacent yi’s are separated by at least fl bins (B bins equals fin
elements).

To estimate/5It, N, k, 8], let p(bi) be the probability that a particular bin B has
at least b balls (after are drawn). We claim that 1-I= p(bi) is an overestimate of the
probability that a particular set of 8 bins B1,’’ ’, B get packed (respectively) with
at least bx,..., b balls. This is because the condition that a set of bins has some
minimum number of elements can only decrease the probability that a particular bin
has at least b elements. Hence

(b, , ba_, bi =f(k)
bi>=O

2 Here is the essential place that the log N factor in our main result, T. S 12(N2/log N) enters the
proof. Specifically, we cannot assert that/ would be sufficiently small if f(k) were O(k) rather than k log N.

292 A. BORODIN AND S. COOK

Here (N) gives the number of ways to choose a set of crowded bins, and the summation
represents the number of ways to pack a set of crowded bins.

We claim that for all c >- 1 there is c >0 such that p(b)<=(1/c)b (where t<=aN).
Proof. The probability that a particular bin has exactly balls is given by

Thus

(?) \ t-] Nt(N2-N)t-l t!

for sufficiently large c.

(2a)b

(1__)
b

p(b) <= . (2a) < <

assuming b => 1. The claim is obvious if b -0.
We thus have

l[t, N, kS] <= ,
bl+" "+bs =/’(k)

(since.f(k)<N,(k)=k[logN]) _-< N2 (cl-)
rl

1
for a

4c’

Proof of Lemma 3. Let {xil,"’", xi,} be the input elements accessed on the path
to 0. Suppose at 0 the labels assert that x. has rank r for 1 =< , =< 2]’(k). Note that we
are not necessarily implying that any xjv {Xgl,’" ", x,} but, intuitively, one would
expect a better chance at "guessing" the rank of an element which has been seen.
Suppose that fewer than half of the indices for which 0 assigns ranks are among the
set {ix,"’, it}. Then there is a set $ of u >-k [log N] indices for which 0 assigns a
rank and whose corresponding value x can be anything in the set {1, 2,..., R}-
{xl, x,}. In particular, all u! possible orderings of the set {xi[S} are possible
and equally likely, and a necessary condition that 0 rank them properly is that they
be in the right order. Hence at most a fraction l/u! of the inputs leading to 0 are
correctly ranked, and I/u! <- (l/d)k for sufficiently large N, since u -> k log N.

The remaining case is that half or more (that is at least k [log N] =’(k)) of the
indices for which 0 assigns ranks are among the set {il,’’’, it}. Let S’ be the set of
inputs at these indices (so #S’ >=f(k)). Since {xil,"’’, xi,} is (OR k) spread out,
there is a subset {y 1,..., Yk} Of S’ such that yj/-yi-1-> fiR/N, 0<= <= k, where
y0 0, Yk/l R + 1. Let 0 output the assertions that yi has rank ri, 1-<f-< k. These
assertions are equivalent to saying that exactly ri- rj-1-1 of the inputs lie in the open
interval (yi_a, yi), 1 -</" -< k + 1, where we understand that ro 0 and rk+l N + 1. This
in turn is equivalent to saying that exactly ki of the inputs which 0 does not access lie
in the set Ci=(yj-a, yi)-{Xgl,’",xg,}, where ki=ri-ri_-l-uj, and u.=
#(yi_l, yi) {x, ., x,} (i.e., uj is the number of inputs which 0 knows to lie between
yi- and yj).

A TIME-SPACE TRADEOFF FOR SORTING 293

We have thus reduced our problem to a more traditional probability setting,
namely that of the hypergeometric distribution (see Feller [10, p. 43]). We have a
population of size n R-t, made up of ni elements of "color i" (i.e., member of the
set C), 1 <- -< k + 1. We seek an upper bound on the probability

(1) P...,

that a sample (without replacement) of size r N-t

k will contain exactly k

elements of color, i, 1 _-< _-< l. The required bound is given by Lemma 4 below. For
our application we have rn/n (N- t)(#C)/(R t) >- (N- t)(R/N- t)/(R t). But
t -< 1/2N and furthermore3 R N2 so that R/N >-_ 1/2flR/N for fl ->_ 1. Thus rn/n >-_ fl/4
since N-t >-1/2N. Further l-1 k <-N/log N. Hence the constraints on r, n, ni and
for Lemma 4 will be satisfied for sufficiently large N. Lemma 3 now follows from the
following"

LEMMA 4. For all d > 0 there exists a > 0 such that if rni/n >-fl for 1 <-i <-_ l,
r >-_ 2l, and n >-2r, then for all k,..., k the hypergeometric distribution satisfies

We need the following two lemmas to prove Lemma 4. Note that Lemma 5 states
that the value of k for which the hypergeometric distribution is maximal is close to
the expected value rpi of the number of elements of color obtained in r draws. If
this optimal value were exactly rp, the proof of Lemma 4 would be substantially
simpler.

LEMMA 54. The values of k in the maximal term of the hypergeometric distribution
P k... kl satisfy

rp
1 < k < rp, + (l 1)p + 1,(2)

1 + tin
where pi n/n, 1 <- <= I.

Proof. For any pair (i,]) of distinct indices we calculate the ratio

P...k,+l....,k,-1... (ni-ki)kj
Pkl....,kz (k + 1)(nj- ki + 1)"

A necessary condition for Pkl,’",kl to be maximal is that the numerator does not
exceed the denominator, or (n- k)k <- (ki + 1)(hi- k + 1). If we divide by n and
rearrange this becomes

k- kj + 1
(3) pik <- pk +p +

n

If we sum (3) over all] # and use the identities Y’. p 1 and ki r, then we obtain
the left half of (2). Similarly, if we sum (3) over all #] we obtain the right-hand side
of (2).]

This is the only place we need assume that R is as large as N2.
4 Feller [10, p. 171, Exercise 28] states a similar result for the multinomial distribution. Our proof is

suggested by Feller’s hints.

294 A. BORODIN AND S. COOK

LEMMA 6. For all e > 0 there is a z such that for all 0 and for all z >-z [0[

1 + -> (1 + e) -I1 e .
Note that z does not depend on 0.

Proof. From elementary calculus we have limz_o (1 +O/z) =e. Setting 0= 1
and -1 we conclude (l+l/z)>(l+e)-e= and (1-1/z)Z>-(l+e)-a e-a for z>-z.
Setting z z’lol we have (1 +O/z) =(1 +O/(z’lOI))z’ll>-_(1 +e) -I1 e for z’>-_z; i.e.,
for z >=z[O[.

Proof ofLemma 4. We have

Pkl...k, ([I ni!)r! (n r)!/[n l-I (ki! (hi- ki)!)].

Stirling’s approximation implies that 1 / Co <= ,,/2rm(m/e)’/m <- Co for some constant
Co >- 1 and all rn >-1. Using this approximation for each factorial, and substituting
rpi + Oi for ki, 1 <_- <- l, where pg ng/n and 0g has been chosen to maximize (1), we obtain

(4) pkl.., kt <-- mnC3ol+3,
where

(5)

and

A](27r)/_lnl_ (rpi + Oi)((n -r)pi-Oi)
(l-I ni)r(n r)

(1-I n ni)r(n-r)
(6) B n" l-I [(rpi + Oi) rP’+’((n r)pi Oi)

For (5) and (6) we have used the identity n- ki (n r)pi- 0. Notice that all occurren-
ces of e cancel, since ni n.

Since 5-’. p 1 and Y’. ki-- r, it follows that Y 0 0. This fact can be used to verify
that if B’ is the number obtained by substituting 0 for the two occurrences of 0i in
the denominator (but not in the exponents) in the expression for B, then B’ 1. Thus
if we multiply and divide the denominator of (6) by 1-I [(rp)rP’+’((n r)pi)(,-r)p,-O,] we
can simplify and obtain

Piq-Oi Oi (n--r)pi--O --1

i=1 (n

Now we apply Lemma 6 and use the fact that (1 + 0/z) >_ 1 for all z > 0 and all
0 to obtain B -< (1 + e)2zI0,1, provided

(7) rpi >- zlOil and (n r)pi >= z lo, I, 1 <= <= l.

By Lemma 5, we have 10,1 < Zrp,/(n + l)+ (l- 1)p, + 2, so 10,[_-< 2lpi + 2. By assumption,
we have rpg >= , (n r) >- r and r >_- 21/3. Hence

(8) (n r)pi > rpi>
4

so the provisos (7) are satisfied for/3->4z. Now summing the bound 10 1 <-21pi + 2,
we obtain Y 10 l =< 41, so

(9) B<-(l+e)sl.

A TIME-SPACE TRADEOFF FOR SORTING 295

It remains to estimate A from (5). We rewrite the product 1-I in the denominator
as the product of five factors:

r 0iI-I (rpi)’l-I (1 + r@/). I-[ni" (1--)’ I-[(1-)’(n
To estimate the first factor 1-I rpi, notice that rpi r, and each rpi [by assumption.
With these constraints, this product obtains its minimum when all but one of the
factors are as small as possible (namely/3). Thus

1-I (rpi) > l-l(r-- (l- 1))> 1/2r l-1.
From (8), we have l+Oi/(rpi)>-1/2 for/_->8, so 1-I (l+O/(rpi))>--2-. The same bound
applies to the fifth factor and (since n >-2r) to the fourth. The third factor cancels
with the numerator. Thus

A <[(27r)1-111-12-3l+1]-1/2<()
for any c and/->/3c. Lemma 4 follows from this, (4) and (9).

4. Proof of the main theorem. As indicated earlier in the paper, we will follow
the general argument used in the structured case. As in 3, we again assume R
R(N)= Nz. We let T denote the time (that is, the depth) of a branching program,
and let S denote the space (that is, the capacity logz # nodes). Since we must clearly
(by the simplest adversary argument) have T >=N and S >-log T, we have S >_-log2 N.
Let us restate the main theorem.

THEOrEM. Let be an R branching program for sorting N integers. Then T S
fl(N/log N).

Proof. Letting c 4, use Lemma 1 to obtain a for N sufficiently large. We will
now consider - in stages, where every stage represents [aN] steps.

For 1 <=i<=N/(2f(S)), let Pi be the fraction of input sequences for which r has
output at least 2if(S) ranks by the end of the ith stage. We shall now prove

(*) Pi <- i(1/2) s.
For each node 0 on the (i. t)th level (=end of stage i) let Pi,o be the fraction

of input sequences which lead to 0 and for which - outputs at least 2f(S) ranks during
the + 1st stage. If we expand the part of the (i + 1)st stage that is rooted at 0 into
an R tree, we see by Lemma 1 that (regardless of what has happened in earlier stages)
Pi,o <= (1/4)s. Since there are at most 2s nodes 0 at level i. t, we have Pi+ <-Pi + ,oPi,o <-
p + 2s (1/4)s, or Pi+ <- Pi + (1/2)s. This inequality holds for 0 <= <- N/(2(f(S)), if we define
Po 0. The inequality (,) now follows by induction on i.

Recall f(S) S [log N]. If 2f(S) >N then S > N/2 [log N], so ST fl(N2/log N)
in this case. If 2f(S)<_-N, then we can set i= io [N/(2f(S))] in (,) to obtain (since
S->logN) Pio<-(N/(2[(S))) 1/N= 1/(2f(S))< 1. Hence at stage io for some input,

" has output fewer than 2io[(S)<-N ranks, so T>-iot [N/(2[(S))]. [aN]
’(N2/(S log N)) steps.

5. Conclusion. In order to better appreciate the application of the main theorem,
we offer the following example.

Let M be any machine (say, a unit cost RAM or vector machine with operations
+, -, , +, ’) whose inputs are accessed from a random access read-only input device.
We only insist that there is a bound on the number of inputs accessible on a given
computation step. Choose any "fair" definition of space, e.g., space=

296 A. BORODIN AND S. COOK

is the contents of register at time j and is themaxjY’.i__ [log (r / 1)] where ri
largest register used. For such a machine the theorem yields T. S-f(NE/logN).
And, of course, the same result holds for multidimensional Turing machines, etc.

Although the lower bound T. S- I)(N2/log N) established in this paper for a
general model of computation differs by a log factor from the lower bound f.or the
structured case [7], the upper bounds for the structured case apply unchanged. This
is because a "structured algorithm" is a (branching program, and a comparison
xi xj over the domain [1, R] can be carried out on an R branching program in two
time steps and R / 2 nodes. However, in order to be sure that the time and space of
the simulating program are of the same order as the time and space of the original
program, it is necessary to assume R O(Nk) for some k. Under this assumption,
the upper bound T. S O(N2 log N), for II (log N) <- S <- O(N) recently established
by Frederickson [16] for a unit cost "structured" random access machine with suitable
instructions applies to an R branching program. (Frederickson’s bound generalizes
the one in [7]). It is worth noting that for "unstructured" (i.e., general) random access
machines, the upper bound can be extended, using radix sort, to the case T-O(N)
and S O(N log N).

We thus have a log2 N discrepancy in the upper and lower bounds. We note that
we can improve on the upper bounds when R N + O(N), say by finding the missing
elements.

It seems to us, however, that the discrepancy in the bounds is far less important
than the need to establish analogous results for a set-recogr.ition problem; for example,
determining if X f’l Y . At the present time such a time-space result has not yet
been established for the structured comparison model. We believe that our results
suggest that proofs for the structured model may provide a framework for the general
model. However, it must be noted that the less constructive variant of branching
programs for "silent sorting" mentioned in Borodin et al. [7, Conclusion] becomes
trivial in the general setting.

In retrospect, we can see that our methods are quite "brute-force". In particular,
we do not make an essential use of an adversary. Rather what we have is basically a
counting argument. Moreover, we do not make full use of the fact that space is limited
throughout the computation; we only use the fact that it is restricted at certain points
of the computation. We suspect that the set recognition problems will entail a more
sophisticated argument.

A more general view of time-space complexity is captured in Cook’s class SC
[11], [12] (formerly PLOPS); that is, those problems for which there exist algorithms
which run simultaneously in polynomial (sequential) time and logk (for some k) space.
Obviously, any problem (e.g., sorting, X f’l Y ?, etc.) which is in log space, is also
in SC. A central issue for computational complexity is to establish the conjecture
(assuming it is true) that P f’) (t_J k DSPACE (1ogk)) ; SC. Cook and Tompa (see Tompa
[6]) show that the structured branching program model (with either {-, } or
{<, -, >} as the allowable comparisons) may provide a sufficiently general setting
for this conjecture.

Another important direction for future work lies in the related (but apparently
different) question of size vs. depth. The recent work of Pippenger [13], Ruzzo [14],
and Dymond and Cook [15], has focused attention on the stability and importance
of the class NC; that is, those problems for which there are algorithms which run
simultaneously in polynomial size sequential operations) and logk depth parallel
time). Again, it is a central issue in complexity to establish the conjecture Pf’)(Uk
parallel time (logk)) ; NC.

A TIME-SPACE TRADEOFF FOR SORTING 297

Motivated by the results of this paper, we would like to find a problem for which
(say) size. depth- l’).(N2). Sorting will not suffice since we can sort simultaneously in
log2 depth and N log2 N size using a Batcher sorting network. However, one is tempted
to conjecture that any Boolean circuit for sorting which uses only k log N depth
requires cN1/ size where c and e will depend upon k. The class of problems which
are computable by a log depth, N logk N size circuit is a class of practical importance.
We suspect that it will be difficult to prove that a given problem does not belong to
this class.

Acknowledgment. We sincerely thank Romas Aleliunas and Patrick Dymond
for their many helpful suggestions.

REFERENCES

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] N. PIPPENGER AND L. G. VALIANT, Shifting graphs and their applications, J. Assoc. Comput. Mach.
23 (1976), pp. 423-432.

[3] A. BORODIN, Structured vs general models in computational complexity, presented at Internationales
Symposium iiber Logik und Algorithmik zu Ehren von Professor Ernst Specker, Feb., 1980,
Zurich, L’Enseignement Mathematique, to appear.

[4] A. COBHAM, The recognition problem for the set of perfect squares, Conference Record, IEEE 7th
Annual Symposium on Switching and Automata Theory, 1966, pp. 78-87.

[5] F. HENNIE, Crossing sequences and off-line Turing machine computations, Conference Record IEEE
Symposium on Switching Circuit Theory and Logical Design, 1965, pp. 179-190.

[6] M. TOMPA, Time-space tradeoffs for straight-line and branching programs, Tech. Rep. 122/78, Dept.
Computer Science, Univ. of Toronto, July 1978.

[7] A. BORODIN, M. J. FISCHER, D. KIRKPATRICK, N. LYNCH, M. TOMPA, A time-space tradeoff for
sorting on non-oblivious machines, Proc. IEEE 20th Annual Symposium on Foundations of
Computer Science, Puerto Rico, Oct. 1979.

[8] D. E. KNUTH, Mathematical analysis of algorithms, Proc. of IFIP Congress 71, C. V. Freeman, ed.,
vol. 1, North-Holland, Amsterdam, 1972, pp. 19-27.

[9] M. FISCHER AND A. MEYER, Boolean matrix multiplication and transitive closure, Conference Record,
IEEE 12th Annual Symposium on Switching and Automata Theory, 1971, pp. 129-131.

10] W. FELLER, An Introduction to Probability Theory and its Applications, I, John Wiley, New York, 1968.
[11] S. COOK, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space,

Proc. ACM Symposium on Theory of Computing, 1979, pp. 338-345.
[12], Towards a complexity theory of synchronous parallel computation, presented at Internationales

Symposium fiber Logik und Algorithmik zu Ehren von Professor Ernst Specker, Feb. 1980,
Zurich, L’Enseignement Mathematique, to appear.

13 N. PIPPENGER, On simultaneous resource bounds, Proc. IEEE 20th Annual Symposium on Foundations
of Computer Science, Puerto Rico, Oct. 1979, pp. 307-311.

[14] L. Ruzzo, On uniform circuit complexity, Proc. IEEE 20th Annual Symposium on Foundations of

Computer Science, Puerto Rico, Oct. 1979, pp. 312-318.
[15] P. DYMOND AND S. COOK, Hardware complexity and parallel computation, Proc IEEE 21st Annual

Symposium on Foundations of Computer Science, Oct. 1980, pp. 360-372.
[16] G. N. FREDERICKSON, Upper bounds for time-space trade-offs in sorting and selection, Tech. Rep.

CS-80-3, Dept. Computer Science, Pennsylvania State University, January 1980.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

(C) 1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0008 $01.00/0

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS*

JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

Abstract. We present a linear-time algorithm to recognize the class of vertex series-parallel (VSP)
digraphs. Our method is based on the relationship between VSP digraphs and the class of edge series-parallel
multidigraphs. As a byproduct of our analysis, we obtain efficient methods to compute the transitive closure
and transitive reduction of VSP digraphs, and to test isomorphism of minimal VSP digraphs.

Key words, algorithms, complexity, graph decomposition, graph isomorphism, series-parallel graphs,
scheduling, transitive closure

1. Introduction. In this paper we study a class of directed acyclic graphs arising
in certain scheduling problems. In these problems, the tasks to be scheduled are
subject to a partial order. The scheduling problems are NP-complete for an arbitrary
partial order but have efficient algorithms if the partial order defines a vertex series-
parallel (VSP) digraph ([LAW1], [LAW2], [MON], [SID]). These algorithms apply a
"divide-and-conquer" approach to the recursive structure of VSP digraphs.

Our main result is a linear-time algorithm that determines whether an arbitrary
digraph is VSP. The algorithm represents the structure of a VSP digraph in a concise
form suitable for use by the scheduling algorithms mentioned above. Our method
exploits the relationship between VSP digraphs and the class of edge series-parallel
(ESP) multidigraphs ([ADA], [DUF], [RIO], [WAL], [WEI]), which arise in the
analysis of electrical networks.

Our analysis allows us to prove a simple forbidden subgraph characterization of
VSP digraphs. We are also able to give efficient algorithms to compute the transitive
closure and transitive reduction of VSP digraphs, and to test two minimal VSP digraphs
for isomorphism.

The remainder of this paper is divided into four sections. Section 2 provides the
concepts and elementary facts used in the recognition procedure. Section 3 outlines
the procedure, proves it correct, and describes in detail a linear-time implementation.
Section 4 presents the forbidden subgraph characterization, and 5 discusses some
additional consequences of our work.

2. Basic concepts.
2.1. Graph-theoretic definitions. This section reviews the standard graph-

theoretic concepts we shall employ. A multigraph G (V, E) consists of a finite set
of vertices V and a finite multiset of edges t7,. Each edge is a pair (v, w) of distinct
vertices. If the edges of G are unordered pairs, then G is an undirected multigraph;
if the edges are ordered pairs, G is a directed multigraph (rnultidigraph). If E is a set,

* Received by the editors May 22, 1980, and in revised form February 4, 1981. A preliminary version
of this work was presented at the Eleventh Annual ACM Symposium on Theory of Computing, Atlanta,
Georgia, 1979.

t Department of Electrical Engineering and Computer Science, Princeton University, Princeton, New
Jersey 08544. The work of this author was partially supported by the National Science Foundation under
grant MCS-75-22870 and the Office of Naval Research under contract N00014-76-C-0688.

Computer Science Department, Stanford University, Stanford, California 94305. The work of this
author was partially supported by the National Science Foundation under grant MCS-75-22870 and the
Office of Naval Research under contract N00014-76-C-0688. Present address: Bell Laboratories, Murray
Hill, New Jersey 07974.

Computer Science Division, University of California at Berkeley, Berkeley, California 94720. The
work of this author was partially supported by the National Science Foundation under grant MCS-76-17605.

298

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 299

then G is a graph. The terms we define in the remainder of this section for graphs
apply equally well to multigraphs.

If (v, w) is an edge of a graph G, then v and w are ad]acent and (v, w) is incident
to v and w. If G is a directed graph (digraph), then each edge (v, w) is an ordered
pair which leaves v and enters w; v is a predecessor of w and w is a successor of v.
The degree of a vertex v in a graph is the number of vertices adjacent to v; a vertex
of degree zero is isolated. A vertex v in a digraph is a source if no edges enter v and
a sink if no edges leave v.

A path of length k in a graph is a sequence of vertices Vo, Vl,’", Vk such that
(vi, vi+l) is an edge for 0-<i <k. If Vo Vk and k >-2, the path is a cycle. A graph
which contains no cycles is acyclic. The path contains vertices Vo, vl, , Vk and edges
(Vo, Vl), (v, v2),’", (Vk-, Vk), and avoids all other vertices and edges.

A directed acyclic graph (dag) is transitive if for any two vertices v and w such
that there is a path from v to w, either v w or (v, w) is an edge. The transitive closure
GT V, ET) of a dag G V, E) is the dag such that (v, w) ET if and only if v w
and there is a path from v to w in G.

An edge (v, w) in a dag is redundant under transitive closure or simply redundant
if there is a path from v to w which avoids (v, w). A dag with no redundant edges is
minimal. The transitive reduction of a dag G is the unique minimal dag having the
same transitive closure as G (see [AGU]).

The line digraph of a digraph G is the digraph L(G) having a vertex f(e) for
each edge e of G and an edge (f(e), f(e2)) for each pair of edges e, e2 in G of the
form el (u, v), e2 (v, w).

A graph G (Va, E) is a subgraph of another graph G (V2, E2) if V
_
V2 and

E
_
E2. For any subset S of vertices in a graph G, the subgraph induced by S is the

maximal subgraph of G with vertex set S. A graph G contains a subgraph homeomor-
phic to a graph H if H can be obtained from G by a sequence of the following
operations: (i) remove an edge; (ii) remove an isolated vertex; (iii) if a vertex v has
degree two, delete v and replace the two edges (u, v), (v, w) incident to v by an edge
(u, w).

2.2. Vertex series-parallel digraphs. We define the class of VSP dags in terms of
the subclass of its minimal members. The dags in this subclass are called minimal
vertex series-parallel (MVSP) and are defined recursively as follows:

DEFINITION 1 (minimal vertex series-parallel dags).
(i) The dag having a single vertex and no edges is MVSP.
(ii) If G1 "-(V1, E1) and G2--(V2, E2) are two MVSP dags, so are the dags

constructed by each of the following operations:
(a) Parallel composition Gp Vx (.J V2, Ex E2).
(b) Series composition Gs V (.J V, E (.J E2 (.J TI $2)), where TI is the

set of sinks of G1 and $2 is the set of sources of G2.
We define the class of VSP dags as follows:

DEFINITION 2 (vertex series-parallel dags). A dag is VSP if and only if its transitive
reduction is MVSP.

Figure 1 shows the construction of an MVSP dag by a sequence of series and
parallel compositions. Figure 2 shows a VSP dag whose transitive reduction is the
MVSP dag of Fig. 1.

An MVSP dag can be represented in a natural way by a binary tree as shown in
Fig. 3. This tree is constructed by (i) associating a tree of one node with the MVSP
dag having one vertex and no edges, and (ii) using the rules of Fig. 4 to build larger

300 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

00

b

b d

c e f

b d g

d c e f

od

g h

\

h

CO oe

/\ /\

FIG. 1. Construction of an MVSP dag by series and parallel compositions.

b d

FIG. 2. A VSP dag.

S

/\
P
/\ /\

b c d e

FIG. 3. Binary decomposition tree representing the MVSP dag ofFigure 1.

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 301

S P

T T T T.
FIG. 4. Rules to construct Ts and Tp (the binary decomposition trees of Gs and Gp in Definition 1)

from TI and T2 (the binary decomposition trees of GI and G2).

trees from smaller ones as the process of building the MVSP dag by series and parallel
compositions progresses. We call such a tree a binary decomposition tree. Each external
node of the tree represents a vertex in the MVSP dag; each internal node is labeled
S or P and represents the series or parallel composition of the MVSP dags represented
by the subtrees rooted at the children of the node. A binary decomposition tree thus
provides a concise description of the structure of an MVSP dag.

Note that several nonisomorphic binary trees may represent the same dag. Since
parallel composition is commutative, the children of any P node may be reordered
without changing the MVSP dag represented. Furthermore, both series and parallel
composition are associative, which allows the ambiguity typical of unparenthesized
infix expressions.

Any dag G induces a partial order on its vertices, defined by v < w, if and only
if there is a path from v to w in G. Since this definition depends only on the paths
in G, the partial order induced by the transitive closure of G or by the transitive
reduction of G is the same as that induced by G. The partial orders induced by MVSP
and VSP dags are of a special type that plays a role in our algorithm.

Any partial order on a set is the intersection of several total orders on the same
set; the minimum number of total orders needed to define the partial order in this
fashion is the dimension of the partial order. For instance, the MVSP dag in Fig. 1
is two-dimensional, since there is a path from v to w in the dag if and only if v appears
before w in both of the following total orders; a b c d e fg h i; a g h c b e d f. Indeed,
any partial order induced by an MVSP dag is at most two-dimensional. We shall
prove this fact in 3 after describing how the recognition procedure uses it.

2.3. Edge series-parallel multidigraphs. The relationship between MVSP dags
and the class of edge series-parallel (ESP) multidigraphs plays a central role in our
recognition algorithm. In this section we review the relevant properties of ESP
multidigraphs (sometimes called two-terminal series-parallel multidigraphs). We
define the class of ESP multidigraphs recursively as follows:.

DEFINITION 3 (edge series-parallel multidigraphs).
(i) A digraph consisting of two vertices joined by a single edge is ESP.
(ii) If Gx and G2 are ESP multidigraphs, so are the multidigraphs constructed

by each of the following operations"
(a) Two-terminal parallel composition: Identify the source of GI with the

source of G2 and the sink of G1 with the sink of G2.
(b) Two-terminal series composition: Identify the sink of Ga with the source

of G.
Figure 5 illustrates the construction of an ESP multidigraph using the operations

in Definition 3. Note that every ESP multidigraph is acyclic, since the one-edge ESP
multidigraph is acyclic, and the operations of Definition 3 do not create any cycles.

An ESP multidigraph is a multigraph formed from an ESP multidigraph by
ignoring edge directions. The ESP multigraphs have been extensively studied ([ADA],
[DUF], [RIO], [WALl, [WEI]) because of their use in modeling electrical networks.
The properties of ESP multidigraphs that we need are simple extensions of known

302 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

h

FIG. 5. Construction of an ESP multidigraph by two-terminal series and parallel compositions.

properties of ESP multigraphs, and we shall provide only summary proofs. A complete
description of the relationship between ESP multidigraphs and ESP multigraphs
appears in [VAL].

The similarity of Definitions 1 and 3 "suggests a vertex-edge duality between
MVSP dags and ESP multidigraphs. The following lemma expresses this duality.

LEMMA 1. An acyclic multidigraph with a single source and a single sink is ESP
if and only if its line digraph is an MVSP dag.

Proof. By induction on the number of edges in the multidigraph using two facts:
(i) The line digraph of the one-edge ESP multidigraph is the one-vertex MVSP

dag.
(ii) The line digraph of the two-terminal series (parallel) composition of G1 and

G2 is the series (parallel) composition of the line digraph of G1 and the line
digraph of G2. [3

Everything we have said about binary decomposition trees for MVSP dags applies
almost verbatim to ESP multidigraphs. In general, if T is a binary decomposition tree
of an ESP multidigraph G, then T also represents the corresponding MVSP dag L(G).
For instance, the binary decomposition tree in Fig. 3 represents both the ESP multidi-
graph in Fig. 5 and the MVSP dag in Fig. 1. The external nodes of the tree represent
the edges of the ESP multidigraph and the vertices of its line digraph.

The following lemma gives an alternative characterization of ESP multidigraphs
based on the reductions in Fig. 6.

LEMMA 2. A multidigraph is ESP if and only if it can be reduced to the one-edge
ESP multidigraph by a sequence of series and parallel reductions.

Proof. This lemma corresponds to a result of Duffin [DUF] for ESP multigraphs
and follows by an easy induction (on the number of reductions applied for the "if"
part, and on the number of edges for the "only if" part). For details see [DUF] or
[VAL].

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 303

(o) u v w I u w

(b) uOv

FIG. 6. (a) Series reduction (requires that v have in-degree one and out-degree one). (b) Parallel reduction.

From Lemma 2 we obtain an efficient procedure to recognize ESP multidigraphs.
Given a multidigraph G, we repeatedly apply series and parallel reductions until no
reduction is possible. If the result is a graph consisting of a single edge, then the
original graph G is ESP. If not, G is not ESP. The validity of this procedure depends
upon the fact that series and parallel reductions have the Church-Rosser property
([ROS], [SET]): if reductions are applied in any order until no reduction is possible,
the result is a unique graph independent of the specific reductions applied. Harary,
Krarup, and Schwenk [HKS] and Walsh [WALl prove that the corresponding reduction
system for undirected graphs is Church-Rosser; the proof extends easily to the directed
case (see [VAL]).

If the reduction process succeeds, we can obtain as a byproduct a decomposition
tree of the original ESP multidigraph. We associate a label consisting of a binary tree
with each edge of the multidigraph being reduced. Initially the label of each edge is
a single-node binary tree. As the reduction process proceeds we use the rules of Fig.
7 to update the edge labels. The label of the last edge remaining after all reductions
is the binary decomposition tree of the original multidigraph, as can be proved by an
easy induction (see [VAL]).

T Tz

o 0 /\T
T Ta

FIG. 7. Computing the label of an edge introduced by a series or parallel reduction.

3. The VSP recognition algorithm. We are now able to outline our procedure
for recognizing VSP dags and to prove it correct. The input to the algorithm is a dag
G. If G is VSP, the algorithm answers YES and produces a binary decomposition
tree for G. If G is not VSP, the algorithm answers NO.

Recognition procedure for the class of VSP dags.
Step 1. (Compute the pseudo-transitive reduction ofG.) Given G V, E), partition

E into ET and Et such that, if G is VSP, then GM (V, Et) is the
transitive reduction of G (Gt is thus MVSP). If G is not VSP, Gt may
still be MVSP. (We have to pay this price in order to be able to implement
this step in linear time, since it is unlikely that a linear-time algorithm
exists for transitive reduction of arbitrary dags [AGU].)

304 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

Step 2. (Compute the line digraph inverse of Gt.) Test whether Gt satisfies a
condition (satisfied by all MVSP dags) that guarantees the existence of a
line digraph inverse L-I(Gt). If GM does not satisfy the condition, answer
NO and stop. Otherwise, compute a multidigraph L-I(GM) such that
L(L-(GM)) GM. By Lemma 1, GM is MVSP if and only if L-(Gt) is
ESP.

Step 3. (Test whether L-(Glvt) is ESP.) Apply Lemma 2 to determine whether
L-(GM) is ESP. If not, answer NO and stop. Otherwise compute a binary
decomposition tree T for L-I(Gt) as an ESP multidigraph. T is also a
decomposition tree for Gt as an MVSP dag.

Step 4. (Test whether GM is the transitive reduction of G.) Use T to compute two
total orders whose intersection defines the partial order < on GM. Use
these orders to test each edge in ET- for redundancy. If every edge in ET-
is redundant, answer YES, output T, and stop. Otherwise answer NO
and stop.

The following argument shows that this procedure is correct. If G is VSP, then
Gt will be MVSP and will pass the test of Step 2. If Gt is MVSP, then by Lemma
1 L-I(Gt) will be ESP and will pass the test of Step 3. Step 4 will certify that
Step 1 correctly performed the transitive reduction of G and the algorithm will answer
YES.

If, on the other hand, G is not VSP, then either Gt as constructed by the
algorithm will not be MVSP, or GM will not be the transitive reduction of G. In the
former case the algorithm will answer NO in either Step 2 or Step 3, since by Lemma
1 L-(Gt) cannot be ESP if Gt is not MVSP. In the latter case the algorithm will
answer NO in Step 4.

In order to verify the linearity of the recognition procedure, we must provide
more details of the implementation. The rerlaaining parts of this section describe how
to implement each step of the algorithm so that it runs in linear time.

3.1. The transitive reduction of VSP dags. Step 1 requires a method to compute
the transitive reduction of any VSP dag; the method may do anything to a non-VSP
dag. Our method uses the following functions defined on a dag G (V, E).

DEFINITION 4 (level, lump, and minimum lump functions). The level function Le
is the function from vertices to non-negative integers such that Le(v) is the length of
the longest path from a source of G to v. Note that Le(v)= 0 if v is a source.

The lump function Je is the function from edges to positive integers defined by
Je((u, v)) Le(v)-Le(u).

The minimum lump function Me is the function from vertices to integers defined
by Me(v)= 0 if v is a sink of G, Me(v)= min {Je((v, w))l (v, w) E} if v is not a sink
of G.

The following lemmas justify our interest in these functions.
LEMMA 3. Let G be a dag. ff (v, w) is an edge o] G that is redundant under

transitive closure, then Me(v)<Je((v, w)).
Proof. The vertices along any path in G have strictly increasing levels. If (v, w)

is redundant, there must be a path of length at least two from v to w. Thus if (v, x)
is the first edge on this path then Je(c, x) <Je(v, w), so Me(v) <Je(v, w). q

LEMMA 4. 1]c G is MVSP then Me(v)= J((v, w))]or every edge (v, w) in G.
Proof. We prove the lemma by induction on the number of vertices in G. The

lemma is immediate if G has one vertex. Suppose that G has n => 2 vertices and the
lemma is true for MVSP dags with fewer than n vertices.

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 305

If G (VI LA V2,
(V2, E2), then the level of each vertex in V1 is exactly the same in G as in Gx, and
the level of each vertex in V2 is the same in G as in G2. The lemma follows by the
induction hypothesis applied to G1 and G2.

Suppose on the other hand that G (VI LA V2, E1 LA E2 I,.J (T X S2)) is the series
composition of G1 (V, E) and (V2, E2). Then L(v) L6(v) for all vertices v Vl,
and L6(v)=L_(v)+ k + 1 for all vertices v V2, where k is the length of the longest
path in Gt (k =max {L(v)[v V}). Thus if (v, w)E, J((v, w))=J((v, w)); if
(v, w) E2, J((v, w)) J6((v, w)); and if (v, w) T x $2, then J((v, w))
k + 1-L6(v). Since each vertex of G has exiting edges which come entirely from
one of the sets El, E2, T x 82, the lemma for G follows from the induction hypothesis
applied to G and G.

The jump and the minimum jump functions are defined in terms of the level
function, which in turn is defined in terms of longest paths. Because a longest path
cannot contain any redundant edge, the values of these three functions are insensitive
to the addition and removal of redundant edges. Combining this fact with Lemmas
3 and 4, we obtain the following corollary.

COROLLARY 1. Let G be a VSP dag and let (v, w) be one o[its edges. Then (v, w)
is redundant under transitive closure if and only ifM(v) <Jg(v, w).

We carry out Step 1 of the recognition procedure by computing L, J, and M,
and letting Eu={(v, w)[M(v)=J6(v, w)}. By Corollary 1 this method correctly
performs Step 1. We can compute L in linear time by processing the vertices of G
in topologically sorted order ([KNU]); the rest of the computation clearly requires
only linear time.

3.2. The inverse line digraph of a dag. Implementing Step 2 of the recognition
procedure requires an understanding of line digraph inverses. Several authors have
characterized dags having line digraph inverses by using a nonalgorithmic approach
([HN], [KLE]), and Lehot [LEH] has developed a fast algorithm for computing the
inverse line graph of an arbitrary undirected graph. However, Lehot’s method does
not seem to apply to dags, because several nonisomorphic dags may have the same
line digraph. See Fig. 8.

GI:
2 4 2

L(G=) L(Gz)

FIG. 8. Two nonisomorphic multidigraphs that have the same line digraph.

We compute the line digraph inverse of GM in two steps. First, we apply a
characterization of Harary and Norman [HN] to determine whether GM has any line
digraph inverse. If so, we select a specific inverse as L-I(Gt).

306 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

DEFINITION 5 (complete bipartite composite digs). A dag G is complete bipartite
composite (CBC) if there is a set {B1, B2,’’’, Bk} of complete bipartite subgraphs of
G, called the bipartite components of G, such that

(i) every edge of G belongs to exactly one bipartite component;
(ii) for each non-sink vertex v, all edges leaving v belong to the same bipartite

component, denoted by Bit(v); and
(iii) for each non-source vertex v, all edges entering v belong to the same bipartite

component, denoted by BT(v).
It is easy to prove that the bipartite components of a CBC dig are unique (see

[VAL]). The following lemma gives Harary and Norman’s characterization.
LEMMA 5. A dig has a line digraph inverse if and only if it is CBC.
Proof. See [HN].
In order to select a unique inverse, we use another result of Harary and Norman.
LEMMA 6. Let GI and G2 be two multidigraphs such that L(G)= L(G2). Let

for i= 1, 2 be the multidigraph obtained by merging all sources of Gi into a single
source and all sinks of Gi into a single sink. Then G’a and G’z are isomorphic.

DEFINITION 6 (line digraph inverse). If G is a CBC dig, then the line digraph
inverse of G, denoted by L-a(G), is the multidigraph with a single source and a single
sink such that L(L-I(G))= G. By Lemma 5, L-I(G) exists. By Lemma 6, L-(G) is
unique.

To use these results in our recognition procedure, we require one more fact.
LEMMA 7. Every MVSP dig is CBC.
Proof. In the construction of an MVSP dag, new edges are introduced exclusively

by series compositions, and each series composition introduces a set of edges forming
a complete bipartite subgraph. It is easy to check that these subgraphs satisfy the
conditions of Definition 5.

Lemmas 5-7 give us a way to carry out Step 2. First, we test whether Gt is CBC,
as it must be if Gt is MVSP. We perform this test as follows. We select an edge (v, w)
that has not yet been assigned to a bipartite component, and we assign it to a new
component Bi. We mark all successors of v as belonging to the tail T of the component,
and we mark all predecessors of w as belonging to the head Hi of the component.
We check to see whether Gt contains (T t.JHi, Ti Hi) as a (complete bipartite)
subgraph. If not, Gt is not CBC. It so, we assign all edges in this subgraph to
Then we select a new unassigned edge and repeat the process. We continue until
either all edges of Gt are assigned (Gt is CBC), or we attempt to assign an edge to
more than one bipartite component (Gt is not CBC), or we mark a vertex as belonging
to more than one head or more than one tail (Gt is not CBC). It is straightforward
to prove the correctness ot this method. It is also not difficult to implement it to run
in time linear in the size of the input dag.

Once we have verified that Gt is CBC, we apply the following transformation
to compute L-I(Gt). As the vertex set of L-I(GM), we use {B,B1,"" ,Bk, Bo},
where B,..., Bk represent the complete bipartite components found by the CBC
testing method, and B and Bo, are two additional vertices. For each vertex v of Gt,
we add one edge to L-X(Glvt) as follows:

(a) if v is an isolated vertex, we add an edge (B, Bo,) to L-a(Gt);
(b) if v is a source but not a sink, we add an edge (B, Bit(v)) to L-(Gt);
(c) if v is a sink but not a source, we add an edge (BT.(v), B,o) to L-(Gt);
(d) if v neither a source nor a sink, we add an edge (B.(v), Bit(v)) to L-(GM).
This transformation requires linear time given the complete bipartite components

of Gt as computed by the CBC testing method. It is routine to verify that L-(Givt)

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 307

as constructed by this transformation satisfies L(L-I(GM))= GM. We have thus pro-
vided a way to carry out Step 2 in time linear in the number of vertices and edges in
GM.

3.3. The recognition of ESP multidigraphs. In section 1.2 we described the
algorithm to be used in Step 3 of the recognition procedure" we apply series and
parallel reductions until no more are applicable, and we test whether the graph
remaining has a single edge. It remains for us to describe how to implement this
algorithm so that it runs in linear time. Aho, Hopcroft, and Ullman ([AHU], exercise
5.8), pose a similar problem for undirected graphs but provide no solution to it. Two
solutions and their extension to multidigraphs appear in [VAL], and a solution to a
special case of the problem appears in [PSI. We shall sketch one of these solutions
(suggested by Hopcroft) as applied to the directed case.

We assume that the input multidigraph has a single source and a single sink. We
maintain a list of vertices called the unsatisfied list. Initially this list contains all vertices
except the source and the sink. In general the list contains all vertices other than the
source and the sink on which reductions must still be tried. The algorithm repeats the
following step until no vertices remain on the unsatisfied list.

General step
(a) Remove some vertex v from the unsatisfied list.
(b) Examine edges entering v. If two edges of the form (u, v) are found, apply

a parallel reduction to them. Continue examining edges entering v and
applying parallel reductions until either (i) only one edge enters v, or (ii) v
is found to have two distinct predecessors.

(c) Examine edges leaving v. If two edges of the form (v, w) are found, apply a
parallel reduction to them. Continue examining edges leaving v and applying
parallel reductions until either (i) only one edge leaves v, or (ii) v is found
to have two distinct successors.

(d) If only one edge (u, v) now enters v and only one edge (v, w) now leaves v,
carry out the following steps.
(i) Apply a series reduction to delete v and replace (u, v) and (v, w) by a

new edge (u, w).
(ii) If u is not the source and not on the unsatisfied list, add it to the unsatisfied

list.
(iii) If w is not the sink and not on the unsatisfied list, add it to the unsatisfied

list.
When the unsatisfied list is empty, we test whether any vertices other than the

source and sink remain. It so, the multidigraph is not reducible to a single edge. If
not, we complete the reduction to a single edge by applying parallel reductions to the
edges joining the source and sink.

The following observation guarantees the correctness of this algorithm. Let
v be a vertex which is neither the source nor the sink. When v is removed
from the unsatisfied list, either v is deleted from the multidigraph or v is verified
to have either at least two predecessors or at least two successors. The number
of predecessors of v cannot be decreased without adding v to the unsatisfied list.
Similarly the number of successors of v cannot decrease without adding v to the
list. Now suppose the unsatisfied list is empty and the multidigraph still contains
a vertex other than the source and the sink. Then every vertex other than the
source and the sink has either at least two predecessors or at least two successors.
No number of parallel reductions can change this fact. Thus there is no way to

308 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

delete additional vertices (by series reduction), and the multidigraph cannot be reduced
to a single edge.

In order to implement this algorithm to run in linear time, we maintain for each
vertex a (doubly linked) list of the edges entering it and a list of the edges leaving it.
Then each edge examination, parallel reduction, and series reduction requires constant
time. Suppose the input multidigraph has n vertices and m edges. Each parallel
reduction reduces the number of edges by one. Each series reduction deletes a vertex
and reduces the number of edges by one. Thus there are at most m- 1 parallel
reductions and at most n-2 series reductions. At most 3(n-2) additions to the
unsatisfied list occur, n- 2 initially and two for each series reduction. Thus there are
at most 3(n- 2) executions of the general step.

Consider a given execution of the general step. Each edge examination in (b)
(except at most two) causes a parallel reduction. Each edge examination in (c) (except
at most two) causes a parallel reduction. Thus the total number of edge examinations
in (b) and (c) during all executions of the general step is at most 12(n- 2)+ m- 1. It
follows that the entire algorithm requires O(m + n) time. (Each execution of step (a)
or (d) takes constant time.)

It is a simple matter to modify the algorithm so that it computes a binary
decomposition tree by applying the rules of Fig. 7 as it carries out reductions.
Combining two trees which are edge labels into a new tree labeling the edge produced
by a reduction takes only constant time; thus the linear time bound is not affected by
this modification.

3.4. The two-dimensionality of MVSP dags. In order to complete our
implementation of the recognition procedure, we must show that every MVSP dag is
two-dimensional, and we must provide a way to compute two total orders whose
intersection is the relation < such that v < w if and only if there is a path from v to
w in the dag.

We shall regard a total order on a set of n elements as a bijection between the
set and {1, 2,.. , n}. Two total orders on a set thus map each element e into a pair
of integers (Xe, Ye), which we can interpret as a point in the Cartesian plane. Our
problem is thus to map the vertices of an arbitrary MVSP dag into the plane so that
there is a path from v to w if and only if x <-_ Xw and yo -<_ yw; i.e., (xo, yo) is below and
to the left of (x,, yw). Figure 9 shows an embedding of the MVSP dag of Fig. 1 which
satisfies this criterion.

d

FIG. 9. Embedding of the MVSP dag ofFigure in the Cartesian plane using the two total orders given
in Section 2.2 as coordinates.

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 309

We can build up the embedding step-by-step using the constructions of Fig. 10
to deal with series and parallel compositions. If G is formed from G1 and G2 by a
series composition, there is a path from every vertex of G1 to every vertex of G2; in
the embedding of Fig. 10, every vertex of G1 is below and to the left of every vertex
in G2. If G is formed from G1 and G2 by a parallel composition, there is no path
between G1 and G2; in the embedding of Fig. 10, no vertex of G1 is below and to
the right of any vertex in G2.

Series Composition

Parallel Composition

Xl ’Yl iT-

FIG. 10. Method used to embed an MVSP dag in the plane.

To formally specify this embedding, we shall represent the position of a subgraph
by the coordinates of the lower left-hand corner of the smallest square which contains
all its vertices. If we let nl and n2 denote the number of vertices in G1 and G2, the
following formulas provide the positions of G1 and G2 given the position of G.

Series composition" x x, y y; X2 X -1" n 1, Y2 Y + n 1.

Parallel composition: xl x, yl y + n2; X2 X + nl, Y2 Y.

310 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

We can compute an embedding in two traversals of the binary decomposition
tree T of G. First, we traverse the tree in postorder and assign a size to each node;
each external node has size one and each internal node has size equal to the sum of
the sizes of its children. Next we assign coordinates (1, 1) to the root of the tree.
Finally, we traverse the tree in postorder, assigning coordinates to the children of
each vertex using the coordinates of the node, the label of the node (S or P), the
sizes of the children, and the formulas above. Computing the embedding requires
O(n) time, where n is the number of vertices in the MVSP dag. Once we have the
embedding, we can test any edge for redundancy in constant time. This provides a
linear-time implementation of Step 4, and completes our description of the recognition
procedure.

4. Forbidden subgraph characterization. A common goal in classical graph theory
is the characterization of a class of graphs by exhibiting a set of forbidden subgraphs
such that a graph is in the class if and only if it does not contain any forbidden
subgraph. Perhaps the most famous of such results is Kuratowski’s characterization
of planar graphs ([HAR]). We can provide such a result for VSP dags.

THEOREM 1. A dag G is VSP if and only if its transitive closure does not contain
the N graph of Fig. 11 as an induced subgraph.

FIG. 11. The forbidden subgraph for VSP dags.

Proof. (along lines suggested by Peter Avery). The N graph has neither a series
nor a parallel decomposition. Furthermore if a transitive dag G contains the N graph
as an induced subgraph, and G is composed in either a series or a parallel fashion,
then the N graph appears intact in one of the components. For parallel decomposition,
this is because no edges join the component, but any partition of the vertices of the
N has an edge joining the two blocks of the partition. For series composition this is
because every pair of vertices in different components are joined by an edge, but any
partition of the vertices of the N produces two vertices in different blocks that are
not joined by an edge. Thus, if the transitive closure of a dag G contains an N, G
cannot be VSP.

To prove the converse, suppose G is a transitive dag containing at least two
vertices and having neither a series nor a parallel decomposition. We want to show
that G contains an N. Let s be any source of G and let T be the set of sinks that are
successors of s. T is nonempty, or G would have a parallel decomposition into s and
the remaining vertices. Let X be the set of vertices with at least one successor in T.
We distinguish two cases.
Case 1. There is some vertex v X T. Since G has no parallel decomposition, there
must be such a vertex v with either a successor or a predecessor in X t.J T. Since T
contains only sinks, v cannot have a predecessor in T; since v X and G is transitive,
v cannot have a successor in X t3 T. Thus v has a predecessor, say u, in X. Let t be
a successor of u in T. We claim u, v, s, are the vertices of an N in G.

Certainly, (u, v), (u, t), and (s, t) are edges. Since is a sink (t, v) is not an edge;
since v:X, (v, t) is not an edge. Since s is a source, neither (u, s) nor (v, s) is an edge.

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 311

If v is a sink, (s, v) is not an edge because v T. If v is not a sink, there is some sink
w T that succeeds v, and (s, v) is not an edge because w T and G is transitive.
Finally, since G is transitive and (s, v) is not an edge, (s, u) is also not an edge. Thus
u, v, s, form an N.
Case 2. Every vertex in G is in X U T. Then T contains all the sinks in G. Let Y be
the subset of vertices in X that precede all the sinks. (Y {x e X[for all e T, (x, t)
is an edge}.) Y cannot equal X, or G would have a series decomposition into X and
T. Let Z be the subset of vertices in X-Y that succeed all the vertices in Y.
(Z {x X Y[for all y Y, (y, x) is an edge}.) Z cannot equal X- Y, or G would
have a series decomposition into Y and (X- Y)LI T. Let u be a vertex in X- Y-Z.
Since u (X- Y-Z), there is some vertex y Y such that (y, u) is not an edge. Since
u X-Y, there is some vertex v T such that (u, v) is not an edge. Finally, since
u X, there is some vertex T such that (u, t) is an edge. We claim y, v, u, are
the vertices of an N in G.

We know (u, t) is an edge. Since y Y both (y, t) and (y, v) are edges. Since both
and v are sinks, neither (t, v), (v, t), nor (v, u) is an edge. We know (u, v) is not an

edge; by transitivity (u, y) is not an edge. Finally, we know (y, u) is not an edge. Thus
y, v, u, form an N. I-1

Our VSP recognition procedure can be modified, while preserving its linear time
bound, so that it finds an induced N subgraph in any non-GSP dag. The details of
this modification appear in [VAL].

Another way to prove Theorem 1 is to apply a forbidden subgraph characterization
of Duffin [DUF] for undirected ESP multigraphs. Duffin showed that a multigraph is
undirected ESP if and only if it does not contain a subgraph homeomorphic to K4
(the complete graph on four vertices). A trivial modification of his argument shows
that a multigraph with a single source and a single sink is ESP if and only if it does
not contain a subgraph homeomorphic to the W dag of Fig. 12. Using this characteriz-
ation of ESP multidigraphs and Lemma 1, it is not hard to show that the transitive
closure of a CBC dag G contains N as an induced subgraph if and only if L-I(G)
contains a subgraph homeomorphic to W. (Note that the line digraph of W is the dag
in Fig. 13, whose transitive closure contains an induced N.) From this the theorem is
immediate.

FIG. 12. The forbidden subgraph for ESP multidigraphs.

L(W)

2 5

FIG. 13. The line digraph of the dag ofFigure 12.

5. Remarks. In this section we mention some additional consequences of our
results. Step 1 of the recognition procedure provides a linear-time algorithm to
compute the transitive reduction of a VSP dag; Step 4 gives a linear-time method to

312 JACOBO VALDES, ROBERT E. TARJAN AND EUGENE L. LAWLER

compute the transitive closure of a VSP dag (in implicit form). These methods are
much faster than the best algorithms for arbitrary dags (see [AGU]).

Although several nonisomorphic binary decomposition trees may represent the
same MVSP dag, there is a way of modifying these trees to represent MVSP dags in
a quasi-unique way: we contract into a single node each connected group of $ nodes
and each connected group of P nodes. See Fig. 14. The result is a decomposition
tree, no longer binary, which is unique up to reordering the children of each P node.

Using these canonical decomposition trees, we can test two MVSP dags for
isomorphism in linear time by adapting a linear-time tree isomorphism algorithm
([AHU]). The isomorphism problem for VSP dags is as hard as isomorphism of
arbitrary graphs; the decomposition tree gives no information about the presence or
absence of redundant edges, and we can encode an arbitrary graph into the redundant
edges of a VSP dag ([VAL]).

P, P f g/h
/ \

c d e

FIG. 14. Canonical decomposition tree]’or the MVSP dag ofFigure 1.

The subgraph isomorphism problem for MVSP dags is NP-complete, because it
contains as a special case the following known NP-complete problem [GJ]: given a
(rooted, directed) tree T and a forest (collection of rooted, directed trees) F, determine
whether T contains a subgraph isomorphic to F.

Acknowledgment. We thank the referee for finding an error in our original proof
of Theorem 1.

REFERENCES

[ADA]

[AGU]

[AHU]

[DUF]

[GJ]

[HAR]
[HKS]

A. ADAM, On graphs in which two vertices are distinguished, Acta Math. Acad. Sci. Hungary,
12 (1961), pp. 377-397.

A. V. AHO, M. R. GAREY AND J. D. ULLMAN, The transitive reduction of a directed graph,
this Journal, (1972), pp. 131-137.

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

R. J. DUFFIN, Topology of series-parallel networks, J. Math. Anal. Appl., 10 (1965), pp. 303-
318.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1971.
F. HARARY, J. KRARUP AND A. SCHWENK, Graphs suppressible to an edge, Canadian Math.

Bull., 15 (1971), pp. 201-204.
[HN] F. HARARY AND R. NORMAN, Some properties of line digraphs, Rendiconti del Circolo

Mathematico Palermo, 9 (1960), pp. 149-163.
J. B. KLERLEIN, Characterizing line dipseudographs, Proc. Sixth Conference on Combinatorics,

Graph theory, and Computing (1975), pp. 429-442.
[KNU] D.E. KNUTH, The Art of ComputerProgramming, Volume 1: Fundamental Algorithms, Addison-

Wesley, Reading, MA, 1968.
[LAW1] E.L. LAWLER, Sequencing jobs to minimize total weighted completion time subject to precedence

constraints, Annals of Discrete Math., 2 (1978), pp. 75-90.

[KLE]

THE RECOGNITION OF SERIES PARALLEL DIGRAPHS 313

[LAW2] E. L. LAWLER, Sequencing problems with series parallel precedence constraints, Proc. Conf. on
Combinatorial Optimization, Urbino, Italy, 1978, to appear.

[LEH] P.G.H. LEHOT, An optimal algorithm to detect a line graph and output its root graph, J. Assoc.
Comput. Mach., 21 (1974), pp. 569-575.

[MON] C.L. MONMA AND J. B. SIDNEY, A general algorithm]or optimal job sequencing with series-
parallel constraints, Technical Report No. 347, School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, N.Y., 1977.

[PS] I. PRABHALA AND R. SETHI, Efficient composition of expressions with common subexpresssions,
J. Assoc. Comput. Mach., 27 (1980), pp. 146-163.

[RIO] J. RIORDAN AND C. E. SHANNON, The number of two terminal series parallel networks, J. Math.
Physics, 21 (1942), pp. 83-93.

[ROS] B.K. ROSEN, Tree manipulating systems and Church-Rosser theorems, J. Assoc. Comput. Mach.,
20 (1972), pp. 160-187.

[SET] R. SETHI, Testing for the Church-Rosser property, J. Assoc. Comput. Mach., 21 (1974), pp.
671-679.

[SID] J.B. SIDNEY, The two machine flow line problem with series-parallel precedence relations, Working
paper 76-19, Faculty of Management Sciences, University of Ottawa, Ottawa, Ontario,
Canada, 1976.

[VAL] J. VALDES, Parsing flowcharts and series-parallel graphs, Technical Report STAN-CS-78-682,
Computer Science Department, Stanford University, Stanford, California, 1978.

[WAL] T. R. S. WALSH, Counting labeled three-connected and homeomorphically irreducible two-
connected graphs, unpublished manuscript, 1978.

[WEI] L. WEINBERG, Linear graphs: theorems, algorithms, and applications, Aspects of Network and
System Theory, R. E. Kalman and N. DeClaris, eds., Holt, Rinehart, and Winston, N.Y.,
1971.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0009 $01.00/0

PARALLEL ALGORITHMS IN GRAPH THEORY:
PLANARITY TESTING*

JOSEPH JA’ JA’f AND JANOS SIMON:

Abstract. We present efficient (O(log n)) parallel algorithms for two classical graph problems’
planarity testing and finding triconnected components. The algorithms use only a polynomial number of
processors. Previous algorithms used 12(n) operations, regardless of the number of available processors.

Key words, parallel algorithms, planarity testing, three-connected components, computational com-
plexity

1. Introduction. One of the major problems in both theoretical and applied
computer science is our lack of knowledge about the nature of parallel computation.
It is now feasible to build huge conglomerates of processors, and they represent the
only hope for order of magnitude improvements in computing power in the near
future. At the same time, beyond the problems of interconnection, synchronization
and reliability of such conglomerates, there is a more basic problem that is probably
the main obstacle to the construction and widespread use of such machines: we have
no idea what to do with them. Our algorithms, our formal reasoning, our intuition
about computing were all developed for serial models. Independent tasks are obviously
well suited to parallel execution, and a few good parallel algorithms have been
developed (sorting, portions of numerical linear algebra, evaluation of arithmetic
expression, linear recurrences, etc.; see, e.g., [Br], [C], [Ch], [He], [Hi], [P]). However,
except for these very special cases, the use of, say, a polynomial number of processors
seems to yield only marginal improvements in the running time of algorithms. Our
main objective is to gain a better understanding of parallelism. We would like to have
a collection of techniques for obtaining efficient parallel algorithms and an intuition
of how to recognize features that make a problem amenable to efficient parallel
solution.

In this paper we consider a well-known problem in graph theory, namely, testing
whether a given graph is planar. This problem has linear time serial algorithms [HT],
[BL], [Ev], but has no obvious parallel algorithms with o(n) running time (using a
polynomially bounded number of processors). We develop two fast parallel algorithms,
each of which runs in O(log2 n) time. The first algorithm uses O(n 4) processors (which
don’t add or multiply), the second (which, in addition, yields a barycentric representa-
tion of a planar graph) uses O(n3"29/log2 n) arithmetic processors. These results are
surprising because all the known serial algorithms for this problem are somehow
inherently sequential. We assume here the unbounded parallel model; we have an
unlimited number of processors, each identified by a unique label. These processors
have access to a common main memory which contains the instructions of a program.
We make the assumption that different processors can obtain the content of one
memory location at the same time; they may store information simultaneously, but
no two processors should attempt to change the content of the same memory location

* Received by the editors July 10, 1980, and in final revised form July 28, 1981.
t Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.

The work of this author was supported in part by the National Science Foundation under grant MCS 78
27600.

Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.
The work of this author was supported in part by the National Science Foundation under grant MCS 79
05006.

314

PARALLEL ALGORITHMS IN GRAPH THEORY 315

at the same time. We further assume that all the processors are synchronous in the
sense that if a set of instructions is executed in parallel, then each must be allowed
to finish before the next set of instructions is started. The instruction set of each
processor does not include multiplication unless otherwise specified.

Parallel algorithms for several graph problems exist. The list in Table 1 includes
some of the known results in this area; n is the number of nodes and m is the number
of edges in the graph.

TABLE 1.

Problem Time bound # of processors

Transitive closure [HI
Connectivity testing [SJ]

Finding the biconnected components [SJ]
Finding minimal spanning trees [SJ]

Finding the bridge-connected components [SJ]
Testing whether G is bipartite
Testing k-connectedness [G2]

O(Iog2 n) O(n
O(log n) O(n log n + m)
O(log n) O(n3/log n)
O(log2 rt) O(n 2)
O(log2 n) O(n2 log n)
O(log2 n) O(n

O(log n log k) O(n k+l)

Because of well-known results [HS], [PS], [FW], our algorithms may also be
viewed as space-efficient. Thus, our investigations may shed some light on the P &
tAkV DSPACE[(log n)k] question. A companion paper [JS] presents space-efficient
versions of these algorithms, with space bounds, that exactly match our time bounds
(and, therefore, are better than the algorithms obtained by simply translating parallel
time to space).

2. Preliminaries. Our graph terminology,is standard and follows (IBM], [H])
unless indicated otherwise. A graph is a pair G- (V, E) such that E is a set of
unordered pairs of distinct vertices. V is called the set of vertices and E the set of
edges. We sometimes use the notation E(G) to denote the set of edges of G. A graph
is complete if E is the set of all edges. A subgraph G’ (V’, E’) of graph G is a graph
such that V’_c V and E’_E. A path from v to vn is a sequence of edges
(Vx, v2), (v2, v3), , (v,_l, v,) where all the vertices are distinct except possibly v
v,, in which case, the path is a cycle. A graph is connected if for every pair of vertices
u and v there exists a path from u to v. The degree of a vertex is the number of edges
incident on that vertex. A cutvertex is a vertex whose removal from V, together with
the edges incident on it, leaves G not connected. A graph is biconnected if it contains
no cutvertices. The biconnected components of a graph are its maximal biconnected
subgraphs. A tree is a connected acyclic graph.

Let G (V, E) be a connected graph. A spanning tree is a tree that connects all
vertices in V. Let H (VH, EH) and K (Vr, EK) be subgraphs of G. The symmetric
difference of H and K, written HK, is the subgraph G’= (V’, E’) of G, where

E’ {e En EK le : EH EK}

and

V’= {v V Iv is incident with some edge of E’}.

A fundamental set of cycles or cycle basis of G is a collection lq of cycles of G with
the property that any cycle C of G can be written as C C1 C2" O)Ck for some
subcollection of cycles CI, C2, ", Ck fL Let T (V, ET-) be a spanning tree of G.

316 JOSEPH JA’ JA’ AND JANOS SIMON

Every edge e E-ET- will create a cycle Ce if it is added to T. It can be shown that
the collection {Cele E-ET-} is a fundamental set of cycles.

The rest of the paper is organized as follows. In the next section we develop a
fast algorithm to find the triply connected components of a graph. Our first planarity
testing algorithm is described in 4, while the second algorithm is sketched in 5.

3. Finding the triply connected components of a graph. Since our planarity
algorithms assume that the graph is triconnected, we present in this section a fast
parallel algorithm to find the triconnected components of a graph. We define the
triconnected components of a graph so that the graph is planar if and only if its
triconnected components are. We follow more or less McLane’s definitions [McLI].
Our algorithm finds the triconnected components in O(log2n) time with O(n4)
processors and can be viewed as a generalization of a technique used in ISJ] to find
the biconnected components of a graph. We now proceed to define precisely what
we mean by triconnected components of a graph.

Let G (V, E) be an undirected biconnected graph, and let Ha (Va, Ea) and
Ha (V2, E2) be two subgraphs of G. Then H1-t-H2 is defined to be the subgraph
(Va (_J Va, Ea (_J E). Let {u, v}

__
V. A split of G at {u, v} is a pair of nonempty subgraphs

Ha (Va, Ea) and HE (VE, E2) such that

G=Ha+H2, EaVIE2= and Vf3V={u,v}.

If such a split exists, {u, v} is called a separation pair. Corresponding to the split
(Ha, H2), we define the blocks Ba and B2 associated with Ha and H2 as follows:

Ex U {(u, v)})
B=

/ (v, E U {(u, v)})
B2

if Ha is not a path,
otherwise,

if H2 is not a path,
otherwise,

(u, v) will be called a virtual edge. A graph G (V, E) is triconnected if it is biconnected
and has no split. If a biconnected graph G (V, E) splits into two blocks, then G
may be further decomposed by splitting one of these blocks which may happen not
to be triply connected. We continue this process (each time ignoring the empty blocks)
until no further splitting is possible. These triply connected blocks are called the triply
connected components (t.c.c.) of G. We now have some basic facts about triconnected
graphs.

LEMMA 3.1. If G V, E) is triconnected, then deg v _>- 3 for all v V.
Proof. Suppose not. Then there exists v V such that deg v 2, with edges (v,

and (v, w2). A split at {wa, w2} is possible, i-1
LEMMA 3.2. A graph G V, E) is triconnected if and only iffor all pairs {v, w}

V, there exist three vertex disjoint paths between v and w.

Proof. The I[part is easy.
Suppose G has a split (Ha, H2) at {u, w}, with Ha (Va, Ea) and He (V2, E2).

Take any va V1 and v2 V2. We cannot have three vertex disjoint paths joining Vl

and v2 [H]. 1"3
THEOREM 3.3 [MoLl]. Every t.c.c, o[a graph G (V, E) is homeomorphic to a

maximal triply connected subgraph. Moreover, if {A, A2, ",A,,} is a complete set of
t.c.c.’s of G, then every maximal triconnected subgraph of G is homeomorphic to one
and only one of the A’s. The t.c.c.’s o[G are unique to a homeomorphism.

TIEOREM 3.4 [MoLl]. A biconnected graph G is planar if and only if all of its
t.c.c.’s are planar.

PARALLEL ALGORITHMS IN GRAPH THEORY 317

One way of attempting to find the t.c.c.’s of a graph is to start by removing all
separation pairs, find the connected components and try to reconstruct the t.c.c.’s.
This approach won’t work because a t.c.c, may only have four vertices {vl, v2, v3, v4}
such that each pair {vi, vj}, /’, is a separation pair. Consider the graph of Fig. 1.

FIG. 1.

{1, 2, 3, 4} is the vertex set of a t.c.c, and yet {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
are all separation pairs. Let G (V, E) be a biconnected graph: Define a relation R
on V V by iRj if and only if and j are in a common t.c.c, of G.

LEMMA 3.5. iRj if and only if for all {a,/3} such that a, C:{i, j}, (i, j) G*o
(Vo, *Eo), where Go is the subgraph o]: G obtained by removing a and and all edges
incident on a and , and G*o is the transitive closure ol Go.

Pro@ Let and / be such that iR/, i.e., and/" are in the same t.c.c. If (i,/) E,,
then (i,/’) E, and we are done. Suppose now (i,/’) E. Then, by Menger’s theorem
[HI, no two vertices can separate and/’.

The converse follows from Menger’s theorem and Lemma 3.2. [-]

It is easy to see that we can construct R in O(log2 n) time with O(n 4) processors.
We now address the problem of actually determining each t.c.c, of G. Notice that the
following holds.

LEMMA 3.6. Two t.c.c.’s can intersect in at most two vertices.
It follows that every set of three vertices of a t.c.c, determines this t.c.c, uniquely.

Define the following relation T on V V V:

(i, j, k)e TC:iRj ^iRk ^iRk.

Note that since R is not transitive, we need all of the three conditions. We now have
the following characterization.

318 JOSEPH JA’ JA’ AND JANOS SIMON

LEMMA 3.7. ff (i,], k) T, then i,] and k belong to the same t.c.c, o[G. Moreover,
for each (i,], k) T, the set

Vijk {1 VllRi ^ IR] ^ IRk}
determines a t.c.c, and, conversely, each t.c.c, of G can be obtained this way.

Proof. The first statement of the lemma is obvious. Now let Vik. We prove
that is in the same t.c.c, as i,/" and k. Suppose not. Let A be the t.c.c, which contains
i,] and k. Then there exists a pair of vertices {u, v} which separates from i,] and
k. Hence one of lR i, lRj and lRk is false.

On the other hand, if a vertex belongs to the t.c.c. A containing i,] and k,
then it is obvious that Viik.
The above lemmas suggest the following algorithm.

ALGORITHM 3.1.
1. Find the set of all separation pairs S.
2. For each {u, v} So, construct the transitive closure *GUOo
3. Compute R.
4. Compute T.
5. Find the triply connected components of G using T and R.
THEOREM 3.5. The above algorithm correctly finds the triply connected components

of a graph G (V, E). This algorithm can be implemented to run in O(log2 n) time
with O(n) processors.

Proof. The correctness follows directly from Lemma 3.7. Table 2 gives the running
time and the number of processors for each of the steps of the above algorithm.
Detailed algorithms for some of these steps and for similar problems, together with
an analysis of time and processor bounds, can be found in [SJ].

TABLE 2.

Step Time # of processors

1 O(1og n) O(n’)
2 O(log2 n) O(n4

3 O(log n) O(n4)
4 O(1) O(n 3)
5 O(log2 n) O(n3)

4. The first planarity algorithm. We assume that the reader is familiar with the
notions of embeddings of graphs into surfaces, plane embeddings and Jordan curves.
For completeness we sketch some of the definitions.

An embedding of a graph G into a surface S is an injective map f: V(G)--> S (the
embedding of vertices) and a collection of Jordan curves F(,o) such that:

(1) for every edge (u, v) of G, there is exactly one curve F(,,o) with endpoints
f(u),f(v);

(2) curves F(,o and F(,y are disjoint.
F(.o is the embedding of edge (u, v), and the collection of Jordan curves and

their endpoints is the embedding of the graph. G is planar if it has an embedding
into the plane.

In the sequel, unless otherwise noted, we shall always assume graphs to be
triconnected. Let G be such a graph, let T be a spanning tree of G, and let X

_
E(G)-E(T). Every edge a =X defines a unique cycle Ca consisting of a and the
unique path in T that joins T’s endpoints. Let F {C[a X}. F is a cycle basis.

PARALLEL ALGORITHMS IN GRAPH THEORY 319

Let C be a cycle of G, e, f edges of C. Define the equivalence relation =c by
e =of if and only if there is a path in G that includes e and f and has no internal
vertices in common with C. The bridges of G [BM] relative to C are the subgraphs
induced by the edges of the equivalence classes of E(G)-E(C) under = (these are
the "connected pieces of G, ignoring connections due the vertices of C"). C is
peripheral if G has a single bridge relative to C. Let F’ be a cycle basis of peripheral
cycles, and M=F’t.J{,CF,C} (cycles are considered, as usual, as vectors in
ZI2EI). M is a plane mesh of G if every edge of G appears in eactly two cycles of
M. The following is a classical result of McLane’s [McL1], [BM], [HI.

THEOREM 4.1. G is planar if and only if it has a plane mesh. The cycles of the
plane mesh are the faces in the (unique, up to inversion) embedding of G into the
sphere.

Our first algorithm builds a plane mesh or reports that it is impossible to do so.
The general strategy is the following: we find a tree cycle basis, i.e., a cycle basis
generated from a spanning tree. Note that two cycles of a tree basis are either disjoint
or have a common vertex or a common path. If G is planar, the cycles will be mapped
into Jordan curves in a plane embedding. In an embedding, bridges will have to be
entirely contained in one of the two regions of the plane that the Jordan curve induces.
These facts can be stated in a purely combinatorial manner: for every cycle C in the
cycle basis and for every edge eE(C) we define a boolean variable IN(C, e). The
intended meaning is that IN(C, e)= 1 if edge e is mapped to the inside region of the
Jordan curve defined by C. We call an assignment of truth values to the variables
{IN(C, e)IeC:E(C),E F} a pseudoembedding if the following conditions are met (all
cycles mentioned below belong to the cycle basis F):

a) If e, [belong to the same bridge B, relative to cycle C, then IN(C, e)CIN(C,).
b) If IN(C, e)= 1, then for every cycle C’ such that e E(C’) and for every edge

fe [E(C)-E(C’)] IN(C’, f) 0.
c) If e, f are edges that belong to bridges B, B’ that conflict (see below) relative

to cycle C, then IN(C, e)IN(C, f).
The vertices ofattachment of bridge B to cycle C are the vertices in V(B) (3 V(C).

Bridges B and B’ conflict relative to cycle C if either
(1) there are vertices vx, vz, v that are both vertices of attachment of B to C

and vertices of attachment of B’ to C;
or

(2) there are vertices u, v, w, z of V(C) that, in a cyclic ordering of the vertices
of V(C), u, v, w, and z appear in this order with u, w vertices of attachment of B
to C and v, z vertices of attachment of B’ to C.

Note that vertices of attachment, conflicts and pseudoembeddings are purely
combinatorial concepts. We have, however, the following facts: Every embedding is
a pseudoembedding. This is precisely stated in Lemma 4.2. Before proceeding we
need some terminology. If G is a planar graph and h is an embedding of G into the
plane, we use the following notations: if C, C, C are cycles of G and if e is an edge
of G we denote by Fc, Fc,, Fc and y respectively the Jordan curves into which the
cycles and the edges are mapped respectively. When C is determined by the context,
we drop it as a subscript to avoid double subscripting and denote the curves by F, F,
Fi, respectively. The interior of F is the bounded domain of the two domains determined
by F on the plane, the exterior of F is the other domain. An edge e (or a cycle D) is
inside F if the curve (the closed curve I"D) has no points mapped to the exterior
of F. Similarly, we say that F is mapped outside F if no points of F are mapped to
the interior of F.

320 JOSEPH JA’ JA’ AND JANOS SIMON

LEMMA 4.2. Let G be a planar graph and A an embedding of G into the plane.
Let F be a set of fundamental cycles of G (a tree basis). Assign values to the boolean
variables IN(C, e) for all C 6F, e 6E(G)-E(C) according to the rule IN(C, e)- 1 if
ye is inside Fc in A. Then this assignment is a pseudoembedding.

Proof. The lemma follows from well-known properties of plane embeddings (see,
for example, IBM]: all edges in a bridge must be mapped to the same domain (condition
a) for a pseudoembedding; conflicting bridges must be mapped to different domains,
one inside and one outside F (condition c)); and if Fc is inside F, every edge f of C
not in C’ must be mapped to curve yr outside F (condition b)). Thus, the assignment
satisfies conditions a), b) and c) and is a pesudoembedding. [3

For a given planar graph G, we say that the pseudoembedding P obtained from
an embedding A as in the lemma above represents the embedding and that the variables
IN(C, e) with the assignments of P have the intended meaning in A. In general, if
Ca, C2,’", Ck are a subset of F, P is a pseudoembedding and A is an embedding,
we say that P restricted to C1, C2,’’ ", Ck represents A (or A is represented by P
restricted to Ca, C2,’", Ck) if there is an embedding A’ such that P represents A’
and the set of edges mapped into the interior of F1, F2,’’’, Fk is the same in A and
in A’.

Unfortunately, the converse of Lemma 4.2 is not true: there are pseudoembed-
dings that do not represent embeddings. Consider the spanning tree in Fig. 2 for K33.
The assignment IN(C, e)--0 for all C I and all e E(C) is a pseudoembedding.

FIG. 2

There is, however, a partial converse that we prove later that enables us to obtain
an algorithm: if G is planar every pseudoembedding represents an embedding
(Theorem 4.7).

As we shall see, if A is an embedding of a planar graph G, it is easy to obtain
from A a plane mesh for G, and the procedure can be stated in terms of the
pseudoembedding P that represents A.

The idea behind our first algorithm is as follows: given G, obtain a pseudoembed-
ding P of G (if none exists, G is nonplanar). Now, treating P as if it represented an
embedding, carrry out the procedure that will produce a plane mesh for G if P
represents an embedding. Call the resulting set of cycles a pseudoplane mesh. If the
pseudoplane mesh is indeed a plane mesh, G is planar. On the other hand, if G is
planar, then the pseudoplane mesh is in fact a plane mesh. So G is planar if and only
if it has a pseudoembedding, and the pseudoplane mesh is a plane mesh, and these
conditions can be checked efficiently in parallel.

In the rest of this section, we formalize these notions and prove the facts claimed.
Let C1, C2 F. Define C1 _c C2 (intended meaning: in the embedding represented

by P, Fcl lies inside Fc2) by

C1
_
C2 if le E(C)IN(C2, e)= 1.

PARALLEL ALGORITHMS IN GRAPH THEORY 321

For fundamental cycles (cycles obtained from a spanning tree),
_

is well defined.
LEMMA 4.3. Given a cycle C F, the pseudoembeddings of G induce a partition

F1, Fz ofF-{C} such that for every pseudoembedding for 1, 2, C1 Fi, Cz Fi imply
C1 C if and only if Cz C.

Proof. We shall prove that for triply connected graphs conditions a) and b) in
the definition of a pseudoembedding ensure that given a cycle C and an edge e E(C)
the set of edges of G can be partitioned into three classes:

(c),
Se ={flfE(G) IN(C, e)= lenIN(C, f) 1} ("same domain as e"),
Oppe={[l]:E(G) IN(C, e)= 1 <=>IN(C,/) 0} ("opposite domain").

This implies the truth of the lemma" let
Fl={CiF: :l f SeE(Ci)};
F2 {f2 F: :l f Oppe E(Ci)}.
By condition a), the F’s are well defined and F f’) F2 . So {F1, F2} is a partition

of F.
Suppose C1

_
C, C1 F, and let C2Fi. Let [1 E(C1)-E(C), [2E(Cz)-E(C).

Since C1
_

C, there exists a g E(C1) such that IN(C, g)= 1 (by the definition of).
So IN(C, [1)= 1 by condition a), and IN(C, [2)= 1 because of the definitions of Se,
Oppe and F. (For example, if 1, IN(C, fl) 1 :ff IN(C, e) 1 ::> IN(C,/e) 1.) Thus
C2- C. Similarly, if C2_ C then C1_ C. To prove the required partition of E(G),
we shall reason about the bridges of C in G. If C has a single bridge, the statement
is obviously true, with Oppe (or Se) empty. So assume C is not peripheral. Let e be
an edge not in C, and without loss of generality, suppose. IN(C, e)= 1. Let I1 be the
bridge containing e, and let v11, , Vlt be the vertices of attachment of I1 to C. Let
I,+1 be the set of bridges that conflict with some bridge in I, and are not in t-J "-1i=1 Ii.
By condition b), for every edge g in (a bridge in) I,+1, IN(C, g)= 1 if and only if
IN(C, [)= 0 for some edge of I, (and, therefore, for every edge of I,). There exists
some k such that It for > k since there are only finitely many bridges of C. It
remains to show that every bridge is in some Iiif this is true, then Lli ven/" and
t.Ji odd Ii form the sets S and Oppe.

Let B be a bridge of C, B Fk. Let a l, a2," ", al be vertices of attachment of B
to C in a cyclic ordering of the vertices of C. Consider the paths P, from a to a+l
in C (al+l al). Assume, by contradiction, that there is a bridge D that does not
conflict with B nor with any other bridge in LI/.. The vertices of attachment of D to
C must lie entirely within a single path P (or D would conflict with B). Let a and
ba be the first and last vertices of attachment of D to C, in the ordering of vertices
of P. Since the removal of (a l, b) must not disconnect G, there must be a bridge D’
that conflicts with D, that has vertices of attachment in P and at vertices a, b in C,
where a2 < a or b2 > bl (or both). If qne of a2, b2 is not in P, then D’ conflicts with
B. Since Ik+l (, D’ Ii for some < k. But then D /+1. If both az, b2 lie in P,
repeat the procedure with D’, eventually yielding a conflict (or a proof that G is not
3-connected).

From the proof of Lemma 4.4, we can obtain"
COROLLARY 4.4. Let G be planar, and let C be a cycle of G, C F. Then the

partition Se, Oppe 0]" the edges in E(G)-E(C) corresponds to the two possible sets of
edges that may be mapped into the bounded domain of the plane in plane embeddings
in G.

Proof. Since the embedding of G into the sphere is unique, it follows that
the set of edges in the two domains of the sphere determined by the map of C
are uniquely determined. In the plane embeddings of G, all edges in exactly one

322 JOSEPH JA’ JA’ AND JANOS SIMON

ot these two classes can be mapped into the interior of the Jordan curve determined
by C.

Consider the pseudoembeddings of G obtained from embeddings. By the para-
graph above, there are exactly two possible distinct assignments of values to the set
of variables {IN(C, e)e E(G)-E(C)}. On the other hand, Lemma 4.4 shows that
there are two possible distinct assignments of values to {IN(C, e)le E(G)-E(C)}
that can be extended to pseudoembeddings. Hence, the corollary follows. !-1

LEMMA 4.5. Let G be planar and let C F. Let P be a pseudoembedding, and let
{Di} be the set ot lundamental cycles such that Di

_
C in P. Then there is a plane

embedding A o1 G such that P restricted to {C} O {D} represents A. (In other words, the
pseudoembedding P has the intended meaning in the interior ol C.)

Proo] Corollary 4.4 shows that there are embeddings A such that e is inside
in A if and only if IN(C, e) 1 in P. Let D be a fundamental cycle, D

_
C. By condition

c) of the definition of pseudoembedding, there must be an tE(C)-E(D) with
In(D,) =0 in P. But in A, e is inside Fc for all edges e E(D)-E(C), so we must
have /c outside Fo. By Corollary 4.4, the set of edges such that IN(D,/)=0
corresponds to one of the sets of edges mapped into the same domain of the plane,
and all such edges are mapped into the same domain as]. Thus, all the edges g with
IN(D, g)= 0 are mapped into the unbounded domain, relative to Fo. Similarly, all
the edges g with IN(D, g)= 1 are mapped into the other domain and, hence, to the
interior of Fo. Therefore, P restricted to D represents A. Since D was arbitrary
(subject to D

_
C) and P restricted to C represents A, the lemma follows.

We note that the proof implies something slightly stronger--not only are there
plane embeddings, where P has the intended meaning in the interior of C, but P
represents all such embeddings.

The next lemma is a property of plane embeddings. It will be used in the proof
of Theorem 4.7. (We use the notation defined after Theorem 4.1.)

LEMMA 4.6. Let G be planar. Assume G has cycles C1, C2,"’, Ck and D, and
a plane embedding A such that:

(1) in A, for all l <=i <]<-k, F lies outside Fjand Fj lies outside
(2) for all 1 <- <- k, F lies inside Fo;
(3) there is an edge e (E(D)- u/k--1E(C)).
Then there is an embedding A’ o]’ G, such that:
(1) for all 1 <=i<-_ k, F (the image of Ci in A’) has in its interior (the images o])

exactly the same edges as does the interior of Fi;

(2)]:or all i, F lies outside Fo.
Proof. We only sketch the proof since it is a topological property of embeddings

and not relevant to the rest of this paper.
Consider a plane mesh M for G. There are exactly two peripheral cycles in M,

say H and H’, that contain the edge e ot D not in the Ci’s. Exactly one of these, say
H’, is mapped to the interior of Fo in A. Let A’ be the plane embedding of G, where
H’ is the boundary of the external face. Then A’ has the desired properties.

We are now ready to prove the partial converse to Lemma 4.2, i.e., that for
planar graphs every pseudoembedding represents an embedding.

THEOREM 4.7. Let G be a planar graph and P a pseudoembedding o] G. Then
there is a plane embedding A o1 G such that P represents A.

Proof. Let F, the set ot fundamental cycles of G used in P, have k cycles. We
give an inductive procedure that yields at each step a set E of embeddings and a
subset S of cycles, such that for every embedding A E, P restricted to the cycles in
$ relresents A, and, moreover, E is a collection ot all such embeddings. At each step,

PARALLEL ALGORITHMS IN GRAPH THEORY 323

the cardinality of $ increases, so the algorithm terminates since]FI k. We shall prove
that E is nonempty at each step. This yields the theorem, when $ F. At step i, we
will add a collection of cycles to $ in such a way that if D F-$, then D

_
C for

C $ (i.e., the cycles not yet in $ are not IN any cycle in $ in the pseudoembed-
ding P).

We denote the sets S and E, at the end of step i, by Si and Ei, respectively.
Step 0. S0 E {plane embeddings of G}.
Step + 1. Choose a cycle C in F- Si that is maximal with respect to ___--i.e., for

all D F C D in P.

S,+ S, LJ {C} U {D e (F S,) D
_

C},

Ei+ {A e Ei lin A, Fi lies outside F for all C e S}.

The construction has the desired propertieswe have to show it can be carried
out.

(a) There is a maximal cycle C in F-$i. By construction, if C_D for some
D e Si, then C e $. Pick a cycle C eF- Si. If, for all D e F- S, C

_
D, pick C C,

otherwise, let C2 be a cycle such that C_ (72 and continue the procedure with C2.
The procedure either terminates with a cycle C as desired or we have found a sequence
of cycles C1, C2,’ ’, C, with C2

_
C2, C2 G C3, C_

_
C, C

_
C. But such a sequence

contradicts Lemma 4.5; the inside of F is represented by P in any embedding that
maps an edge e with IN(C, e)= 1 into the interior of F (such edge must exist since
Ct-.

_
C). But in this embedding, by Lemma 4.5, F_, lies inside F, F-2 inside F_

and hence inside F, and, finally, F lies inside Fl. But then, since P restricted to C2
represents the embedding, IN(C2,f)=0 for some f=E(C)-E(C2) and, hence,
-C

_
C.

(b) Ei/ is nonempty. First note that by construction C is such that edges of
cycles in S have the same value of IN(C, e) in all pseudoembeddings. By Corollary
4.4, in any embedding of G, all these edges are mapped into the same domain, relative
to F. If for some E e Ei these edges are mapped into the unbounded region, then we
are done: by induction, the embedding is represented by P restricted S, P restricted
to C represents E and by Lemma 4.5, P restricted to Si/I-(SeU{C}) also repre-
sents E.

So assume E Ei but some edge of Si is mapped to the interior of Fo Then all
cycles of Si are mapped to the interior of Ft. By Lemma 4.6, there is an embedding
E’ in which the interiors F of all C Si are the same as in E, but the Fi’s lie outside
F’,. Then P restricted to Si represents E’ (since on edge is mapped inside F if
and only if it is mapped inside F) and, hence, E’ Ei. But P restricted to Si/l rep-
resents E" P restricted to C has the intended meaning by the construction of
E’, and by Lemma 4.5, P has the intended meaning for all cycles D in the interior
of C.

Finally, note that the definition of Si+l ensures that D F-Si+ implies D
_
C

for some C S, as claimed.
Thus, the required embedding can be produced. V1
Our planarity algorithm, as explained before, does not attempt to mimic the

construction above. We need an additional construction that, given a pseudoembedding
for a planar graph, finds a plane mesh for it. First we note some properties of plane
embeddings.

Let G be a planar graph, F a set of fundamental cycles F-{Cili- 1, 2,... n}
and A a plane embedding of G. Let Dii be the set of peripheral cycles that are mapped

324 JOSEPH JA’ JA’ AND JANOS SIMON

to the interior of F in A. Then

(1) Ci

where the sum is the usual sum of cycles [HI, [BM].
We shall obtain a new cycle basis {C[i 1, 2,..., n} for G, where the C are

peripheral. We formalize the following idea: some of the C are peripheral. Consider
some Cj that (in E) contains only peripheral cycles Ci. Then C Cj +iA C, with
A {i If, is mapped inside F by A}, is a peripheral cycle.

More formally, given a pseudoembedding P, define the relation C < Ci (C. directly
surrounds C) among cycles of F by C < C if and only if Ci

_
C & ::ID, D F, Ci

_
D & D C.. Since P represents an embedding, < is an order relation.

For Ci F, define

I" 0 if {CjlC < C}
level (i)

k + 1 if k max {level ()[C < C}.

Define {C li- 1, 2,... n} by

I" C if level (i) 0,C’ C + Y. C., where Int (i) {C-IC < C}.
CieInt (i)

LEMMA 4.8. {Cili 1,..., n} is a peripheral cycle basis ior G (and, therelore,
C!{Ci } t.J {E i= } is a plane mesh/’or G)

Proof. By induction on level (i), assume that for level (i) -<k, C can be expressed
as a linear combination of the C: such that Ck is mapped inside F. Let C have level
k + 1. It follows from the definition of CI that

C’i Ci + C. Ci + C’, where A
_
{llC is mapped inside F}.

CInt (i) leA

So Ci Ci’ +,A C. Since, for level (i) 0, C Ci, by induction, {Ci } is a basis. By
(1), and since for every peripheral cycle there is a first time it gets included in an
inclusion chain of cycles, C’i is a peripheral cycle. More precisely, we prove by
induction on level (i) that CI is peripheral. If level (i)- 0, this is clear. Assume true
for levels -<_k, and let level (i)= k + 1. We may write Ci as the sum of all peripheral
cycles mapped into Fi but not inside Fj for Int (i). Thus, every peripheral cycle
appears exactly once in the sums for C, and since there are nC’s and the peripheral
cycle that is mapped to the external face cannot be mapped inside the C’i, we conclude
that exactly one peripheral cycle lies inside each C, and so, C is this peripheral
cycle. E

Note that the definition of the C uses only the combinatorial notions of a
pseudoembedding, and the process of computing the C can be carried out for any
graph with a pseudoembedding. If the graph is planar, this yields a peripheral basis
and a plane mesh.

These results imply the following efficient parallel algorithm for planarity (we
assume that the algorithm that finds triconnected components will also check that the
component G has at most 3n-6 edges):

ALGORITHM
Planar- I G).
1. Find a spanning tree T of G and the corresponding set of fundamental

cycles, F.

PARALLEL ALGORITHMS IN GRAPH THEORY 325

2. Try to find a pseudoembedding--if this fails, report G is nonplanar. In more
detail,

2.1. For each Ci F, find all the bridges Bi of G relative to C.
2.2. For each cycle C F and for every edgee E(C), use a variable IN(C, e).

Write down the boolean formulas that ensure that conditions (1), (2) and (3) for
a pseudoembedding hold. (Note that this yields a 2-CNF formula.)

2.3. Obtain a satisfying assignment for the formula above. This is a
pseudoembedding. If the formula is unsatisfiable, G is nonplanar.
3. Compute the relation < among cycles Ci in F.
4. Obtain the C as in Lemma 4.8. Let F’= {C } U {Y C }.
5. Test whether every edge appears in exactly two cycles of C. If so, G is planar,

otherwise it is nonplanar.
THEOREM 4.9. Planar-I(G) correctly tests planarity of G. It can be implemented

to run in O(log2 n) time on O(n 4) processors, where n V(G)I.
Proof. Correctness follows from results of this section. We sketch the time analysis

below.
Step 1 can be done in time O(log2 n) with O(n) processors ([SJ]).
Step 2.1 is very similar to the connectivity problems in [SJ] or the 3-connected

components algorithm in this paper. Every cycle requires O(n) processors to find its
bridges in O(log n) time. Since there are at most O(n) cycles (we precede Planar-1
by a procedure that counts the number of vertices and the number of edges and rejects
if there are more than 3n-6 edges) O(n 3) processors suffice for this step.

Step 2.2 can be done in parallel since conflicts among bridges are easy to detect.
The number of processors is O((number of cycles) (number of edges)2) O(n4),
and the time O(log n). The number of terms in the 2-CNF formula is at most O(n4).

Step 2.3 is a 2-CNF satisfiability algorithm, described below. There are O(n 2)
variables and O(n 4) formulas: O(log2n) time and O(n 4) processors suffice.

Step 3 takes O(log n) time with O(n 3) processors, as does step 4 (step 4 consists
of solving a set of linear recurrences). For step 5, O(n) processors and O(log n) time
suffice.

Thus, the whole procedure can be carried out in O(log n) parallel steps, using
O(n 4) processors.

The 2-CNF satisfiability problem can be solved as follows:
For each variable x, maintain 4 lists of variables"

PPx {ylthe CNF formula forces y 1 if x 1},

PNx {y [the CNF formula forces y 0 if x 1},

NPx {y Ithe CNF formula forces y 1 if x 0},

NNx {y [the CNF formula forces y 0 if x 0},

Initially, PPx(O) {yl(xvy) is a clause}, and

PP.(t+ 1) PP(t) LJ (
zPPx(t) zPNx(t)

The other lists are similarly updated. For a k-variable CNF at most log k updates are
necessary and each takes at most O(log k) steps.

COROLLARY 4.10. Planarity testing can be carried out in space O(log4 n) by a
Turing machine.

326 JOSEPH JA’ JA’ AND JANOS SIMON

This follows by standard simulation of parallel computers [HS], [FW] by tape-
bounded Turing machines. Actually, we can obtain much sharper results" graph
planarity can be tested in log2 n space by a Turing machine [JS]. Unfortunately, the
space-efficient algorithms do not run in polynomial time.

5. The second planarity algorithm. Tutte describes in IT] a method of embedding
a triconnected planar graph in the Cartesian plane. We sketch the main ideas behind
this method.

Let J be a peripheral cycle of a triconnected graph G (V, E). Let p be the
number of vertices of J. Let be a p-sided convex polygon in the Euclidean plane.
We view Q as an embedding of J in the Euclidean plane. Let f be a one-one mapping
of V(J) onto the set of vertices of such that the cyclic order of vertices in J agrees,
under f, with the cyclic order of vertices of .

Let V={v, v2,’", v,} be an enumeration of the vertices of V such that
{v,..., vp} are the vertices of J. We try to extend f to other vertices of G. Let v be
any vertex, and let A (i) be the set of vertices adjacent to v. Suppose f(vi) is defined
for each viA(i). Put a unit mass mi at each point [(v) for each viA(i). Then f(v)
is defined to be the centroid of the masses m, viA(i); i.e., if f(vl) (x, y), 1 <- <-n,
we have

Xi
Xj dr. Xj2.3f.. .q- Xjk Y/I + YJ2 +" + YJk if A (i) {vii, v]k}.

k Yi= k

In order to prove that such an Euclidean embedding is possible if the graph is
planar, we define the m n matrix A (aq) such that

aq= eg(i)
if and G contains the edge (vi,
if i=],
otherwise.

Consider the following linear system of equations:

ai]x] O, aqy] O, 1 <-_ i, j <- n.
]=1 /=1

Let (xi, yi) be the coordinates of the vertices of Q, 1 _-< -< p. Let v be any vertex such
that > p. Then we have

ailXl aiix], a,yt aqy], 1 < <
j=l j=l
jl jl

If 1, then aq deg vt and, for j 1, either aq =-1 or O, depending on whether v] is
adjacent to vt or not. Thus,

(deg vt)xl

and, similarly,

Y (-x)= E
(Vi,VI)EE (Vi,vI)EE

Xj

(degyt)yt= Y. y].

(vi,vl).E

Therefore, if the linear system of equations (*) for p < i-< n has a solution, (x, y) is
the centroid of the masses m], v] A(i). We now prove that this system has a unique

PARALLEL ALGORITHMS IN GRAPH THEORY 327

solution. Decompose A as follows"

p n-p

A= All A12 }p

A21 AEE.J}n-p
Let Go be the graph obtained from G by deleting the edges of J and identifying all
the vertices of J to form a new single vertex. With suitable enumeration of the vertices
of Go, we can say that A22 is obtained from the matrix A(Go) associated with Go by
striking out the first row and column, i.e.,

det (A22)= a cofactor (A(Go)).

But it is a classical result that any cofactor of A(Go) is equal to the number of minimum
spanning trees in Go (see [BM 12.2 and Exercise 12.22], where the matrix A(Go)
is called the conductance matrix). It follows that the above system of equations has
always a unique solution. The corresponding embedding is called a barycentric rep-
resentation of G. In IT], it is shown that the above embedding has the following
property.

THEOREM 5.1. Let G be a planar triconnected graph. LetJ be a peripheral polygon
of G with p vertices. Let Q be a p-sided convex polygon in the Euclidean plane. Then
there is a unique barycentric representation of G on Q mapping the vertices of J onto
the vertices of Q in any arbitrarily specified way preserving the cyclic order.

We now describe the second planarity algorithm.
ALGORITHM
Planar-2(G).
1. Find a peripheral cycle C of G (which will be the outer face) with p vertices.

Find p Cartesian points (xi, yi), 1 <- <_- p, that form a convex polygon in the Euclidean
plane.

2. Compute the entries of the conductance matrix A of G.
3. Solve the linear set of equations

aqxi=O, aqyi=O, p<i<=n,
j=l j=l

obtaining a set of coordinate pairs (x, y), p + 1, .., n. (Note that, i G is planar,
the coordinates (xi, y), 1 =< _-< n, constitute a plane embedding of G.)

4. For every pair {l, f} of edges of G, write down the equations of the line segments
that represent these edges in the embedding obtained in step 3 and check that they
do not cross. If so, G is planar, otherwise, G is nonplanar.

THEOREM 5.2. Planar-2(G) correctly checks if a given triconnected graph G
(V, E) is planar. This algorithm can be implemented to run in time O(log2 n), using
O(na’29/log2 n) processors, where we assume that each processor can multiply and divide.

Proof. The correctness proof follows directly from Theorem 5.1. Step 1 can be
done, as in Planar 1, by finding a spanning tree and the associated cycle basis. One
of those cycles is peripheral and computation of the bridges of all the fundamental
cycles will find it. The time requirement is O(log2 n), with O(n 3) processors. Step 2
can be trivially done in O(1) time, with O(n 3) processors. Step 3 involves solving a
linear system of equations which can be done by using the improvement over Csanky’s
method [C], reported in [PSa]. This takes O(log2 n) steps with O(n3"29/log2 n) pro-
cessors. Step 4 can be done in O(log n) time, with O(n 3) processors. Therefore,
Planar-2 runs in O(log2 n) time, with O(na29/log2 n) processors. [3

328 JOSEPH JA’ JA’ AND JANOS SIMON

Note that the processor counts in Planar-1 and Planar-2 refer to distinct models
of computation: the processors for Planar-2 must have unit cost multiplication, while
those in Planar-1 are essentially bit processors.

[Br]

[BL]

IBM]

[c]
[Ch]

[Ev]

[FW]

[G1]

[G2]
[I-I]
[He]

[Hi]

[HS]

[HT]

[J]

[JS]

[McL1]

[McL2]

[P]

[PSI

[PSa]

[SJ]

IT]

REFERENCES

R. P. BRENT, The parallel evaluation o]" general arithmetic expressions, J. Assoc. Comput. Mach.,
21 (1974), pp. 201-206.

K. S. BOOTH AND G. S. LUEKER, Testing for the consecutive ones property, interval graphs and
graph planarity using PQ-tree algorithms, J. Comp. System. Sci., 13 (1976) pp. 335-379.

J. A. BONDY AND U. S. R. MURTY, Graph Theory with Applications, American Elsevier, New
York, 1977.

L. CSANKY, Fast parallel matrix inversion algorithms, this Journal, 5 (1976), pp. 618-623.
A. K. CHANDRA, Maximal parallelism in matrix multiplication, IBM Tech. Rept. RC 6193,

Sept. 1976.
S. EVEN, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
M. J. FLYNN, Very high-speed computing systems, Proc. IEEE, 54 (1976), pp. 1901-1909.
S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, Proc. 10th Annual ACM
Symposium on Theory of Computing, San Diego, CA, 1978, pp. 114-118.

C. M. GOLDSCHLAGER, A unified approach to models of synchronous parallel machines, Proc.
10th Annual ACM Symposium on Theory of Computing, San Diego, CA, 1978, pp. 89-94.

Synchronous parallel computation, Tech. Rep. 114, University of Toronto, 1977.
F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
D. HELLER, A survey of parallel algorithms in numerical linear algebra, SIAM Rev., 20, (1978),

pp. 740-777.
D. C. HIRSCHBERG, Parallel algorithms]’or the transitive closure and the connected components

problems, Proc. 8th Annual ACM Symposium on Theory of Computing, 1976, pp. 55-57.
J. HARTMANIS AND J. SIMON, On the power of multiplication in random access machines., Proc.

15th SWAT Conf., New Orleans, LA, 1974, pp. 13-23.
J. E. HOPCROFT AND R. E. TARJAN, Efficient planarity testing, J. Assoc. Comput. Mach., 21,

4 (1974), pp. 549-568.
J. JA’ JA’, Graph connectivity problems on parallel computers, Tech. Rep. CS-78-05, Dept.
Computer Science, Pennsylvania State Univ., University Park, Feb. 1978.

J. JA’ JA’ AND J. SIMON, Some space-efficient algorithms, Proc. 17th Allerton Conference, 1979,
pp. 677-684.

S. MCLANE, A combinatorial condition]’or planar graphs, Fundamenta Math., 28 (1937), pp.
22-32.

A structural characterization of planar combinatorial graphs, Duke Math. J., 3 (1937),
pp. 46-472.

F. P. PREPARATA, Parallelism in sorting, International Conference on Parallel Processing, Belair,
Michigan (August 1977).

V. R. PRATT AND L. J. STOCKMEYER, A characterization o[the power o[vector machines, J.
Comput. Systems Sci., 12, (1976), pp. 198-221.

F. P. PREPARATA AND D. V. SARWATE, An improved parallel processor bound in fast matrix
inversion, IPL, 7, 3 (1978) pp. 148-150.

C. SAVAGE AND J. JA’ JA’, Fast, efficient parallel algorithms]’or some graph problems, this
Journal, 10 (1981), pp. 682-690.

W. T. TUTTE, How to draw a graph, Proc. London Math. Soc., 3, 13 (1963), pp. 743-768.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0010 $01.00/0

PLANAR FORMULAE AND THEIR USES*

DAVID LICHTENSTEINS"

Abstract. We define the set of planar boolean formulae, and then show that the set of true quantified
planar formulae is polynomial space complete and that the set of satisfiable planar formulae is NP-complete.
Using these results, we are able to provide simple and nearly uniform proofs of NP-completeness for planar
node cover, planar Hamiltonian circuit and line, geometric connected dominating set, and of polynomial
space completeness for planar generalized geography.

The NP-completeness of planar node cover and planar Hamiltonian circuit and line were first proved
elsewhere [M. R. Garey and D. S. Johnson, The rectilinear Steiner tree is NP-complete, SIAM J. Appl. Math.,
32 (1977), pp. 826-834] and [M. R. Garey, D. S. Johnson and R. E. Tarjan, The planar Hamilton circuit
problem is NP-complete, SIAM J. Comp., 5 (1976), pp. 704-714].

Key words Computational complexity, NP-completeness, P-space-completeness, combinatorial games,
planar graphs

1. Motivation. Many properties that are NP-complete for general graphs are also
NP-complete for planar graphs. (Others, such as max clique and max cut, are
significantly easier to test for on planar graphs, unless P=NP.) Proofs of planar
NP-completeness often involve two stages, typified by the proof that planar node cover
is NP-complete [4]. The first stage is the proof for general graphs, the second is the
construction of a complicated crossover box, which is added to the nonplanar reduction
everywhere two arcs cross. Unfortunately, such crossover boxes are hard to find and
hard to understand.

In this paper, we present a crossover box whose planarity is invariant under many
polynomial reductions. In this way, we argue that various planar completeness results
are "true for the same reason". Our technique may therefore be a useful tool to use in
attempts to strengthen general results to their planar subcases.

2. Preliminaries.
(1) A boolean formula B in conjunctive normal form with at most 3 variables per

clause (3CNF) is a set of clauses B {cl, , c,}. Each clause is a subset of 3
literals from the sets V {vl, ., vn) and V {7,..., Tn). For convenience,
clauses will be written (a + b + c) instead of {a, b, c}.

(2) The set of quantified boolean formulae with at most 3 variables per clause
(3QBF)={QvOav2"’" Onl)nB(Vl, 192,’", Vn)lOi {V, =t}, where the vi are
boolean variables and B is in 3CNF}.

(3) TF is the set of true formulae in 3OBF. We will also refer to the problem of
recognizing this set as TF.

(4) 3SAT is the subset of TF where all variables are existentially quantified.
(5) The variable vi occurs m, (abbreviated mi) times, negated or unnegated, in B.
(6) We use as few subscripts as possible, for the sake of readability. Most structures

will be described by picture and example, rather than formally.
(7) It will sometimes be convenient to coalesce certain subgraphs into a single

macro node. The macro node is then adjacent to all nodes which were
originally adjacent to some node in the subgraph replaced by the macronode.
This coalescing will be signified pictorially by means of a dotted line around the
subgraph.

* Received by the editors January 20, 1978, and in final revised form March 25, 1981.
5" Department of Computer Science, Yale University, New Haven, Connecticut 06520. This research was

partially supported by the National Science Foundation under grant MCS76-17605.

329

330 DAVID LICHTENSTEIN

(8) Each problem in the paper is trivially in NP, except for generalized geography,
which is trivially in P-space.

3. Planar tormulae. In this section, we prove the main results of the paper, the
P-space-completeness of the planar quantified boolean formula problem, and the
NP-completeness of planar satisfiability. Since 3SAT is just TF with all variables
existentially quantified, the same reduction reduces TF to planar TF and 3SAT to
planar 3SAT. TF was shown to be P-space-complete in [9]; 3SAT was shown to be
NP-complete in [2].

DEFINITION. Let B Q3CNF. We call G(B)-(N,A) the graph of B, where
N={ci[l <-]<=m}U{v[l <=i<=n}. A--A1 A2 where

Al={{ci, V]}II3]C or]ci} A. {{vi, vi+}ll <=]<n}{{v,,, Vl}}.

Example: B: (a+b/c)(b/d)
Notice that (a/b+c) would
cjive the same graph as

(o /).

FIG.

DEFINITION. The planar quantified boolean formula problem (PTF) is TF restricted
to formulae B such that G(B) is planar.

THEOREM 1. PTF is P-space complete.
Proof. We give a polynomial time algorithm that converts a formula B in 3QBF

into a formula PB such that"
(i) G(PB) is planar;
(ii) PB:B.
The algorithm proceeds as follows. Draw G(B) on a grid. The grid is 3m x 3m, with

nodes arranged on the left and bottom borders. The set of clauses {c} lies along the left
border, with each node covering the end points of 3 adjacent horizontal grid lines. The
variables {vj} lie along the bottom border, with each node v covering the end points of
mi vertical lines of the grid. Grid lines are then darkened in the obvious manner, so that
each arc in Ax consists of a horizontal segment and a vertical segment. A2 is obtained
simply by joining adjacent variables with an arc (see Fig. 2).

We now modify the formula so that nonplanarity is eliminated in A 1, and then
further modify the formula so that A2 can be drawn without introducing nonplanarity.

Pick a point on the graph where two arcs cross, involving, for instance, the variables
a and b (see Fig. 3).

Replace that section of the graph by the subgraph shown in Fig. 4, G(X), where
the small unlabeled nodes in the picture represent clauses of X. Viewing B as a
string, the clauses of X are appended to B, and a new quantifier block existentially
quantifying the new variables in X is inserted between the last quantifier of B and the

PLANAR FORMULAE AND THEIR USES 331

Example B=(a+b+c)
(a+b+d} (a+c+e)

FIG. 2

C.o

cj

FIG. 3

FIG. 4

332 DAVID LICHTENSTEIN

beginning of the formula. X is comprised of the following!

(a2 -I- b2 + a)(a2 + c7)(b2 +), i.e., a2b2<:ce

(a:z+b+3)(a2+)(b+), i.e., a2b1:/3;

(a + bl + 3,’)(a + ,)(b-l + q), i.e.,

(a+b2+6)(tl+t)(b2+6), i.e., ab2::> 6;

(c + +,+6);

(a + t)(t +)(+ 6)(+

(a + a)(a + az)(bz + b)(b + bz), i.e. aCe, a2, bee, b2;

and a new quantifier block existentially quantifying the new variables is appended to the
list of quantifiers.

At the same time a or a is replaced in ci with al or al and b or b is replaced in ci
with bl or bl.

It is clear from the picture that the new graph has one less crossover point, and one
can easily verify that X is satisfiable if and only if [al a] and [b <:> b].

The algorithm repeats the above replacement at each crossover point, starting at
lower right and moving up and left, using new auxiliary variables each time, until the
graph is finally planar.

At each stage of the algorithm, only a constant amount of work is done, and there
are no more than 9m2 stages.

Now we draw in A2 without disturbing the planarity of the graph. Since all of the
new variables are in the same existence block, we are free to order them arbitrarily.
Taking another look at our planar crossover box, we notice that there is a simple path
linking all of its variables (i.e., the dark lines in Fig. 5). We use this fact to show how to
connect all of the new variables together, as in Fig. 6.

Notice that we have used extra boxes to allow arcs in A_ to cross A arcs as
necessary (see Fig. 6). This can add no more than 9m2 new boxes, and the algorithm is
thus clearly polynomial. Q.E.D.

FIG. 5

PLANAR FORMULAE AND THEIR USES 333

FIG. 6

DEFINITION. Planar 3SAT(P3SAT) is 3SAT restricted to formulae B such that
G(B) is planar.

THEOREM 2. P3SAT is NP-complete.
As remarked above, this is a corollary of Theorem 1.
A word about the arcs in A2: They are irrelevant for the reduction to node cover,

and, for the reductions to Hamiltonian line, geometric connected dominating set and
geography, the arc {vn, vl} will have to be deleted, so as to make the path taken by the A2

arcs a Hamiltonian line rather than a Hamiltonian circuit.

4. Planar node cover.
DEFINITION. A node cover C of a graph G is a subset of the nodes of G with the

property that every arc of G is incident to a node in D.
THEOREM 3. Node cover is NP-complete even when restricted to the class ofplanar

graphs.
Proof. We present Garey, Johnson and Stockmeyer’s proof [5] that node cover is

NP-complete, and then show how to strengthen it for the planar case.
Given a boolean formula B in 3CNF with m clauses in n variables, form the

following node cover problem NC(B), which will have a node cover of size 5m if and
only if B is satisfiable.

Each clause is represented by a triangle, and each variable is represented by a
simple cycle of length 2m. Even numbered nodes in the cycle represent negated
instances of the variable, and odd numbered nodes represent unnegated instances.

Arcs go between triangles and cycles whenever the variable represented by the
cycle occurs in the clause represented by the triangle. Each node in a triangle is used
only once (see Fig. 7).

At least half the nodes from each cycle must be in any node cover, and this local
minimum can be achieved only if every other node is chosen. At least two nodes from
each triangle must be in any node cover. The rest of the proof involves showing that if
these two local minima are achieved, then B is satisfiable.

Note that the choice of which clause node to attach to which node in the cycle is
arbitrary, and that this choice determines a cyclic ordering of clauses around each
variable and of variables around each clause.

334 DAVID LICHTENSTEIN

Exomple B-(o+b+c)(b+b+d)

FIG. 7

If each variable structure and each triangle is viewed as a single macro node, as the
dotted lines indicate, then the resulting graph is simply G(B). There is a choice of cyclic
orderings of clauses around variables and variables around clauses for which NC(B) is
planar if and only if G(B) is planar. Since any (polynomial) planarity algorithm can find
such an ordering if it exists, Theorem 2 applies and the theorem is proved. Q.E.D.

5. Planar directed Hamiltonian circuits.
THEOREM 4. Planar directed Hamiltonian circuit is NP-complete [6].
Proof. (This proof is due to Michael Sipser.) We show how to construct H(B), a

graph that has a Hamiltonian circuit if and only if B is satisfiable. Variables are
represented by ladders, as shown in Fig. 8. Choosing the variable true will mean

FIG. 8

traversing the nodes in the ladder in a zig-zag starting at the top; choosing the variable
false will mean starting at the bottom. The length of the ladder will be the number of
(undirected) cross rungs, and the ladder for the variable vi will be 4mi long. (4mi is long
enough so that we can leave gaps between sections of the ladder linked to two different
clauses.)

Clauses are simply single nodes. They are connected to ladders as in the example
shown in Fig. 9.

To complete the construction, the ladders are linked together in a global Hamil-
tonian circuit (drawn in long dashes).

PLANAR FORMULAE AND THEIR USES 335

/
/

B.-(a+b+c)
FIG. 9

Claim. If B is satisfiable, the Hamiltonian circuit in H(B) zigs the appropriate way
in each ladder, and traverses each clause node by interrupting the path in the ladder to
jump up and back down to the ladder, as in Fig. 10. Note that the choice of which
variable to use in satisfying the clause is arbitrary for clauses with more than one true
literal.

FIG. 10

The converse is nearly as simple. If H(B) has a Hamiltonian circuit, we now show
that it cannot leave a ladder in the middle via a clause, but instead must continue down
until the end of the ladder.

Suppose then that H(B) has a Hamiltonian circuit which misbehaves, i.e., jumps
from one variable to another via a clause, as in Fig. 11.

It should be clear that node u can never be traversed. The converse then follows
easily from the fact that each Hamiltonian circuit in H(B) looks right, i.e., that it zigzags
correctly through variables and returns immediately to the ladder it came from after
traversing a clause node.

We can now invoke Theorem 2 in the same way we did in the previous section, and
the theorem is proved. Q.E.D.

COROLLARY. Planar directed Hamiltonian line is NP-complete.
Proof. Just delete one are from the global circuit, e.g., the one representing {vn,

from A2.

336 DAVID LICHTENSTEIN

FIG. 11

COROLLARY. A more involved case analysis shows that the directions on the arcs in
the construction are unnecessary, and this gives us the NP-completeness of planar
undirected Hamiltonian circuit and line. These were first proved in [6].

The next two proofs are less straightforward than the previous two in that we can
not simply demonstrate a reduction from 3SAT and then invoke Theorem 2. This leads
us to a choice of where to do the extra tinkering necessary. One can either invent more
complicated reductions and use more involved proofs of the correctness of the
reduction, or try to massage boolean formulae into forms more easily reducible to the
problem at hand. The strategy followed in this paper is to do as much of the work as
possible with boolean formulae so as to have to prove as little as possible about
unfamiliar, uncooperative combinatorial structures.

6. Geometric connected dominating set.
Problem. Given a set of cities in the plane, each of which has a receiver operational

with a radius of d, can k transmitters be apportioned so that a message originating at one
transmitter can be relayed to every city?

The above problem is a version of the dominating set problem, and was posed by
Phil Spira in connection with packet radio network design.

DEFINITION. A dominating set of nodes in a graph is a subset of the nodes in the
graph with the property that every node not in the set is adjacent to a node that is in the
set.

DFINITON. The connected dominating setproblem (CD): Given a graph G and an
integer k, is there a connected subset of size k that is a dominating set?

DEFINITION. The geometric connected dominating problem (GCD) is CD when
the nodes are a set of points in the Euclidean plane, and an arc is drawn between all pairs
of points no greater than distance 1 apart.

THSOgM 5. GCD is NP-complete.
Proof. B, as usual, is a boolean formula in 3CNF with m clauses and n variables.

We wish to construct an equivalent GCD problem, GCD(B).
Our method of presentation will be as follows" First, we present the structures we

would like to use in the proof. Then, according to the strategy outlined earlier, we
formulate a corollary to Theorem 1 which facilitates the reduction, and last we show the
entire construction and prove its correctness.

We want to represent each variable by a set of points n the plane of the form shown
in Fig. 12. Choosing a variable true corresponds to putting all the nodes in the top row
into the connected dominating set (cds); false puts the bottom row in. The square nodes
force at least one of the two nodes adjacent to it into any cds. The structure is long

PLANAR FORMULAE AND THEIR USES 337

1/40

III0

0 0 0

0 0 0

FIG. 12

enough to prevent unwanted interactions between nearby clauses, just as in the
Hamiltonian circuit construction.

The variables will all be linked together by a line we call a ground (see Fig. 13).

o?

0 r’l

FIG. 13

The ground will follow the path taken by the A2 arcs from G(B). Figure 14 is a
detailed view of the ground passing through a variable. Notice that we have had to move
the square forcers outside the variable in the two pairs near the ground, since otherwise
the forcers would be near the ground, and would not force at least of the two nearby
nodes from the variable into the cds.

Each clause is represented by the kind of structure shown in Fig. 15. If the]th
clause is (a + b / c), then one circled node will be within 1 of a top node representing a
one will be near a bottom node in the structure representing b, and one will be near a top
node in the structure representing c.

Notice that the uncircled round nodes are forced into any cds by the square nodes
nearby. In general, we will refer to a node which is forced into any cds by a nearby
square node as forced.

At this point the reader should notice a glaring discrepancy between variable nodes
as defined in 3 and the variable structure we intend to use here to represent them. The
latter are bipolar, by which we mean that all clauses containing a positive instance of a
variable must be positioned near the top of the variable, and all clauses containing a
negative instance of the variable must be positioned near the bottom. We imposed no

338 DAVID LICHTENSTEIN

9/10

9/!0

0 0

0

E!

FIG. 14

0 1:3 0 []

o-f-
uO1 0 0

0

FIG. 15

PLANAR FORMULAE AND THEIR USES 339

such restriction in our definition of planar formulae. We do so now, and prove the
resulting problem is still NP-complete.

LEMMA 1. Planar satisfiability is still NP-complete even when, at every variable
node, all the arcs representing positive instances of the variable are incident to one side of
the node and all the arcs representing negative instances are incident to the other side.
(Equivalently, we can have separate nodes for positive and negative literals, and add an
arc between the (now) two nodes representing a single variable.)

()

()
FIG. 16

Proof. Take the planar embedding of the graph of the formula (see Fig. 16), and
replace each variable a with a cycle of ma variables ai, together with clauses (ai + ak) for
variables ai and ak such that kak follows aj in a clockwise traversal of the cycle. (Notice
in Fig. 17 that the ordering of variables in the cycle is different from the ordering
followed by the A2 arcs.) These clauses have the effect of forcing ace ak for all a and ak
in the cycle. A2 arcs are embedded as in Fig. 17.

Now, back to the problem at hand. Let:

NV 1/2 the number of nodes in all the variable structures;

NC the number of forced nodes in all the clause structures;

NG the number of forced nodes in the ground.

Let k NV+NC+NG+ m.
Claim. GCD(B) has a connected dominating set of size k if and only if B is

satisfiable.
: Choose top and bottom rows in variables according to whether the variable is

true or false in a given satisfying instance of B. Pick one circled node in each clause that
lies within 1 of a variable already chosen. Pick all the forced nodes in each clause and in
the ground.

::), Let GCD(B) have a connected dominating set of size k. We show that this set
must look right. Call a node live if it is in the cds. Suppose some variable switches from
true to false at least once. Then suppose we want to find a path from a live node in the
left half of the variable to the right half. Since the ground follows the route taken by A2
arcs, and is therefore a Hamiltonian line through the variables, the path we are looking
for must go through at least one clause, ci. This means some clause has two live circled
nodes, since otherwise clauses are culs de sac. Since our threshold, k is a sum of local

340 DAVID LICHTENSTEIN

FIG. 17

minima, there is no slack anywhere to make up for the extra live node in Ci. So every
variable has either the entire top row live, or the entire bottom row live.

The rest of the proof involves showing that the entire graph can be embedded in the
plane in such a way that nodes are at rational points whose precision is bounded by a
polynomial in the size of the number of points. This demonstration is straightforward,
and we omit it. QED.

7. Generalized geography.
DEFINITION. Generalized geography (GG) is a game played by two players on the

nodes of a directed graph. Play begins when the first player puts a marker on a
distinguished node. In subsequent turns, players alternately place a marker on any
unmarked node q, such that there is a directed arc from the last node played to q. The
first player who cannot move loses.

This is a generalization of a commonly played game in which players must name a
place not yet mentioned in the game, and whose first letter is the same as the last letter of
the last place named. The first player to be stumped loses. This instance of geography
would be modelled by a graph with as many nodes as there are places. Directed arcs
would go from a node, u, to all those nodes whose first letters are the same as u’s last
letter.

THEOREM 6. GG is P-space complete [11].

PLANAR FORMULAE AND THEIR USES 341

Proof. We are given a formula BQ3CNF, B=QlVl, Q202,’", Q,v,F
(v l, v2,’" ’, v,). Assume without loss of generality, that Q1 =V, Q, :l, and that
Qi # Qi+x for 1 <= <_- n. Construct the graph GG(B), which is shown in Fig. 18.

i,1

FIG. 18

Each variable, v, is represented by a diamond structure, and each clause, cj, is
represented by a single node. In addition, we have arcs (v,2, v/,o) for 1 <- < n, (v,,2, cj)
for 1 <-/" =< m, and paths of length two going from c. to v, for vi in ci, and from ci to Si,
for g in ci. Vl.o is the distinguished node (see Fig. 19).

Q0

O
0 2

bo
b

C 2

Example"

3oVb3c Vd(o+b+c)(b+d)

FIG. 19

342 DAVID LICHTENSTEIN

Play proceeds as follows: One player chooses which path to take through
diamonds (i.e., diamonds representing universally quantified variables), and the other
player chooses which path to take through ::l-diamonds. After all diamonds have been
traversed, the ’d-player chooses a clause, and the :l-player then chooses a variable from
that clause. :1 then wins immediately if the chosen variable satisfies the clause;
otherwise, wins on the next move. Assuming both players play optimally, it follows
easily that ::! wins if and only if B is true (we leave the details to the reader).

Planar generalized geography.
THEOREM 6. Generalized geography is P-space complete even when played only on

planar graphs.
Proof. There is a problem which prevents us from merely invoking Lemma 1 to

give us the proof, namely, the set of arcs, {(v,, c)ll _-</_-<m}.
To solve this problem, we make the following observation" There is no need to wait

until all variables have had their truth values chosen before allowing the /-player to test
the truth of a clause; in fact, each clause can be tested as soon as its last variable has had
its value fixed. Moreover, it is only necessary to allow testing of clauses not satisfied by
their last chosen variable.

In order to implement this idea, we need variable structures which are large enough
so that every clause has a different node of attachment to the structure. Moreover, this
node must be one at which has the choice of direction. Since each variable occurs in at
most three clauses (by Lemma 1), the structure in Fig. 20 suffices.

FIG. 20

The clause construction is now as in the following example. Let ci (a + b + d),
where d is the variable with the highest index of the three (i.e., is quantified last). The
corresponding arcs in GC(B) are a path of length two going from ci to an unused node
from the set {a 1, ’, aT}, a path of length two going from c to an unused node from the

PLANAR FORMULAE AND THEIR USES 343

set {bl," ’, b7}, and (d2, ci), (d4, Ci) or (d6, Ci) if d is a V-variable, else (dl, ci), (d3, Ci) or

’ (ds, ci). Notice that if d is chosen true, there is no way for the player to test ci. In fact,
it would not be in W’s interest to do so.

At this point, we invoke Lemma 1 and the theorem is proved. Q.E.D.

8. Conclusion. We have seen how one planar completeness result easily produces
others through the use of transformations under which planarity is invariant. We
suspect that it is possible to obtain easy NP-completeness proofs for the planar version
of Steiner tree, triangulation existence and minimum weight triangulation. We suggest
that it may be profitable to use other artificial sets (e.g., planar exact 3-cover,
appropriately defined) to obtain other sets of uniform and easy proofs.

Planar generalized geography has been used to prove P-space completeness of
appropriately generalized versions of chess, checkers, go, and hex [13], [3], [8], [10]. A
simpler proof of the P-space completeness of generated geography was presented in [7],
but the proof in this paper is the original one, and we have included it here more as a
justification for planar formulae than for its own sake.

Acknowledgments. I wish to thank Shimon Even, Faith Fich, Michael Garey,
Michael Gursky, David Johnson, Richard Karp, Eugene Lawler and Michael Sipser for
their help with this paper. Thanks also go to the Weizmann Institute of Science and to
the Hebrew University in Jerusalem for allowing me the use of their facilities while
writing the paper.

REFERENCES

[1 A.V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis ol Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[2] S. A. COOK, The complexity oftheorem-proving procedures, Proc. Third ACM Symposium on Theory of
Computing, 1971, pp. 151-158.

[3] A. S. FRAENKEL, M. R. GAREY, D. S. JOHNSON, T. SCHAEFER AND Y. YESHA, The complexity
checkers on an N xN board, Proc. 19th IEEE Symposium on Foundations of Computer Science,
1978, pp. 55-64.

[4] M. R. GAREY AND D. S. JOHNSON, The rectilinear Steiner tree is NP-complete, SIAM J. Appl. Math.,
32 (1977), pp. 826-834.

[5] M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some simplified NP-complete problems, Proc.
Sixth ACM Symposium on Theory of Computing, 1974, pp. 47-63.

[6] M. R. GAREY, D. S. JOHNSON AND R. E. TARJAN, The planar Hamiltonian circuit problem is
NP-complete, this Journal 5 (1976), pp. 704-714.

[7] R.M. KARP, Reducibility amongcombinatorialproblems, Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[8] D. LICHTENSTEIN AND M. SIPSER, GO is polynomial space hard, J. Assoc. Comput. Mach., 27 (1980),
pp. 393-401.

[9] A. R. MEYER AND L. J. STOCKMEYER, Word problems requiring exponential time, Proc. 5th ACM
Symposium on Theory of Computing, 1973, pp. 1-9.

[10] S. REISCH, Hex ist PSPACE-vollstandig, private communication.
[11] T. J. SCHAEFER, On the complexity ofsome two-person perfect in]ormation games, J. Comput. Systems

Sci, 16 (1978), pp. 185-225.
[12] L. STOCKMEYER, Planar 3-colorability is polynomial complete, SIGACT News 5 (1973), pp. 19-25.
[13] J. A. STORER, A note on the complexity ol chess, Proc. 1979 Conference on Information Sciences and

Systems, Dept. Electrical Engineering, The Johns Hopkins University, Baltimore, Maryland, 1979,
pp. 160-166.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0011 $01.00/0

ON THE ACCEPTING DENSITY HIERARCHY IN NP*

SHLOMO MORAN"

Abstract. Let Al be a polynomial time nondeterministic algorithm accepting a set A, and let a A.
The "accepting density" of Al for a is the ratio between the number of accepting computations and the
total number of computations of A1 on input a. (If this ratio is _->1/2 for all a cA, then Al is a polynomial
time probabilistic algorithm accepting A.)

In this paper a characterization of sets in NP according to their "accepting density" is investigated. It
is shown that for some relativized form of NP no general, nontrivial lower bound on the accepting density
of sets in NP exists. It follows that for this relativized form the accepting density of any NP complete set
for inputs of length n cannot be greater than 1/2 for some fixed c > 0 and that NP (under that relativization)
can be partitioned to infinitely many classes C1, C2,’ ", such that the accepting density of sets in Ci is
strictly greater, in some precise sense, than that of sets in Ci+l. Recent works on the relationship between
relativized and unrelativized proof techniques imply that to prove that any of the above results does not
hold for the (unrelativized) class NP, possible at all, is probably beyond the ability of today’s techniques.

Key words, nondeterministic algorithms, P, NP, probabilistic algorithms, algorithms with oracles

1. Introduction. Let NP be the class of sets which are recognizable by a poly-
nomial time nondeterministic algorithm. It was observed recently that there are some
sets in NP which, though they do not have (yet) polynomial time determinstic
algorithms which solve them, they can actually be solved in polynomial time by
probabilistic algorithms [8], [10], [2]. This is due to the fact that there are polynomial
time nondeterministic algorithms solving those problems which have the following
property: If some input is accepted by such an algorithm, then at least 1/2 of the
computations of that algorithm on this input are accepting computations. This fact
prompted some researchers to characterize sets in NP according to the ratio between
the number of accepting computations and the number of all possible computations
for strings in those sets. (See, e.g., [1].) We shall refer to that ratio above as the
"accepting density". (This notation was suggested by Adleman in [1].)

We say that a set A in NP has an accepting density 1/u(n) for some function
u(n) if there is a polynomial time nondeterministic algorithm Al accepting A such
that, for each string a of length n, if a A, then Al accepts a with probability => 1 / u (n).
Clearly, every set in NP has an accepting density =>1/2nk for some k.

Let G be a set, and let NP denote the class of sets accepted by nondeterministic
polynomial time algorithms using oracle G (see [3], [5]). We show that for some G
there is no k such that all sets in NP have an accepting density ->1/2nk. This implies
that the accepting density of any NP complete set is not larger than 1/2"c for some
c > 0 and that NP can be partitioned to mfimtely many nonempty classes C1, C2, ’,

such that the accepting density of sets in Ci is strictly greater (in some precise sense)
than that of sets in Ci+l. By arguments concerning the relationship between relativized
and unrelativized proof techniques [3], [5], [9], it is strongly suggested that unless a
new and fundamental technique is found no result which contradicts the above results
can be proved for the (unrelativized) class NP.

2. Preliminaries. In the sequel we shall assume that all sets mentioned are subsets
of E* (0, 1}*. For x E*, l(x) denotes the length of x. Binary predicates are identified

* Received by the editors March 21, 1980, and in final revised form December 1, 1980. This research
was supported in part by the National Science Foundation under grant MCS 78-01736.

" Computer Science Department, Technion, Haifa 32000, Israel.

344

ACCEPTING DENSITY HIERARCHY 345

with subsets of E* E*. For a binary predicate P, "P(x, y) is true," or simply "P(x, y)",
means (x, y) c P.

DEFINITION 1. A setA is in NP if for some polynomial time computable predicate
P(x, y) and some integer k

(1.1) A ={xly, /(y)= t(x)k,p(x, Y)}.

(This is equivalent to: if there exists a nondeterministic polynomial time algorithm
accepting Amsee, e.g., [6].)

The set above is in R if it also holds that:

A {x 31/2 (2t}")y’s, l(y) l(x), P(x, y)}.

(I.e.: if there exists a nondeterministic polynomial time algorithm f which recognizes
A such that for each a c A at least 1/2 of the 2t(a possible computations of f on input
a are accepting computations, or" for each a c A, f accepts a with probability => 1/2.
We assume that each of the computation paths of f on input x has the same probability
to be executed. For a more elaborate exposition of the set R, and of probabilistic
.’omputations in general, see [4], [2].).

It can be shown that if we change the constant 1/2 in (1.2) to any other positive
constant smaller than 1, then still the same class R is defined. (If the constant is 1,
then the class defined is P.) Moreover--as was noted already in [2], we can change
(1.2) to

{ 2’(x }(1.2’) A x ::!
l(x)’ y’s, l(y)= l(x) k, P(x, y)

where is any positive constant, and still the same class R is defined.
Equation (1.2’) above can be generalized in the following way to define other

classes of sets in NP according to the density of the accepting computations for the
strings in those sets.

DEFINITION 2. Let A be a set in NP, and let u be a real-valued function defined
on the integers. We shall say that A belongs to the density class of u (denoted by
"A c D(u)"), if there exists a polynomial time computable predicate P(x, y) and some
constant k such that

(2.1) A={x]Zly, l(y)=l(x)k,P(x, y)} x ::!... y’s,l(y)=l(x)k,p(x, y)
u(l(x))

(or, equivalently, if there exists a nondeterministic polynomial time algorithm f
accepting A such that for each a cA at least 1/u(l(a)) of the (equiprobable) computa-
tions of f on a are accepting computations, or for each a cA, f accepts a with
probability >=l/u(l(a))).

Examples. A c PoA c D(1), where 1 denotes the unit function. A c R A c
D(q), where q is some polynomial satisfying q(n)> 1 for almost all n c Z/.

Let Al be a polynomial time probabilistic algorithm. By repeating the execution
of Al several times, one can increase its accepting density, as described below.

Let A be a set satisfying (2.1), and let g(n) be a positve integer-valued function.
We define a nondeterministic algorithm AI(P, g) (P is the predicate in (2.1)), which
recognizes A, as follows"

AI(P, g): input: x c X*, l(x)= n.
Begin
For 1 to g(n) do

If u(n)< 1 for some n’s, then, by convention, D(u(n))=D[max (u(n), 1)].

346 SHLOMO MORAN

begin
(1) generate (in a nondeterminstic way) a string y of length n k.
(2) if P(x, y) then halt and accept.

end
reject
end.

Assuming that each of the 2"k strings of length n k has the same probability to
be generated at line (1) above, it is not hard to show the following:

(a) For each x *, if xA, then x will be rejected by AI(P, g).
(b) If x A, then the probability that x will be rejected is bounded from above by

(1-1/u(n))g("). (u(n) is as defined in (2.1).)
(c) If the time complexity of line (2) (checking whether P(x, y) holds for y such

that /(y)= n k) is O(nt), then the time complexity of the algorithm as a whole is
O(g(n)(n*+ nk)). In particular, if g(n) is a polynomial, then AI(P, g) is a polynomial
time algorithm.

Note that the technique of repetition implies that if A D(u), then there is a
probabilistic algorithm accepting A with probability _->1/2 in O(nku(n)) time for
some k.

Another corollary of the above technique of repetition is the equivalence of the
different definitions of the class R, which is formally stated below.

PROPOSITION 1. Let A be a set in NP. Then ifA D(n i) for some > O, then for
each e >0, A D(1/(1-e)).

The next proposition is an analogue of Proposition 1 for sets in NP-R.
PROPOSITION 2. Let A D(u(n)), where u(n) satisfies the following: For each i,

lim,_. (ni/u(n))=O. Then, for each i, A D(u(n)/ni).
Proof. By definition there exists a polynomial time computable predicate P(x, y)

such that for some positive k"

a {x ::ly,/(y) l(x) k, P(x, y)} {x ::!
2/(x)k }u(l(x)) y’s, /(y) l(x), P(x, y)

Let be given. By the discussion preceding Proposition 1, AI(P, n i) is a polynomial
time algorithm which for each a A accepts a with probability >-1- (1-1/u(l(a)))(a)’.
Hence, in order to prove the proposition, it suffices to show that

U (n 0 ’u (n
This will follow from the equality

1-(1-1/u(n))n’

(**) lim 1.-. nu(n)

Equation (**) follows from the fact that lim,_. (ni/u(n))=0, by the following

lim
1-[1-(n/u(n))+ 1/2(ni/u(n))2]= 1. [-!

n..,oo (ni/u(n))

1-(1-u(n)l)"’ 1-[(1-.u(n)l)’(")]
lim lim lim

1-exp" ""t-ni/utn))
,,-,oo ni/u(n) ,,-,o (ni/u(n)) ,,-.,oo (ni/u(n))

equalities:

ACCEPTING DENSITY HIERARCHY 347

3. The accepting density under relativization. By Proposition 2 above, it can be
shown that the power of polynomial time repetition in increasing the accepting density
is very limited for sets not in R. For instance, it cannot increase the accepting density
from i/2nk to I/2nk- for arbitrarily small e > 0. Thus, it is possible a priori that for
each k there is a set in NP which is not accepted by any nondeterministic polynomial
time algorithm whose accepting density is larger then 1/2". It is interesting, therefore,
to know what can be said about the accepting density of some important sets in NP
and, in particular, of NP complete sets. (It can be easily checked that the accepting
density of the "naive" nondeterministic algorithms for NP complete sets is at most
I/2 for some constant c). By results of Rackoff [9], which use arguments concerning
relativizations (see next), the problem NP R probably cannot be solved by techniques
known today. We shall show next, by extending the ideas in [9], [7], that no nontrivial
lower bound on the accepting density of NP can probably be proved by techniques
of today.

Let A be a set, and let F be a class of sets represented by the algorithms which
recognize them. We assume that algorithms can be encoded in some definite way (i.e.,
by encoding of Turing machines which execute them). The class FA is the class of
sets recognized by the same algorithms, which has the additional property of deciding
a membership in A in one step. (A is denoted as the "oracle set".) Let FI and F. be
two classes of sets. The problem FA F is called "a relativization of the F1 .- F2
problem with respect to A". It is widely believed now that if F(#F for some A,
then, unless a new and fundamental proof technique is found, it is impossible to prove
that F1 F2 (and vice versamif FA F, then it is impossible to prove that F1 # F2)
[3], [5], [9].

Let B NP. Then, by an elementary counting argument, B D(2") for some k.
We shall show next that there is a (recursive) set G, such that for each k, NP D(2").
This implies, by the discussion above, that pl’obably no nontrivial lower bound on the
accepting density of the sets in NP can be found by techniques of today.

DEFINITION 3. Let t(n) be a function. Then T(t(n)) denotes the class of sets
accepted in t(n) time by a deterministic algorithm using oracle G.

THEOREM 1. There exists a set G such that the following conditions hold for each
positive integer q"

(a) NP is not included in T(2"")
(b) D(2"") is included in T(2""+li.
In particular, NP is not included in D(2"").
Proof. The oracle set G is composed of some PSPACE complete set $, to which

some additional strings are added. $ does not contain strings of even length, while
the added strings are all of even length.

Let (M, M2, be an enumeration of the deterministic Turing machines, and
let ((i, ql), (i2, qz),"" be an enumeration of Z/Z/. For each pair (i, q), Mi,q
denotes a Turing machine which on input of length n simulates Mi up to (at most)
2"q

steps and then halts. The set G is constructed by adding at stage m at most one
string of length 2e(m)q" to G. Initially, m 1, e(1) 1. Let G(m) denote the contents
of G just before the execution of stage m. (G(1)= S.) The procedure is as follows"

Step 1 Run t"’) 0e(m)i.,,, on If this accepts, then do nothing, else add one string
of length 2e(m)m which has not been queried about (during this procedure) to G.

Step 2. Set e(m + 1)<-- 22’(’)"’, rn <-- rn + 1, and go to step 1.
It is easy to check that step 1 of the procedure can always be carried out (i.e.,

there always exist a string of length 2e(m)"" which has not yet been queried about)
and that if z,, is inserted in G at stage rn and is inserted next, then l(z,,)<=
log log (/()).

348 SHLOMO MORAN

To prove part (a) of the theorem, let ROOTq (G) be defined by

ROOT, (G)= {x I::ly, l(y)=21(x), y G}.

Clearly,. ROOTq (G) NPa. We show now that ROOTq (G) T(2"")a.
Suppose that ROOTq (G) is accepted in 2"" steps by M. Then M,q accepts

ROOTq (G). On the other hand, by the construction of G, there is some m such that
Oe(") is accepted by M,q if and only if no string of length 2e(m)" is in G if and only
if oe(’) ROOTq (G), a contradiction. This completes the proof of part (a) of the
theorem.

It remains to prove that for each q, D(2"")a T(2""+)a. Let A e D(2"")a. Then,
by Definition 2,

a {x I=ly,/(y)= l(x)k,P(x, y)}={xlZlZt(X)k-t(X)"y’s,/(y)= l(x)k,P(x, y)},

where P is some polynomial time computable (with oracle G) predicate and k is some
constant >=q. LetMe be algorithm which recognizes the set {(x, y)]/(y) l(x) k, P(x, y)}
in O(l(x)j) time. We describe below an algorithm which recognizes the set A above
in O(nt2n") time for some t, and hence in O(2n"/l) time. Let x be given; l(x)= n,
where n < 2".

Define G G- S. By querying about all strings of length 2, 4,. ., 2 [log n/2J,
compute the set L of strings of length -<log n in . This requires O(n) queries. Let
z be the shortest string in not in L. Then every string in not in L U {z} is of,length =2 Let G1 S t.J L and Gz GI {z}. It follows that Ga can be computed in
polynomial time and that x A if and only if for some y, (y) (x)k, M% accepts (x, y).

Define a string w, log n <l(w)<=n I, to be "critical" for x if there are at least
2"k-"" strings y such that M1 on input (x, y) queries about w. In the next step of the
algorithm, it is checked whether there is a critical string in G. (There is at most one).

CLAIM 1. There are at most ni2n" critical strings for x.
Proof. Suppose there are c critical strings. Then there are at least c. 2nk-"" queries

of M1 on (x, y) as y range over all strings of length n k. The total number of such
queries is at most n i. 2". Hence, c. 2"-n" -< ni2"k. The claim follows.

Given G1, there is a (nondeterministic) polynomial space algorithm which
recognizes the set {(w’, x)lw’ is the prefix of some critical string for x}. (This can be
done by checking for each w such that l(w)<-n and w’ is prefix of w, if w is critical
for x, by simulating M1 on (x, y) for all y such that/(y) l(x)k). Using the PSPACE
completeness of A, the above set can be recognized in time which is polynomial in
l(x), using G as an oracle. It follows that to check if there is a critical string, and to
construct one if there is any, takes only polynomial time, when using G as an oracle.
Thus, repeating this procedure for at most n J2"" different strings, it can be checked
if there is a critical string in in O(nt2") time, for some t.

Let W be the set of critical strings in ((I W[-<- 1).
CLAIM 2. If X A, then =1 y, l(y) l(x) k, M uw accepts (x, y).
Proof. As mentioned above, x cA if and only if ::iy, /(y)= l(x) k, M accepts

(x, y). So if Gz Ga W, the claim is obvious. If G2 # Ga U W, then W , and G2
contains a noncritical string z, where z G1. Since z is noncritical, there are less than
2"-"" strings y such that M (and hence Me) on input (x, y) queries about z. But,
since x A, there are at least 2"-n" ’s Mey such that accepts (x, y). It follows that
there is at least one y such that Me accepts (x, y) without querying about z.

Since PSPACEs= pS, it can be decided in polynomial time, using oracle G,
whether ::1 y, l(y) l(x) and Mauw accepts (x, y). If the answer is "no", then by
claim 2, x A. If the answer is "yes" and G Ga t_J W, then x e A. Otherwise, let z
be the (noncritical) string in Gz-Gl" If (x, y) is accepted without querying about z,

ACCEPTING DENSITY HIERARCHY 349

then x cA. Otherwise, z can be found, and x cA if and only if xMaUz=M2,
which, again, can be decided in polynomial time. This completes the proof of the
theorem.

COROLLARY 1. Let A be a NP complete set (in the Karp sense [6]), where G is
as above. Then for some positive c, no nondeterministic polynomial time algorithm which
recognizes A (using oracle G) has accepting density larger than 1/2no.

Proof. By Theorem 1, there is a set B NP such that BD(2n). By the NP
completeness of A, B is reducible to A in n steps for some i. Let c 1/i. We claim
that no polynomial time nondeterministic algorithm accepting A has an accepting
density >--1/2no. Suppose, on the contrary, that algorithm Al accepts A and has
accepting density >=1/2n’. Then, by reducing B to A and applying Al, there is an
algorithm accepting B with accepting density _->1/2’) 1/2". A contradiction. I-!

Another related interesting problem concerns the possibility of the existence of
"accepting density" hierarchy in NP: can NP be partitioned to nonempty classes
C, C2," ’, such that sets in C has an accepting density which is strictly greater, in
some precise sense, than the accepting densities of sets in C+? For NP, the answer
is positive.

COROLLARY 2. There is an infinite sequence of integers, 0 io < i <..., such
that for each k >- 0 there is a set Ak in NP satisfying"

1) Ak D(2"’k),
2) Ak_D(2"’k-1).
Proof. For k 0, R e D(2") D(2). i is defined inductively by

i =min (il:A NP -D(2"’k-1), A D(2"’)}.

The existence of i follows from Theorem 1 and from the observation that for
each A NPa, A D(2n’) for some i. [3

Acknowledgment. Part of this paper appeared in the author’s Ph.D. thesis,
supervised by Professor Azaria Paz, to whom the author wishes to express his thanks.
I would also like to thank the referee for helpful remarks.

REFERENCES

[1 L. ADLEMAN, Two theorems on random polynomial time, Proc. 19th IEEE Symposium on Foundations
of Computer Science, 1978, pp. 75-83.

[2] L. ADLEMAN AND K. MANDERS, Reducibility, randomness and intractability, Proc. 9th ACM
Symposium on the Theory of Computing, 1977, pp. 151-163.

[3] T. BAKER, J. GILL AND R. SOLOVAY, Relativization of the P Z NP problem, this Journal, 4 (1975),
pp. 431-442.

[4] J. GILL, Computational complexity of probabilistic Turing machines, Proc. 6th Symposium on the
Theory of Computing, 1974, pp. 91-95.

[5] J.E. HOPCROFTAND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computations,
Addison-Wesley, Reading, MA, 1979.

[6] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations, R.
E. Miller & J. W. Thatcher eds., Plenum Press, New York, 1972, pp. 85-104.

[7] S. MORAN, Some results on relativized, deterministic and nondeterministic time hierarchies, J. Comput.
System Sci., 22 (1981), pp. 1-8.

[8] M. O. RABIN, Probabilistic algorithms, in Algorithms and Complexity, J. Traub, ed., Academic Press,
New York, 1976, pp. 21-40.

[9] C. RACKOFF, Relativized questions involving probabilistic algorithms, Proc. 10th Symposium on the
Theory of Computing, 1978, pp. 338-342.

[10] R. SOLOVAY AND R. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977), pp.
84-85.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0012 $01.00/0

A SCHEME FOR FAST PARALLEL COMMUNICATION*

L. G. VALIANT-

Abstract. Consider N 2 nodes connected by wires to make an n-dimensional binary cube. Suppose
that initially the nodes contain one packet each addressed to distinct nodes of the cube. We show that
there is a distributed randomized algorithm that can route every packet to its destination without two
packets passing down the same wire at any one time, and finishes within time O(log N) with overwhelming
probability for all such routing requests. Each packet carries with it O(log N) bits of bookkeeping
information. No other communication among the nodes takes place.

The algorithm offers the only scheme known for realizing arbitrary permutations in a sparse N node
network in O(log N) time and has evident applications in the design of general purpose parallel computers.

Key words, network routing, Monte Carlo algorithm, randomization, parallel computers

1. Introduction. We propose a solution to a fundamental communication prob-
lem. Suppose that N devices connected together by a sparse network of wires wish
to communicate amongst themselves simultaneously. Suppose also that the communi-
cation pattern is unpredictable and rapidly changing as may be required, for example,
when the devices are computers cooperating in executing a parallel algorithm. The
problem is to specify a network topology and a routing algorithm that can implement
arbitrary such communication requests efficiently.

In particular we consider the paradigmatic communication requirement of a
permutation. Each device is a node of the network and has a distinct name x from
the set {0, 1,..., N-1}. Initially node x contains a "packet" labelled by an address
a (x)s {0, 1,..., N- 1} that is the destination node to which the packet is to be sent.
If the N addresses are all distinct then the communication requirement is a permu-
tation.

The contraint of having only a few wires from each node, and hence a sparse
graph is dictated by physical limitations. It implies that it will take a long time to
gather complete information about the permutation request at any one node, as this
would have to be done largely sequentially. This strongly suggests that we need to
look for a distributed routing strategy that does not require any node ever having
more than fragmentary information about the permutation.

There are several quantitative criteria according to which such parallel communi-
cation schemes (PCSs) may be judged. The scheme that we propose provably achieves
the following parameters"

1. Speed. Every permutation can be implemented in O(log N) steps. (By a step
we mean the time taken to transmit a packet along a wire. Computations carried out
locally at a node are not counted here).

2. Sparsity. Each node has O(log N) wires from it.
3. Simplicity. The bookkeeping information carried with each packet (e.g., its

address) is small (O(log N) bits). Such information is never transmitted except when
accompanying a packet. The local computations needed at each node are easy and
efficiently parallelizable.

4. Flexibility. (i) Besides complete permutations it can also implement partial
ones. (ii) No global synchronization is required.

* Received by the editors October 15, 1980 and in revised form March 24, 1981.
Computer Science Department, Edinburgh University, Edinburgh, Scotland EH8 9YL.

350

A SCHEME FOR FAST PARALLEL COMMUNICATION 351

There are essentially only two previously known constructions on which rival
schemes could be based: Batcher’s sorting networks [2] and the permutation networks
of Benes [3], [10]. The former suffers from the disadvantages that it requires (log2 N)
steps and cannot directly do partial permutations. The problem with the latter is that
the only fast parallel routing algorithms known require global information and take
time l’),(log2 N) even on a parallel random access model of computation [6]. An
advantage they do share over our scheme is that of greater simplicity in the local
computations, but this appears to be of ever diminishing relevance for currently
anticipated technologies.

In our scheme the network topology is simply the n-dimensional binary cube.
We therefore consider values of N with N- 2 for some integer n. Between every
pair of adjacent nodes of the cube we draw a pair of oppositely directed edges to
represent communication in the two directions. This topology has been suggested
frequently before. For a survey and bibliography see Siegel [8]. Previous schemes all
require at least l’(log2 N) steps for some inputs.

The claimed speed of our scheme needs one qualification. The routing algorithm
makes random choices in the same sense as the famous primality tests of Strassen
and Rabin [7], [9]. It is correct for all inputs (i.e., permutations) and, for some constant
C will terminate in C. log2 N steps with overwhelming probability. A noteworthy
feature of the algorithm is that its runtime distribution is provably identical for every
input. The algorithm is therefore testable in the sense that its general behavior for a
fixed N can be determined with great confidence by running it often enough on any
one input (even the identity permutation!). Since the analytic techniques we use, or
can envisage, yield relatively crude complexity bounds, making comparisons among
refinements of the algorithm is probably possible only by experimentation. We empha-
size that here experimental results can be given a rigorous interpretation, a circum-
stance that we have not met before in as strong a sense in the context of algorithms.

2. Outline of the algorithm. In describing the algorithm we identify each packet
by its starting node. Denoting the set {0,..., N-1} by V, the name of each packet
is therefore a number s s V.

The algorithm consists of two phases run consecutively. Phase A sends each
packet s V to a randomly chosen node u(s) V. For each s every u V has the
same probability (i.e., l/N) of being chosen, and the choices for the different packets
are independent of each other. The second phase then routes each packet s from u (s)
to its correct destination t- a(s).

At each instant there is just one copy of each packet, and this is either (a) being
transmitted along an edge, or (b) wating in a queue associated with such an edge, or
(c) stored as loose at a node.

For simplicity of exposition the algorithm is described in synchronized fashion
although this is inessential. In this form the algorithm alternates between being in a
transmitting mode and a bookkeeping mode. In the former case the packet at the
head of each queue is transmitted along the edge associated with it and stored as
loose at the recipient node. In the bookkeeping mode each loose packet is assigned
to the queue of one of the outgoing edges according to some random choice, unless
it has nowhere further to go in the current phase. (For a description of this algorithm
in less synchronized form see [11], [12].)

In Phase A each packet makes for itself a random ordering of the n dimensions.
It considers each one in turn and according to the toss of a coin makes, or refrains
from making, a move in that dimension from its current position. (By making a move

352 L.G. VALIANT

we mean here that we add it to the appropriate queue. Actual transmission may be
delayed by the presence of other packets in the queue.) It is immediate that with this
procedure for any fixed packet every node has the same probability of being its
destination. What needs to be proved is that no packet will have to wait in queues
for more than O(n) steps.

Phase B is similar except now each packet considers the set of dimensions in
which its current location differs from its final destination, and moves along one
randomly chosen such dimension at each step. Correctness is again immediate. What
needs to be proved is that under the assumption that the packets are initially at
randomly chosen nodes (as guaranteed by Phase A) no packet will wait in queues for
more than O(n) steps.

Analysis similar to Lemma 1 in 4 shows that in each phase the probability that
Cn different routes visit any one node is bounded above by exp {-Cn/4}. This gives
a crude upper bound on the maximum number of packets that may reside at any one
node at any one time.

3. The algorithm. The n-dimensional cube will be represented by the set V
{0, 1,...,N-I} of N=2" vertices. For i{1,..., n} and x V, x denotes the ith
most significant bit in the n-bit binary representation of x. Also x[[i is the number
obtained by changing the ith bit of the binary representation of x to its complement.
The n 2 edges of V are therefore the pairs

{(x, x[[i)lx V, {1, n}}.

For each such edge there is a "Queue(x, i)" that feeds it and resides at node x. At
each node x there is a set "Loosex" in addition to the n queues.

In the algorithm the subroutine call "Transmit x" means ’for each transmit the
packet at the head of Queue (x, i) to node x[[i and add it to the set Loosex//i’.

"Pick d D" means ’assigning equal probability to each member of set D choose
a random element of D and assign it to variable d’.

Each packet v V is associated with a set T
_

{1,.. , n}. In Phase A it consists
of the set of dimensions along which possible transmissions have not yet been con-
sidered. In Phase B it is the set of dimensions along which transmission still has to
take place. Each of the phases is said to be finished when for every v V To is empty.

The routing algorithm consists of calling Phase A followed by Phase B, with the
constants F, G chosen large enough that both algorithms finish with overwhelming
probability. Note that when Phase A is finished all the queues are empty, and Loose
contains the set of packets randomly assigned to node x. Hence when Phase B is
entered all the packets are loose and the queues empty.

The algorithms are described in Algol-like notation. Parallel execution of a block
with variable d ranging over set D is denoted by

For d D cobegin. coend.

The reader can verify by inspection that both phases are correct’ when the first
one finishes the packets are at independently chosen random nodes, after the second
one they are all at their final destinations.

We remark that neither correctness nor the subsequent analysis depends on the
particular disciplines used for maintaining the queues or the loose sets. The only
assumption is that they are sets in which elements can be added or taken away. A
second remark is that, in practice, the innermost loop could by implemented by a
special purpose chip exploiting parallelism rather than by a sequential computation.

A SCHEME FOR FAST PARALLEL COMMUNICATION 353

Phase A
For s e V eobegin Looses := {s}.

Ts := {1,. , n}.
coend

For f := 1 step 1 until F do
For s V cobegin if Looses then for

each v Looses with To do
begin Pick To.

To := To-{i}.
Pick a {0, 1}.
if a I then
begin add v to Queue(s, i).

Looses := Looses {v }.
end.

end.
Transmit s.

coend

Phase B
For x V eobegin if packet with address x is at node u

then r, := {ilx u}.
coend

For g := step until G do
For V cobegin if Loose then for

each v Loose with To do
begin Loose := Loose-{v}.

Pick s To.
To := To-{i}.
Add v to Queue(u, i).

end
Transmit u.

coend.

4. Analysis of the algorithm. The aim of the analysis is to show that for a
sufficiently large constant C the routing algorithm will finish within 2Cn steps with
overwhelming probability.

THEOREM. For any constant S there is a C such that for F G Cn both phases
of the routing algorithm finish with probability greater than 1- 2-sn.

For the analysis we need some facts from probability theory. Suppose that we
have N independent Bernoulli trials each with probability p. Then the probability
B(m, N, p) that at least m of the trials are successful is bounded above by the normal
distribution in the following way [1]:

Fact 1. If m Np(1 +) where fl 6 [0, 1] then B(m, N, p) <- e -o2Np/2.
We shall be interested in independent trials with varying probabilities (i.e., Poisson

trials). If we have N such trials with probabilities pl, ’, Pr, such that ZPi Np then,
as is well known, the variance in the number of successes is maximal when pl p2

Pr p. The following theorem of Hoettding [5] is a stronger version of this.
Fact 2. If T is the number of successes in N independent Poisson trials with

probabilities pl, PN, then if ,Pi Np and m >-Np + 1 is an integer, then

Pr(T>=m)<-_B(m,N,p).

354 L.G. VALIANT

For combinatorial formulae we shall use the notation nr to denote n !/(n- r)!,
and () to denote nr/r!. From elementary considerations it is easy to verify the following:

Fact 3. For all n

1 <5

Fact 1 is an estimate of the tail of the binomial distribution near the mean. For
our main theorem we need estimates further from the mean and for this we use the
following bound.

Fact 4. If n >-Np is an integer then

B(m,N,p) <- .e -Np

Proof. Chernoff’s bound [4] is

B(m,N, p)<(-)"(.N-..N.P lv-"

\N-m]

Putting x (N-m)/(m-Np) and using (1 +x-l) <e gives the required bound.
The analysis of the two phases A and B are rather similar and will be given in

tandem. The basic notion is that of a route, denoted typically by R {el, e2," ’, eh}
where each ei is an edge (xi, yi). A route is any path in the cube in which no two edges
traverse the same dimension, i.e., if for some k

xi//k yi and xi[[k yj

then . Thus routes are minimum distance (acyclic) paths between their end points.
For any fixed route R and node s V the event that "in running Phase A at

least one edge occurring in the route from s also occurs in R" will be denoted by
"JR f’)sl -> 1". For any fixed route R and node V the event that "in running
Phase B, with the packet destined for initially at a randomly chosen node, at least
one of the edges occurring in the route of that packet also occurs in R" will be denoted
by "IR f)tl >= 1". More generally, "s" denotes the route from s, "t" the route
to t, and "x y z" a route from x via y to z. The intersection Q f’) R of two routes
Q and R is the set of common edges. "R through x" is the event that the route R
goes through x.

The first lemma bounds the number of routes that intersect with any one route.
LEMMA 1. For all R {e, , eh} and C >= 1
(A) Pr (IR f’l sl -> 1 for at least Cn values of s) <-_ exp {-Cn/4}.
(B) Pr (IR tq --,t[> 1 for at least Cn values of t) <_- exp {-Cn/r}.
Proof. (A) Let

h h

P=Pr(IRr3s-*I>--1) <- E Pr(ees-,)= E p
i=1 i=1

say.

Since the n 2 edges in the cube have identical roles one can argue that, by symmetry,

, Psi ., Psi
sV sV

A SCHEME FOR FAST PARALLEL COMMUNICATION 355

for any i,] {1, , h}. Hence

, p<-h p.
seV seV

But Y.s psi is simply the fraction 1/(n2n) of the expected total number of edges
occurring in the 2 routes. Since the expected number of edges on each route is n/2,

h
vP <-h vPl <

"---
We therefore have N independent Poisson trials with respective probabilities

po, pl," ’, pN-1 that have sum hi2.
By Fact 2

Pr (at least Cn successes)<= 13 Cn, N, i2N)
since h =< n and C-> 1. Hence applying Fact 1 with/3 1

Pr (at least Cn successes)_<- exp (-?).
(B) Let pt=Pr(lPf’ltl>=l). Then by the same argument as used in (A) we get

h
t V -and hence the required result. [3

We note that the packet routes in Phase 13 when viewed in reverse are identical
to the packet routes in Phase A. The source nodes in Phase A, like the targets in
Phase B, represent each node of the graph exactly once. The targets in Phase A, like
the source nodes in Phase B, represent random mappings of the N packets to the N
nodes. Since our proofs concern only the routes themselves, independent of timing
considerations, the proofs for Phase B will be always essentially the same as for
Phase A.

If we could assume that two paths never intersect more than once then Lemma
1 would suffice to prove the Theorem. Unfortunately this is not the case. The following
rough argument shows that in Phase A with large probability at least one pair of
routes will be identical for about n/log n consecutive edges" consider two routes from
neighboring starting nodes. With probability (2n)-1 the first packet goes to the starting
node of the second at the first step, and with probability ((n- 1)r)-1 it then follows
the second path for r steps (provided both make r steps, which is most likely if
r n/log n << n/2). But (2nr+l)-1 exceeds 2-"-1) if r < n/log n, and there are 2n-1 such
pairs of routes to consider. It is therefore likely that at least one such pair follow each
other for n/log n steps.

We therefore need the following lemma to bound the probability of two routes
having r edges in common.

LEMMA 2. Let R and Q be routes of length from node x to node y. Suppose that
R is fixed and Q is randomly chosen from all such routes. Then for K

Pr (IR (q OI => r)<_---:-.
lr

356 L.G. VALIANT

Proof. The result is established by induction on r. It is clearly true for r 0. Suppose
it is true for r 0. Suppose it is true for r- 1. Let R elez" ei. Then Pr (IR f’) Ol >- r)
is less than

j--r+l

Y Pr (le,,/l e f) QI--> r- lie,, Q). Pr (e,, Q)
m=l

i-r+l gr-1 1

m=l (f--re)r-1 (m--1])(j-m+l)
Kr-1 j-r+(m_l)!(]_m_r+l)!<_K-<. Y, by Fact 3. [3

= (j-r)!

Lemma 4 will show that the probability of a random route intersecting any fixed
route r times vanishes exponentially with r increasing. As a preliminary we need to
examine an effect of distance in the cube. For y, z V the Hamming distance H(y, z)
is the number of bits in which the binary representations of y and z differ, i.e.,

z) [{i[y zi}l,H(y,

LEMMA 3. For any s, t, x s V with H(s, x) H(x, t) k,
(A) in Phase A

Pr (s --> through x) <= l/(nk),
(B) in Phase B

Pr (through x) <- 1
k

Proof. (A) The probability that the route from s has length at least k is clearly
B(k, n,). Now there are (,) nodes at Hamming distance k from s. Assuming that the
route from s does have length at least k the probability of it passing through any one
of these nodes must be, by symmetry, the same as for any other, namely 1/(,). Hence

Pr (s -> through x) Pr (s --> through x [Is--> >- k). Pr (Is -> >-- k) <_-
n

(B) By a similar argument to the one above:

Pr (t through x) Pr (t throughxl[t--,l>-k). Pr ([--,t[-> k)_<-

.1.

Proof. We give the proof for Phase A. The analysis for Phase B is identical when
the packet movements are played in reverse.

The bound on n is a restatement of the fact observed in Lemma 1 that

LEMMA 4. For any fixed route R the expected number of packet routes in Phase
A (and similarly Phase B) which have at least r edges in common with R is

ln4 rlAr Pr (Is--> R[=> r) =< min , n
V nr

A SCHEME FOR FAST PARALLEL COMMUNICATION 357

Now consider the other bound. Suppose that R =ele_’" eh and that it visits
yo, yl,’ Yh in turn. Let Vgkg be the set of nodes such that H(s, yi)= k, and yi-g is
the first node of R for which route s yi-g yi is possible (i.e., s yg_g_l yg is
impossible). This is illustrated in Fig. 1.

Y

Now

Yo

FIG. 1.

Yi-i

Yi

Let psi Pr (Is RI>= rls through yi). Consider now s e V/kg for some fixed i, k and
g, and let y be the first node of R that s visits. In this case

(2)

g

Psi Y. Pr (y yg-m[S through

Pr (Is fqei-m+ "ei] => rly Yi-m and s through yi)

g 1 K

m=r(k)mrk_m
k-. (k m)!(m r)! <=-. (g r + 1). (k r)! since r <_- m <_- g <- k.

By definition
h

Ar Y’, Pr (Is "-’> fiR[>= v) <-_ E E Psi" Pr (s -> through yi).
sV i=1 sV

Since for each the sets Vikg partition V

Ar 2 Psi Pr (s through y).
i=0 k=r g=r se Vikg

Using (2) and Lemma 3, we can bound the summand by

K 1
k--i" (g r + 1). (k r)!. --.

k

358 L.G. VALIANT

By virtue of (1) the sum of the above over Vkg is

Hence

K (g-r+l)(k-r)!. k!(n-k)!
k! n!

(n -g)!
(k-g)!(n -k)!

(g-r+ l) (k-r)g-r
nr (n

K <= (g- r)K
nr

nr i=o k=r g=r

nh3K
nr

as required.]
Although the exponent of n in Lemma 4 can be improved by more careful analysis

its value is immaterial unless we wish to study the exact relationship between $ and
C in the theorem.

Proof o.f Theorem. We give a proof for Phase A. The argument for B is identical.
Consider any route R and a suitably large constant C. The number of edges a route
has in common with R we shall call its overlap r. In the analysis we deal with overlaps
in three different ways depending on which of the following ranges it falls in:

[Ion In [lo2n Jn[1 4a], 4a,;
g2

for an appropriate constant a to be defined. The second range is itself split into about
log2 n subranges [2 i, 2i+1] and C is large enough that

Cn
24(r a)(log2 n a)

exceeds unity for all values of r in the second range.
In particular we observe that

Pr (ls fqR >- Cn)
Cn

<= Pr Is -* NRI >- 1 for at least values of s)
for at least values of

n
+Z Pr (Eg) + Pr Is --> 73RI > log2 n

Pr (E1) + Pr (E2) + Pr (E3), say

where each component E of E2 is itself the event

"Is -> OR[-> 2 for at least rn(n)
Cn

24(2 a)(log2 n a)
values of s".

In order to verify (5) we note that if the overlap sum exceeds Cn then E1, ., E,
Ei+,’", E3 cannot all be false, for if they were then the contribution from each of
the three ranges E1, E2 and E3 would be less than Cn/3. In particular, if E is false
then the overlap sum in the range [1, 4a] is clearly less than Cn/3. The same holds
for E3. Finally, if every Ei of E2 is false also then the overlap sum in the second range

A SCHEME FOR FAST PARALLEL COMMUNICATION 359

is at most

og2 Cn
2 + <

Cn
i= [log2 4otJ 24(2 a)(log2 n a) 3

for all sufficiently large n.
It remains to show that for a suitable a however large S is chosen there exists

C such that the probabilities of E1, E2 and E3 are all bounded by (1/2)2-s+l)". For we
can then deduce from (5) that

Pr (ls R[>__ Cn) <- 2-(s+)".

Since there are N 2" routes R the probability that some of them do have such a
large overlap sum is then at most 2-s" as required.

That for every a and S Pr (E 1) -<_ (1/2)2-(s+a)" for a suitable C is merely a restatement
of-Lemma 1 and nothing further needs to be proved.

To bound E2 it is sufficient to prove the claim that for some C for each
Pr (Ei)<-(3n)-2-(s+)". By Fact 2 it suffices to consider the event that at least
m mi(n) successes occur in N trials with equal probabilities. By Lemma 4 this
probability is at most

n42p<_nrN’ where r 2i,

4-r22rn 2i n
-<-N sincer= < in this range.

Using Fact 4

Then

22re)mB(m, N, p) <-_ (Np)"e" <- X,
mn r-4 say.

Cn
log2 X <_- (2r- (r-4) log2 n + log2 e)

24(r c)(log2 n c)

-Cn
=< ifa=4andr=2>4a.

24

We conclude that Pr(E)<-2-cn/24, which is less than (3n)-X2-s+l)" for C chosen
large enough.

Finally to bound E3 we need an estimate with r n/log2 n and m C/3. Here
the analysis for E2 applies since for r- n/log2 n

Cn C
<--- for all sufficiently large n.

-c (logan-a)
3

Hence the required bound of (1/3)2-(s+" certainly holds for E.
We have shown therefore that the overlap sum for the route of each packet is

suitably small. Since the overlap sum lor a packet bounds the total time it waits in
queues the result is established. Although the proof was valid only for sufficiently
large values of n, the Theorem can be made to hold for all values of n by always
choosing C large enough to cover the remaining small cases.

360 L.G. VALIANT

5. Remarks.
1. Testability. The two phases of the algorithm are testable in the following sense.

Phase A is independent of the input altogether. Running it on, say, the identity
permutation for different values of F and testing whether it has finished is therefore
a method of sampling the distribution of the runtime needed for finishing. In the
overall routing algorithm Phase B is used with the packets initially placed randomly
in the cube. Hence the distribution of the runtime needed for finishing in Ph,ase B
can be sampled by running it with packets placed initially at random. In this way
suitable values of F and G can be obtained experimentally. Such experimental results
are reported in 11].

2. Variations. For practical purposes there is no reason why every packet should
wait for Phase A to finish before embarking on Phase B. A modified algorithm in
which any packet v immediately enters Phase B as soon as To becomes empty in
Phase A will also clearly have its runtime bounded by the analysis above, provided
the queuing discipline always gives preference to packets still executing Phase A.

Another kind of modification is required if we want the algorithm always to finish.
Instead of cutoffs we would have global checks at every n steps to test whether the
algorithm has finished. This can be done by collecting one bit of information from
each node and collecting their conjunction at one node. For this O(n) steps are
sufficient where, now, a step consists of transmitting a fixed piece of bookkeeping
along a wire. With this modification each phase is always correct and for all sufficiently
large H finishes in time H. log2 N with overwhelming probability.

A further variation is possible if we wish to simplify the local computations at
the expense of carrying more bookkeeping information. In that case we can precompute
the whole of the route for each packet before it leaves its initial node. This also avoids
holdups in Phase A that occur whenever a 0 is picked. Note that such holdups occur
at most n times for any route and could also be avoided by adding an "until a 1"
inner loop to Phase A.

3. Queuing disciplines. The proofs given apply to all disciplines, e.g., "first in-first
out", "first in-last out". Experimentation appears to be the only method of choosing
amongst them. More complicated alternatives include "packets with farthest to go
first out".

4. Obliviousness. An essential feature of this algorithm is that the route taken
by each packet is determined entirely by itself. The other packets can only influence
the rate at which the route is traversed. For this reason no global synchronization is
required. Indeed, the scheme appears to be well suited to supporting a continuous
stream of communication requests from packets generated at the nodes, as long as
the traffic flow does not saturate the system either as whole, or by requesting one
node or region of it too frequently.

As an alternative "adaptive" algorithms could be considered. For example,
one could route the packets from a node so as to minimize the maximal queue
length there. Unfortunately such strategies appear to be beyond rigorous analysis or
testability.

5. Necessity for Phase A. Phase A may appear unnatural at first sight since it
may route a packet to distant parts of the network even when its destination is near
its source. It is natural to ask therefore whether Phase B on its own works in O(n)
steps for all inputs, rather than merely for most inputs. A negative answer to this can
be derived as follows: Consider any edge e (x, y). There are ("x) nodes at distance
r from x from which routes can go through e. For each such node z choose as its
destination one of the (") nodes at distance r from y to which a route can go from

A SCHEME FOR FAST PARALLEL COMMUNICATION 361

z via e. The reader can verify that if r<-(n-1)/2 then this is always possible. Now
consider Phase B applied to such a set of (,1) packets. Since each route will intersect
e with probability

-1

(r+l)-l(2r+l)r
the expected number of routes intersecting e will be

(n 1) rlrl (n 1)r)-1((n 1)r<-(r+l)-1. -<(r+l
r!(n r- 1)t (2r + 1)t- -------(2r+ \(2r + 1)]

If r n/J this quantity grows as 2n where y equals (log2 (J/2))/J, which is positive
if J > 2. Hence if Phase B is started on a suitably bad input it will require N rather
than logarithmic time.

We note that the above estimation is asymptotic. For small values of n it is clearly
advantageous to omit Phase A.

6. Alternative algorithms. Recently [12] it has been shown that if in each phase
the dimensions are traversed in order of dimension number then the proof of the
(log N) runtime is much simplified, essentially because the Intersection of any two
routes must then be a contiguous sequence of edges.

REFERENCES

[1 D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for hamiltonian circuits and matchings,
J. Comput. System Sci., 18 (1979), pp. 155-193.

[2] K. E. BATCHER, Sorting networks and their applications, AFIPS Spring Joint Comp. Conf., 32 (1968),
pp. 307-314.

[3] V. E. BENES, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press,
New York 1965.

[4] H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations, Ann. Math. Statist. 23 (1952), pp. 493-507.

[5] W. HOEFFDING, On the distribution of the number of successes in independent trials, Ann. Math.
Statist., 27 (1956) pp. 713-721.

[6] G. LEV, N. PIPPENGER AND L. G VALIANT, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. Comput., C-30 (1981), pp. 93-100.

[7] M. O. RABIN, Probabilistic algorithms, Algorithms and Complexity, J. F. Traub, ed., Academic Press,
New York, 1976.

[8] H. J. Siegel, Interconnection networks for SIMD machines, Computer, (June 1979), pp. 57-65.
[9] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal., 6 (1977), pp.

84-85.
[10] A. WAKSMAN, A permutation network, J. Assoc. Comput. Mach., 15 (1968), pp. 159-163.
[11] L. G. VALIANT, Experiments with a parallel communication scheme, Proc. 18th Allerton Conf. on

Communication, Control and Computing, University of Illinois, Oct. 8-10, 1980, pp. 802-811.
[12] L. G. VALIANT AND G. J. BREBNER, Universal Schemes for parallel communication, Proc. 13th

ACM Symposium of Theory of Computing, 1981, pp. 263-277.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1102-0013 $01.00/0

COMPUTATION OF MATRIX CHAIN PRODUCTS. PART I*

T. C. HUt AND M. T. SHING

Abstract. This paper considers the computation of matrix chain products of the form M1 x M2 ’’"
M,,-1. If the matrices are of different dimensions, the order in which the product is computed affects the
number of operations. An optimum order is an order which minimizes the total number of operations. We
present some theorems about an optimum order of computing the matrices. Based on these theorems, an
O(n log n) algorithm for finding an optimum order will be presented in Part II.

Key words, matrix multiplication, polygon partition, dynamic programming

1. Introduction. Consider the evaluation of the product of n 1 matrices

M=M1 XM2 x’’" x M._I,

whereM is a wi wi/ matrix. Since matrix multiplication satisfies the associative law,
the final result M in (1) is the same for all orders of multiplying the matrices. However,
the order of multiplication greatly affects the total number of operations to evaluate
M. The problem is to find an optimum order of multiplying the matrices such that
the total number of operations is minimized. Here, we assume that the number of
operations to multiply a p x q matrix by a q r matrix is pqr.

In [1], [7], a dynamic programming algorithm is used to find an optimum order.
The algorithm needs O(n 3) time and O(n 2) space. In [2], Chandra proposed a heuristic
algorithm to find an order of computation which requires no more than 2 To operations
where To is the total number of operations to evaluate (1) in an optimum order. This
heuristic algorithm needs only O(n) time. Chin [3] proposed an improved heuristic
algorithm to give an order of computation which requires no more than 1.25 To. This
improved heuristic algorithm also needs only O(n) time.

In this paper we first transform the matrix chain product problem into a problem
in graph theory--the problem of partitioning a convex polygon into nonintersecting
triangles, see [9], [10], [11], [12]; then we state several theorems about the optimum
partitioning problem. Based on these theorems, an O(n log n) algorithm for finding
an optimum partition is developed.

2. Partitioning a convex polygon. Given an n-sided convex polygon, such as the
hexagon shown in Fig. 1, the number of ways to partition the polygon into (n-2)
triangles by nonintersecting diagonals is the Catalan number (see for example, Gould
[8]). Thus, there are 2 ways to partition a convex quadrilateral, 5 ways to partition a
convex pentagon, and 14 ways to partition a convex hexagon.

Let every vertex V of the polygon have a positive weight wi. We can define the
cost of a given partition as follows" The cost of a triangle is the product of the weights
of the three vertices, and the cost of partitioning a polygon is the sum of the costs of
all its triangles. For example, the cost of the partition of the hexagon in Fig. 1 is

(2) W1W2W3 dr- W1W3W6 q" W3W4W6"+" W4W5W6.

* Received by the editors May 19, 1980, and in final revised form September 9, 1981. This research
was supported in part by the National Science Foundation under grant MCS-80-03362 and by the U.S.
Army Research Office under grant DAAG29-80-C-0029.

" Department of Electrical Engineering and Computer Sciences, University of California, San Diego,
California 92093.

362

COMPUTATION OF MATRIX CHAIN PRODUCTS. 363

FIG. 1

If we erase the diagonal from V3 to V6 and replace it by the diagonal from V1 to V4,
then the cost of the new partition will be

(3) W1W2W3-" W1W3W4-1- W1W4W6 q- W4W5W6.

We will prove that an order of multiplying n 1 matrices corresponds to a partition
of a convex polygon with n sides. The cost of the partition is the total number of
operations needed in multiplying the matrices. For brevity, we shall use n-gon to
mean a convex polygon with n sides, and the partition of an n-gon to mean the
partitioning of an n-gon into n- 2 nonintersecting triangles.

For any n-gon, one side of the n-gon will be considered to be its base, and will
usually be drawn horizontally at the bottom such as the side V1- V6 in Fig. 1. This
side will be called the base; all other sides are considered in a clockwise way. Thus,
V- V2 is the first side, V2- V3 the second side,.. and V5- V6 the fifth side.

The first side represents the first matrix in the matrix chain and the base represents
the final result M in (1). The dimensions of a matrix are the two weights associated
with the two end vertices of the side. Since the adjacent matrices are compatible, the
dimensions w x w2, w2x w3,’", wn- x wn can be written inside the vertices as
w x, w2,"’, w,. The diagonals are the partial products. A partition of an n-gon
corresponds to an alphabetic tree of n-1 leaves or the parenthesis problem of n- 1
symbols (see, for example, Gardner [6]). It is easy to see the one-to-one correspondence
between the multiplication of n- 1 matrices to either the alphabetic binary tree or
the parenthesis problem of n- 1 symbols. Here, we establish the correspondence
between the matrix-chain product and the partition of a convex polygon directly.

LEMMA 1. Any order of multiplying n- 1 matrices corresponds to a partition of
an n-gon.

Proof. We shall use induction on the number of matrices. For two matrices of
dimensions wl w2, w2 w3, there is only one way of multiplication; this corresponds
to a triangle where no further partition is required. The total number of operations
in multiplication is ww2w3, the product of the three weights of the vertices. The
resulting matrix has dimension wl w3. For three matrices, the two orders of multipli-
cation (M x M2) x M3 and Mx x (M2 x M3) correspond to the two ways of partitioning
a 4-gon. Assume that this lemma is true for k matrices where k <-n- 2, and we now
consider n 1 matrices. The n-gon is shown in Fig. 2.

364 T.C. HU AND M. T. SHING

Vp_ Vp

VP -2 .IP +1

V2 /n-I

Wl
Vn

FIG. 2

Let the order of multiplication be represented by

M=(M xM: x. x Mp_) x (M, x. x M,_);

i.e., the final matrix is obtained by multiplying a matrix of dimension (Wl X Wp) and a
matrix of dimension (wp x w,). Then in the partition of the n-gon, we let the triangle
with vertices V and V, have the third vertex V,. The polygon VI- V2 V, is a
convex polygon of p sides with base V1- V, and its partition corresponds to an order
of multiplying matrices M,. , Mp_, giving a matrix of dimension w Wp. Similarly,
the partition of the polygon Vp- Vp/ y V, with base Vp- V, corresponds to an
order of multiplying matrices M,,..., M,-1, giving a matrix of dimension Wp x w,.
Hence the triangle V1VpV, with base V1- V represents the multiplication of the two
partial products, giving the final matrix of dimension Wx X Wn. r]

LEMMA 2. The minimum numbers of operations needed to evaluate the following
matrix chain products are identical.

M xMz x.. x M,,_2 x M,,_,
M,, xM x x M,_3 x M,,_2,

M xM3 " xM,_ X M,,

where M has dimension w x w+ and w,,+ =- Wl. Note that in the first matrix chain,
the resulting matrix is o[dimension W x w,. In the last matrix chain, the resulting matrix
is of dimension w2 x w. But in all the cases, the total number of operations in the
optimum orders of multiplication is the same.

Proof. The cyclic permutations of the n- 1 matrices all correspond to the same
n-gon and thus have the same optimum partitions. El
(This lemma was obtained independently in [4] with a long proof.)

From now on, we shall concentrate only on the partitioning problem.
The diagonals inside the polygon are called arcs. Thus, one easily verifies inductively

that every partition consists of n-2 triangles formed by n- 3 arcs and n sides.
In a partition of an n-gon, the degree of a vertex is the number of arcs incident

on the vertex plus two (since there are two sides incident on every vertex).

COMPUTATION OF MATRIX CHAIN PRODUCTS. 365

LEMMA 3. In any partition of an n-gon, n _-->4, there are at least two triangles, each
having a vertex of degree two. (For example, in Fig. 1, the triangle V1 V2 V3 has vertex
V2 with degree 2 and the triangle V4 V5 V6 has vertex V5 with degree 2.) (See also [5].)

Proof. In any partition of an n-gon, there are n-2 nonintersecting triangles
formed by n- 3 arcs and n sides. And for any n _-> 4, no triangle can be formed by 3
sides. Let x be the number of triangles with two sides and one arc, y be the number
of triangles with one side and two arcs, and z be the number of triangles with three
arcs. Since an arc is used in two triangles, we have

(4) x + 2y + 3z 2(n 3).

Since the polygon has n sides, we have

(5) 2x+y=n.

From (4) and (5), we get

3x =3z+6.

Since z => 0, we have x
LEMMA 4. Let P and P’ both be n-gons where the corresponding weights of the

vertices satisfy wi <- w I. Then the cost of an optimum partition of P is less than or equal
to the cost of an optimum partition of P’.

Proof. Omitted.
If we use C(wl, w., w3,"’, Wk) to mean the minimum cost of partitioning the

k-gon with weights wi optimally, Lemma 4 can be stated as

C(w, w2,. ., Wk)<=C(w’, W,. ., W’k) ifwi<=wi.

We say that two vertices are connected in an optimum partition if the two vertices
are connected by an arc or if the two vertices are adjacent to the same side.

In the rest of the paper, we shall use V, V2," ", V, to denote vertices which
are ordered according to their weights, i.e., w x<= w2<= <- w,. To facilitate the
presentation, we introduce a tie-breaking rule for vertices of equal weights.

If there are two or more vertices with weights equal to the smallest weight wl,

we can arbitrarily choose one of these vertices to be the vertex V. Once the vertex

V1 is chosen, further ties in equal weights are resolved by regarding the vertex which
is closer to V1 in the clockwise direction to be of less weight. With this tie-breaking
rule, we can unambiguously label the vertices V, V2,’ , V, for each choice of Vx.
A vertex V is said to be smaller than another vertex V, denoted by V < V/, either
if wi < wj or if wi wj and <]. We say that V is the smallest vertex in a subpolygon
if it is smaller than any other vertices in the subpolygon.

After the vertices are labeled, we define an arc V-V. to be less than another
arc V- Vq if

min (i,) min p, q)
min (i, j) < min (p, q) or

max (i,/’) < max (p, q).

(For example, the arc V3-V9 is less than the arc V4-Vs.) Every partition of an
n-gon has n-3 arcs which can be sorted from the smallest to the largest into an
ordered sequence of arcs, i.e., each partition is associated with a unique ordered
sequence of arcs. We define a partition P to be lexicographically less than a partition
Q if the ordered sequence of arcs associated with P is lexicographically less than that
associated with Q.

366 T.C. HU AND M. T. SHING

When there is more than one optimum partition, we use the l-optimum partition
(i.e., lexicographically-optimum partition) to mean the lexicographically smallest
optimum partition, and use an optimum partition to mean some partition of minimum
cost.

We shall use Va, Vb,’’" to denote vertices which are unordered in weights, and
Tjk to denote the product of the weights of any three vertices Vi, V. and Vk.

THEOREM 1. For every way ofchoosing V1, V2, (as prescribed), there is always
an optimum partition containing V1- V2 and VI- V3. (Here, V- V2 and V1- V3 may
be either arcs or sides.)

Proof. The proof is by induction, For the optimum partitions of a triangle and a
4-gon, the theorem is true. Assume that the theorem is true for all k-gons (3<-k <- n 1)
and consider the optimum partitions of an n-gon.

From Lemma 3, in any optimum partition, we can find at least two vertices having
degree two. Call these two vertices Vi and V.. We can divide this into two cases.

(i) One of the two vertices V (or V.) is not V, V2 or V3 in some optimum
partition of the n-gon. In this case, we can remove the vertex V with its two sides
and obtain an (n- 1)-gon. In this (n- 1)-gon, V, V2, V3 are the three vertices with
smallest weights. By the induction assumption, V is connected to both V2 and V3 in
an optimum partition.

(ii) Consider the complementary case of (i), in all the optimum partitions of the
n-gon, all the vertices with degree two are from the set {V1, V2, V3}. (In this case,
there will be at most three vertices with degree two in every optimum partition.) We
have the following three subcases:

(a) V V2 and V V3 in some optimum partition of the n-gon, i.e., both V2
and V3 have degree two simultaneously. In this case, we first remove V2 with its two
sides and form an (n 1)-gon. By the induction assumption, V1, V3 must be connected
in some optimum partition. If V1- V3 appears as an arc, it reduces to (i). So Vx- V3
must appear as a side of the (n- 1)-gon, and reattaching V2 to the (n- 1)-gon shows
that either V, V2 and V3 are mutually adjacent or V- V3 is a side of the n-gon. In
the former case, the proof is complete, so we assume that Va-V3 is a side of the
n-gon. Similarly, we can remove V3 with its two sides and show that V1, V2 are
connected by a side of the n-gon.

(b) V Va and V V2 in some optimum partition of the n-gon, i.e., V1 and V2
both have degree two simultaneously. In this case, we can first remove Vx and form
an (n- 1)-gon where V2, V3, V4 are the three vertices with smallest weights. By the
induction assumption, V2 is connected to both V3 and V4 in an optimum partition.
If V2- V3 or V2- V4 appears as an arc, it reduces to (i). Hence, V2- V3 and V2- V4
must both be sides of the n-gon. Similarly, we can remove V2 with its two sides and
form an (n- 1)-gon where VI, V3, V4 are the three vertices with smallest weights.
Again, V1 must be connected to V3 and V4 by sides of the n-gon. But for any n-gon
with n->_5, it is impossible to have V3 and V4 both adjacent to V and V2 at the same
time, i.e., V1 and V2 cannot both have degree two in an optimum partition of any
n-gon with n_->5.

(c) V Vx, Vo V3 in some optimum partition of the n-gon. By argument similar
to (b), we can show that V2 must be adjacent to V1 and V3 in the n-gon. The situation
is as shown in Fig. 3(a). Then the partition in Fig. 3(b) is cheaper because

T123 T12q

and C(wl, Wq, wy, wt, Wx, w,, W3) -< C(w2, Wq, Wy, Wt, Wx, Wp, W3) according to Lemma
4. I3

COMPUTATION OF MATRIX CHAIN PRODUCTS. 367

V

V

V2

V

V
(a) (b)

FIG. 3

COROLLARY 1. For every way of choosing Vx, V,... (as prescribed), the
l-optimum partition always contains Va- Vz and V- V3.

Proof. It follows from Theorem 1 and the definition of the /-optimum
partition. 71

Once we know Vx- V and Vx- V3 always exist in the/-optimum partition, we
can use this fact recursively. Hence, in finding the /-optimum partition of a given
polygon, we can decompose it into subpolygolas by joining the smallest vertex with
the second smallest and third smallest vertices repeatedly, until each of these subpoly-
gons has the property that its smallest vertex is adjacent to both its second smallest
and third smallest vertices.
A polygon having .Va adjacent to Vz and V3 by sides will be called a basic polygon.
THEOREM 2. A necessary but not sufficient condition for Vz-V3 to exist in an

optimum partition of a basic polygon is

(6)
1 1 1 1

W1 W4 W2 W3

Furthermore, if V2- V3 is not present in the l-optimum partition, then V1, V4 are
always connected in the l-optimum partition.

Proof. If V2, V3 are not connected in the/-optimum partition of a basic polygon,
the degree of Va is greater than or equal to 3. Let V be a vertex in the polygon and
V, V be connected in the /-optimum partition. V4 is either in the subpolygon
containing Va, V2 and V or in the subpolygon containing V, V3 and Vo. In either
case, V4 will be the third smallest vertex in the subpolygon. From Corollary 1, V, V4
are connected in the /-optimum partition of the subpolygon and it also follows that
V, V4 are connected in the/-optimum partition of the basic polygon.

If V2, V3 are connected in an optimum partition, then we have an (n- 1)-gon
where V2 is the smallest vertex and V4 is the third smallest vertex. By Theorem 1,
there exists an optimum partition of the (n- 1)-gon in which V2, V4 are connected.
Thus by induction on n, we can assume that V4 is adjacent to V2 in the basic polygon
as shown in Fig. 4(a).

368 T.C. HU AND M. T. SHING

(a) (b)
FIG. 4

The cost of the partition in Fig. 4(a) is

(7) T123-[" C(w2, w4," ", w,,. ., w3),

and the cost of the partition in Fig. 4(b) is

T124+ C(Wl, w4,""’, wt,’", w3).
According to Lemma 4,

(9) C(Wl, W4," ", Wt," ’’, W3) C(W2, W4," ", Wt," ", W3).

Since the weights of the vertices between ,V4 and V3 in the clockwise direction are
all greater than or equal to w4, the difference between the right-hand side and the
left-hand side of (9) is at least

T243- T143.
So the necessary condition for (7) to be no greater than (8) is

T123 q- T243 T124 -[- T134
or

1 1 1 1
e <__+. [3

W1 W4 W2 W3

LEMMA 5. In an optimum partition of an n-gon, let Vx, Vy, Vz and Vw be four
vertices of an inscribed quadrilateral V and Vz are not adjacent in the quadrilateral).
A necessary condition for Vx-V to exist is

1 1 1 1
(10)

Wx Wz W Ww

Proof. The cost of partitioning the quadrilateral by the arc Vx-Vz is

(11) Tyz + Tz,,

and the cost partitioning the quadrilateral by the arc Vy- Vw is

(12) Txyw + Trzw.
For optimality, we have (11)<_-(12) which is (10). 71

COMPUTATION OF MATRIX CHAIN PRODUCTS. 369

Note that if strict inequality holds in (10), the necessary condition is also sufficient.
If equality holds in (10), the condition is sufficient for Vx Vz to exist in the/-optimum
partition provided min (x, z) < min (y, w). This lemma is a generalization of [3, Lemma
1] where Vy is the vertex with the smallest weight and Vx, Vw, Vz are three consecutive
vertices with Ww greater than both w, and w.

A partition is called stable if every quadrilateral in the partition satisfies (10).
COROLLARY 2. An optimum partition is stable but a stable partition may not be

optimum.
Proof. The fact that an optimum partition has to be stable follows from Lemma

5. Figure 5 gives an example that a stable partition may not be optimum.

(a) a stable partition (b) the optimum partition

FIG. 5

In any partition of an n-gon, every arc dissects a unique quadrilateral. Let
Vx, Vy, Vz, Vw be the four vectices of an inscribed quadrilateral and Vx- Vz be the
arc which dissects the quadrilateral. We define V,- Vz to be a vertical arc if (13) or
(14) is satisfied.

(13) min (Wx, Wz) < min (wy, Ww),

(14) min (Wx, Wz)= min (wr, Ww), max (w, Wz)_-< max (wy, Ww).

We define Vx- Vz to be a horizontal arc if (15) is satisfied

(15) min (Wx, Wz) > min (wr, Ww), max (Wx, Wz) < max (wr, Ww).

For brevity, we shall use h-arcs and v-arcs to denote horizontal arcs and vertical arcs
from now on.

COROLLARY 3. All arcs in an optimum partition must be either vertical arcs or
horizontal arcs.

Proof. Let Vx- Vz be an arc which is neither vertical nor horizontal. There are
two cases:

Case 1. min (w, w)= min (wy, Ww) and max (Wx, Wz)> max (w, Ww);
Case 2. min (Wx, Wz) > min (wr, Ww) and max (wx, Wz) >= max (wy, Ww).
In both cases, the inequality (10) in Lemma 5 cannot be satisfied. This implies

that the partition is not stable and hence cannot be optimum, l-1
THEOREM 3. Let V and Vz be two arbitrary vertices which are not ad]acent in a

polygon, and Vw be the smallest vertex]rom Vx to Vz in the clockwise manner Vw
Vx, Vw Vz), and V be the smallest vertex from Vz to V in the clockwise manner

370 T.C. HU AND M. T. SHING

FIG. 6

Vy Vx, Vy Vz). This is shown in Fig. 6, where without loss of generality we assume
that Vx < Vz and Vy < Vw. A necessary condition]’or Vx- Vz to exist as an h-arc in the
l-optimum partition is that

Wy < Wx <=’Wz < Ww.

(Note that the necessary condition still holds when the positions of Vy and Vw are
interchanged.)

Proof. The proof is by contradiction. If w <- wy, Wx must be equal to the smallest
weight wl, and Vx- Vz can never satisfy (15). Hence, in order that V- Vz exist as
an h-arc in the/-optimum partition, we must have wy<wx <= Wz. Since Vy is the smallest
vertex from Vz to V in the clockwise manner and V < Vw, we must have Vy V1.

Assume for the moment that V3 < Vx < V. From Corollary 1, both V1- V2 and
V1- V3 exist in the/-optimum partition, and the two arcs would divide the polygon
into subpolygons. If V and V are in different subpolygons, then they cannot be
connected in the/-optimum partition. Without loss of generality, we can assume that
the polygon is a basic polygon. In this basic polygon, either V2- V3 or V1- V4 exists
in the/-optimum partition (Theorem 2).

If V2, V3 are connected, then Vx and Vz are both in a smaller polygon in which
we can treat V2 as the smallest vertex and repeat the argument. If V1, V4 are connected,
the basic polygon is again divided into two subpolygons and V and Vz both have to
be in one of the subpolygons and the subpolygon has at most n- 1 sides. (Otherwise
V- Vz can never exist in the/-optimum partition.) The successive reduction in the
size of the polygon will either make the connection Vx-Vz impossible, or force V
and Vz to become the second smallest and the third smallest vertices in a basic
subpolygon. Let V,, be the smallest vertex in this basic subpolygon. In order that
V- Vz appear as an h-arc, we must have w> w,,. From Theorem 2, the necessary
condition for Vx Vz (i.e., V2- V3) to exist in an optimum partition of the subpolygon

COMPUTATION OF MATRIX CHAIN PRODUCTS. 371

1 1 1 1
+ => e

Wx Wz Wm Ww

Since Wx > w., the inequality is valid only if Wz < Ww. [3
COROLLARY 4. A weaker necessary condition for Vx- Vz to exist as an h-arc in

the l-optimum partition is that

V< V< Vz< V.

Proof. This follows from Theorem 3.
We call any arc which satisfies this weaker necessary condition a potential h-arc.

Let P be the set of potential h-arcs in the n-gon and H be the set of h-arcs in the
/-optimum partition, we have P=_H where the inclusion could be proper.

COROLLARY 5. Let Vw be the largest vertex in the polygon and Vx and Vz be its
two neighboring vertices. If there exists a vertex Vy such that Vy < Vx and Vy < Vz, then
Vx- Vz is a potential h-arc.

Proof. This follows directly from Corollary 4 where there is only one vertex
between Vx and Vz.

Two arcs are called compatible if both arcs can exist simultaneously in a partition.
Assume that all weights of the vertices are distinct, then there are (n- 1)! distinct
permutations of the weights around an n-gon. For example, the weights 10, 11, 25,
40, 12 in Fig. 5(a) correspond to the permutation wl, w2, w4, ws, w3 (where wl < w2 <
w3 < w4 < ws). There are infinitely many values of weights which correspond to the
same permutation. For example, 1, 16, 34, 77, 29 also corresponds to Wl, w2, w4, ws, w3
but its optimum partition is different from that of 10, 11, 25, 40, 12. However, all
the potential h-arcs in all the n-gons with the same permutation of weights are
compatible. We state this remarkable fact as Theorem 4.

THtSORtSM 4. All potential h-arcs are compatible.
Proof. The proof is by contradiction. Let Vx, Vr, Vz and Vw be the four vertices

described in Theorem 3. Hence, we have Vy < Vx < Vz < Vw and Vx Vz is a potential
h-arc. Let Vp-Vq be a potential h-arc which is not compatible to Vx-Vz, as shown
in Fig. 7. Without loss of generality, we can assume Vp < Vq. (The proof for the case
V < Vp is similar to that which follows.)

Since Vw is the smallest vertex between Vx and Vz in the clockwise manner, we
have Vz < Vw < Vq. Hence, we have either V < Vp < Vz < Vq or Vy < Vz < Vp < V.
Both cases violate Corollary 4 and Vp- Vq cannot be a potential h-arc.

Note that the potential h-arc Vx-Vz always dissects the n-gon into two subpoly-
gons and one of these subpolygons has the property that all its vertices except Vx and
Vz have weights no smaller than max (Wx, Wz). We shall call this subpolygon the upper
subpolygon of Vx Vz. For example, the subpolygon Vx Vw V in Fig. 7
is the upper subpolygon of V- V.

Using Corollary 4 and Theorem 4, we can generate all the potential h-arcs of a
polygon.

Let Vx-Vz be the arc defined in Corollary 5, i.e., V < V < V < Vw. The arc
Vx- Vz is a potential h-arc compatible with all other potential h-arcs in the n-gon.
Furthermore, there is no other potential h-arc in its upper subpolygon. Now consider
the (n-1)-gon obtained by cutting out Vw. In this (n- 1)-gon, let Vw, be the largest
vertex and Vx, and Vz, be the two neighbors of Vw, where V1 < Vx, < Vz, < Vw,. Then
Vx,- Vz, is again a potential h-arc compatible with all other potential h-arcs in the

372 r. c. HU AND M. T. SHING

FIG. 7

n-gon and there is no other potential h-arc in its upper subpolygon which has not
been generated. This is true even if Vw is in the upper subpolygon of Vx,- Vz,. If
we repeat the process of cutting out the largest vertex, we get a set P of arcs, all of
which satisfy Corollary 4. The h-arcs of the/-optimum partition must be a subset of
these arcs.

The process of cutting out the largest vertex can be made into an algorithm which
is O(n). We shall call this algorithm the one-sweep algorithm. The output of the
one-sweep algorithm is a set $ of n-3 arcs. S is empty initially.

The one-sweep algorithm, Starting from the smallest vertex, say V1, we travel in
the clockwise direction around the polygon and push the weights of the vertices
successively onto the stack as follows (Wl will be at the bottom of the stack).

(a) Let Vt be the top element on the stack, Vt-1 be the element immediately
below Vt, and Vc be the element to be pushed onto the stack. If there are two or
more vertices on the stack and w > we, add V_I- V to S, pop V off the stack;
if there is only one vertex on the stack or wt <- w, push w onto the stack. Repeat
this step until the nth vertex has been pushed onto the stack.
(b) If there are more than three vertices on the stack, add Vt-1-V to $, pop
Vt off the stack and repeat this step, else stop.
Since we do not check for the existence of a smallest vertex whose weight is no

larger than those of the two neighbors of the largest vertex, i.e., the existence of the
vertex Vy in Corollary 4, not all the n 3 arcs generated by the algorithm are potential
h-arcs. However, it is not difficult to verify that the one-sweep algorithm always
generates a set $ of n- 3 arcs which contains the set P of all potential h-arcs which
contains the set H of all h-arcs in the/-optimum partition of the n-gon, i.e.,

where each inclusion could be proper. For example, if the weights of the vertices
around the n-gon in the clockwise direction are Wl, w2, , wn where w =< w2 =<" =<
wn, none of the arcs in the n-gon can satisfy Corollary 4 and hence there are no

COMPUTATION OF MATRIX CHAIN PRODUCTS. 373

potential h-arcs in the n-gon. The one-sweep algorithm would still generate n-3 arcs
for the n-gon but none of the arcs generated is a potential h-arc.

3. Conclusion. In this paper, we have presented several theorems on the polygon
partitioning problem. Some of these theorems are characterizations of the optimum
partitions of any n-sided convex polygon, while the others apply to the unique
lexicographically smallest optimum partition. Based on these theorems an O(n)
algorithm for finding a near-optimum partition can be developed [12]. The cost of
the partition produced by the heuristic algorithm never exceeds 1.155 Copt, where
Copt is the optimum cost of partitioning the polygon. An O(n log n) algorithm for
finding the unique lexicographically smallest optimum partition will be presented in
Part II [13].

Acknowledgment. The authors would like to thank the referees for their helpful
comments in revising the manuscript.

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. K. CHANDRA, Computing matrix chain product in near optimum time, IBM Res. Rep. RC5626
(4 24393), IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975.

[3] F. Y. CHIN, An O(n) algarithm for determining a near optimal computation order of matrix chain
product, Comm. ACM, 21, (1978), pp. 544-549.

[4] L. E. DEIMEL, JR. AND T. A. LAMPE, An invariance theorem concerning optimal computation of
matrix chain products, Rep. TR79-14, North Carolina State Univ., Raleigh.

[5] G. A. DIRAC, On rigid circuit graphs, Abh. Math. Sem., Univ. Hamburg, 25 (1961), pp. 71-76.
[6] M. GARDNER, Catalan numbers, Scientific American, June 1976, pp. 120-124.
[7] S. S. GODBOLE, An efficient computation of matrix chain products, IEEE Trans. Comput., C-22,

(1973), pp. 864-866.
[8] H. W. GOULD, Bell and Catalan numbers, Combinatorial Research Institute, Morgantown, WV.,

June 1977.
[9] T. C. Hu AND M. T. SHING, Computation of Matrix Chain Product, Abstract, Amer. Math. Soc.,

Vol. 1, (1980), p. 336.
[10], Some theorems about matrix multiplications, Proc. 21st Annual IEEE Symposium on the

Foundations of Computer Science, October 1980, pp. 28-35.
[11 ., Computation of matrix chain products Proc. 1981 Army Numerical Analysis and Computations

Conference, August 1981, pp. 615-628.
[12], An O(n) algorithm to lind a near-optimum partition of a convex polygon, J. Algorithms, 2

(1981), pp. 122-138.
[13] ., Computation of matrix chain products. Part I1, submitted.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0014 $01.00/0

ON PRIMALITY TESTS*

DANIEL J. LEHMANNS"

Abstract. Whether an odd number m is prime can be decided on the knowledge of the image of the
function a-am-l/2(m). As a consequence, an algorithm for testing primality is proposed (under the
extended Riemann hypothesis) which is more efficient than ones proposed by Miller [Proc. 7th ACM Symp.
Theory of Computing, 1975, pp. 234-239] and V61u [SIGACT News, 10 (1978), pp. 58-59]. A probabilistic
version is compared with the algorithm of Solovay and Strassen [SIAM J. Comput., 6 (1977), pp. 84-85;
erratum, 7 (1978), p. 118].

Key words, primality, extended Riemann hypothesis, probabilistic algorithms

Let (Z/mZ)* be the multiplicative group of units of Z/mZ. Let fn,, :(Z/mZ)*
(Z/rnZ)* be the group homomorphism defined by fn,,(a) a n. If m p for a prime
p and a positive integer a, we shall say that rn is a prime power (n.b: a prime is a
prime power).

LEMMA 1. If rn is not a prime power, then the image of fn, is not the subgroup
{+1,-1} (it may be in that subgroup, though).

Proof. If rn is not a prime power, it is the product of two relatively prime integers
greater than 1. Let rn rnlm2, (rnl, rn2)= 1, rnl, m2 > 1. Suppose

fn,,,(a) -1 for some a (Z/mZ)*.

Then a 1 (m 1). By the Chinese remainder theorem, there is a (unique) x (Z/mZ)*
such that x a (ml) and x 1 (m2). Then fn,m(X) is not in {1, -1}.

TrEOREM 1. Let rn be an odd integer. The image of f(,-l/2,m is the subgroup
{+ 1, 1}/f and only if rn is prime.

Proof. The if part follows from well-known theorems of elementary number
theory. The only if part follows from Lemma 1 and the fact that if rn p for p a
prime and a > 1, (Z/mZ)* is cyclic of order p-l(p_ 1), which is divisible by p; if
the image of f,-l,m were the trivial subgroup, p would divide m 1 p 1.

Note that f(m-l/2,m can be trivial only if rn is not a prime power.
TI-IEOREM 2 (Ankeny-Montgomery). 1]: the extended Riemann hypothesis is true,

there is a number M such that for every integer rn every Abelian group G and every
nontrivial homomorphism f’(Z/mZ)* G there is an element a less than M(log m)2

such that f(a) 1.
ALGORITHM 1. For each element a of (Z/mZ)* less than M(log m)2, compute

f<m-.1)/:Z,,n(a).
If at least one of the values found is different from 1 and -1, then m is composite.

Otherwise, if at least one of the values found is -1, then rn is prime and else rn is
composite.

Proof of correctness. If at least one of the values found is different from 1 and
-1, then by Theorem 1, tn is composite. If all the values found are + 1 or -1, Theorem
2 implies that the homomorphism g’(Z/rnZ)*-->(Z/mZ)*/{+l,-1} defined by g=
j Of(m-1)/2,m, where j is the canonical projection (Z/mZ)*->(Z/mZ)*/{+I,-1}, is
trivial. The image of f(m--1)/2,m is therefore a subgroup of {+1,-1}. If the value -1 is

* Received by the editors January 24, 1979, and in revised form April 13, 1980.

" Department of Computer Science, Institute of Mathematics, The Hebrew University of Jerusalem,
Jerusalem, Israel. Part of this work was done while the author was at the University of Southern California,
Los Angeles, California.

374

PRIMALITY TESTS 375

found at least once, then the image is {+ 1,-1} and by Theorem 1, m is prime. If all
the values found are + 1, then by Theorem 2, ,,-1/2,,, is trivial and by Theorem 1
m is composite.

Algorithm 1 is more efficient than the one proposed by V61u because it avoids
computing the Jacobi function (,). It is closely related to Miller’s as will be shown
now but seems simpler, and the number of operations involved is slightly smaller in
the worst case.

To link Algorithm 1 with Miller’s, let us examine in more detail the case where
f(m--1)/E,m is trivial. In such a case, m is not a prime power. By Lemma 1, then, for
any n the image of fn,, is either the trivial subgroup or is not included in {1,- 1}. Let
rn 1 2t. rn’ with m’ odd. Because m’ is odd, fm’,m cannot be trivial (/,,,. (- 1) -1);
there is therefore a largest k =< such that f..,,.., is not trivial. There is an a for
which b f2..,,,,.(a) +1 and b:Z=f2,,/.,,,,,.,(a) 1. Such an a is a witness of the fact
that rn is not prime and even enables the factorization of m, since

b2= 1 (m)(b+ 1)(b- 1)=0 (m)(b + 1, m) 1or (b-l, m) 1.

A probabilistic version of Algorithm 1 can be given, based on the following.
LEMMA 2. Let G and G2 be finite groups, f" G G2 a group homomorphism

and G3 a subgroup of G2. If the image off is not contained in G3, then f(a) : G3 for at
least half the elements a of G1.

Proof. Gaf’)Im(f) is a strict subgroup of Im(/); therefore, at least half the
elements of Im (f) are in Im (f)-G3. But if the kernel of has size k, then every
element of Im (f) is the image of exactly k different elements of G.

ALGORITHM 2. Let m be an odd integer. Draw k random elements of (Z/mZ)*"
a l, RE, , ak for each one compute a("-/2.

If at least one of the values found is different from + 1 and -1, then m is certainly
composite. If only values of + 1 and -1 are found and the value -1 is found at least
once, then m is prime with probability greater than 1-2-k. If all the values found
are + 1, then m is composite with probability greater than 1- 2-k.

Proof. Immediate from Lemma 2.]
Algorithm 2 is more efficient than the one proposed by Solovay and Strassen (it

does not involve the computation of the Jacobi symbol () but though the probability
of error is the same in the worst case, both conclusions "composite" and "prime"
may be incorrect, whereas in Solovay and Strassen’s method the conclusion "com-
posite" is always totally reliable.

Acknowledgments. Conversations with Dennis Estes and Sidney Graham are
gratefully acknowledged.

REFERENCES

[1] GARY L. MILLER, Riemann’s hypothesis and tests for primality, Proc. 7th Annual ACM Symposium
on the Theory of Computing, 1975, pp. 234-239.

[2] HUGH L. MONTGOMERY, Topics in multiplicative number theory, Lecture Notes in Mathematics 227
Springer, New York, 1971.

[3] MICHAEL O. RABIN, Probabilitic algorithms, in Algorithms and Complexity, New Directions and
Recent Results, J. F. Traub, ed., Academic Press, New York, 1976.

[4] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primal#y, this Journal, 6 (1977) pp.
84-85; erratum, 7 (1978), p. 118.

[5] J. VLU, Tests]’or primality under the Riemann hypothesis, SIGACT News, 10, 2 (1978), pp. 58-59.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0015 $1.00/0

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS*

ROBERT SEDGEWICK’, THOMAS G. SZYMANSKI$ AND ANDREW C. YAO

Abstract. Given a function f over a finite domain D and an arbitrary starting point x, the sequence
f(x), fl(x), f2(x), is ultimately periodic. Such sequences are typically the output of random number
generators. The cycle problem is to determine the first repeated element fn(x) in the sequence. Previous
algorithms for this problem nave required 3n+O(1) operations. In this paper we show that n(l+O(1/k/))
steps are both necessary and sufficient, if M memory cells are available to store values of the function. We
explicitly consider the performance of the algorithm as a function of the amount of memory available and

the relative cost of evaluating f and comparing sequence elements for equality.

Key words, computational complexity, time-space tradeoffs, cycle detection

1. Introduction. Suppose that we are given an arbitrary function f which maps
some finite domain D into D. If we take an arbitrary element x from D and generate
the infinite sequence f(x), fl(x), f2(x), ..., then we are guaranteed by the
"pigeonhole" principle and the finiteness of D that the sequence becomes cyclic. That
is, for some and c we have l+c distinct values f(x), fl(x), ..., fl+c-l(x) but
ft+(x) ft(x). This implies, in turn, that fi+"(x) fi(x) for all i>-l. The problem
of finding this unique pair (1,) will be termed the cycle problem for f and x. The
integer c is the cycle length of the sequence, and is termed the leader length. Simi-
larly, the elements f1(x), fl+l(x), fl+c-l(x) are said to form the cycle of f on x
and f0, fl(x), fl-l(x are said to form the leader of f on x. For notational
convenience, the number + c of distinct values in the sequence will be denoted by n.

The cycle problem arises when analyzi,ng pseudo-random number generators that
produce successive "random" values by applying some function to the previous value
in the sequence [1, 3.1]. Solving the cycle problem gives the number of distinct ran-
dom numbers which can be produced from a given seed. Algorithms for the cycle
problem are used in checking the characteristics of random number generators whose
internal properties are unknown. Other applications include checking for loops in
self-referent lists (see [2]), and studying the performance of certain numerical calcula-
tions (see [5]). Beyond these practical motivations, the problem is of some intrinsic
combinatorial interest.

A graphic restatement of the problem is provided by imagining a directed graph
whose nodes are the elements of D and which contains an arc from y to f(y) for every
yED. For example, Fig. la shows the graph corresponding to f(x) (2x+ 1)mod 10,
with D 0,1,.. ",9. The cycle structure for a function consists of a number of

*Received by the editors November 13, 1980, and in revised form July 24, 1981. This paper was
typeset at Bell Laboratories, Murray Hill, New Jersey, using the troff program running under the UNIX
operating system, Final copy was produced on December 29, 1981.

’Department of Computer Science, Brown University, Providence, Rhode Island 02912. This work
was done in part while this author was visiting the Institute for Defense Analyses, in part under support
from the National Science Foundation, grant MCS-75-23738, and in part while this author was visiting the
Xerox Palo Alto Research Center.

:Bell Laboratories, Murray Hill, New Jersey 07974. This work was done in part while this author was
visiting the Institute for Defense Analyses.

Department of Electrical Engineering and Computer Science, University of California, Berkeley, Cal-
ifornia 94720. This work was done in part under support fi’om the National Science Foundation, grant
MCS-77-05313, and in part while this author was visiting the Xerox Palo Alto Research Center.

376

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 377

FIG. l a. A typical cycle structure.

disjoint cycles, with disjoint trees feeding points on the cycles. To solve the cycle prob-
lem, we need consider only the subgraph consisting of a single cycle and leader, which
can be drawn as shown in Fig. lb.

FIG. lb. A typical cycle and leader.

One method for cycle detection, commonly referred to as "the tortoise and hare"
algorithm, has been given by Floyd [1, Exercise 3.1-7]. The idea is to have two vari-
ables taking on the values in the sequence, one advancing twice as fast as the other.
A program implementing this idea is given in Fig. 2.

y-z-x;
repeat

y f(y);
z f(f(z));

until y z;

FIG. 2. Floyd’s algorithm.

This algorithm stops with y=fi(x)=fZi(x)=z, where is the smallest positive multiple
of c which is greater than or equal to 1. If/=0 then 3n function evaluations are per-
formed, and if l=c+ 1 or if c= 1 with 14:0 then a total of 3(n-1) function evaluations
are performed. This number may be objectionable when the cost of evaluating f is

378 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

high relative to the cost of comparisons.
Another method, due to Gosper [2, page 64], was designed to circumvent the

overhead of advancing two independently operating "copies" of the generating func-
tion as required in Floyd’s method. His method is to save certain values of the
sequence in a small table (whose size must be at least logzn) and to search for each
new value to see if it has previously been generated. The table update rule is to save
the ith value generated in the jth cell of the table, where j is the number of trailing
zeroes in the binary representation of i. This method can require as many as + 2c
function evaluations, or 2n if/=0, and 3n/2 if l=c. Moreover, it requires at least an
equal number of table searches, which would be important if the cost of comparisons
were high relative to the cost of evaluating f.

These algorithms are suitable for detecting the existence of a cycle. The value of
c can be found by proceeding around the cycle one additional time. Of course, this
may be undesirable if c is very large. Moreover, neither algorithm has provision for
directly finding except by starting back at the initial value.

In this develop an algorithm that solves the cycle problem usingaper, we
n(1+O(1/)) function evaluations in the worst case, where M is the amount of
memory available for storing generated function values. The number of memory
operations (i.e., stores and searches) used is O(n/X/- + Mlogn/M). The algorithm is
developed in 2 in two parts: one stage which detects the cycle, and a companion
stage which recovers the values of and c. A worst case analysis of the algorithm is
given in 3. In 4, we derive a lower bound which shows that no algorithm using the
same fundamental operations can have a substantially better worst case performance.
Our algorithm for the cycle problem thus demonstrates a tight, non-trivial tradeoff in
which time is a continuous function of memory-size. A generalization of the problem
and some concluding remarks are offered in 5.

2. The algorithm. Any algorithm for the cycle problem must have a running
time of at least ntf where tf is the (assumed constant) time to perform one evaluation
of f. It should be clear that by using a large amount of memory we can produce an
algorithm whose running time is ntf+ O(nlogn) by employing, for example, a bal-
anced tree scheme to save all elements generated in the sequence. Such an algorithm
is unsatisfactory for at least two reasons. First, it is unrealistic to assume an unlimited
supply of memory. Second, it does not take into consideration the relative complexity
of evaluating f and comparing two domain elements for equality. Let us therefore
construct a framework in which these considerations can be addressed. We shall be
particularly interested in the tradeoff between memory size and execution time.

Let TABLE be an associative store capable of storing up to M pairs (y, i) of
domain elements and integers. Both elements of the pair are keys in the sense that it
is possible to search TABLE for an entry that contains a specified value for its first (or
second) component. Let tu be the time needed to insert or delete a pair from TABLE,
i.e., to update TABLE, and let ts be the time needed to search TABLE for a given key.
Depending on the implementation of TABLE, tu and ts might be constants, logarithmic
functions of M or even linear functions of M (see 5). All other operations of the
algorithm are assumed to be free.

Within this model, we are ready to develop an algorithm for the cycle problem.
The basic idea is to limit the number of operations performed on TABLE by only stor-
ing and searching for occasional values in the sequence f(x), fl(x), Thus,
most of the time consumed by the algorithm is spent advancing the function f. In
order to implement this idea, let us introduce two parameters, b and g. Fig. 3

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 379

contains an algorithm which only stores every bth function value in TABLE and which
performs searches on blocks of b consecutive values spaced gb apart in the sequence.

y -x;
,--0;

repeat
if (i mod b) 0 then insert(y, i);
y f(y);

i+1;
if (i mod gb) < b then search(y);

until found;
output i, j;

FIG. 3. Preliminary version of the algorithm.

Here the procedure insert(y, i) puts the pair (y, i) into TABLE without checking to
see if there is another entry already there with the same first component. The pro-
cedure search(y) sets the variable found to false if no pair in TABLE has y for its first
component, otherwise it sets found to true and j to the minimum value of j for which
(y, j) is in TABLE. The modulus computations in this program are used for clarity;
an actual implementation would use counters instead.

The program is guaranteed to halt because once the cycle is reached at least one
function value out of every block of b consecutive values searched for must be in
TABLE. Although it is possible to overshoot the point at which the cycle first returns
to itself, it is clear that the algorithm will always detect the cycle before the (n + gb)th
evaluation of f. Since the algorithm performs g updates and b searches for every gb
evaluations of the function, the worst case running time of the algorithm is no greater
than (n + gb)(tf+ ts/g + tu/b)+ bts. The bts term is caused by the fact that the searches
are not uniformly distributed within the sequence of function evaluations.

It is interesting to note that a dual algorithm can be developed by interchanging
the roles of search and insert in Fig. 3, that is, every bth function value is searched
for, and a block of b function values is stored every gb evaluations. Most of the
results of this paper then carry through for the dual algorithm. Further development
along these lines is left to the reader.

We could arrange to have the algorithm spend virtually all its time doing the
(unavoidable) task of stepping f by choosing b and g suitably, were it not for the fact
that TABLE will soon fill up. Accordingly, we introduce the following memory
management mechanism. Whenever TABLE gets filled, we invoke a procedure
purge(b) which removes all entries (z, j) from TABLE for which j 0 (mod 2b). We
then double b, and continue. This has the same effect as restarting the program from
the beginning (,.vith the larger value of b) and running it to the current value of i.
Notice that this effect is achieved at the cost of a few memory operations and, more
importantly, no additional function evaluations. The algorithm thus adapts its
behavior to the problem at hand. (A similar memory allocation strategy can be dev-
ised for the dual versioh of the algorithm mentioned above.)

The final version of the algorithm is shown in Fig. 4. The variable m is used to
count the number of entries currently in TABLE. Notice that b is now a variable of
the program, while g is still a parameter. The memory size M must be at least 2 and
g can be any integer in the range l<-g<M. If g= 1 then every generated function
value is looked for in TABLE and the algorithm will halt very soon after the nth func-
tion evaluation. Larger values of g result in fewer searches but delay the point at
which a duplicate element is discovered. It will be explained later how to best choose

380 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

the value of g.

y .--x;
,--0;

rn ,--0;
b,-1;
repeat

if (imod b) Oandm Mthen
begin

purge(b);
b 2b;
rn [m/2l;

end
if (i mod b) 0 then

begin
insert(y, i);
rn m+l;

end

Y f(Y);
i+1;

if (i mod gb < b then search(y);
until found;
output i, j;

FG. 4. The cycle detecting algorithm.

The following lemma provides the key invariant relations necessary for under-
standing the operation of the algorithm. The corollaries to the lemma provide useful
facts needed in the analysis and correctness proof.

LEMMA 1. The following relationships hold among the variables in the cycle detect-
ing algorithm at the start of each if statement (and therefore at each call of search,
insert, or purge):

(a) y fi(x),
(b) (fJ(x), j) is in TABLE i and only i] j:-O (rood b) and O<-j<i,
(c) the number o] entries in TABLE is rn [i/b].
Proof. Clearly, the relations are all true when the repeat loop is first entered.

Moreover, it is easy to see that (a) is preserved throughout the program because the
variab!es y and are only changed in one place in the loop. It remains to show that
(b) and (c) are preserved by the loop body.

Consider the first if statement in the loop. If its predicate is false, no variables
are changed and the relations are preserved. If its predicate is true, then by induction
we bave rn [i/b] M with 0 (mod b). Thus Mb and TABLE contains
(fJ(x), j) for j E {0, b, 2b, (m-1)b}. After the call on purge, TABLE contains
only those entries with jE{0, 2b, 4b,.-., kb} where k is M-2 if M is even, and
M-1 if M is odd. In either case, the number of entries remaining in TABLE is
(k/2)+ 1, which turns out to be [M/2|. Thus (c) is preserved by the purge and subse-
quent assignment to m. It should be equally obvious that the purge and subsequent
doubling of b preserve (b), so we have thus established that the first if statement
preserves the relations in the lemma.

The preservation of (b) and (c) by the rest of the loop body is straightforward. []

COROLLARY 1. For k>-O, the k+ 1st call on purge increases b from 2 to 2k+l and
occurs when =2kM.

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 381

COROLLARY 2 The value of b when search is called is i/M rounded up to the next
[log2i/M]

integral power of that is,

Our main goal in the study of the performance of Algorithm 4 is to prove that it
halts fairly soon after the nth evaluation of f. We would expect termination to occur
during the execution of the first block of consecutive searches initiated after the time
when i= n: this turns out to be true, but the proof is complicated substantially by the
possibility that purges can occur at inopportune times, thus delaying the start of the
search block. The situation is quite complicated because, though g and M are fixed
ahead of time, the algorithm must work correctly for all values of and c. It is not
obvious that the algorithm is guaranteed to terminate within a reasonable amount of
time: for some choices of g and M there might be values of and c that the search
block is delayed for some time by unfortunate purges. The following lemma shows
that this cannot be the case, and gives precise bounds on the time at which the algo-
rithm must terminate.

LEMMA 2. Let bn be n/M rounded up to the next power of 2 (i.e., bn is the value of
b when is assigned the value of n). Then if, the value of at the termination of the
cycle detecting algorithm, obeys:

n --< (1 < n + (g + 1)b, if [M/g] is even,

n <- if < n+(Zg + 1)b, if [M/g] is odd.

Moreover, these bounds on if a:’e as tight as possible.
Proo[. Complicated interactions between the occurrence of purge and search

operations, based on arithmetic relationships between M, g l, and c, make this proof
an intricate case analysis, which is relegated to the Appendix. To see the flavor of the
proof, consider the simplest case, when no purge operations occur between the first
evaluation of fn(x) and the search that terminates the algorithm. In this case, the
algorithm performs searchs for fi(x), is<_i <is+ bn, where is is the (unique) multiple
of gbn for which n<-i,<n+gbn. D’aring the search, since there are no purges (the pre-
cise conditions for this case are given in the Appendix), the value of of b remains
fixed at b,. Since i.>-n, the values searched for are equal, respectively, to fJ(x),
is-c <-j<is+b,-c, exactly one of which, by Lemma l(b), must be in TABLE. The
algorithm therefore finds a match on one of these searches and terminates with found
true and if < is+bn < n+glT,,+bn n+(g+ 1)bn. Notice that if c<b,, the fJ(x) that
is found will have j=is. []

The algorithm of Fig. 4 halts as soon as it discovers a pair i>j of integers for
which fi(x)=fJ(x). This implies that j>-l and that i=j (mod c), but we need to do
some additional processing to find the exact values of and c. Fig. 5 shows a com-
panion algorithm which recovers the solution (l, c) once the cycle detecting algorithm
has terminated.

if fJ(x)--fJ+c(X)with 1--<c-<(g+ 1)b then
c smallest such c;

else
c .-i-j;

i’ max(c, gb [i/gb] gb);
j’ -i’-c;

smallest >j’ such that f(x) f+ (x);
output l, c;

FIG. 5. The recovery algorithm.

382 ROBERT SEDGEWICK THOMAS G. SZYMANSKI AND ANDREW C. YAO

The second to last statement in this program may require evaluating f starting at
a point that is not in TABLE. This can be done with little extra overhead. For exam-
ple, fJ’(x) can be found by doing a search for a TABLE entry whose second com-
ponent is b [j’/b] and then applying f exactly j’ (mod b) times to fblj’/b](x).

LEMMA 3. The recovery algorithm correctly computes c using at most 2(g + 1)bn
function evaluations.

Proof. The bound on the number of function evaluations is immediate from the
observation that the final value of b is either bn or 2b.

The correctness of the computation of c has two cases depending on the predicate
in the initial if statement in the algorithm. If the true branch is taken, then c is
correctly computed by definition of cycle size. If the false branch is taken, then we
must have c>(g+ 1)b. However, we know from the proof of Lemma 4 that
< n + (g + 1)b and hence < n + c. Since j-> n- c, this means that i-j< 2c. Because
i-j must be a multiple of c, this implies that i-j-c, which is precisely what the
algorithm has computed in this case. []

LEMMA 4. The recovery algorithm correctly computes using at most 4(g+ 1)bn
function evaluations and two memory searches.

Proof. The expression gb li/gb] gives the value of at the start of the final block
of searches that the algorithm performed. Subtracting an additional term of gb from
this gives the start of some previous block of searches that was completed unsuccess-
fully. Thus n-gb<-gb[i/gb]-gb<n and we have max(c, l+c-gb)<-i’<l+c=n.
This implies that max(O, 1-gb)j’ <l. It should be clear from the definition of
leader length that the algorithm correctly computes 1.

The time bound follows from a more detailed consideration of the implementa-
tion of the statement that assigns I. As mentioned above, fJ’(x) and fJ’ +(x) can each
be found by performing a memory search and b-< 2b, function evaluations. Assigning
these function values to variables and applyitlg f to both of them until they are equal
involves (from the range given above on j’) at most gb<_2gb, function evaluations
apiece. []

It is possible to design faster recovery procedures for many situations. For exam-
ple, c could be found by applying "divide and conquer" to the prime decomposition
of i-j, and could be found by a binary search procedure. However, the recovery
time is heavily dominated by the cycle detection time, so such sophisticated implemen-
tation tricks might not be worth the effort.

3. Worst case analysis. The algorithms of the previous section can provide an
efficient solution to the cycle problem if the parameter g is chosen intelligently. In
this section we shall analyze the running time of the algorithms to find the best choice
of g. We shall concentrate on minimizing the worst case running time.

THEOREM 1. In the worst case, the running time of the cycle detecting algorithm is
at most

M tf+ + tuMlog2 8n.M
The additional time required to recover the values of and c is at most

n 12(g + !)
M tf+ 2ts.

Proof. Corollary
if< n(1 + (4g + 2)/M).

2 tells us that bn<-2n/M. Lemma 2 then implies that
Tbe detection algorithm performs if evaluations of f for a

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 383

contribution of iftf to the running time. Throughout the execution of the algorithm, b
searches are performed for every gb function evaluations. Thus the total number of
search operations is if contributing ifts/g to the running time. This takes care of
the first term. (Note that the full result of Lemma 2 implies that coefficient of g in
the O(I/M) term could be reduced to 2, by taking [M/g] to be even.)

For the second term, observe that each call on purge removes M/2 elements from
TABLE. If we charge each element with tu time for initially inserting it, and then tu
time for its removal, we get a cost of Mtu for each purge performed. In addition,
TABLE can contain up to M elements at the termination of the algorithm, elements
which have been inserted but not yet deleted. This contributes at most Mtu more to
the cost. Since the total number of purges performed is no greater than 1 + log2bn, we
get a memory manipulation charge of Mtu(2+log2bn) which gives us the second term
above.

For the running time of the recovery algorithm, Lemmas 3 and 4 give us an
upper bound in terms of bn, which by Corollary 2 is at most 2n/M. []

COROLLARY 3. The total running time of the cycle finding algorithm is

if g is chosen appropriately.
Proof. From Theorem 1, the total running time (of both algorithms) is bounded

by

Choosing g to be the square root of 1 +

[[.[__))’* 14tfn tf+8 1+ + +
M

minimizes this expression, yielding

16ts) 8n+ tuMlog2.
M M

Combining terms that are O() gives the stated result. []

Note, in particular, that a balanced tree implementation will have ts O(logM),
and a hashing method could have ts O(1). In both cases, the worst case running
time will approach ntf as M gets large. In the next section, we shall see that the algo-
rithms are, in fact, optimal in a much stronger sense than this.

4. Optimality. The cycle detecting algorithm given above can be thought of as a
family of algorithms (parameterized by g) that trade off between the two types of
basic operations, namely, function evaluations and memory searches. Thus, in the
range 1 <--g<M, if we are willing to use O(ng/M) extra function evaluations in addi-
tion to the n function evaluations needed to compute fn(x), then we need only per-
form O(n/g) table searches. The corollary to Theorem 1 shows that g can be chosen
to allow the cycle problem to be solved in time ntf(l+O(/ts/Mtf)). In this section,
we shall show these results to be optimal in the sense that no algorithm which does
successive function evaluations and has a limited amount of memory to store function
values can do substantially better.

We shall consider the problem of cycle detection, that is, finding a pair i:/: j such
that fi(x)--fJ(x). The lower bound results will also, of course, apply to the more gen-
eral cycle finding problem. We need to specify the model of computation to be

384 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

considered.
The model. An algorithm A uses an array T[1], ,TIM], each cell of which

can store a pair (k, d) with k_>0 an integer, and d an element of the domain D. At
all times, any pair (k, d) stored in a cell will satisfy the relation d fk(x); initially all
cells contain (0, x). The algorithm can make two types of moves: An F-move which
picks a pair (i, j) of integers (possibly equal) and sets T[i] (k, f(d)) where (k, d) is
the contents of T[j] when the move is executed; and an S-move which picks an and
tests "is there a ji such that T[i]=(k, d) and T[j]=(k’, d’) satisfy k’k and
d’=d". The computation proceeds one move at each time 1, 2, and halts
as soon as some S-move results in a "yes" answer. The algorithm is assumed to
remember the entire history of the computation (that is, the values of and j made in
all F-moves, and the value of used in all S-moves) and the choice of the next move
can depend on all of this information. Of course, values of D are "remembered" only
if they are currently stored in T. The reader will note that algorithms constructed for
our model of computation are oblivious in that any one algorithm, when run on two
different problem instances, will exhibit identical behavior up until the point that one
of the computations receives a "yes" response to an S-move and halts.

For any instance (f,x) of the cycle problem, let Ff,x(A) be the number of F-
moves performed by A when run on that instance, and let Sf,x(A) be the number of
S-moves. The running time is thus Ftf,x(A)tf + Stf,x(A)ts. We shall use the notation

ntf,x to denote the sum of the leader and cycle lengths for the instance (f,x).
The following theorem gives an explicit lower bound on the tradeoff required

between the number of function evaluations and table searches for any algorithm for
the cycle problem.

THEOREM 2. Let k be a positive real and no a positive integer. Suppose that A is
an algorithm for the cycle problem, for which F(f,x)(A) < (1 + k)n(f,x) whenever

n(f,x) >- no. Then

> ntf,x)
8kM(l+4k)2

for all (f,x) with ntf,x sufficiently large.
Proof. Consider the algorithm A working on an input (f,x) with n(f,x)= . Let

tm be the time when fm(x) is first computed by an F-move and stored into the array.
Let s(m, rn’) denote the number of S-moves performed in the time interval [tm, tm’).
The method of proof will be to bound s(m, m’) for appropriate m, m’, and then sum
these results over a large range of intereals to prove the theorem.

First we shall show that if rn-> no and m’_> (1 + k)m then we must have

s(m, m’) >- m2

4(M- 1)m’
To prove this, suppose that A has not yet halted at time tm,. Then the S-moves made
so far must have given enough information to establish that fm(x)=/:fm-c(x) for
1-< c-< m, otherwise there would exist an instance (f,x) of the cycle problem on which
A would perform more than m’ -> (1 + k)n (1 + k)n(f,x) F-moves.

We shall proceed by determining how many inequalities must be found in order
to discount those cycle sizes in the range am<_c<_m for some a to be determined
later. For each such c, let fic(x):/:fJC(x) with jc<ic<m be the "witness" that
fm(x):/:fm-(x). Then ic-Jc=hcc for some integer he-> 1. Since i<m’ and c>-am,
we must have h<_rn’/am. Thus each inequality fi(x)=/:fJ(x) can eliminate at most
rn’/am cycle sizes in the range am <-c<-m. Because each S-move can supply up to
M-1 inequalities, we have

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 385

s(m,m)(M 1) m’ > (1-ot)m.
otm

Taking ot 16 yields the bound claimed in the statement of the theorem.
Next we shall bound the total number of S-moves made before time tn,.. Since

we already know that algorithmr1Acannot halt before time tn,x, this will suffice to

the theorem. Define mi [no(l+2k)i[, 0-<i<. We may assume, without lossprove
of generality, that no -> 1+ 1/k, and so, l+k -< mi+l/m -<1+3k. Thus we have

mi
s(mi, mi+ 1)

4M(l+3k)
For any nf,x)> no, define to be the largest integer such that m < nff,x). We thus
have

Stf,x)(A) >-- , s(mi,mi+l) >-- 1 no(l+2k)i= 1 (l+2k)t-1
O<_i<t 4M(1 + 3k) o<_i<t 8M---"n 1 + 3k

If nf,x) is sufficiently large, then is large enough to guarantee that

..(l+2k)’-i > .(l+,2k),t,, > (l+2k)/+
1 + 3k 1 + 4k (1 + 4k)2

Thus

1 (l+2k)’+1 1 n(f,x)
Sff,x)(a) > no >

8mk (1 + 4k)2 8Mk (1 + 4k)2’

which completes the proof. []

The reader should note that if our model of computation is altered to allow an
unbounded supply of memory, and the basic operations changed to allow F-moves and
simple comparisons, that is, in one step, test whether some specified pair of memory
locations contain equal elements of D, then our proof techniques imply that any algo-

n(f,x)rithm satisfying the hypotheses of Theorem 2 must perform at least com-
8k(l+4k)2

parisons. It should also be noted that Theorem 2 has an alternate proof which is only
valid when k<16 but which improves the constant in the bound on Sf,x). The alter-

nate bound is S(I,xl(A) > k(1 + k)M n(f,x.

COOLLAIY 4. If tJtf=O(M), then the running time for any algorithm for the
cycle detecting problem is

Proof. Let k be the square root of ts/tfM. For any cycle detecting algorithm,
there are two cases"

Case 1. The algorithm performs more than n(l+ k) F-moves for infinitely many
n. Thus the algorithm has a running time of at least

n(l+k)tf ntf 1+

for infinitely many n.
Case 2. The algorithm uses no more than n(l+k) F-moves for all n greater than

some no. In this case, Theorem 2 applies, and the running time of the algorithm is at

386 ROBERT S.EDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

least

ntf + ntf 1+
8kM(1 + 4k)2 8(1 + 4k)2

for all instances of the problem with ntf, sufficiently large. Since ts/tf=O(M), k is
bounded from above as M varies, and thus 1/(1+4k) is bounded from below. This
gives us the claimed result. []

The above results are asymptotic statements about the performance of algorithms
for the cycle problem for instances (f,x) with n(f,x) large. Of course, it is implicit in
these statements that the size of the domain D must also be large since we have the
constraint that ntf,,-< 91. If 91 is known to be small, an algorithm might be able to
make use of that information.

The lower bounds derived in this section shed some light on the possibility of
extending further the algorithms in 2. The cycle finding algorithm has a running
time of

1+cl ntf + C2g

for small positive constants 1, 2, but only under the constraint that g<M. It is
interesting to inquire whether algorithms can be found which extend this range.

For example, if one is willing to use many more, say Mn extra function evalua-
tions, can the number of searches be lowered to O(n/M2)? Theorem 2 provides part
of the answer, since it says that with this many extra function evaluations, one still has
to perform (n/M2) table searches. We do not know of any algorithm that achieves
this lower bound.

Another direction of research involves finding a non-trivial lower bound on the
number of function evaluations independent of the number of searches performed. It
is easy to show, for example, that any algorithm which uses memory M must perform
at least

function evaluations in the worst case for sufficiently large n(f,x). This can be proved
by considering the contents of memory at time tn-1 and choosing the cycle size so that
ft(x) is at least n/2M "away" from any stored element. Details are left to the reader.

5. Concluding remarks. We have dealt exclusively with algorithms with good
worst case performance for solving a particular instance of the cycle problem on an
unknown function. The problem is also interesting under other variations of the
model.

One variation is to take the function to be random (in some sense) and to talk
about an average case measure of complexity. R. W. Floyd has pointed out that
studying the probabilistic structure of random functions over D can lead to savings on
the average. For example, is known to be relatively large in the case of a random
function, so it may not be worthwhile to save or search for values at the beginning.

Another variation is to let the cost of computing fJ(x) be independent of j. A
famous factoring algorithm due to Shanks [4] is based on this problem. Shanks’ solu-
tion, which uses the additional knowledge that =0 and n is bounded by some con-
stant N, finds n in time proportional to using Vn memory. The method is simi-
lar to the,dual algorithm mentioned in 2: one saves the first values generated,

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 387

then does table searches at subsequent intervals of -n. Our cycle detecting algorithm
also works in this case, but it runs slightly longer due to its need to discover that 0
and its need to adapt to the value of c. A rough analysis for this case follows. From
the program, we see that the function evaluation cost will be about the same as the
table update cost, so the expression for the total running time in Theorem 1 tells us
that the best thing to do is to pick g as large as possible (about M), for a running time
of

0 + (tu + tf)Mlog2 --This expression is minimized to O(X/gzN) by choosing M to be O(X/n/logzN) if
enough memory is available and we know that n is bounded by N.

A generalization of the c3’cle problem arises when all the points of the domain D
are to be studied. In general, D is partitioned by f into disjoint sets with the property
that all points in each set lead to the same cycle. Properties of the cycle structure

(e.g., the number of sets, their sizes, the sizes of their cycles) can be found by solving
the cycle problem on all points of D. The algorithms of this paper can be adapted to
avoid retraversing long cycles by maintaining versions of TABLE for each cycle.

Another generalization of the cycle problem can be formulated in the following
way. As before we are given a unary function f, only now we allow the domain of f
to be infinite. We suppose that we are also given a binary predicate P on D D. The
problem is to find the smallest n for which there exists an l<n such that
P(f"(x), ft(x)). In the absence of any further information, it is easy to show that this

problem requires () evaluations of P. However, if P is preserved by f, that is,

P(a, b) implies P(f(a), f(b)), then the algorithms of this paper can be made to run in
time n(tf+ O(tp)) where tp is the time needed’to evaluate P. It is interesting to note
that the algorithms of [1] and [2] simply do not work for this problem.

An earlier version of this paper [3] left open the question of whether an algo-
rithm exists for the cycle prcblem which used a bounded amount of memory and an
optimal number of function evaluations. We have resolved this question in 4, with
the somewhat surprising result that the algorithm of 2 may be viewed as optimal for
the range of problem parameters for which it is applicable.

Appendix. In this appendix, we give a detailed proof of the complete result
about the termination time of the cycle finding algorithm, Lemma 2 from 2 of the
paper. The main purpose of including this proof in detail is that it precisely illustrates
why the result given is the most general available for the problem: in fact, each of the
cases below was essentially discovered as a counterexample during the search for a
simpler or better version of Lemma 2.

A key fact needed to establish the correctness of the algorithm is that at least one
complete block of searches on b consecutive values of the function is performed
between any two consecutive calls on purge. Let the consecutive purges take place at
i=2k- 1M and 2kM. During this time interval b 2k. The following fact implies that
at least one block of searches will be started early enough in this interval to be com-
pleted before the latter purge. More specifically, the search block will start no later
than 2kM 2k.

FaCT 1. Let M and g be integers with l<-g<M and M>-2. For any integer k>0
there exists an integer i, 2k-lM<-i<-2M-2, such that i=-O (mod 2kg).

Proof. If [M/2]<_g<M, then 2kg clearly has the required properties. If
1-< g-< [M/2], simply count the number of multiples of 2 in the specified interval. If

388 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

M is even, there are precisely M/2 such multiples, whereas if M is odd, there are
(M-1)/2 of them. In either case, the interval contains [M/2] consecutive multiples of
2k so one of them must be congruent to 2kg. []

The next fact is a technical result which will be useful in determining the amount
by which the algorithm can overshoot n.

FACT 2. Let M, g, and x be positive integers. Then [M/g] is even if and only if the
smallest multiple of gx that is at least Mx is an even multiple of gx.

Proof. (If) By hypothesis, there exists an even integer z such that
(z-1)gx < Mx <- zgx. But then, z-1 <M/g <- z and so [M/g] <_ z. Thus [M/g] is
even.

(Only if) By hypothesis, there exists an even integer z such that z [M/g].
Then z-1 < M/g z and so (z-1)gx < Mx <- zgx. Since (z-1)gx and zgx are con-
secutive multiples of gx, zgx must be the smallest multiple of gx that is at least Mx.
Since z is even, zgx is an even multiple of gx. []

At this point we are ready to prove the result of Lemma 2 from the text, which
states precisely when the algorithm halts. The key idea is that termination is
guaranteed to occur during the execution of the first block of consecutive searches ini-
tiated after the time when i= n. As mentioned in the text, the proof is complicated
substantially by the necessity to account for the effects of purges which could delay the
start of the last search block. Fact 1 will be used to show that the delay cannot be
indefinite and Fact 2 will be used to establish a bound on the amount of the delay.

LEMMA 2. Let bn be n/M rounded up to the next power of 2 (i.e., bn is the value of
b when is assigned the value of n). Then if, the value of at the termination of the
cycle detecting algorithm, obeys:

n if < n + (g + 1)bn if [M/g] is even,

n <-- if < n+(2g+ 1)bn if [M/g] is odd.

Moreover, these bounds on if are as tight as possible.
Proof. Let ip--bnM and let is be the (unique) multiple of gbn for which

n <- is<n + gbn. By Corollary 1, ip >- n. Thus ip is the first moment after n at which
a purge operation can occur, and is is the first moment after i=n at which a new
block of search operations can commence. A number of cases now arise.

Case 1. is<ip. Since is and ip are both multiples of bn, is+ bn <: ip and the algo-
rithm performs searchs for fi(x), is<-i<is+bn, during which time the value of b
remains fixed at bn. Since is>-n, the values searched for are equal, respectively, to
fJ(x), is- c <-j < is + bn c, exactly one of which, by Lemma 1 (b), must be in TABLE.
The algorithm therefore immediately terminates after one of these searches with

if < is + bn < n + gbn + bn n + (g + l)bn.
Case 2. ip<-is and [M/g] is even. By definition, is is the smallest multiple of gbn

that is at least as great as n. Since the condition of this case requires that n <-ip <-is, is
is the smallest multiple of gbn that is at least ip Mbn. Fact 2 thus guarantees that is
is an even multiple of gb and hence is=O (mod 2gbn). Fact 1 guarantees that no
additional purges take place between the times when =ip and is. Thus the algo-
rithm performs search operations for fi(x), is<-i < is + 2b,, during which time b 2bn.

Since is>-n, at least one of these function values is in TABLE and the algorithm halts
with if< is + 2bn. Thus n <-- if(n + (g + 2)b,.

We shall conclude this case by demonstrating by contradiction that we must actu-
ally have if<n+(g+l)bn. To do this, suppose that if>-n+(g+l)bn Consider
ips is-gb, and ipf= if-gb,--bn, ips is the point where the previous search block
began. We shall show that a previous find would have occurred at ipf, terminating the

THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 389

algorithm and giving us the desired contradiction. Observe that ips<n because
< n + gbn. Moreover, n < ipf because n + (g + 1)bn <-- if. Notice that ipf< ips + b,,

because if< is + 2b,,. Finally, observe that ips + b,, <-ip because both ips and ip are multi-
ples of b. with ip < n <- ip. Putting these together we have
ips < n <- ipf < ips+b,, <-ip. Since ips=-O (mod gb,,), this implies that the algorithm

-<i<" +b. during which time b remains constant atperforms searches for f’(x) ps ps
bn. By definition of if, if-c=O (mod 2bn), and so ipf-=-O (rood b,). Thus the
search for f%(x) should have caused the algorithm to terminate with i= ipf.

Case 3. ip<-is and [M/g] is odd. As in case 2 above, is is the smallest multiple
of gb,, that is at least ip. This time, however, Fact 2 tells us that is is an odd multiple
of gbn and hence isO (mod 2gb,,). The first block of searches starting after i= n
must therefore begin at is+gb,,. Since b at this time is 2b,, we see that if <
is + gbn + 2bn < n + (2g + 2)b.

As in case 2, we can next argue that the last bn values in this range are not really
possible. To do this, suppose that if>-n+(2g+l)b,,. Consider l’ps=is-gb,, and
ipf if-2gbn-bn. Once again, algebra reveals that ips < n <- ipf < ips+ bn <- ip and
we can argue that the algorithm would have terminated earlier.

To see that the stated bounds are the tightest possible, let us suppose that M and
g are given, with l<-g<M. We shall show how to construct an infinite set of
instances of the cycle finding problem in which if is at the extreme high end of the
ranges given in the statement of the lemma.

For any integer k_>0, let ip be 2kM, and let is be the largest multiple of 2kg that

is less than ip. Let n be is+2k. Since both n and ip are multiples of 2k, n<_ip and

bn 2k"
If [M/g] is even, let is2 be isl + 2’g n + gb,,- b,, and let be 1 + gb,,- b,,. If

[M/g] is odd, let is2 be is+2’+lg n+2gb,,-b,, and let be l+b,. These choices for

are possible because n is at least gb,, + b,,. It can be shown through the use of Fact 2
that, in either case, is2 is the smallest multiple of 2k+ lg that is at least ip. Now con-

sider the operation of the algorithm on an instance of the cycle finding problem whose
solution is given by the n and defined above. The algorithm will perform searches

<i<is +b,,=n These searches all fail. A purge then occurs at ipfor fi(x), ls--
increasing b to 2bn=2k+l. The next block of searches is performed for fi(x),
is.,<-i<is2+2b,,. Since the cycle size c=n-1 is sufficiently large, the algorithm will

-<i<" +2b, and for which i-c=O (mod 2bn). Let usterminate for the first with s2 IS2
write this if as is2+j with 0-<j<2bn.

If [M/g] is even, then if- c is2+j- c n + gb,, b,, +j- c + gb,,- b,, +j
l+2gbn-2b,,+j. Thus if-c=-O (mod 2b) when j= 2b-1 and the search halts at if

is2+2b-i n+(g+l)b,-1. If [M/g] is odd, then if-c is2+j-c
n+2gbn-b,,+j-c l+2gb,,-b,,+j l+2gb,,+j. Thus if-c=-O (mod 2bn) when
j 2bn-1 and the search halts at if is2+ 2b,-1 n + (2g + 1)bo-1. In either case,

if is the largest value permitted in the ranges given in the statement of the lemma. []

Acknowledgments. The authors take pleasure in thanking A. V. Aho, W. Beck-
man, and M. D. McIlroy,for their helpful comments on various drafts of this paper.

Postscript. F. E. Fich has recently shown [5] that the cycle problem is also
interesting to study under a complexity measure that counts only the number of func-
tion evaluations. Memory. references are not counted explicitly in the cost, but

390 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

algorithms must respect the limitation of using only a fixed amount of memory. She
proves a lower bound of n(1 + 1/(M-1)) function evaluations for algorithms restricted
to M memory cells, while the algorithm in this paper uses n(l+2/(M-1)) function
evaluations. Also, she gives upper and lower bounds for M 2 and various other res-
trictions.

REFERENCES

[1] D. E. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,
New York, 1969.

[2] R. GOSPER ET AL., HACKMEM, M.I.T. Artificial Intelligence Lab Report No. 239, 1971.
[3] R. SEDGEWICK AND T. G. SZYMANSKI, The complexity of finding periods, Proc. 11th Annual ACM

Symp. on the Theory of Computing, (April 1979), pp. 74-80.
[4] D. SHANKS, Class number, a theory of factorization, and genera, Proceedings of Symposia in Pure

Mathematics, American Mathematical Society, Providence, Rhode Island, 1970.
[5] F. E. FICH, Lower bounds for the cycle detection problem, Proc. 13th Annual ACM Symposium on the

Theory of Computing, (May 1981), pp. 96-105.

SIAM J. COMPUT.
Vol. 11, No. 2, May 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1102-0016 $1.00/0

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES*

MIHALIS YANNAKAKIS-

Abstract. The usual method for preserving the consistency of a database when accessed (read and
updated) concurrently by several transactions, is by locking the transactions according to some locking pol-
icy; a lockiJg policy that.guarantees the preservation of consistency of the database is called safe. Further-
more, if no deadlocks can arise the policy is called deadlock:free. In this paper we are concerned with the
freedom from deadlock of safe locking policies. We show that a simple extension of the DAG policy of [Y]
is the most general safe and deadlock-free policy for a pair of transactions. We prove however, that it is
NP-complete to test whether a set of transactions is not deadlock-free even for the simplest kind of transac-
tions, those that are two-phase locked [E]. We show that for the natural class of safe locking policies, the
L-policies, studied in [Y], freedom from deadlock is determined only by the order in which entities are
accessed by the transactions and not by the way in which safety is ensured. As a consequence of this fact we

develop simple conditions that guarantee the freedom from deadlock of a safe L-policy.

Key words, database, concurrency control, transaction, locking policy, serializability, safety,
deadlock

1. Introduction. A database consists of entities (e.g., files, relations, records
etc.) which satisfy certain consistency constraints. Many times, when a user accesses
the data base, he may have to violate temporarily these constraints in order to
transform it to a new consistent state. For this reason, atomic actions are grouped
together into units of consistency, called transactions. When several transactions
access (read and update) the same database concurrently, there must be some kind of
coordination of the various actions to assure that the resulting sequence of actions (or
schedule) is correct; that is, every user must receive a consistent view of the data, and
the schedule must leave the database in a consistent state at the end. Such coordina-
tion is usually achieved through some locking mechanism [E], [G1], [G2], [LW], [U].
Each transaction locks entities according to some locking policy in such a way that
when the transaction runs concurrently with any other possible set of transactions that
follow the same locking policy, any schedule that might result (if the locking protocol
is observed) is guaranteed to be correct. Such a locking policy is called safe.

The simplest safe policy is the two-phase locking policy (2PL) proposed by
Eswaran et al. in [E]. In 2PL a transaction must lock (in any order) every entity it
needs before it accesses it. However, after some entity is unlocked, the transaction is
not allowed to lock any more items. In [SKI another safe policy, the tree policy (TP),
and then in [Y] a generalization of it, the DAG policy (DP), were proposed. In TP
the entities are arranged in a rooted (directed) tree. Any entity can be the first one
locked by a transaction T. Subsequently, T may lock an entity A only if its father
f(A) is locked, and A has not been locked previously again. In DP the entities are
arranged in a single source DAG. A transaction can start by locking any entity; sub-
sequently an entity A can be locked only if all its fathers (immediate predecessors),
but not A, have been locked (and possibly unlocked), and the transaction holds a lock
on at least one father of A. The basic idea in TP and DP, of locking an entity only if
a father of it is currently locked, was first used in papers dealing with the concurrent

*Received by the editors March 25, 1980, and in revised form March 23, 1981. This paper was
typeset at Bell Laboratories, Murray Hill, New Jersey, using the troff program running under the UNxx’
operating system. Final copy was produced on January 6, 1982.

’Bell Laboratories, Murray Hill, NJ 07974.

391

392 MIHALIS YANNAKAKIS

manipulation of B-trees [S], [BS]. Note that TP and DP are families of policies (one
for each underlying tree and DAG). A policy operating on a set A of structures (such
as trees, DAGs, etc.) is called a structured policy. In practice, such structures may
model either a physical (e.g., tree or DAG of pointers) or a logical (e.g., flow of con-
sistency constraints) organization of the entities.

A locking policy that does not give rise to any deadlocks is called deadlock-free.
For example, deadlocks may arise when the transactions are locked according to 2PL,
whereas TP is a deadlock-free policy. We should note here that in database systems
freedom from deadlock of a locking policy is important only in conjunction with its
safety: Transactions are locked according to some policy in order to preserve the
consistency of the database; we would like to make the policy deadlock-free, but not
at the expense of its safety.

In 2 we describe our model and define our terminology formally. In [Y],
[YPK] a natural class of locking policies, the L-policies, was defined; these are the
policies that can be stated in terms of a set of conditions that tell us at any given
moment in a transaction whether or not a given entity can be locked, depending on
the portion of the transaction executed up to this moment. A simple, most general
safe L-policy (called the Hypergraph policy HP) was found there; simple in the sense
that its rules can be efficiently (in the size of the structure) enforced, and most gen-
eral in the sense that every safe L-policy can be viewed as an instance of it for an

appropriate choice of the underlying structure. Our purpose in this paper is to see
whether similar results can be derived also for safe and deadlock-free L-policies. In
3 we show that the DAG policy is deadlock-free. We then extend the policy to
DAGs with more than one source and show that the extended DAG policy is the
most general safe and deadlock-free policy for a pair of transactions. Unfortunately,
in 4 we show that it is NP-complete to test whether a set of transactions is not
deadlock-free, even for the simplest kind of transactions, those that are two-phase
locked. This implies in particular, that probably there is no simple, most general safe
and deadlock-free L-policy. In 5 we show that L-policies have a characteristic pro-
perty with respect to deadlocks: the freedom from deadlock of safe L-policies is deter-
mined only by the order in which the entities are accessed by the various transactions
and not on how safety is enforced (where the entities are unlocked). In 6 we use
this fact to develop simple conditions that guarantee the freedom from deadlock of
safe L-policies. We also prove that if a safe (general) policy achieves freedom from
deadlock in a way similar to that of TP and DP then this policy can be extended to a
safe and deadlock-free L-policy.

2. Definitions and preliminaries. A database is a finite set E of entities. A
state of the database is an assignment of values to the entities. The consistency con-

straints of the database define a set CS of consistent states. A transaction T is a finite
sequence <ai> of actions. Each action ai is associated with an entity x E, and as in

[E], [KP] is considered to be the indivisible execution of the instructions: ti ,-x [read
x]; x .--fi(tl,...,ti) [update x], where the ti’s are local variables of T and fi is an unin-
terpreted function symbol. A transaction system is a finite set -r of transactions. A

1A simple variant of this model is defined in [U, 10.2]. An action a on entity x is considered there

to be the execution of the instruction x .-fi(x); i.e., the new value of x depends only on the old value of x

and not on the other entities previously read by the transaction. The two models are equivalent as far as

correctness of schedules is concerned.

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 393

schedule S of -r is an ordering of the actions of all the transactions of -r, which
preserves the ordering of the actions of each transaction. A serial schedule is one in
which there is no interleaving; i.e., no action of a transaction T occurs between two
actions of some other transaction T’. A sequence of actions is correct if execution of
it will map any consistent state to a consistent state. We assume that each transaction
is correct. Then every serial schedule is also correct.

Most of the literature in the area has dealt with issues of correctness in the pres-
ence of purely syntactic information: Each transaction is given as a sequence of enti-
ties acted upon in the corresponding actions (i.e., the fi’s are uninterpreted and dis-
tinct for every action of each transaction2), and our knowledge of CS, the set of con-
sistent states, is limited to the fact that each transaction when run by itself maps any
consistent state to a consistent state [E], [P1], [P2], [St]. In this framework, saying
that a schedule S of a transaction system {T1,...,Tm} is correct, means that for
every choice of the set CS, and for every interpretation of the function symbols of the
T;’s such that execution of each Ti maps CS into itself, execution of S maps also CS
into itself. In this paper we will be talking about correctness in this sense. Kung and
Papadimitriou show in [KP] that in this model correctness is equivalent to serializabil-
ity [P1], [P2], [St!; i.e., there is a serial schedule S’ such that if S and S’ start from
the same initial state, they will leave the database in the same final state.

Correctness of a schedule S can be easily decided in our model [E] as follows:
Construct a labelled directed graph D(S) with a node for each transaction, and an arc
(Ti,Tj) labelled x if transaction T acts on x in schedule S before Tj does. It is shown
in [E] that S is serializable if and only if the digraph D(S) is acyclic.

A locked transoction T is a finite sequence of steps. Each step is either an action
on an entity x (written a.x), or an instruction Lock x (written Lx) or Unlock x (Ux),
where x EE. We assume that a locked transaction does not lock again an entity that is
already locked, nor unlock an entity which is not locked, and that it (eventually)
unlocks every entity that it locks. We say that T has locked x through step i, if for
some j<i the jth step of T is Lx, and there is no k with j<k<i such that the kth step
of T is Ux. A locked transaction T is well-formed [El if whenever the ith step of T is
a.x then x is locked through step i; i.e., an action can take place only if the
corresponding entity is currently locked. We will be dealing throughout this paper
with well-formed locked transactions, without mentioning it again explicitly.

A legal schedule of a set a" of locked transactions (or locked transaction system) is
a schedule that respects the locks of the transactions of ,r; i.e., a transaction cannot
lock an entity that is already locked by some other transaction. A locked transaction
system a- is safe if any legal schedule S of it is correct. A partial schedule S of a tran-
saction system "r {T1,...,Tm} is a legal schedule of any prefixes of the transactions of
a’. The state J(S) of a partial schedule S is the vector <jl,...,jm> that describes the
next step to be executed for each transaction of ,r. An entity x is locked at state J if x
is locked by some Ti through step Ji. The state J is a deadlock state if for all the jith
step of every unfinished transaction Ti is Lx for some entity xi locked at J. A transac-
tion system a- is deadlock-free if the state J(S) of any partial schedule S of ,r is not a
deadlock state. In other words any partial schedule of -r can be extended to (is a pre-
fix of) a (complete) schedule of

2A transaction system can have two transactions with the same syntax (the same sequence of entities
acted upon). The two transactions are considered distinct, in that the functions computed by them are unre-
lated.

394 MIHALIS YANNAKAKIS

A locking policy P is a mapping from the set of transactions on E to th_e power
set of (well-f_ormed) locked transactions on E, which satisfies the property" if T P(T)
then T and T contain exactly the same actions in the same order. The locking policy
P is safe (resp. deadlock-free) if _fr any transaction system "r {T1,._..,Tm} with
P(T/) 4: , for all i, any set {T ,Tin} of locked transactions with T P(Ti) is
safe (resp. deadlock-free). If A is a class of structures on E (e.g., relations, graphs,
etc.) a structured policy Ap operating on A is a family of locking policies, one for
each structure D A.

As in [Y], we will assume that if T P(T), then there is another locked transac-
tion T’ _P(T’) for some T’, such that T’ has the_same sequence of Lock and Unlock
steps as T, and every Lx Ux pair of steps of T’ contains an action on x. This is
equivalent to saying that the locking policy has the following rule a transaction can
act on an entity while it holds a lock on it. All policies that we know of have in fact
such a rule. We make this assumption in order to exclude policies that use for locking
any set of special variables not related to the set of entities (see [Y] for more dis-
cussion, on this subject). Note, however, that our complexity and sufficiency results
carry over to the general setting.

A transaction may lock an entity x more than once. If the policy is to be safe,
then it better be the case that no transaction can make actual use of the fact that x is
unlocked for some period of time between the two intervals. In other words, if we
replace the two Locks by a single long Lock, this will not affect the possible legal
schedules permitted by the policy; the only thing that can happen is that some
deadlock situations may be eliminated. Therefore, there is no point for a transaction
of the policy to lock an entity more than once. Thus, from now on we will assume
that every transaction locks every entity at most once.

Let P be a locking policy that satisfies the previous assumptions, and let a-(P) be
the set of locked transactions in the image set of P that act on all the entities tha_t they
lock; i.e., ,r(P) {TITP(T) for some T, and every Lx-Ux pair of steps of T con-
tains an a.x step}. From the previous assumptions and the definitions it follows that P
is safe (or deadlock-free) if and only if every transaction system "r all of whose transac-
tions are in ,r(P) is safe (or deadlock-free)3. Thus, it suffices to restrict our attention
to sets of locked transactions which act on all the entities that they lock. It is not
hard to see ([Y]) that if , is a locked transaction system, the safety or freedom from
deadlock of ,r is not influenced by the exact position of the actions in its transactions;
that is, if we move in some transactions of ,r their actions (while keeping of course the
transactions well-formed) the resulting transaction system ,d is safe (or deadlock-free)
if and only if , is. For this reason, we can ignore the action steps of the transactions
and see a transaction simply as a sequence of Lock and Unlock steps. From now on
we will use the term transaction in this sense and the term transaction system to refer
to a set of such transactions. In fact, in most of the literature on locking policies a
transaction is modelled in this way (as a sequence of Lock and Unlock steps). We
went through the previous discussion in order to justify this modelling and make expli-
cit the underlying assumptions.

The safety (or freedom from deadlock) of a locking policy P is completely deter-
mined by its image set -(P). We are going usually to identify P with this set of

3Strictly speaking, -r may not be a subset of a-(P), since it can contain more than one copy of a tran-
saction in "r(P).

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 395

transactions a-(P), and use the term policy .r to refer to a policy P with "r "r(P). We
should note, however, that there is a slight difference between the safety of P and
that of the transaction system "r(P): the safety of P requires the safety also of systems
of transactions from "r(P) that contain possibly more than one transaction with the
same syntax (copies of a transaction in "r(P) with unrelated semantics), if during a
transaction T in "r(P) there is an (intermediate) point at which no entity is locked,
then P cannot be safe: Just consider a copy T’ of T and a schedule of {T,T’} in which
T’ executes at the unlocked point of T. However, if no transaction of -r(P) has such
an unlocked point, then P is safe (or deadlock-free) if and only if "r(P) is safe (or
deadlock-free); a proof of this fact is given in 3.4

If "r is a transaction system and S a partial schedule of it, we can construct from
S, as with a complete schedule, a directed graph D(S) with a node for each transac-
tion of "r and an arc (Ti,Tj) labelled x, if T locks x in S before Tj does (even if the Lx
step of Tj has not been executed yet in S). Then -r is safe and deadlock-free if and
only if for every partial schedule S of "r, the digraph D(S) is acyclic.

We will denote by R(T) the set of entities mentioned in a transaction T, and by
Lr (step i) (resp. Rr (step i)) the set of entities locked through step (resp. mentioned
up to the th step) of T.

In [Y], [YPK] we defined a class of natural locking policies, the L-policies, as fol-
lows. A locking policy P is an L-policy if P can be described by a set of conditions
that state whether a given entity can be locked at a certain moment in a transaction,
depending on the portion of the transaction executed up to this moment. In other
words, vith each entity x there is associated a set W(x) of prefixes of transactions; a
transaction T is in P if and only if for each entity x referenced by T, the prefix of T to
the left of Lx belongs_to W(x). For example, the two-phase locking policy has for
every x EE, W(x) {TIT does not contain any unlock steps}. A truncation of a tran-
saction T at the jth step is a transaction T’ that agrees with T in the first j steps, and
then unlocks (in any order) the entities locked by T through the (j+ 1)th step. The
closure under truncation Ct(’r) of a transaction system "r is Ct(") " U [Ur Tr(T)],
where Tr(T) is the set of truncations of a transaction T. A system a- is closed under
truncation if Ct(r) -r. Thus, a policy P is an L-policy if (when viewed as a transac-
tion system) it is closed under truncation; the closure under truncation of a transaction
system "r is the smallest L-policy containing "r. A hypergraph H (N,F) has a set of
nodes N and a set of hyperedges F. Each hyperedge is a subset of N. With every
transaction system "r we associate a hypergraph H(’r), which has one node for each
entity and a hyperedge R(T) for each transaction T of "r. It was shown in [Y] that a
policy "r, which is closed under truncation, is safe if and only if for every T E’r, and x,
y in R(T) such that Ux occurs in T before Ly, the set Lr(Ly) (or equivalently
Lr(Ux)-{x}) separates x from y in H(a-). As a consequence of this result, there is a
simple safe structured policy HP which covers all safe L-policies; i.e., every safe L-
policy (for example 2PL, the tree policy, the DAG policy) is an instance of HP for an
appropriate choice of the underlying structure. This policy HP, called the Hypergraph
policy, operates on directed hypergraphs. A directed hypergraph DH (N,F) is a
hypergraph, each hyperedge A of which has a node specified as its head. The rest of
the nodes of A form its tail. The underlying hypergraph of DH is simply H (N,F)

4An alternative way would be to consider P as the transaction system -re(P that contains two copies of
each transaction "r(P). Then P is safe (or deadlock-free) if and only if a-2(P is.

396 MIHALIS YANNAKAKIS

without head-tail specification. Terms such as "paths," "cycles," "separators," etc. in
a directed hypergraph are used with respect to the underlying hypergraph.

Hypergraph policy (HP): The entities are arranged in a directed hypergraph H.
The rules are:

(1) First lock is arbitrary.
Subsequently, an entity x can be locked if and only if
(2) There is a hyperedge A of H with head x, whose tail has been mentioned in
the transaction up to this point, and
(3) For each y previously unlocked, the set of entities that are currently locked
separate x from y.

3. Freedom from deadlock of the DAG policy. We repeat here the definition of
the DAG policy.

DAG policy (DP): The entities are arranged on (correspond to the nodes of) a
single source directed acyclic graph (DAG) D. The rules of the policy are as follows:

(1) First lock is arbitrary.
(2) Subsequently, an entity A can be locked only if all its fathers (immediate
predecessors) have been mentioned in the transaction up to this point, and at
least one father is currently locked.
Let us consider a typical case of deadlock for a set a- of transactions. Deadlock

arises in a partial schedule S of z when every transaction wants in the next step to
lock an entity that is already locked by some other transaction. This means that there
is a set of transactions {T,...,Tk} such that the next step of T; is Lxi where xi is
currently locked by Ti+ (xi LT,+l(LXi+ 1)) see Fig. 1.

TI: Lxk,
T2: Lx

Tk LXk-

Lx Uxk
Lx2 Ux

Lx

FIG.

Thus in the partial schedule S, transaction T; accesses xi- before T;_ ; if S could
possibly finish in any way then the resulting schedule would not be correct. In other
words, deadlocks prevent some wrong schedules from finishing. Let us show that the
DAG policy is deadlock-free using this fact.

THEOREM 1. The DAG policy is deadlock-free.
Proof. Suppose S is a partial schedule, of T1,...,T deadlocked at state J where

the next step of each T; is Lxi as in Fig. 1. We can assume without loss of generality
that Lxi is the last locking step of Ti. Suppose that for some i, the transaction T;’
obtained from T; by moving the Uxi_ step right before the Lxi step is also a transac-
tion of the DAG policy. Then the partial schedule S could be extended to a nonseri-
alizable schedule of the system [I,A.ji{Tj} LJ {T/’}; T/’ can execute the UXi_ step and
then Ti-,Ti-2 T,T. T;’ can finish in this order. But this fact contradicts the
safety of the DAG policy. Therefore, for each i, x;_ must be a father of xi, which

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 397

implies that the DAG has a cycle {x,...,xk}. []

If we modified the DAG policy by changing the locking rule (2) into" (2’) an
entity x can be locked if at least one father of x is currently locked, and all fathers of
x are mentioned until the Ux step, then the modified policy is safe the proof given
in [Y] essentially works. However, it is easy to see that it is not any more deadlock-
free: postponing the locking of some father of x allows a (partial) schedule to start
wrongly, and then be stopped later on by a deadlock. Note that this modified policy
is not an L-policy any more. We shall show in 6 (see Theorem 8) that any such
modification of the DAG policy (or the tree policy) has to be an L-policy in order to
be deadlock-free.

We will now characterize safety and freedom from deadlock for a pair of transac-
tions. If F C_ E is a set of entities, the restriction "of T on F, is the sequence of steps
of T that involve entities from F.

THEOREM 2. Let a" {T1,T2} be a pair of transactions and R R(T1)fqR(T2) the
set of common entities of T and T2. "r is safe and deadlock-free if and only if

(1) the first entity x of R locked by T is the same as the first entity of R locked by
T2, and
(2) for every entity y 4: x of R, the sets NI(y)= Lv(Ly)fqRr2(Ly) and

N2(y) Lr(Ly)fqR(Ly) are both non-.
Proof.
(if) Note at first that entities referenced only by one of the transactions do not

affect the safety or freedom from deadlock of "r; that is, if TI’, T2’ are the restrictions
of T and T2 on their common entities R, then "r is safe and deadlock-free if and only
if "r’ {TI’,T2’} is safe and deadlock-free. Construct a digraph D with R as its set of
nodes and with F(z) Nl(z)Nz(z) as the set of fathers of a node zR. Clearly, if
(u,v) is an arc of D then u is locked in both transactions before v, and therefore D is
acyclic. Since Nl(X) N2(x) (x is the first entity of R locked by T1 and T2),
node x is a source of D. Since NI(y) 4: ,Nz(y) 4: for every y 4: x, x is the only
source of D. Thus, D is a single source acyclic digraph. From the definition of NI(y)
and N2(y) we have for every y

Rr(Ly)fqRr.(Ly) and therefore F(y)C_Rr,(Ly),Rr_,(Ly). Also F(y)fqLv,(Ly) N(y)
4: and F(y)fqLr:,(Ly) Nz(y) 4: . Consequently, TI’ and T2’ follow the DAG
policy on D, and therefore "r’ {T’ ,T2’ } is safe and deadlock-free.

(only if) (1) Let Xl (resp. x2) be the first entity in R locked by T (resp. T2). If
x 4:x2 then consider the partial schedule S in which T executes its steps up to
(including) the Lx step and then T2 executes its steps up to (and including) the Lx2

step; the digraph D(S) of S has a cycle and therefore -r is not both safe and deadlock-
free.

(2) Suppose that N(y) (the case N2(y is symmetrical). Consider the
following partial schedule S" First run T up to Ly; then run T2 up to, and including,
Ly This partial schedule is legal since NI(y) . In S, T1 accesses x before T2,
and T2 accesses y before T. Therefore if S can finish in any way, the resulting
schedule will be nonserializable, contradicting the fact that -r is safe and deadlock-free.

As in 2, we say that a transaction T has an unlocked point if there is a step
> 1 of it such that Lr(stepi) =. .

COROLLARY 1. A pair of transactions with the same syntax is safe if and only if it
is safe and deadlock-free if and only if the transactions have no unlocked point.

Proof. Let -r {T,T2} be a pair of identical transactions. If the transactions
have an unlocked point, then is not safe: the schedule in which T1 executes at the

398 MIHALIS YANNAKAKIS

unlocked point of T2 is obviously nonserializable. On the other hand, if the transac-
tions have no unlocked point, then they satisfy the conditions of Theorem 2: Since the
transactions are identical, they start by locking the same entity and for every y :/: x
we have NI(y)= N2(y)= Lr(Ly):/: f, since the transactions have no unlocked

point. []

Let P be a locking policy and let -r(P) be the associated transaction system (the
image set of P) without duplicates.

COROLLARY 2. P is safe (resp. safe and deadlock-free) if and only if
(I) no transaction in "r(P) has an unlocked point, and (2) the transaction system "r(P) is

safe (resp. safe and deadlock-free).
Proof. The necessity of the two conditions follows from the definitions and

Corollary 1. We will prove the sufficiency part only in the case of safety and freedom
from deadlock; the proof for safety only is similar. Suppose that P is not safe and
deadlock-free. Then there is a partial schedule S of a set "r of transactions from "r(P)
such that the digraph D(S) contains a cycle. Without loss of generality we can assume
that D(S) is a chordless cycle T1--,T2--, --,TI--,T1. If "r does not contain two identical
transactions, then "r(P) is not safe and deadlock-free. Assume therefore that con-
tains two identical transactions. Since the cycle is chordless, the two identical tran-
sactions must be consecutive, say T and T2. Suppose that k > 2. Let x be the label
of an arc T2-.T3. Then T2 locks x in S before T3 does. If T1 locks x before T2, then
we must have an arc from T1 to T3 contradicting the minimality of the cycle. If T1
locks x after T2 (or does not reach the Lx step in S), then we must have an arc from
T2 to T1, again contradicting the minimality of the cycle. Therefore, k 2, and the
pair {T1,T2} is not safe and deadlock-free. It follows then from Corollary 1 that condi-
tion (1) is violated, ra

From the proof of Theorem 1, we can state the conditions for safety and freedom
from deadlock of a pair of transactions in the following form.

COROLLARY 3. A pair of transactions "r {T1,T2} is safe and deadlock-free if and
only if the restrictions of TI and T2 on their common entities R(T1)fqR(T2) follow the
DAG policy for some DAG D on R(T1)f’)R(T2).

Since the entities referenced only by one transaction do not affect the safety or
freedom from deadlock of a transaction system, Corollary 3 says essentially that the
DAG policy captures these properties for systems of two transactions. Note that the
tree policy does not suffice to cover all safe and deadlock-free pairs of transactions.
For example consider the pair {T,T2} of transactions of Fig. 2(a) which follow the
DAG policy for the DAG of Fig. 2(b).

TI" Lx Ly Ux Lw Uy Uw y
T2: Lx Ly Uy Lw Ux Uw

(a) (b)

FIG. 2

Clearly Lr,(w) fq Lr(w) , and thus no entity can be the father of w in a tree

that would cover {T1,T2}.

FREEDOM FROM DEADLOCK O’F SAFE LOCKING POLICIES 399

We can have the transactions themselves (rather than their restrictions to the
common entities) follow the DAG policy if we extend the policy to apply also to
DAGs with more than one source. The rules of the extended policy are as follows.

Multiple source DAG policy (MSDP)
(1) First lock is arbitrary.
(2) Subsequently, an entity A can be locked only if

(a) the transaction has previously referenced all fathers of A that are not
separated by A (in the underlying undirected graph from the first entity
of the transaction, and
(b) the transaction holds a lock on at least one father of A.

It is easy to see that MSDP reduces to the DAG policy if the DAG has only one
source. The Multiple source DAG policy is also safe and deadlock-free. Its safety
can be shown using the Hypergraph criterion in a way similar to that of the DAG pol-
icy. The basic idea is that given a transaction T of MSDP that references A but not as
the first entity, every other transaction T’ referencing A must either reference exactly
the same fathers of A as T, or else A separates R(T’) from all the entities referenced
by T up to the LA step. The freedom from deadlock of MSDP follows from its safety
as in Theorem 1.

COROLLARY 4. A locking policy with two transactions is safe and deadlock-free if
and only if it is contained in the multiple source DAG policy for some DAG D.

Proof. Let P be a locking policy with two transactions T and T2 (in its image
set). Let D’ be the DAG on R(T)R(Tz) constructed in the proof of Theorem 1.
Since P is safe, its transactions have no unlocked point. Extend D’ to a DAG D on

R_(T)R(T2) as follows. Let R be the set of entities that have no incoming arc in D’;
R consists of the first common entity locked by the transactions and the entities that
occur only in one of the transactions. For every, entity x in R that appears in T (resp.
Te) but is not the first entity locked by the transaction, choose any entity y locked by
T (resp. T2) when x gets locked and add an arc y-,x. It is easy to see then that T
and T2 follow the multiple source DAG policy on the DAG D. []

4. Testing for safety and freedom from deadlock. The criterion of Theorem 2
for the safety and freedom from deadlock of a pair of transactions gives rise to an effi-
cient algorithm to perform this task. Let a- {T,T2} be a pair of transactions. Using
standard techniques (see, e.g., [AHU]) we can compute in O(nlogn) time
R R(T)tR(T2), and check condition (1) of Theorem 2. For zR let i(z) be the
order of the Lz step in T and i2(z) the order of the Lz step in T_.(A single pass over
T and T2 suffices o compute these two parameters for all z R.) Let MI(Ly)
{i2(z)lzL(Ly)} and Mz(Ly) {il(:)[zLr,_(Ly)}. Clearly, condition (2) of Theorem

2 is equivalent to: for every y 4: x in R minMl(Ly) < iT(y) and minMz(Ly) < il(y).
We can check these conditions by doing a pass over T1 while keeping at each step in a
data structure D the parameters of the entities of R that are currently locked, and
then doing a similar pass over T2. The data structure D has to be such that the opera-
tions INSERT, DELETE, MIN can be performed in O(nlogn) time. (A 2-3 tree for
example will do see [AHU].) Thus, we have:

THEOREM 3. A pair of transactions can be tested for safety and freedom from
deadlock in 0 (n logn) time.

Unfortunately, safety and freedom from deadlock cannot be tested efficiently in
general (unless P= NP), even for the simplest kind of transaction systems: systems of
two-phase locked transactions. Note that two-phase transaction systems are safe and
have a very simple kind of deadlocks: If T is a two-phase transaction system then - is

400 MIHALIS YANNAKAKIS

not deadlock-flee if and only if there exist transactions T1,...,Tk and entities Xl,...,Xk
with xi R(Ti), such that if Ti’ is the prefix of Ti up to (not including) the Lxi step, the
partial schedule $ which is the serial execution of TI’,...,Tk’ (in any order) is legal
and its state J(S) is a deadlock state; that is, RTi(Lxi)f’)RT(Lxj) for :/: j, and

Xi_lRTi(Lxi) (i.e., in Fig. 1 the first two sets of dots in each transaction represent
steps that do not involve entities referenced in the other transactions).

THEOREM 4. It is NP-complete to decide whether a set of two-phase transactions is
not deadlock-free.

Proof. Let F C] ^ ^ Cp be a formula in conjunctive normal form with at
most 3 literals per clause, and assume for simplicity that each variable occurs twice
and its negation once.

We construct a transaction system r which contains two transactions Ti and Ti’
for each clause Ci, and one transaction for each literal occurrence. Let Ci be
a v b v c (literal c may be missing). Ti is LB Lai’ Lbi’ Lci’ UBi Uai’ Ubi’ Uci’, and
Ti’ is Lai Lbi Lc LBi/I Uai Ubi Uci UBi+I, where if p, Bi+ stands for 81.

If variable x occurs in Ci, Cj and its negation in Ck, then the transactions
corresponding to x are:

Tx,: LAx Lxi’ Lx UAx Ux Ux

Tx" LAx’ Lxj’ Lxj UAx Uxj’ Uxj,

Tz,: LAx LAx’ LZk’ LZ UAx VAx’ UZ,’
We claim that r is not deadlock-free if and only if F is satisfiable.
(if) Suppose that F is satisfiable. Fix a satisfying truth assignment and let di be

the literal that satisfies Ci. Consider the state J of the partial schedule S which exe-
cutes the steps of each Ti before Ldi’, the steps of each Ti’ before LBi+I, and the steps
of each Td, before Ldi. (This is a legal schedule since no two of the di’s are the nega-
tion of each other.) State J is a deadlock state: Fig. 3 shows the entity that each tran-
saction has to lock next and the transaction by which it is locked.

FIG. 3

(only if) Suppose that there is a deadlock, and consider the cycle K of the transac-
tions in the deadlock state J, as in Fig. 1. Suppose that Tzk K for some variable x,

and let T be the transaction that has to lock next entity y, currently locked by Tzk.
Then y cannot be either Ax or Ax’ because then T would be Txi or Txj, and would not

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 4’01

hold a lock on any entity; since the next step of T to be executed is a lock step, y

must be -k’ and therefore Txi and Txj are not in the cycle K (because otherwise Ax or

Ax’ would be locked by two transactions). Thus, T is Ti, and since the next step of T
is Lk, also Ti’ E K. Similarly if Txi E K for some variable x, then the next step of Tx
must be Lxi, and therefore Ti, Ti’ c K. Now let Tj’ K. The next step of Tj’ cannot
be Ld for any literal d of C; therefore it has to be LB+ 1, and T+ must also belong
to K, with next step Ldj+l’ for some literal dj+ of Cj+. But then Tdj+l K and con-

sequently also Tj/I’ K.
Thus K contains all Ti, Ti"s and a Td, for each i, where di is a literal of clause Ci.

Since K does not contain two transactions corresponding to complemented literals, the
di’s define a satisfying truth assignment for the formula F. []

The interaction graph G() of a transaction system is an undirected graph with
the tlansactions of as its nodes and an edge between any two transactions that have
an entity in common. Note that the digraph D(S) of any (partial or complete)
schedule S of "r has a subgraph of G(’r) as its underlying graph. In [Y] we showed that
safety of a transaction system can be tested in time polynomial in the number of
minimal cycles of its interaction graph. The direct analogue of this result for freedom
from deadlock does not hold, however: In the proof of Theorem 4, we can add a Lz
step before the unlocking steps of each transaction, where z is a new entity common
to all transactions. It is easy to see that the new transaction system is deadlock-free if
and only if the original was.

The reason for this difference is the fact that if a transaction system is not safe
then this is due to some chordless cycle, whereas deadlock may be possible due to
some cycle with chords, even though all chordless cycles are deadlock-free. Thus the
correct analogue of Theorem 3 of [Y] is:

THEOREM 5. Freedom from deadlock of a sdfe transaction system can be decided in
time polynomial in the number of cycles of its interaction graph.

Proof. At first we check that all pairs of transactions are deadlock-free as in
Theorem 3 above. Consider now a shortest partial schedule S whose digraph D(S)
contains a cycle {T1,...,Tk}, and let (Tk,T1) be the last arc labelled, say xk added to
D (S). Then the cycle of D(S) must be chordless and the last step executed in S is the
Lxk step of Tk, since S is a shortest such partial schedule. Let x be the first entity of
R(Ti) fq R(Ti+x) locked by Ti (and Ti+x since all pairs are safe and deadlock-free),
J <ll,...,lk> the state of S, Yi the set of entities mentioned in the remaining steps
Of Ti. Because of our choice of S we have: (1) RTi(li)71 Yi-1 Q, (2)
Rr,(li) 71 R(Tj) , for all j with li-jl > 1 (arithmetic is mod k), (3) the Lxi step of

Ti occurs before the lith step, for all i, and the Lxk step of T1 occurs after the/lth step
see Fig. 4.

(Note, however, that after state J the transactions may be referencing other en-
tities in common, and thus they may not form a chordless cycle.)

Let ll’ be the latest step of T1 before LXk, such that

Rrl(ll’) 71 [I,.Jj:l,2 R(Tj)] Q, and let YI’ be the set of entities mentioned by T after

/1’. From (2) and (3) we have 11’ ->/1, and therefore YI’
_

Y1. Let/2’ be the latest
step of T2, such that RT2(12’) f) YI’ Q, and RT2(I2’) 0 R(Tj) , for -2 > 1.
Since YI’ C_ Y, we have from (1) and (2) that 12’ -> 12 and therefore Y2’ C_ Y2 where
Y2’ is the set of entities referenced by T2 after/2’. Proceeding in this way, we define
li’ (and the corresponding i’) such that Rr(li’) 71 Yi-l’ (1’), and

Rr(li’) 71 R(T) for [j-i > 1 (2’). Then li’ >- li, and therefore (3’) Lxi occurs

402 MIHALIS YANNAKAKIS

TI:
T2:

lx

Lx2

Tk’.

FIG. 4

in Ti before li’.
Now, to test whether r is a deadlock-free transaction system we take every cycle

K {T1,...,Tk} of its interaction graph, assign an orientation and choose a first tran-
saction, say Tx. We then define in turn ll’,...,lk’ as above to satisfy (1’) and (2’)
(where for i= 1 we take in (1’) Yk’ to be R(Tk)). If the/i"S satisfy also (3’), then r
is not deadlock-free. For, consider the partial schedule formed by running T1 up to
the /l’th step, T2 up to the /2’th step, Tk up to the lk’th step. This is a legal
schedule since RTi(li’) Yi-l’ ==> Rri(li’) ("1 LTi_l(li_l’) (because
Lri_(li_l’) C__ Yi-l’) and Rr,(li’) f3 Lr(lj’) for j<i-1 (because
Lr(lj’) C__ Rr(lj’)C__ R(Tj)). The digraph D(S) of S contains for each an edge
(Ti,Ti+ 1) labelled xi (because of (3’)) and therefore is not acyclic, r

5. Deadlock-free L-policies. Theorem 4 implies that unless NP=co-NP there is
no simple, structured L-policy AP that can express in a nice way all safe and
deadlock-free L-policies, where by "nice" we mean that the size of the structure in A
that expresses a policy P be bounded by some polynomial in the size of the set of tran-
sactions of P. For, if there were such a policy AP we could test in nondeterministic
polynomial time whether a set of two-phase transactions is deadlock-free (a co-NP-
complete problem) by guessing the structure D in A which expresses Ct(x) and then
verifying that all transactions of Ct(r) follow AP for D. (Note that closing under trun-
cation a set of transactions does not affect its freedom from deadlock.)

Of course, Theorem 4 implies also that testing whether a safe L-policy. is not
deadlock-free is NP-complete. However, in the case of L-policies, knowing that the
policy is safe restricts the kind of possible deadlocks that can occur and as a conse-
quence helps us in proving freedom from deadlock; recall, for example, how we used
in Theorem 1 the safety of the DAG policy to prove its freedom from deadlock.

THEOREM 6. If is a safe transaction system that is closed under truncation, then "r

is deadlock-free if and only if there do not exist transactions T Tk, and entities xl,

xk, where xi R(Ti) f’) R(Ti+I)-[j#i,i+IIJ e(Tj)] and er(Lxi) fq [ji R(Tj)] .
Proof.
(only if) Obvious.
(if) (1) All pairs of transactions are deadlock-free: Let {T1,T2} be a pair. From

the hypothesis with k 2, we have that the first entity of R(T1) fq R (T2) locked by T1
and T2 is the same, say x. From Theorem 2 we still have to show that for all
yR(T1) f3 R(T2), y 4: x, NI(y) Lr(Ly) f3 RrE(LY) =/: and

NE(y) Lr:(Ly) f3 Rr(Ly) :/: . Suppose that NI(y) , and let T2’ be the

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 403

truncation of T2 at Ly. Since X ERTE(LY), x must be unlocked by T before Ly. But
then R(T2’) forms an x-y path in the hypergraph of {T1,T2} that avoids Lr(Ly), and
therefore {T1,T2’} is not safe. (Recall from 2 the criterion for safety of a system that
is closed under truncation.)

(2) Suppose now that all pairs of transactions are deadlock-free but is not.
Then the configuration of Fig. 4 has to occur, where xi is the first entity of
R(Ti) fq g(Ti/l) locked by Ti (and Ti+ since all pairs of transactions are safe and
deadlock-free).

Suppose that for some i, xi-1 is locked in Ti before the/ith step, with the notation
of the proof of Theorem 5, and let be the smallest index for which this happens
(i :/: 1). Since RTi(li) N Yi-I , Xi-1 must be unlocked by Ti_ before li_ 1. Let y
be the first element of I,.Jji,i_ g(Tj) locked by Ti-1. (Clearly, there exists such a y
since R(Ti-1) fq R(Ti-2) f.) Since Rr_(li-1) fq R(Tj) for j i,i-l,i-2,
and since RTi_l(li_l) f’) R(Ti_2) (because Lxi-2 occurs in Ti-1 after the/i_lth step
by our choice of), it must be the case that Ly occurs in Ti-i after the/i_lth step,
and therefore after UXi_ 1. Let Ti’ be the truncation of Ti at the lith step. We have
then R(Ti’) fq i-1 f R(Ti’) fq Lri_(Ly) , and therefore R(Ti’), R(Ti+I),

R(Ti-2) form a path between xi-1 and y in the hypergraph of r that avoids

Lri-I(LY)’ contradicting the safety of r.

Thus, for each i, xi-1 is locked in Ti after the lith step and therefore after Lxi.
Since RTi(li) fq R(Tj) for j :/: i, i-1, i+1, and because xi (resp. Xi_l) is the first

entity common to Ti and Ti/ (resp. Ti- 1) locked by Ti, we have

RTi(Lxi) f"l R(Tj) for j 4= i. []

Note that the conditions of Theorem 6 involve only R sets and not any L sets of
the transactions. It follows then that whether,a safe L-policy is deadlock-free or not
depends only on the order in which entities get locked, and not on how the unlock
steps are placed within the transactions. More formally we have:

COROLLARY 5. Suppose that x {T1,...,Tm} and x’ {TI’,...,Tn’ } are two safe
transaction systems that are closed under truncation, and such that for every i, there is
a j, where Tj’ locks the same entities as Ti in the same order. Then, if "r’ is deadlock-
free, then so is .

If we take in Corollary 5 ’ to be "r with all the Unlock steps moved to the end of
the transactions (i.e., ’ is the two-phase version of) it follows that all safe L-policies
that are not deadlock-free have the same kind of simple deadlocks that two-phase
transaction systems have; thus, for example, if the freedom from deadlock problem for
2PL transaction systems can be solved in f(n) time then the freedom from deadlock
problem for any transaction system that is closed under truncation can be solved also
in f(n) time.

Note that Corollary 5 is not true for general policies (systems that are not closed
under truncation). For example, consider a transaction system ’ that consists of the
following transactions:

T Lx Lx3 Ux1 Ux3

T2’" Lx2 Ly Lx Uy
T3’ Lx2 Lx3 Ly Ux2

Ux Ux2
UX3 Uy

From Theorem 6, ’ is safe and deadlock-free. Suppose that {T1,T2,T3} where
T1 TI’, T3 T3’, and T2 is Lx2 Ly Ux2 LXl Uy UXl. Clearly a- is safe (although its
closure under truncation is not). However is not deadlock-free as the following

404 MIHALIS YANNAKAKIS

partial schedule shows:

TI:
T:
T:

Lx2 Ly Ux2

Lx2 Lx3

In practical terms, Corollary 5 has the following implication. Suppose that we
design an L-policy P and that we have already determined the underlying hypergraph
H of P (how the various transactions visit the entities). For P to be safe, we must
enforce rule 3 of the Hypergraph policy HP. Now, one might choose not to use the
full freedom of it in order to get a more efficient policy (at the expense of a loss in
concurrency). As a consequence, there may be various ways in which rule 3 can be
enforced. Corollary 5 implies that no matter which way is chosen, freedom from
deadlock is not going to be affected: if one way leads to a deadlock-free policy then so
does every other way. Therefore, if HP on the hypergraph H is not deadlock-free,
then in order to get a deadlock-free policy we must restrict the way in which rule 2 of
HP is applied. Of course, the NP-completeness result of the previous section implies
that there is no most general and simple restriction of rule 2.

Corollary 5 is useful for deriving freedom from deadlock of a safe L-policy from
that of another. Let us prove as an example that the DAG policy is deadlock-free
using the fact that the tree policy is. Let D be the underlying DAG of DP and let G
be the dominator tree of D.5 Let T be a transaction of DP. If y R(T) and y is not
the first entity locked by T, then before locking y T has locked (and possibly
unlocked) the dominator of y in D [Y]. Thus, there is a transaction T’ of TP operat-
ing on the dominator tree of D which locks exactly the same entities as T in the same
order. (For example, T’ can be obtained from T by moving all the Unlock steps to
the end.) Since TP is deadlock-free, so is DP.

We will exploit further this property of safe L-policies in the next section to
derive sufficient conditions for freedom from deadlock.

6. Sufficient conditions for freedom from deadlock. From a transaction system
r we are going to construct a directed graph D’(’r) which reflects partially the order in
which entities get locked by the transactions of r. We then use Corollary 5 to derive
sufficient conditions on D’(r) that guarantee the freedom from deadlock of if -r is
closed under truncation and safe.

With every transaction system r we can associate a directed graph D(-r) as fol-
lows: the nodes of D(’r) are the entities, and there is an arc (x,y) if there is a transac-
tion T of that starts by locking x and references y. Suppose that is safe and
deadlock-free. Then,

(a) D(’r) is acyclic.
Suppose that there is a cycle Xl-,X2--,’’’-,xk-,x1. Then there are transactions

T1,...,TI such that the first step of Ti is Lxi, and xi+lR(Ti)fq R(Ti+O. Clearly
{T,...,Tk} cannot be both safe and deadlock-free.

(b) If x is an ancestor of y, then in all transactions that contain both x and y, x

5A node y dominates a node x in a single source DAG D, if every path from the source to x passes
through y. The dominator of x is the (unique) lowest ancestor of x that dominates x. The dominator tree of
D is a (rooted) tree G with the source of D as its root and with the dominator of each node x as its father

see, e.g., [AHU].

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 4.05

gets locked before y.
Suppose that there is a transaction T where Ly precedes Lx, and assume without

loss of generality that no descendant of x is locked before Ly. Let x-,z1-,’’’ -’Zk-’Y
be a directed x-y path, and To,T1,...,Tk the transactions that give rise to the arcs of
the path. The partial schedule that executes the Lx step of To, the Lzg step of Ti, for
each i, and the prefix of T up to (and including) the Ly step has a cycle in its
corresponding digraph.

Let Fl(X) be the set of fathers y of x, for which there is a transaction T that starts
with y, contains x, and there is no ancestor z of x in Rr(Lx)-y. Denote by D’() the
subgraph of D(’r), where the arc (y,x) is in D’() if there is a transaction T starting
with y, containing x, and such that Fl(X)f’l[Rr(Lx)-y] . (D’(’r) has the same
transitive closure as D(’r), but is not necessarily its transitive reduction.) Clearly every
transaction T of has the property:

(c) If x ER(T) is not the first entity locked by T, then at least some father y of x in
D’ (’r) is referenced by T before Lx.

Consequently every transaction T references a connected subgraph of D’(r) which
can be reached from the first entity locked by T. For example, if is the tree policy,
then D’(r) is the tree itself; in general if is the hypergraph policy on a (directed)
graph G, then D’(r) is the graph G. If is the DAG policy, then D’(’r) is the domi-
nator tree of the DAG.

THEOREM 7. IfP is a safe L-policy with D’(P) a tree, then P is deadlock-free.
Proof. By Corollary 5 and the freedom from deadlock of the tree policy for gen-

eral (not necessarily rooted) trees [KS]. []

Note that Theorem 7 is not true for general policies. For example, if "r {T1,T2}
with T1 LA LC UA LB UB UC and T2 LA LB UA LC UB UC then D’(’r) is the
tree of Fig. 5, "r is safe (but its closure under truncation Ct(x) is not), and is not
deadlock-free. This is not a coincidence: if any such "r is deadlock-free, then it can be
extended to a safe (and of course still deadlock-free) L-policy.

FIG. 5

THEOREM 8. Suppose that P is a safe and deadlock-free policy with D’(P) a tree.
Then Ct(P) is also safe and deadlock-free.

Proof. The freedom from deadlock of Ct(P) follows from that of P. Let Yl,...,Yk
be the fathers of x in D’(P) and for each 1,...,k let Ni(x) {Lr(Lx) TEP,and
Yi is unlocked in T before x is locked}. Consider the following L-policy P’: (1) First
lock arbitrary (2) subsequently entity x can be locked if and only if (i) some father Yi
of x has been mentioned, (ii) some transversal 6 of Ni(x) has been mentioned, and
(iii) if Yi has been unlocked then all the elements of some set in Ni are currently
locked.

Every transaction T of P is in P’: it satisfies (i) by property (c) of D’(P), it

6 A transversal of a family of sets is a set which contains at least one element from every set in the
family.

406 MIHALIS YANNAKAKIS

satisfies (iii) by the definition of Ni(x), and it satisfies (ii) because all pairs of transac-
tions of P are safe and deadlock-free.

Let H be the hypergraph of P’. Let T be a transaction in which x is locked after
some other entity z is unlocked, and suppose that Yi is the (necessarily unique) father
of x that is mentioned in T. From the definition of P’, Lr(Lx) contains either Yi or a
set in Ni(x); consequently LT(Lx) intersects all hyperedges that contain both x and Yi.
Since D’(P) is a tree, every x-z path in H has to use a hyperedge that contains both
x and Yi. Therefore LT(Lx) separates x from z in H, and consequently the policy P’ is
safe by the safety criterion for L-policies (see 2). []

Actually, it is Corollary 4 that lies behind Theorem 8: It is possible to show that a
policy P with D’(P) a tree is safe and deadlock-free if and only if all pairs of transac-
tions of it are so. From Corollary 4 there is an L-policy (the multiple source DAG
policy) that describes all safe and deadlock-free pairs of transactions. Thus, taking the
closure under truncation of all transactions will not create any pairs that are not safe
ordeadlock-free and therefore will not destroy safety.

Theorem 8 does not hold if D’(P) is not a tree. Consider, for example, the set
P {T1,Tz,T3} with Tl :LA LB UA LD UB UD, Tz:LA LC LB UA UB UC,
T3 :LC LD UC UD. It is easy to see that P is safe and deadlock-free but Ct(P) is
not safe. The digraph D’(P) is shown in Fig. 6.

B

FIG.

Suppose now that P is an L-policy Deadlocks may arise because of undirected
cycles in D’(P) (cycles in the underlying undirected graph of D’(P)).

Z 1

Y Xl X2 X3 Xk-1 Xk
(a) (b)

FIG. 7

FREEDOM FROM DEADLOCK OF SAFE LOCKING POLICIES 407

In a general D’(P) we can distinguish between two kinds of cycles- see Fig.
7(a),(b). A cycle as in Fig. 7(a) may give rise to a pair of transactions {T1,T2}, where
T1 starts from x and follows the path to y, and T2 starts from z, follows the path to y,
and then goes on to lock x; thus, T2 does not satisfy condition (b). (Note that if P is
the hypergraph policy with the graph D’(P) as the underlying hypergraph, then both
transactions are allowed.) If condition (b) is checked in the rules of the policy, then
cycles as in Fig. 7(a) do not create any problems. That is, we can show that the pol-
icy is deadlock-free, unless D’ contains a cycle as in Fig. 7(b) with the xi’s pairwise
incomparable- i.e. no X is an ancestor of another xj.

THEOREM 9. Let P be a safe L-policy whose digraph D’(P) is acyclic and contains
no (undirected) cycles as in Fig. 7(b). Then P is deadlock-free if and only if it satisfies
condition (b).

Proof. The necessity of condition (b) was shown before. To prove the suffi-
ciency, let "r be the set of transactions of the hypergraph policy HP operating on
D’(P), which are two-phase and satisfy condition (b). Clearly, "r is closed under trun-
cation. By Corollary 5, P is deadlock-free if and only if -r is. Suppose that {T1,...,T/}
is a smallest set of transactions of "r deadlocked at state J where the next step of each
T is tx with xiLri/(LXi+l) (see Fig. 1). From property (c) of D’ Ti references a

common ancestor of xi and xi-1 and a path from it to them. Let zi be a lowest com-
mon such ancestor. Since the transactions are two-phase all these paths are disjoint,
and therefore form a cycle as in Fig. 7(b). It remains to show that the xi’s are pairwise
incomparable. Suppose that X is an ancestor of xj, with j as large as possible. Since
condition (b) is satisfied j<k. Let p be a directed path from Xl to x. Let TI’ be the
two-phase transaction that agrees with T1 up to the LXl step and then locks in order
the entities on the path p. Clearly TI’ is also in "r, and the set of transactions
{TI’,Tj+I,Tj+2,...,TI} is not deadlock-free, contradicting the minimality of k. []

Note that if D’ is a tree, then (b) is satisfied automatically. (Thus, Theorem 7
follows also from Theorem 9 .) Also, note that if a cycle as in Fig. 7(b) exists in D’,
and P is the hypergraph policy operating on D’, with condition (b) checked in addi-
tion, such a cycle gives rise to a deadlock. Deadlock from such a cycle can be
avoided either if we lock nodes according to some specified (acyclic) order or prevent
the xi’s from being the first common entities of the corresponding transactions Ti, by
forcing the transactions to start locking higher in the DAG D’. For example the fol-
lowing rule guarantees freedom from deadlock (assuming that (b) is enforced): if
xRr(Ly) and x is not an ancestor of y, then Rr(Ly) and the descendants of x
separate x and y in the underlying graph of D’. (This can be proved similarly to
Theorem 9). Thus, for example, the DAG policy enforces this rule by requiring all
fathers of x to be locked before x (which results in D’(DP) being a tree rather than
the original DAG). Note however that the previous rule (or any other simple rule) is
not necessary, because of our NP-completeness result of 4.

Acknowledgments. I wish to thank J.-D. Ullman for introducing me to the area
of concurrency control, and A. V. Aho, M. D. McIllroy and P. J. Weinberger for
helpful comments on an earlier version of the manuscript.

REFERENCES

[AHU] A. V. Ano, J. E. HO’CROFT AND J. D. ULLMAN, The Design and Analysis o] Computer
Algorithms, Addison-Wesley, Reading, MA 1974.

[BS] R. BAYER, AND M. SCHKOLNICK, Concttrrency oJ operations on B-trees, Acta Informatica, 9
(1977), pp. 1-21.

408 MIHALIS YANNAKAKIS

[E] K. P. ESWARAN, J. N. GRAY, R. A. LORIE AND I. L. TRAIGER, The notions of consistency and predi-
cate locks in a database system, CACM 19(11) (1976), pp. 624-633.

[GJ] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1978.

[G1] J. N. GRAY, R. A. LORIE, G. R. PUTZOLU AND I. L. TRAIGER, Granularity of locks and degrees of
consistency in a shared data base, IBM Research Report RJ 1654, (1975).

[G2] J. N. GRAY, Notes on database operating systems, IBM Research Report RJ 2188, (1978).
[KS] Z. [(EDEM AND A. SILBERSCHATZ, Controlling concurrency using locking protocols, Proc. of the 20th

Annual Symp; pp. 274-285. on Foundations of Computer Science (1979).
[KP] H. T. KUNG AND C. H. PAPADIMITRIOU, An optimality theory of concurrency control for databases,

ACM/SIGMOD Intern. Symp. on Management of Data (1979), pp. 116-126.
[LW] Y. E. LIEN AND P. J. WEINBERGER, Consistency, concurrency, and crash recovery, ACM/SIGMOD

Intern. Symp. on Management of Data (1978), pp. 9-15.
[P1] C. H. PAPADIMITRIOU, The serializability of concurrent database updates, JACM 26 (1979), pp. 631-

653.
[P2] C. H. PAPADIMITRIOU, P. A. BERNSTEIN AND J. B. ROTHNIE, Computational problems related to data-

base concurrency control, Conf. on Theoretical Computer Science, University of Waterloo (1977),
pp. 275-282.

[S] B. SAMADI, B-trees in a system with multiple users, Information Processing Letters, 5 (1976), pp. 107-
112.

[SK] A. SILBERSCHATZ AND Z. KEDEM, Consistency in hierarchical database systems, JACM 27 (1980), pp.
72-80.

[St] R. E. STEARNS,, P. M. LEWIS AND D. J. ROSENKRANTZ, Concurrency control for database systems,
Proc. of the 17th Annual Symp. on Foundations of Computer Science (1976), pp. 19-32.

[U] J. D. ULLAN, Principles of Database Systems, Computer Science Press, 1979.
[Y] M. YANNAKAKIS, A theory of safe locking policies in database systems, to appear in JACM (1982).
[YPK] M. YANNAKAKIS, C. H. PAPADIMITRIOU AND H. T. KUNG, Locking policies: safety andfreedom from

deadlock, Proc. of the 20th Annual Symp. on Foundations of Computer Science (1979), pp. 286-
297.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0001 $01.00/0

THE COUNTERFEIT COIN PROBLEM REVISITED*

NATHAN LINIAL AND MICHAEL TARSI:

Abstract. We find the optimal algorithm in the sense of average run time for the counterfeit coin
problem: Given n coins, one of which is heavier or lighter than the rest. Using a balance scale, find the
counterfeit coin and whether it is heavy or light. An interesting feature of the solution is that our algorithm
is a straight line algorithm. We also find the optimal algorithm if a standard coin is available for the first
weighing.

Key words, average-optimal algorithms, search problems, Huffman trees, straight-line algorithms

In this paper we consider the following algorithmic problem which is a variation
on the ancient false coin problem. (Find the counterfeit one, out of 12, by 3 weighings.)

The Problem.
Input: n => 3 coins, one of which is false, being either heavier or lighter than the

other coins.
Output: Find the counterfeit coin and whether it is heavy or light. The output

coin j is light (resp. heavy) is denoted jL (resp. jH).
Step: The elementary step is placing an equal number of coins on the two sides

of a balance.
Assuming the possible 2n outcomes equally likely, we look for algorithms which

take the smallest number of steps on the average.
(1) Straight line/nonstraight line, i.e., branching is prohibited or allowed. Branch’

ing prohibited means that the location of the coins for every weighing is given and
cannot be changed according to the results of previous weighings. We show that this
does not change the situation.

(2) A standard coin is available for use in the weighings in addition to the set of
n coins. It turns out that the average number of steps can sometimes be reduced using
this extra coin.

We define four functions:

F(n), Fu(n), S(n), Sly(n).

F(n) is defined as 2n times the smallest average number of steps that any algorithm
takes to solve the problem. (Note that when n coins are given there are 2n possible
outcomes). The other three functions are defined for the straight line case (no branching
allowed), with a standard coin, and straight line with a standard coin, respectively.

Our main results are summarized in the following.
THEOREM. For n >-3, F(n)= FN(n), S(n)= Su(n) (i.e., branching cannot reduce

the average number of steps). Let

2n=3t+2k+l, (3 > k => 0).

* Received by the editors May 8, 1981 and in revised form June 23, 1981.
Department of Mathematics, University of California, Los Angeles, California 90024 and Institute

of Mathematics and Computer Science, Hebrew University, Jerusalem 91904 Israel. The work of this
author was supported by the Chaim Weizman post-doctoral grant.

$ Department of Mathematics, University of California, Los Angeles, California 90024. The work of
this author was supported in part by the National Science Foundation under grant MCS 78-18924.

409

410 NATHAN LINIAL AND MICHAEL TARSI

Then

4,
F(n) 2nt + 3k +

3,

$(n)=2nt+3k+
3,

k even,
k odd,

k even,
k odd.

Before going into the proof, we need some definitions:
We call a tree ternary if each node has at most 3 sons, called the L-, N- and

R-sons, respectively. For a ternary tree T rooted at r, the subtree of T rooted at the
L son of r is called the L-subtree of T, and its leaves are the L-leaves of T. The N-
and R-subtrees and N- and R-leaves are defined similarly. The definition extends in
the obvious way to w-subtrees and w-leaves, w being any word over the alphabet
{L, N, R}. Also we define h(T) Y d(x, r), the sum taken over all leaves x of T and
d(x, r) being the distance in T from x to r.

An algorithm which solves the counterfeit coin problem can be represented by
a rooted ternary tree: The problem has 2n possible outcomes 1H, 1L,..., nil, nL.
Every possible outcome is discovered by a certain sequence of weighing results. We
denote such a sequence by a word over the alphabet {L, N, R}. The ith letter is R (L)
if the right (left) side of the balance is heavier at the ith weighing and N if both sides
are equal. Since the process stops when the counterfeit coin is discovered, the obtained
set of words is prefix free and naturally defines a ternary tree with 2n leaves. This is
the tree which we assign to the algorithm. The definitions make it clear that the
average number of steps that the algorithm takes equals (1/2n)h(T), where T is the
corresponding tree.

It is clear now that the following Huffman problem [Hu] is closely related:
Evaluate H(n)=min h(T) over all ternary trees with 2n leaves, and describe all

trees which attain this minimum.
We illustrate the situation in the following:
Observation 1.

FN(n) >-F(n) >=H(n),

SN(n)>-S(n)>-_H(n),

F(n)>-S(n),

Fr(n >- S(n).

Convention. Given an integer n _-> 3, we represent

2n 3t + 2k + l, 3t>k_>0.

The proof of the main theorem obviously follows from the following four
propositions"

PROPOSITION l.

H(n) 2nt + 3k + 2.

The trees which achieve this minimum are the following: Starting from a complete
ternary tree of height t, choose any k + 1 leaves. Attach to k of them 3 new leaves
’k’) and attach 2 new leaves to the (k+l)st (. "7"). For any other tree T with

2n leaves, h(T) > H(n).
Proof. See [Hu] for the general Huffman tree problem. !-1

COUNTEIFEIT COIN PROBLEM 411

PROPOSITION 2.
0, k even,

$(n)>-H(n)+
1, k odd.

PROPOSITION 3.
2, k even,

F(n >- H(n +
1, k odd.

PROPOSITION 4.
4,

FN(n) <- 2nt + 3k +
3,

k even,
k odd,

2, k even,Sr(n) <- 2nt + 3k +
3, k odd.

The proof of Propositions 2, 3 is based on the fact that not every ternary tree
corresponds to an algorithm for the counterfeit coin problem.

PROPOSITION 5. Itl a ternary tree which corresponds to an algorithm for the
$-pr,oblem (even ifbranching is allowed and a standard coin given), the following holds:

(S 1) For all .i >-_ 0 the number of NiL-leaves equals the number of NiR-leaves.
.In an F-problem ternary tree (branching still allowed, no standard coin):
(F1) The number of L-leaves number of R-leaves is even.
.Pro@ According to the tree representation of an algorithm, the NiR leaves

correspond to the outcomes still possible after "equal" weighings and one "right
side heavier", meaning that one of the coins on the right-hand side in the (i + 1)st
step is heavier or one of those in the left side is lighter. The NiL leaves correspond
to the same coins jutst switching "heavier" and "lighter", and this proves ($1).

.As for (F1), if b coins are placed on each side of the balance in the first step,
there are 2b L-leaves as well as R-leaves in the tree. (Notice that it is not so if a
standard coin partici.pates in the first weighing.)

Instead of Proposition 2, we prove the somewhat stronger:
PROPOSITION 2’.. I T is a rooted ternary tree with 2n leaves satisfying ($1), then

0, k even,
h(T)>-H(n)+

1, k odd.

(We remind the reader that we always represent 2n 3’ + 2k + 1, (3’ > k >- 0)).
Proof. The definit:ion of Huffman trees implies h(T) >-H(n), and so we only want

to prove that no Huttrnan tree with 2n leaves satisfies condition ($1) if k is odd. We
prove it by induction on t. For 1 the only odd k to be considered is k 1, so
2n 6. The only Huffnaan tree with 6 leaves (up to a permutation) is

This tree and any permutation of it violates condition ($1).
By the description (f Huffman trees in Proposition 1, the number of L, N, R-leaves

are all between 3t-1 mad 3’. Also, two of these numbers are odd and one is even.
Together with conditioa ($1), this implies that

number of L-l eaves number of R-leaves 3’- + 21, 3’-__>/__>0,
and

number of N-Ieaves 3’-1 + 2m + 1, m is odd, 3’-- 2 _-> m _-> 1.

412 NATHAN LINIAL AND MICHAEL TARSI

Using once again our knowledge about Huffman trees, we see that the L, N,
R-subtrees of a Huffman tree are all Huffman trees. But the N-subtree satisfies;

condition (S1) and so cannot be a Huffman tree by the induction hypothesis.
Proof of Proposition 3. In view of Proposition 2 and the obvious fact that F(n) ’-_

S(n), it suffices to discuss the case of even k. For any tree T satisfying (S1) and (Flt)
with 2n leaves and 2n 3 +2k + 1 (k even, 3t- 1 =>k =>0), we construct anothr
ternary tree with 2n leaves T’ so that h(T)>-h(T’)+2. This will prove our claim.
(F1) implies that the number of L-leaves in T which equals the number of R-leaves
in T is even. We call it 21. The number of N-leaves is even, too, and ’vee call it 2m.
Replace the L, N, R-subtrees of T by Huffman trees with 21, 2m, 21 leaves, respectively.
We claim that

21, 2m _-> 3 -1.
By Proposition 1 each of the L, N, R-subtrees of T has a node with exactly two s,ons

which are leaves. Let x, y,z be these nodes with sons xl, x2, y l, y2 and zl, z2
respectively. Assume without loss of generality that d(x, r) => d (y, r). Delete xl, x: and
add a new son Y3 to y. If d(x, r)> d(y, r), this already reduces h(T) by at least two.
So we may assume that d (x, r) d (y, r) d (z, r), which by Propositilcn 1 implies

21, 2m _-> 3 t-1.
Since 2n 41 + 2m and k is even, it follows that

2m 3t-1 -t- 2s + 1, s odd, 3t-l-2__>s_> 1.

Now we show how to reduce h(T) by at least two: transfer leaves from the
L-subtree to the R-subtree as in the above-described procedure./Ks mentioned above,
this reduces h(T) by one. Now the Nosubtree satisfies (S1) and s is odd, so on replacing
the N-subtree by a Huffman tree with 2m lehves at least anotter one is gained, as
shown in Proposition 2’. [q

Proof of Proposition 4. The proof is constructive and inducti,ve on n. Straigh’t line
algorithms will be represented by means of a table having n ro,ws: one for each coin
and a column for each weighing step. The (i,]) entry of the tble being L, R or N
indicates that the ith coin is placed on the left, placed on the ritght, or not placed on
the balance at the flh weighing step. Not all the rows must be o f equal length. Empty
entries at the end of a row indicate that if the corresponding ccin is false, then it will
be known by the last step in whose column there is an {N, L, R } entry in the row.

Associating L with 1, R with -1 and N with 0, it is obv’ious how arithmetic is
done on the "row vectors" of the table. The vectors table con,;titutes an algorithm to
solve the false coin problem if and only if the following 3 condtitions hold"

(T1) For x, y rows of the table, x is not a prefix of y.
(T2) For x, y rows of the table, -x is not a prefix of y.
(T3) The sum of all row vectors is the zero vector.
Necessity. If (T1) is violated we cannot tell between the outcomes xH and yH.

If (T2) fails to hold, then an xH outcome cannot be told fromt a yL outcome. Failure
of (T3) implies that one of the weighing steps is worthless sitce we place a different
number of coins on the right side and left side of the balance.

Sufficiency. Let b be a row vector over {N, L, R} indiclating the results of the
steps given by the balance. The flh entry being L, R or N intdicated that on the flh
step the left (resp. right) hand was heavy or they were balan,ced (resp.). Now either
a prefix of b is a row in the table and this row is unique by (T1), or a prefix of -b is
a row in the table and there is only one such row by (T2). In either case we know

COUNTERFEIT COIN PROBLEM 413

the false coin, being heavy in the first case and light in the second case. It is impossible
that both situations should occur, by (T2). Since one of the coins is false, b or -b
should appear on the table. So we have:

smallest number of nonempty entries in an
FN(n) 2 X n-row table satisfying (T1), (T2), (T3).

Before we can construct the tables we need some more terminology: If B is table
with entries L, N, R and empty, we denote by RB the array resulting from affixing
an R at the beginning of each row in B. Similar definitions hold for NB, LB. Also,
-B is the array which we obtain on replacing each L entry in B by R and each R
by L. For arrays B, C, we let

B
C

stand for the array whose row set is the union of the row set of B with that of C. If
w is a row in B and Wl," , w. are words over {L, N, R}, we denote by

the operation where the row w is deleted and the rows Wl, Wp are introduced
into the array. Also N is the row of r consecutive N’s, etc. Finally, the sum of all
row vectors in B is denoted by B, and [B[is twice the number of nonempty entries
in B.

We construct our tables for the FN problem first. As usual, we represent 2n
3 + 2k + 1 (3 1 k _-> 0), and the corresponding table is called At,k. We start with
the case of odd k. We describe a construction for k- 1 which is done by induction
on t. The other tables for odd k are obtained by a simple procedure.

The case of even k is a little more involved. Using induction on t, we take care
of the cases k 0, 2. Most of the remaining cases can be handled easily using the At,2
table. The case k 3t- 1 is again handled separately by induction on t. Most of the
(routine) calculations to ensure that conditions (T1), (T2), (T3) are satisfied and that
the definitions make sense are omitted.

The solution for the SN problem follows from the FN case in a simple way.
We start the construction by defining a sequence of arrays Bt as follows:

For ->_ 1, define

B1 L (a one-by-one array with an L entry).

RBt

=LBtB,+
IN(_Bt
LNt.

Bt is a (3t- 1)/2 by array satisfying (T1), (T2); it does not satisfy (T3) since Bt Lt.
Note also that L is a row in Bt. Define now the array At,1 which is obtained from Bt
by

Lt ..R t+l

NtL.

NATHAN LINIAL AND MICHAEL TARSI

At.1 supplies an algorithm for Fr(n), where n =(3 +3)/2 and IA,,l[=2(tn +3) as
needed.

For 2n 3 + 2k + 1, k -> 3 odd, say k 21 + 1, we start from At. changing it into
At,k by picking distinct rows x,..., Xl of length and replacing each one of them:

xR

X XL
(-xi)N.

Note that At.k satisfies (T1), (T2), (T3) and

IA,, Fv (n),

so At,k supplies an optimal algorithm for the n coin problem.
Next we handle the case of even k. For k 0,

n=(3t+l)/2, t>-2,

change Bt into At,o by the operations

LtNL’ R+I xx(L),

where x is any row of length in B, and (L) indicates that this coin is placed on the
left side of the balance on step (t + 1) only to have an equal number of coins on the
right and left hands of the balance. If this coin is false, it will be known after steps
since conditions (T1), (T2) hold also if the (L) is omitted. Therefore we do not count
the (L) in IA,,01. Hence [A,,01- 2(tn / 2) and so it gives the optimal algorithm for k 0,
n (3 + 1)/2. For k 2 and n (3’ + 5)/2, change At,o into At.2 by

x(L) (-x)L LtN- LtR.
xN

Now]A,,2J JA,01 + 2(2t + 3) 2(nt + 5), so A,,2 solves the problem for n (3 + 5)/2.
For even k, 3’- 3 k 4, k 2l + 4, we pick distinct rows x,..., x of length in
At,2 and replace each of them:

xR

X xiL
(-x,)N.

It is again routine to check that A,., is an optimal solution table.
For the last remaining case, n (3- 1)/2, start from Bt, and to have condition

(T3) hold replace

L’ N’R, x x(L),

x being any row of length and (L) is as explained above.
To complete the proof we only need to show that

Sly(n) <- 2nt + 3k + 2 for even k.

(The case of odd k is already settled, since Fly(n) >- Sly(n) is obvious.) To construct
a table for this problem, if n (3t+l- 1)/2, start with an At.k/1 table, which has n + 1
rows and satisfies IA,.+I- 2 +(n + 1)+ 3(k + 1)+ 3. Two of the rows in At.k+X are LtN

COUNTERFEIT COIN PROBLEM 415

and R t+l. Let St, k be the table which results on performing

LtN (LtR), Rt+I.-, R t.
The row vector (LR) is the row for the standard coin. Now St, violates only condition
(T2) in that -R t= L and L is a prefix of LtR. But if the results of the weighings are
R or L we know that the R coin is counterfeit, as the (LtR) coin is known to be a
standard coin. Thus we do not count the (LR) row, and we get

I-]At,:+l[-2(t + 1)-2 2nt + 3k + 2,

as required.
At last, if n (3 t+l 1)/2, the table {B,+, where (R ’+1)(R,+,, comes for the standard

coin, supplies the required algorithm.

Acknowledgment. The first author wishes to express his thanks for the generous
support of the Chaim Weizman postdoctoral grant.

[Hu]

[Me]

REFERENCE

D. A. HUFFMAN A method for the construction of minimum redundancy codes, Proc. IRE, 40,
(Sept. 1952), p. 1098.

D. G. MEAD, The average number of weighings to locate a counterfeit coin, IEEE Trans. Inform.
Theory, IT-25 (1974), pp. 616-617.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0002 $01.00/0

log n) LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS*

MICHAEL J. FISCHERS, ALBERT R. MEYER: AND MICHAEL S. PATERSON

Abstract. A property of Boolean functions of n variables is described and shown to imply lower bounds
as large as I)(n log n) on the number of literals in any Boolean formula for any function with the property.
Formulas over the full basis of binary operations (^, 0), etc.) are considered. The lower bounds apply to
all but a vanishing fraction of symmetric functions, in particular, to all threshold functions with sufficiently
large threshold and to the "congruent to zero modulo k" function for k > 2. In the case k 4, the bound
is optimal.

Key words. Boolean formula, length, size, symmetric function

1. Introduction. We describe a property of Boolean functions of n variables
which implies lower bounds on the size of all Boolean formulas for functions with the
property. Let C be the Boolean function "congruent to zero modulo k" of n
arguments, that is, C(xi,’" ,xn) iff "i=1Xi "-’0 (mod k). We show that Ck has the
property and conclude that there is a constant e > 0 such that any Boolean formula
for C over the full basis of binary and unary Boolean operations
(^, v,--n, @, NAND, etc.) is of length exceeding en log (n/k) for all k _->3 and all n.
There are formulas for C, of length asymptotic to n log2 n so our bound is achieved
to within a constant multiple in this case.

The logarithm of the minimum length of a formula for a Boolean function gives
the minimum time, i.e., depth, of a combinational circuit computing the function. This
remark provides some technological motivation for our results. The depth of formulas
is also related to the space and parallel time of computations and so is of basic concern
in the theory of computational complexity; see [16], [13], [14], [1] for further dis-
cussion.

General counting arguments allow one to conclude that most Boolean functions
of n variables require formulas of size asymptotic to 2n/log2 n [21], [12], [11]. The
largest lower bound provable for explicit examples, however, is proportional to
n2/log n by Neciporuk [15]. Although Neciporuk’s method yields lower bounds for
many explicit examples (cf. [16], [17]), no symmetric function possesses the property
which implies Neciporuk’s lower bounds. Hodes and Specker [4] provide another
general property of functions which implies nonlinear lower bounds on the length of
formulas, and Hodes [3] demonstrates that it is widely applicable.2 For example,
Hodes’ and Specker’s results imply that formulas for all but sixteen of the 2
symmetric Boolean functions of n variables grow nonlinearly in n [8], [16], [17].

* Received by the editors November 19, 1980, and in revised form June 22, 1981. This work was
supported in part by the National Science Foundation under grants MCS7702474, MCS7719754,
MCS 8010707 and by a grant to the MIT Laboratory for Computer Science by the IBM Corporation. The
results reported here appeared in weaker preliminary form in the Proceedings of the 7th Annual ACM
Symposium on the Theory of Computing, 1975.

r University of Washington, Seattle, Washington, 98195.
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139.
University of Warwick, Coventry, England CV4 7AL.
A slightly larger lower bound of f(n 2) is due to Khrapchenko [6] for the special basis of operations

^, v, --n, but our results are concerned with formulas in which all binary operations may appear.
Vilfan [22], [23] extends Hodes’ and Specker’s results to multivalued logic with arbitrary (not

necessarily binary) operations and concludes, for example, that formulas for C grow nonlinearly in n

using d-valued logic for k > d !.

416

LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS 417

Our main theorem resembles that of Hodes and Specker. We essentially show
that any function which can be defined by a "small" formula can be restricted to a
"large" subset of its variables so that the resulting restricted formula is equivalent to
the sum modulo two of a subset of its variables. Since C,, and indeed almost all
symmetric functions, do not have such large simple restrictions, they cannot have
small formulas. Comparing our results to Hodes’ and Specker’s in the most interesting
case of symmetric functions, we note that their theorem yields nonlinear lower bounds
whenever ours does, but their bounds are much smaller.3 Indeed, our bounds of
12(n log n) are the largest lower bounds on formula length known for any symmetric
Boolean function. (We remind the reader that a (n) f(/3 (n)) iff/ (n) O(a (n)) iff
lim inf a(n)/(n) >0.)

In the next .section, we state the main theorem giving lower bounds and apply it
to C, and a related example. In 3 we derive a corollary which is easily applicable
to arbitrary symmetric functions and then prove that all but a vanishing fraction of
symmetric functions require formulas of length 12(n log n). Section 4 contains the
proof of the main theorem. In the final 5, we compare known upper and lower
bounds on formula length and mention some open problems.

2. The lower bound. Boolean formulas over the full unary-binary basis are
constructed from variables and constants (0 and 1) possibly using any of the unary
and binary Boolean connectives (^, v, 7, , NAND, etc.). Let L(f), the length of the
formula f, be the number of occurrences of variables (not constants) in f. Let vat (f)
be the set of variables that appear in f. Formulas f and g are equivalent, denoted
f-- g, if and only if f and g define the same function on vat (f) U vat (g). Every Boolean
formula g is easily shown to be equivalent to a Boolean formula f constructed from
variables and constants using only the two connectives ("exclusive or") and ^
("and") such that f .contains exacdy the same number of occurrences of each variable
as g. In particular, L(g)= L(f), so without loss of generality, we henceforth consider
Boolean formulas constructed from variables and constants using only and ^.

An assignment A over a set of variables V is a partial map from V into {0, 1};
dom (A) V is the set of variables on which A is defined, i.e., the variables which A
fixes. The eccentricity ecc (A) of an assignment A is the excess of l’s over O’s in the
assignment, that is, ecc (A)--IA()I-IAI(0)I, A is central if ecc (A) is zero or one.
Given a formula f and an assignment A, the restriction flA is the formula obtained by
substituting A(x) for each occurrence of x in f, where x ranges over dom (A). If A
is central and dom (A)_ var (f), then flA is called a central restriction of f.

The dimension dim (f) of f is the cardinality [var (f)[, of var (f). The formula f
is affine if and only if f is equivalent to some formula of the form Wc, where
c {0, 1} and W

_
var (f). The theorem below shows that any Boolean formula of n

variables, all of whose affine central restrictions have small dimension, has length
f(n log n). More precisely, let the affine diameter diam (f) of f be the largest dimension
of any affine central restriction of f.

LOWER BOUND THEOREM. There is an e > 0 such that for any Boolean formula
f with n variables

L(f) >- en log (n/diam (f)).

Vilfan [22] notes that the nonlinear lower bounds of Hodes and Specker can be shown to be
O(n log* n), where log* n is the least integer m such that

.2

2 2"
(height m)

n.

418 M. J. FISCHER, A. R. MEYER AND M. S. PATERSON

The theorem immediately applies to formulas for C. To see this, note that the
only affine restrictions of C7, either are of dimension one or are equivalent to constant
functions of dimension less than k, so diam (C7,)< k. Therefore

Example 1. L(C, > en log (n/k).
As another example, consider n km variables xij for 1 _-< _-< k, 1 _-<] <_- m and

refer to the variables with second index j as the]th block of variables. Let pj denote
the mod 2 sum of the]th block, namely, p =@k__ Xi, and let fk,, be the function
C’ (pl,"’", p,) of n variables. It is not hard to see that no restriction of a formula
for fk., which contains variables from three or more blocks is affine. Hence
diam fk, <_ 2k, so"

Example 2. L(fk’m) >-_ ekm log (m/2) for e as in the lower bound theorem.
We remark that choosing k n 1- still yields f(n log n) lower bounds on L(fk’")

even though fk, has "large" affine diameter n 1-. This is an example where Hodes’
and Specker’s results do not apply.

To establish an upper bound in L(C), let x denote Boolean variables x1,. , xn.
Construct formulas D(x) and D’ (x) for the low order and second lowest order digits
of the binary representation of i= Xi as follows" D(x)=x and D(x1)-0. Let y
denote xn/,..., x2. Then

and

2n

Dn(x, y)=) xi
i=1

D2" (x, y) D’; (x)D’;(y)(D (x) ^ D(y)).
Hence, L(D)=n and L(D21")=2(L(D’;)+L(D)). This recurrence implies that
L(D’;) = n log2 n when n is a power of two. Ngw a formula for C is NOR (D, D’),
so L(C)<-n (1 + log2 n) when n is a power of two. For arbitrary n, one can obtain a
formula for C of length n [log2 n] +2n-2 rg n, so:

PROPOSITION 1. L(C < n [1 + log2 n for all n.
Since L(fk’’)<-L(C)L(pi) and L(pi)= k, we also have
PROPOSITION 2. L(fk’m) is asymptotically at most km log2 m.
So the lower bounds on L in Example 1 for k -4 and in Example 2 are achievable

to within a multiplicative factor.

3. Lower bounds for symmetric functions. For any Boolean formula f of
dimension n which defines a symmetric function, there is by definition a characteristic
function,

X,:{O,""’, n}-{O, 1}, such that f(xl,..., x) =&7(x).
i=1

LEMMA. !f Xr([n/2]) Xr([n/2J + 2), then L(f) >= en log (n/2).
Proof. The reader can easily verify that no central restriction of f which has three

or more variables can be affine, viz., diam (f)-< 2. The bound on L(f) now follows
immediately from the lower bound theorem.

SYMMETRIC FUNCTION LOWER BOUND THEOREM. There is an e > 0 such that for
every formula f of dimension n which defines a symmetric function, if 2(k) 26(k + 2)
for some k, 0 <- k <= n 2, then

L(f) >- en log min (k, n k).

Proof. Assume without loss of generality that k <-n/2. Let A be any assignment
such that Idom (A) f? var (f)[n -2k and A(x)=0 for all x dom (A). Now h%,(j)

LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS 419

xr(J) for 0 <- j =< 2k dim (flA), SO applying the lemma above to f[A yields

L(fIA) >-- e 2k log (2k/2).

Therefore, at least one of the 2k variables of flA occurs e log k or more times in ’la,
and afortiori also occurs that often in .

By choosing dom (A) to be the n- 2k most frequently occurring variables in f,
we conclude that each variable in dom (A) occurs at least e log k times in f, so

L(f)>=(n -2k)e log k +L(flA)>=(n-2k)e log k +2ke log k en log k. [3

Let TT, be the threshold k function of n variables, that is,

T,(xl,...,xn)=l iff xi=>k.
i=1

Since Xwp,(k)= 0 and Xr,(k + 2)= 1, we have:
Example 3. L(T, >= en log min (k, n k).
More generally, there are exactly 4.22b symmetric functions f of n variables

such that xr(k)= xf(k +2) for all k, b _-< k <=n-b. The preceding theorem implies a
bound of en log b on length of formulas for the remaining 2n+1-4 22 symmetric
functions. Choosing any 8, 0 < 8 < 1, and b 8n, we have"

COROLLARY. The minimum formula length for all but o(2n+l) of the 2+1 sym-
metric functions of n variables is f(n log n).

Finally, we note that the symmetric function lower bound theorem also applies
to nonsymmetric functions f as long as xf(k) and xf(k + 2) are well defined, i.e., as
long as ,

Xi Yi m implies f(xl, Xn) f(yl,’ Yn)
i=1 i=1

for m k, k + 2. For example, the length of formulas for any function which agrees
with T’,/2j on arguments of weight [n/2J and In/2] +2 is lq(n log n).

4. Proof of the lower bound. The lower bound theorem follows directly from
the main lemma below. The proof of the main lemma requires four elementary lemmas
which are presented first.

Let f, g be formulas. We call g an affine variant of f if and only if fg is affine.
A formula f is an r-formula if no variable in f occurs more than r times; f is r-minimal
with respect to some property of formulas if f is an r-formula and L(f) is minimal
among the r-formulas with the property. (Note that L(f)<-r dim (f) for any r-formula
f, but this condition does not imply that f is necessarily an r-formula.)

AFFINE VARIANT LEMMA. Let g be an affine variant of f. For all assignments A,
(i)]IA is af-fine i] g[A is anne, and

(ii) if]or some r >-_ 1, g is an r-minimal affine variant o]] and dom (A)c_ var (g),
then dim (’]A) dim (gla)= dim (]’)-dim (g).

Proof. (i) The formula f@g is affine by hypothesis; hence I[A@g[A is affine. If
also glA is affine, then adding the two together gives the affine function flA.

(ii) var (g) var (’), for if not, substituting constants for the variables in g which
do not appear in]" yields a shorter affine variant which is an r-formula, contradicting
the r-minimality of g. The result follows easily. I-1

An assignment B is an extension of A if B extends the partial function A. Let
dom (B, A) denote dom (B)-dom (A), the set of new variables fixed by B.

420 M. J. FISCHER, A. R. MEYER AND M. S. PATERSON

CONJUNCTION LEMMA. Given a central assignment A and a formula f such that
flA =--g ^ h, where g and h are affine, there is a central extension. B of A such that
dom (B,A)_ var (flA), fin is affine, and dim (/In)->_dim (flA)/3.

Proof. We have

g)P03)R 03 c and h ---)Q)R d,

where P, Q, R are disjoint subsets of var (f[A) and c, d {0, 1}. Let BI, BE, B3 be
central extensions of A, fixing additionally the variables of Q U R, P[.J R, P t3 Q,
respectively. Each of fl, for 1, 2, 3 is affine, and

var (flSl) (-J var (fl2) CJ var (fls) P U 0
Hence, for some i, dim (fin,) >= dim (flA)/3.

PARTITION LEMMA. Given sets S, $2,’", St, let T be the elements which occur
in two or more of the S. That is,

T= LJ (Si (’I S).

Then there exists a partition {A,/2,} of {1,.. , t} such that ifL -JiA Si andM .Jit. Si,
then IL fq MI >=[TI/2.

Proof. Suppose x T; say x Si f-)Sj. Then x Lf)M for those partitions of
{1,..., t} where i,/" are on different sides, and hence, x L M for at least half the
partitions. Therefore, the average size of LM over all partitions {A,/z} is at least
IT[/2, so the result certainly holds for some partition.

We now contrive a function fl with appropriate inductive properties for our main
lemma using the well-known Catalan numbers.

BETA LEMMA. There exist constants a > O, a > 1 such that if we define fl(r)=
(oarCr)-l, 2r--2where C r-1)/r IS the Catalan humber, then

r-1
(i) /3(r) a/Es=X (fl(s)fl(r-s))- for r > 1,
(ii) fl(r) -< (1 15a)/6 < 1 for r >- 1,

(iii) (r)<-(1-5a)/(1-5a +4r).
Proof. (i) The Catalan numbers satisfy the convolution property

r-1

Cr-- CsCr_s
s=l

[10, 2.3.4.4] from which the corresponding property (i) of/3 follows immediately.
(ii), (iii). Moreover, Cr is asymptotic to dr-3/U4r for some fixed d > 0 10, 2.3..4.4].

This estimate makes it obvious that for any sufficiently small a one can choose a value
for a which guarantees (ii) and (iii). Suitable values are a 1/30 and a 360. Iq

MAIN LEMMA. Letfbe an r-formula with r >-_ 1, and letAo be a central assignment.
There exists a central extension A of Ao such that f[A is affine, dom (A, Ao)

_
var (f),

and

dim (fla) >- (r) dim (/]ao).

Proof of main lemma. The proof is by course-of-values induction on r. Hence,
we assume r _-> 1 and that the lemma holds for all r’-formulas with r’ < r. To show the
lemma holds for all r-formulas, we proceed, using a course-of-values subinduction on
L()). Hence, we consider some r-formula " and some central assignment Ao and,
further, assume that the lemma holds for all r-formulas of length less than L(f).

Suppose that g is an r-minimal affine variant of flAo and L(g)<L(f). Then by
the subinduction hypothesis, there is a central extension A of Ao satisfying the lemma

LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS 421

for g. flA is affine by the affine variant lemma (i). Moreover,

dim (f[a)= dim (gla)+ (dim (f[ao)-- dim (g)) by the affine variant lemma (ii),

>= fl(r), dim (g)+ (dim (flao) dim (g)) by induction,

=> fl (r). dim (f[Ao) since fl (r) < 1 by the beta lemma (ii).

This shows the lemma holds for f using the same A.
Hence, we can now assume that f itself is already an r-minimal affine variant of

f]ao, and so, we have f f[ao and var (f)f3 dom (Ao)= .
Since the lemma holds for f if and only if it ,holds for 1 f, we may without loss

of generality express f as (/--1 F/ where no Fi is constant or has as its main
connective. Clearly no Fi .is affine since otherwise ((j,gF.) is an affine variant of f,
contradicting the minimality of f. Hence, each Fi equals Gi ^ H/, and furthermore, the
minimality of f ensures that neither of the formulas Gi nor Hi are equivalent to
constant functions.

We define a partition of each set var (Fi) into four sets as follows’

global (fi) var (fi) (var (F/));
joint (Gi, Hi)= (var (Gi)fqvar (H/))- global (F/);

own (Gi) var (G/)- (joint (Gi, Hi) I,.J global (F/));

own (Hi) var (Hi)- (joint (Gi, Hi) I,.J global (Fi)).

Let global Ui global (F/), joint [..Ji joint (Gi, Hi) and own Ui (own (Gi) I,.J own (Hi)).
So vat (f) is the disjoint union of global, joint and own.

The following four cases, defined solely in terms of the cardinalities of vat (f),
global, joint and own, are obviously exhaustive. Let n dim (f).

Case 1. n <= 1/fl(r). In this case we can take any central extension A of A0 such
that dora (A, Ao)c_ var (f) and dim (flA) 1. Any formula in a single variable is
necessarily affine.

Case 2.]global[=> 2an. Noting that global equals the set of variables which occur
in two or more of the sets var (F/), we apply the partition lemma to the sets var (F/),
i= 1,..., k, and obtain a partition {h,/x} of {1,..., k} such that

t_J var (F/) LJ var (Fi)
iA itx

_-> Igloball/2 => an.

Now f is equivalent to LM, where L- OiA F/, M---(isFi. We use the fact that
all the variables of var (L)fq var (M) must occur fewer than r times in each of L, M,
to invoke the main lemma successively on the two parts. For 1 =< s _-< r-1, let Vs be
the set of those variables of var (L)(’1 var (M) which occur exactly s times in L (and
hence at most r-s times in M). For some t,

since

(r)n/((t)fl(r- t))

r--1 r--1

Y. IVsl Ivar (L)flvar (M)l>-an E [(r)n/(fl(s)fl(r-s))]
s=l s=l

by the beta lemma (i).

422 M. J. FISCHER, A. R. MEYER AND M. S. PATERSON

Let B be any central extension of Ao with dom (B, Ao)=var (f)-Vt, and let
L’= LI, M’= MI. Thus, var (L’)= var (M’)= Vt. The main lemma applied to the
t-formula L’ yields an extension B’ of B such that z’l, is affine and

dim (M’IB,)=dim (L’IB,) >/3(t) dim (L’) >=(r)n/(r-t).

The lemma applied to the (r- t)-formula M’]B, yields an extension A of B’ such that

M’IA is affine and dim (M’IA) >= (r-- t) dim (M’I,)--> (r)n. Since (L@M)IA
((L’i’)IA)(R)(M’IA) and is clearly affine and dim ((L@M)la)=dim (M’la)>--(r)n, we
have concluded the proof of Case 2.

Case 3. [jointl-> 3an. Each variable in joint occurs in exactly one Fi and at least
once but strictly fewer than r times in Gi and in Hi. We will restrict to a subset of
these variables and then apply the induction hypothesis for smaller values of r.

Let ui Ijoint (Gi, Hi)l. As in Case 2, there is some ti, 1 <= ti -< r-- 1, such that if V/
is the set of variables in joint (Gi, H/) that occur exactly ti times in Gi (and, hence, at
most r- ti times in Hi) then

vil--> ui(r)/(ofl(ti)fl(r-- ti)).

Let Bo be any central extension of Ao fixing all the variables in var (f)-Ui V/,
andletFl Filno, GI Gilno, H’i Hi[o. G’i isa ti-formulaandH’i isan (r- ti)-formula.

We now proceed in k stages. At the ith stage, we find a central extension Bi of
Bi-i such that FI Ini is affine and dim (F IBi) --> uifl(r)/(3a).

Stage i. Since G is a ti-formula, 1 _-< ti < r, we apply the induction hypothesis to
G and Bi-a to obtain a central extension B such that G IB is affine and dim (G IB;) -->
fl(ti)" dim (G). Since HI is an (r-ti)-formula, r-ti<r, we apply the induction
hypothesis again to H’i I to obtain a central extension B’ such that H’i IB’ is affine
and dim (H I’) >- fl(r- ti)" dim (H’i I). The restriction of an affine function is affine,
so G’i n’ is affine. Hence, by the conjunction lemma, there exists a central extension
Bi of B’[such thatF [B, is affine and has dimension at least dim (F 1,)/3. In calculating
the dimension ofF I,, we make use of the fact that var (F) var (G) var (H) V/.
We have

dim (H’i lu,)>=fl(r-ti) dim (H’i [)= fl(r-t), dim (GI IBm)

Then
= (r ti)fl (ti)] Vii >- ui (r)/t.

dim (FI IB,)->_dim (H Ira)/3 >-- ui(r)/(3a).
Now let A Bk, the central assignment obtained after the final stage. Note that

flA (k=l F’i],, and so flA is affine. Moreover,

dim (flA) . dim (F Ii) --> 2 tlifl(r)/(3ce) Ijointl B(r)/Ba >- fl(r)n

by the defining condition for this case. This concludes the proof of Case 3.
Case 4. Iown[>-(1-5c)n and n> 1//3(r). In this case, we will find a central

extension B of Ao such that dom (B)_ var (f) and fib is functionally independent of
some nonempty subset V of its variables. Let yield-IVl and cost=
yield + Idom (B, Ao)l. If yield -_>fl(r) cost, then we can find a central extension A of
B satisfying the lemma for f.

To see this, let g be the restriction of fiB obtained from some arbitrary assignment
to V. Note that g is equivalent to f[since fib does not depend on V. Also, var (f)
is the disjoint union of dom(B, Ao), V and var(g); in particular, dim(f)=

LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS 423

cost+dim (g). Now L(g)<L(j) since V is nonempty, so, by the subinduction
hypothesis, there is a central extension A of B such that g[a is affine, dom (A, B)_
var (g) and dim (g[A) H fl(r), dim (g). But fla is equivalent to glA, SO []a is also aftine.
Moreover, var (f[A) is the disjoint union of var (g[a) and V since dom (A)f3 V .
Therefore,

dim (/IA)=dim (g[A)+ yield H fl(r), dim (g)+ fl(r), cost= fl(r), dim (f),

as required.
Thus, to complete the proof, we need only describe how to determine B and V.
Let gi "-Iown (G)l, hi Iown (H/)[. Without loss of generality, we can assume gi H hi.

We note that --i gi H Iownl/2.
For each i, we have two strategies which can remove the dependence of f on a

subset of either own (Gi) or own (Hi). We will show below that at least one of these
always has an adequate yield/cost ratio for some i.

Strategy A. This strategy is applicable only if there is a central extension of A0
fixing only var (f) and making Hi equivalent to 0. Find a minimal central extension
B of A0 for which Hi[nO, var (Hi)

_
dom (B) var (f) and dom (B) f-) own (Gi) is as

small as possible among such extensions. Since F/= Gi An/, we have F In 0, and so,
fin is independent of any remaining variables of own (Gi). Thus, V is own (Gi)-
dom (B).

Strategy B. This strategy is applicable only if there is a central extension of Ao
fixing only var (/-/)U dom (Ao) and making Hi equivalent to 1. Find a maximal set
V_ own (/-/) for which there is a central extension B of Ao satisfying Hi In 1 and
dom (B, A0)= var (Hi)- V. Since fin is independent of V, the yield is lVI and the cost
is dim (Hi).

We begin our analysis by noting that since f is r-minimal no subformula of f is
equivalent to a constant. Hence there is an extension B’ of Ao such that Hi ln’= 0.
Let d(Hi) be the least integer for which there is an extension B’ of Ao such that
dom (B’, Ao)= var (Hi), Hi ln’ 0 and

-d(Hi) _<-ecc (B’) _-< d(Hi) + 1.

Clearly, d (Hi) <_- dim (Hi).
Suppose Strategy A is applicable and B is the assignment required in the strategy.

Let B’ be the restriction of the partial function B to dom (Ao)U var (Hi). Since B is
minimal central such that Hi ln =0, it must be that ecc (B’) equals either -d(/-/) or
d(H/) + 1, and the variables in dom (B, B’) are the minimal number which serve to
extend B’ to a central assignment. Hence,

Idom (B, Ao)[=dim (Hi)+ d(Hi).

Since B is defined to fix as few variables from own (Gi) as possible, either dom (B)
own (Gi) or own (Gi) dom (B) var (f) dom (B). Therefore,

yielda Iown (Gi)-dom (B)I min (gi, n -dim (Hi)- d(H))

and

cOSta dim (Hi) + d(Hi) + yielda min (gi + dim (Hi) + d (Hi), n).

If Strategy A is not applicable, let yieldA 0 and cOSta n, SO the preceding formulas
for cOSta and yieldA always hold.

If yieldA/COStA >--(r) for some value of i, then Strategy A succeeds.

424 M. J. FISCHER, A. R. MEYER AND M. S. PATERSON

In any application of Strategy B, IVl=>min (hi, d(He)- 1). To see this, let V’ be
any subset of own (Hi) such that IV’l-min (hi, d(Hi)-l), and let B’ be any central
extension of A0 with dom (B’)=dora (Ao) (var (Hi)-V’). Let C be an arbitrary
assignment with dom (C)= V’. Then

-d(Hi) < -min (hi, d(ni)- 1) trivially,

=-[dom (C)[
-< ecc (B’ LI C) since B’ is central,

_-< [dom (C)I + 1 since B’ is central,

min (hi, d(Hi)- 1) + 1

< d(Hi)+ 1.

By the minimality condition in the definition of d, Hi[(n,oc=-1. This holds for any
such C, so Hiln,=- 1, and Hi]n, does not depend on the variables in V’. Since Strategy
B chooses V as large as possible, we have]V] _->[V’] _->min (hi, d(Hi)-1) as desired.

Eliminating V from the expression of cost for Strategy B, we get

yieldn _->min (hi, d(Hi)- 1)

and

costn dim (Hi).

If Strategy B is inapplicable, let yieldn 0 and costa dim (H/). Note that in this case
d(Hi) 0, so the preceding formulas for yield and costs always hold.

If yield/cost >-fl(r) for some value of i, then Strategy B succeeds.
We prove by contradiction that there exists an for which either Strategy A or

Strategy B succeeds. Assume neither strategy succeeds for any i. Since Strategy A
fails, yielda/cOSta </3. (We omit the argument r from /3 in the remainder of this
analysis.) So, for all i,

() (1 fl) min (gi +dim (Hi) + d(Hi), n) < dim (Hi) + d(Hi).

Since Strategy B fails, yieldn/costs </3, so, for all i,

(2) min (hi, d(ni)- 1) </3. dim (Hi).

Let m [global LI]oint]-< 5an. Counting up the sizes of the various sets and using
the conditions for this case, we get

(3) d(Hi) <-dim (H) <=m + hi <=n - gi <=n -[ownl/2 <=(l + 5a)n/2.

From (3) and (2), we get

(4) d(Hi)- m -1 -<min (hi, d(Hi)- l) < O dim (Hi) <- n.
Using (3), (4), the fact that fin > 1 and beta lemma (ii), we get

(5)
dim (Hi)+ d(Hi)<-(1 + 5a)n/2 + m + 1 +n

< (1 + 15a)n/2 +2n <= (1 -/3)n.

Assuming the "min" in (1) equals its second argument contradicts (5). Hence, the
first argument is always the smaller, and (1) gives

(6) (1-fl)gi <fl (dim (Hi)+d(Hi))<=2fl dim (Hi) for all i.

LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS 425

Therefore,

(7) (1-B)(1-5a)n/2 <-(1-B)]ownl/2 <-(1-B) E gg <2B Y dim (Hg)<2Brn

since no variable occurs more than r times in all. Now (7) yields an immediate
contradiction with beta lemma (iii).

We conclude that Strategy A or Strategy B succeeds for some i, completing this
case and the proof of the main lemma. 71

Proof of the lower bound theorem. Let f be a Boolean formula on n variables.
Let r [2L(f)/n], and let Ao be a central assignment with

dora (Ao)= {xlx occurs more than r times in f}.

Since f[Ao is an r-formula, by the main lemma there is a central extension A of
Ao such that flA is affine, dom (A)

_
var (f) and

(8) dim (flA) >---- /3 (r) dim (flao).
By the choice of Ao, (r + 1). Idom (Ao)l <-L(f), so

(9) dim (flAo) n-Idom (ao)] => n-L(f)/(r+ 1)_-> n/2.

Also,

(10) (r)>=2/K

for some large K > 1 using the asymptotic estimate for G given in the proof of the
beta lemma. Hence, from (8), (9), (10), we get

dim (flA) >= (2/g)(n/2) n/gr.
Solving for r, we obtain

r => log (n/dim (flA))/log g.(11)

Therefore,

L(f) >- rn/2
>-_ en log (n/dim

>-_ en log (n/diam (f))

by the choice of r,

by (1 1) where e 1/(2 log K),

by definition of diam (f).

5. Conclusions and open problems. The conditions we have developed above
for deducing lower bounds on length of formulas apply to many explicit examples but
have their most interesting applications in the case of symmetric Boolean functions.
Earlier results of Hodes and Specker [4] imply that, except for sixteen functions, th]
length of formulas for symmetric functions of n variables grows nonlinearly in n.
The results in this paper show that all but a vanishing fraction of the symmetric
functions require formulas of length D,(n log n). These are the strongest known lower
bounds on length of formulas for any symmetric functions.

Polynomial upper bounds on the length of formulas for symmetric functions were
first obtained by Khrapchenko [7] and Meyer and Vilfan [22]. The smallest currently
known upper bound is o(n 3"37) by Peterson [18], following earlier work of Pippenger

4 The sixteen functions are all of the form

a b Xi(C H xid 1-I (l)xi)
for a, b, c, d e {0, 1}. Each of these obviously has a formula of length at most 3n.

426 M. J. FISCHER, A. R. MEYER AND M. S. PATERSON

[19] and Paterson [17]. The constructions used to achieve the upper bounds are
extensions of the construction given in 2 of formulas for C.

It remains an open problem to improve these bounds. We note three particularly
challenging instances of this general problem.

The construction of formulas for C extends in an obvious way to yield formulas
of length O(n (log n)"-l) for C., but even for C the best upper bound we can obtain
is f(n).

Problem 1. Is L(C’) o(n:)?
The lower bound theorem above does not apply to threshold functions with

bounded threshold, although Hodes’ and Specker’s theorem yields very slowly growing
nonlinear bounds (cf. footnote 3). For fixed k, Khasin [5] and Pippenger [19], [20]
have shown that L(TT, O(n log n).

Problem 2. Is L(T)=o(n log n)?
The best currently known upper bound on length of formulas for the majority

function T,/: is the same as for arbitrary symmetric functions.
Problem 3. Is n log n o(L(T’,/:))?

REFERENCES

[1] A. BORODIN, On relating time and space to size and depth, this Journal, 6 (1977), pp. 733-744.
[2] M. J. FISCHER, A. R. MEYER AND M. S. PATERSON, Lower bounds on the size of Boolean formulas:

preliminary report, Proc. 7th Annual ACM Symposium on Theory of Computing, 1975, pp. 37-44.
[3] L. HODES, The logical complexity of geometric properties in the plane, J. Assoc. Comput. Math., 17

(1970), pp. 339-347.
[4] L. HODES AND E. SPECKER, Lengths of formulas and elimination of quantifiers I, in Contributions

to Mathematical Logic, H. A. Schmidt, K. Schutte and H.-J. Thiele, eds., North-Holland,
Amsterdam, 1968, pp. 175-188.

[5] L. S. KHASIN, Complexity bounds]:or the realization of monotone symmetrical functions by means of
formulas in the basis v, ^, --n, Dokl. Akad. Nauk SSSR, 189, 4 (1969), pp. 752-755; Soviet Physics
Dokl., 14, 12 (1970), pp. 1149-1151.

[6] V. M. KHRAPCHENKO, On the complexity of the realization of the linear function in the class of
r-circuits, Mat. Zametki 9, (1971), pp. 35-40 (in Russian). (A translation appears in [22].)

[7], The complexity of realization ofsymmetricalfunctions by formulae, Mat. Zametki, 11, (1972),
pp. 109-120), Math. Notes on the Academy of Sciences of the USSR, 11 (1972), pp. 70-76.

[8], Complexity of realisation of symmetric algebraic logic functions on finite bases, Problemy
Kibernet, 31 (1976), pp. 231-234 (in Russian).

[9] M. KLEIMAN AND N. PIPPENGER, An explicit construction ofshort monotoneformulasfor the monotone
symmetric functions, Theoret. Comput. Sci., 7 (1977), pp. 325-332.

10] D. E. KNUTH, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley,
Reading, MA, 1973.

[11] R. E. KRICHEVSKn, Realizations of functions by superpositions, in Prob. Cybernetics II, Pergamon
Press, New York, 1961, pp. 458-477.

[12] O. B. LUr’ANOV, Complexity offormula realisation offunctions of logical algebra, Problemy Kibernet,
3 (1960), pp. 61-80; Problems of Cybernetics, 3 (1962), pp. 782-811.

[13] W. F. McCo, Complexity hierarchies for Boolean functions, Acta Informatica, 11 (1978), pp. 71-77.
[14] ., The circuit depth of symmetric Boolean functions, J. Comput. System Sci., 17 (1978), pp.

108-115.
[15] E. I. NECIPORUK, A Boolean function, Soviet Math. Dokl., 2, 4 (1966), pp. 999-1000.
[16] M. S. PATERSON, An introduction to Boolean function complexity, Stanford Computer Science Report

STAN-CS-76-557, Stanford University, Stanford, CA, 1976; also in Asterisque (journal of the
French Mathematical Society) 38, 39 (1976), pp. 183-201.

[17], New bounds on formula size, Proc. 3rd GI Conf. Informatik, Darmstadt, Lecture Notes in
Computer Science, 48, Springer-Verlag, New York, 1977, pp. 17-26.

[18] G. L. PETERSON, An upper bound on the size offormulae for symmetric Boolean functions, extended
abstract, Dept. Computer Science Tech. Report 78-03-01, Univ. of Washington, Seattle, 1978.

LOWER BOUNDS ON LENGTH OF BOOLEAN FORMULAS 427

[19] N. PIPPENGER, Short formulae for symmetric functions, IBM Research Report RC-5143, Yorktown
Heights, NY, 1974.

[20] ., The realization of monotone Boolean functions, Proc. 8th Annual ACM Symposium on Theory
of Computing, 1976, pp. 204-209.

[21] J. RIORDAN AND C. E. SHANNON, The number of two-terminal series-parallel networks, J. Math.
and Phys., 21 (1942), pp. 83-93.

[22] B. VILFAN, The complexity offinite functions, Ph.D. Thesis, Dept. Electrical Engineering, Tech. Rep.
97, Project MAC, Massachusetts Institute of Technology, Cambridge, MA, 1972.

[23], Lower bounds or the size of expression for certain functions in d-ary logic, Theoret. Comput.
Sci., 2 (1976), pp. 249-269.

SlAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1103-0003 $01.00/0

ON THE AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH
BEST*

ANDREW C. YAO AND F. FRANCES YAO

Abstract. Let 17"k(n) be the minimum average number of pairwise comparisons needed to find the kth
largest of n numbers (k ->2), assuming that all n! orderings are equally likely. D. W. Matula proved that,
for some absolute constant c, ("k(n)-n <=ck lnln n as n-. In the present paper, we show that there
exists an absolute constant c’> 0 such that Vk(n) n >-- c’k In In n as n , proving a conjecture of Matula.

Key words, algorithm, average-case, binary tree, comparison, complexity, decision tree, selection

1. Introduction. The problem of selecting the kth largest in a set of n numbers
by pairwise comparisons has been a subject of considerable interest (e.g., Knuth [6],
[8]). Two particularly interesting situations are the fixed-k case (n-oo) and the
median-finding problem (k In/2]). Let Vk(n) denote the complexity of selection in
the worst case, and Vk (n) the average-case complexity assuming that all n permutations
are equally likely. Table 1 summarizes the known results.

TABLE
A summary of known results on selection problems.

fixed k (n) median

Vk(n)- n =(k-l) lg n + f(k)
[2314315][103

ck lnlnn -> Vk(n)-n>--?
[93

3n >-_ gn/2(n) > 1.75n
[10][113

1.5n _-> Q,/2(n) >- 1.375n
[13

As seen from the table, no good lower bound is known for the fixed-k behavior
of Vk (n). It was not even known whether V2(n)-n c as n o.

An early exploration on I7"2(n) was done by Sobel [13]. In 1973, Matula [9] devised
an elegant algorithm which finds the kth largest using n +ck(ln In n) comparisons on
the average; and he conjectured that the k(ln In n) term cannot be further reduced.
In this paper, we prove that V (n) n >= c’k (In In n), thus confirming the conjecture.
As a result, Vk (n)--n is determined to within a constant factor asymptotically.

MAIN THEOREM. For every integer k >=2, there exists a number Ng such ttat
Qk(n)-n _->1/2k(ln In n -In k-9) for all n >-_N.

In 2 some basic concepts are introduced. In 3 we illustrate certain aspects of
the proof by showing a weaker form of the theorem in the case k 2, under a severe
"regularity" constraint on the class of allowed algorithms. In 4 we examine the
difficulties encountered in extending the discussion to include nonregular algorithms.
We then introduce some new concepts and prove a crucial result (the limited-anomaly
theorem) to prepare for the proof of the main theorem, which is completed in 5.

* Received by the editors April 20, 1979, and in final revised form May 1, 1981. This research was
supported in part by the National Science Foundation under grants MCS-72-03752 A03 and MCS-77-
05313.

Computer Science Department, Stanford University, Stanford, California 94305.
$ Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304.
In this paper, we use lg to stand for logarithm with base 2.
These results have generalizations for the case k an with any fixed 0 < a < 1.

428

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 429

2. The accounting schemes. An algorithm for selecting the kth largest of n
(distinct) elements X ={xl, x.,..., xn} is a binary decision tree T [8]. Associated
with each internal node v is a comparison between two elements xi, x. We will say
"v compares xi, x", and use the notation comp (v)= (xi:x). The branching at v is
determined by whether xi < x. or x > x.. By analogy with a tennis tournament that
selects the kth best of n players, we will freely use in this paper descriptions such as
"xi defeats x" (if xi > x), "xi is undefeated (so far)", etc.

Any particular ordering cr satisfied by the input, i.e., x(l>x(2>.’’ > x(n,
determines a path from the root to a leaf in T. Let S(r) denote the sequence of
internal nodes on this path; and let s(r)= IS(r) I, the number of comparisons made.
The average cost of T is

1
COST (T) .. E s (o’).

The average-case complexity Vk (n) of selecting the kth best of n is the minimum cost
COST (T) among all decision trees. Without loss of generality, we consider only
algorithms that make no redundant comparisons (i.e., comparisons whose results can
be deduced from comparisons made previously).

Let T be any algorithm. We consider two types of noncrucial comparisons" for
each input ordering r, let $1(o-) be the set of comparisons made by T in which the
loser has been defeated previously, and $2(r) the set of comparisons involving at least
one player ranking in the top k- 1. We shall write s(r)= ISi(cr)l (i- 1, 2). Note that
a comparison can be in both Sx(r) and S2(r). As each player except the top k must
encounter a first defeat, we have

(2.2) s(r) -> n k + Sl(O’).

Also, because each player not in the top k must lose to some player ranking below
the top (k- 1), we have

(2.3) s(o-) _-> n k + s2(o’).

Formulas (2.1), (2.2), (2.3) lead to

1
(2.4) COST (r) >= n k +. Y’, sa(cr),

and

1 1
COST (T)>=n-k +- -.2 (s(cr) + s2(r)).

We will transform (2.5) into another form. For each internal node v, let qi(v)
(i 1, 2) be the probability that comp (v) is a noncrucial comparison of type i.
Precisely, if we let F(v) {o- S(r) contains v} and Fi(v) {o- cr F(v), comp (v) e $i (r)}
(i 1, 2), then

qi(v)=
IF(v)]

We define further

q(v)=ql(v)+q2(v),

430 ANDREW C. YAO AND F. FRANCES YAO

and

Then

c(r)= Z q(v).
vS(r)

We obtain from (2.5) and (2.6),

1 1
(2.7) COST (T) -> n k+ Y, ce (or).

We collect (2.4) and (2.7) in the following lemma.
LEMMA 2.1.

1
(2.8) COST (T)>-n-k +., Ys(cr),

1 1
(2.9) COST T) >- n k +- . Z a (o’).

We can think of the two formulas in the above lemma as two counting methods
for the comparisons. The first one is direct counting, while the other is distributive
.counting as the cost is "distributed" to the internal nodes of the decision tree. To
illustrate the utility of these alternative counting methods, we can combine the two
formulas to obtain

1 1
(2.10) COST (T)>-n-k +..-S, X (Sl(Cr) + c (o’)).

.g rt:

Our aim will be, roughly speaking, to show that for any permutation

(2.11) s (tr) + c (tr) -> const. k In In n.

That is, for any computation sequence S(tr), either itself contains a large number
si(tr) of noncrucial comparisons, or it will effect a large number ce(tr)= Y,ves=)q(v)
of noncrucial comparisons distributed over other paths. However, in the proof we
shall not be using (2.10) and (2.11), but rather Lemma 2.1 itself, in order to obtain
better coefficients of k In Inn in the lower bounds.

Remark. The quantities s(tr),si(cr), c(tr),.. all depend on T; we have sup-
pressed this dependence in our notations for simplicity.

3. Regular algorithms.
3.1. Introduction. In this section we shall prove a weaker form of the Main

Theorem for k 2, under certain "regularity" constraints on the algorithms under
consideration.

We begin with a discussion about general algorithms. Let T be any decision tree
algorithm selecting the kth largest of X {xl, x2, ’, x,}. One can view the computa-
tion process for any input ordering tr as building up successively larger partial orders
on X. Formally we associate with each node v in T a partial order P(v), which is the
transitive closure of all the relations xi > xj obtained on the path from the root of T
to v (prior to performing the comparison at v). We call comp (v)= (xi xj) a/oining
comparison if xi and x belong to different connected components in P(v). At each
leaf l, P(l) must contain only a single component, otherwise the relative order of

(2.6)
veT veT veS(o’)

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 431

elements in different components can change the identity of the kth largest element.
Thus, there are exactly n- 1 joining comparisons comp (v) in the sequence v S(r)
for any tr; we denote the subsequence of these nodes v by S’(o-).

Clearly x is a maximal element in the partial order P(v) if and only if x is yet
undefeated. A component C of a partial order is said to be anomalous if C has more
than one maximal element. A maximal element x in P(v) is anomalous if x is in an
anomalous component, and normal otherwise. A partial order is anomalous if it
contains an anomalous component. Fig. 1 shows an anomalous partial order with C1
being an anomalous component, x2 a normal element, and xl, x3 two anomalous
elements.

x x2

C C2

FIG. 1. An anomalous partial order.

We now define the notion of regular algorithms, in which the choice of a
comparison comp (v) is restricted by the current partial order P(v).

DEFINITION 3.1. An algorithm T is regular’if no joining comparison can involve
an anomalous (maximal) element.

In particular, any algorithm that removes anomalies in partial order as soon as
they occur is regular. For instance, suppose the current partial order P(v) is as shown
in Fig. 2 and comp (v) (x x3) is performed with result x > x3, thereby creating an
anomalous partial order. By choosing the next comparison to be (x" x2), we can
immediately remove the anomaly independent of the outcome. Matula’s algorithm
[9] for k 2 is of this type.

Xl x2

FIG. 2. Creation and removal of an anomaly.

The rest of this section is devoted to proving the following result.
TI-IEOREM 3.1. Let Tbe a regular algorithm for selecting the second largest element

of {x, x2, x,}. Then

COST (T) n _-> 1/2 In In n 6.

432 ANDREW C. YAO AND F. FRANCES YAO

3.2. Some properties of binary trees. We digress to discuss some useful facts
about binary trees.

Let M be a binary tree. We use Mz to denote the set of internal nodes. For each
node u, we use notations father [u], brother [u], lson [u], rson [u] for the father,
brother, leftson, rightson of u, respectively. Let D(u) be the set of internal-node-
descendants of u, and DL(u) the set of leaf-descendants (u is also considered to be a
descendant of u). The weight w(u) is the number of leaf-descendants of u; thus
w(u) IDL(u)l ID(u)l+ 1, and for any leaf u, w(u)= 1. The external path length is
defined as E(M) ,uM, W(U).

LEMMA 3.2. LetM be any binary tree with n leaves, then E(M)_->n(lg n- 1).
Proof. From Knuth [7, 2.3.4.5 Eqs. (3) and (4)], one has E(M) >-

n[lgnJ-2n+2+2(n-1)>-_n(Ign-1).]
Let Hn Y.l_-<i__<n 1/i be the harmonic numbers (see [7]). It is clear that

H H ,1 1 1 f+ 1
,=-t-

n an’+ Xn +1 n +2 +’’’+---> -dx"

therefore

(3.1) H-H’>-ln ’/1’ frn=>n’=>0"

DEFINITION 3.2. Let M be a binary tree. A subset of nodes V is called a cross
section of M if root V and the following condition is true: For any two distinct
ui, uj e V, father [ui] father [u.] and ui, u/have no common descendants.

LEMMA 3.3. If V is a cross section of a binary tree M with n leaves, then

w(u) ->In(n+l)v w (brother [u]),- n W + 1

where W E, v w(u).
Proof. For each node u of M, use u’ to denote brother [u] when it exists (i.e.,

when u root). Let depth (u) be the distance from the root to a node u, with
depth (root)- O. We sort the nodes in the cross section V in decreasing order of the
depth as ul, U2,’’’, Ut; i.e., <] implies depth (ui)_->depth (ui).

FACT A. For any <-], u and ui have no common descendants.
Proof of Fact A. The case] is trivial, as u and ui are brothers. Assume <],

which implies depth(u)=depth(ui)>-depth(uj). If u and ui have any common
descendants, then u i, and hence ui, must be a descendant of ui. But this is ruled out
since V is a cross section. I-1

From Fact A, we have for 1 =< -< t,

W(Ui)<--n-- w(ui)=n-W+ w(ui).
i<j<=t l’<j<i

Let W(i) l_<_/.__<i W(b/j); then

Therefore,

w(u) w(u) 1
w(u) n-W+W(i-1) <=i<=w(u,)n-W+W(i-1)+]

Lemma 3.3 then follows from formula (3.1). 1-1

w(u)
Z

w(u) > E
1

vW(bl’) lNi<__t W(bli) IN]<=W n-- W+j
=Hn-H"

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 433

For later reference, we also include here the following simple fact.
FACT B. Let al, aa, ", at be positive numbers. Then

ai lg ai_->t(lg),
l<=i,,<t

when a (Zi ai)/t.
Proof. The function x lg x is convex for x > 0.

3.3. Merge-trees and the proot ot Theorem 3.1. Let T be a regular algorithm
that selects the second best of n players. We shall show that, for any r,

(3.2) Y. q(v)>-lnlnn-7.
vS’(cr)

This immediately implies Theorem 3.1, since by Lemma 2.1,

COST (T) -> n 2 + 1/2(ln Inn 7) -> n + 1/2 In Inn 6.

The basis for proving (3.2) is the following bound on q(v).
LZMMA 3.4. Fora regularalgorithm T, letv Tand comp (v)=(xi x/) be ajoining

comparison between elements in two components of sizes c l, ce, respectively. Then

q(v) >man { el C2 C1"+- C2}C nt- C2 C1-1-C2 gl

Proof. Recall that q(v)=ql(v)+qa(v). There are four cases. If xi and xi are both
undefeated, then qa(v)>-(cl +c.)/n as the larger of xi, xi will be the largest of all
elements with probability (cl+ca)/n. If neither is undefeated, then qi(/))--1>
Cl/(Cl +Ca). If Xi is undefeated and x. is not, then ql(v)= (Probability that xi > x) >-

Cl/(Cl +ca). If xi is undefeated and x/is not, then q(v)>=ca/(Cl +ca) by the same token.
Thus the lemma is true in all cases. [3

We shall now apply the lower bound on q(v) to prove (3.2). We construct an
auxiliary binary tree that represents the successive joining operations performed in
S’(o-), and then use results obtained in 3.2.

Merge-tree. Let r be an input ordering to algorithm T. We can construct a binary
tree M(r) corresponding to S’(r) with the following properties.

(1) M(r) has n leaves labeled by the n input elements X {xl, x2,’’’, xn}.
(2) Each internal node u of M(r) corresponds to a v S’(r); the xi’s that are

descendants of lson [u] and rson [u] respectively form the two components that are
joined by the comparison at v.

An example of a merge-tree is shown in Fig. 3.
Let C(u) denote the subset of X which label the leaf-descendants of node u in

M(o-). Define a function go on M(r)i, the set of internal nodes of M(cr), by letting
go(u) =q(v) if u corresponds to v S’(cr). We wish to prove the following equivalent
formula of (3.2).

(3.3) Y go(u)_->ln Inn -7.
usM(cr)t

By Lemma 3.4, we have for each u M(cr)i,

=>min w_. wa(3.4) go(u)
W1 -’t- W2’ W1 -I- W2

W1 -+- W2},
where wl w(lson [u]) and W2 w(rson [u]). Therefore, Theorem 3.1 will follow from
the following result.

434 ANDREW C. YAO AND F. FRANCES YAO

FIG. 3. The merge-tree M(r) corresponding to the sequence 0]: joining comparisons ((x3" xs), (x4’ x2),
(X1" X4), (X6" X2), (X3" X1)).

LEMMA 3.5. Let M be any binary tree with n leaves. For each u Mz, let g(u)=
min {(wl + Wz)/n, wa/(Wl+ w2), Wz/(wl+ w2)} where Wl= w(lson [u]) and w2
w (rson [u]). Then

Y g(u)>=lnlnn-7.
uMx

Proof. The proof makes use of the lemmas in 3.2. It is given in Appendix A
because of its length. [3

3.4. Remarks. The lower bound given in Theorem 3.1 is only about half as large
as the corresponding bound in the main theorem. This is due to the use of a relatively
loose bound for q(v) in Lemma 3.4. A stronger bound for q(v) will be used in the
general proof in 5, where the regularity constraint is also dropped.

We also wish to point out that (2.8), the first formula in Lemma 2.1, was not
used in the above proof, but will be needed later in the proof for the general case.

4. The limited-anomaly theorem. The arguments in the previous section fail
when algorithms are not required to be regular. The important assertion in Lemma
3.4 is no longer true. Consider the partial order P(v) exhibited in Fig. 4, and suppose
that the next comparison v is between x and an anomalous maximal element x2.
Assuming that the components Ca, C2 and C3 have sizes 5,102 and n-107 respectively,
it is intuitively clear that the probability q2(v) is less than (5 + 102)/n, as max {xl, x2}
is unlikely to be the largest among elements in C U C2. It will be seen later (5.3)
that, in estimating q2(v), one should use f(x2), the number of elements in P(v) that
are less than (or equal to) x2 but not less than any other maximal elements, in place
of the component size Ic21, In this example f(x2) 4 and thus q2(v) -> (5 + 4)In, a much
weaker lower bound than (5 + 102)/n. Therefore, two complications arise when non-
regular algorithms are considered. Firstly, it was previously possible to attach a lower
bound to q(v) which depended only on the shape of the associated merge tree; now

AVERAGE-CASE COMPLEXI’I ’t" OF SELECTING THE kTH BEST 435

more details of the partial order P(v) must be taken into account. Secondly, when
comparisons involving anomalous elements xi occur, we may obtain very weak bounds
on q(v), if [(xi) is small. We shall presently prove a result to overcome the second
difficulty, by stating that comparisons involving an anomalous maximal element xi
with a small [(xi) cannot happen too often unless COST (T) is large anyway.

x x2

C C2 C3

FIG. 4. Difficulties caused by anomaly.

Let P be a partial order on X "--{Xl, X2, Xn}. For each xg, let H(x) be the
component containing xi, and h(x) [H(xg)]. For any maximal element xg, the fiefdorn
of x, F(x) is the set {xj xj =< xg (in P), and xi is not less than any other maximal element
in P}. We denote]F(xi)l by f(xi). Note that F(x)

_
H(x), and the containment is proper

if and only if x is anomalous. When xi is anomalous, we call f(xg) the anomaly degree
of x.

Let T be an algorithm that selects the kth largest of n elements. For any internal
node v T, the comparison at v, x:xi, is said to be anomalous of degree rn if the
minimum anomaly degree of xg and x is m. (Equivalently, it means that one of xg and
xi has an anomaly degree m, and the other one i’s either not anomalous or anomalous
with degree at least m.)

THEOREM 4.1 (the limited-anomaly theorem). Let T be an algorithm selecting
the kth largest of X {xl, x2,"’, x,}, and r an input ordering. Then the number of
anomalous comparisons of degree <-m is at most (2m + 1)sl(o-).

Proof. We assign a weight m + 1- to an anomalous element of degree for
1 _-< <_- m, and a weight 0 to all other elements. Let E and E’ be respectively the total
weight of all elements before and after a comparison xi > xj. Then the following is true.

LEMMA 4.2.
(A) E’ <-E + 2rn.
(B) Ifx > xi is a first defeat, then E’ <-_ E.
(C) I[xi > xi is a first defeat and an anomalous comparison of degree <-m, then

E’<E.
Proof of Lemma 4.2. Let G be the set of Xl such that, before the comparison,

F(x) contains at least one of xg and xj. Clearly, [G[_-<2, as any element xt can be in
at most one F(Xl). It is easy to see that only elements in G may be assigned new
weights after the comparison. Since the largest increase in weight for an element is
from 0 to m, this proves (A).

Suppose x > xi is a first defeat. Then xj must have been a maximal element before
the comparison, and hence xj G. It follows that either G {xi} or G {y, xi} with y x.

Note that the weight of xj cannot increase after the comparison, and will strictly
decrease from m + 1-f(xi) to 0 if xi is anomalous of degree _-<m; this proves (B) and
(C) when G {x/}. It remains to prove (B) and (C) assuming that G {y, x/} with y xj,
xiF(y).

436 ANDREW C. YAO AND F. FRANCES YAO

After the comparison, xj is no longer maximal Let F’(y) be the new fiefdom of
y after the comparison, then F’(y)_F(y)t.JF(xj); clearly, IF’(y)l>f(x). We consider
two cases according to whether x. was anomalous of degree -<m before the comparison
Xi]>

Case (a). xi was anomalous of degree <= m. The decrease in x;s weight is from
m + 1 -f(xj) to 0 while the maximum increase in y’s weight is from 0 to max {0, m + 1
IF’(y)l < m / 1 -Z(x). This means E’< E.

Case (b). xi was not anomalous of degree <= m. Then xi’s weight does not change;
y’s weight has two cases"

(bl) y was anomalous of degree-<_m. Then y’s weight strictly decreases due to
the strict increase in its anomaly degree.

(b2) y was not anomalous of degree <-m. Then y’s weight remains 0.
This proves (B). Statement (C) follows from the analysis of Case (a) and Case

(b!) above. This completes the proof of Lemma 4.2. I3
We will now complete the proof of Theorem 4.1. Statements (A) and (B) of

Lemma 4.2 imply that the total increase in weight along path $(r) is bounded by
2msl(r). Since the sum of weights of the elements is initially 0 and always nonnegative
by definition, the number of comparisons rt3 which fits statement (C) of Lemma 4.2
is at most 2msl(cr). The total number of comparisons along S(tr) that are anomalous
of degree =<m is clearly at most n3+sl(o’), and is hence bounded by (2m + 1)Sl(O’).
This proves Theorem 4.1.

5. Proof of the main theorem.
5.1. Introduction. We will prove the following result in this section.
THEOREM 5.1. Let k, n be integers with k >-2 and n -->Nk (8k)18k. Suppose T is

an algorithm that selects the kth largest of n elements, and cr an input ordering. If
s (or) <- n’2, then a (tr) >- k (ln In n In k 6).

As defined in 2, the quantities a(tr), Sl(O’) depend on T. Also note that, for
n >-N, the following inequalities hold, as can be verified by elementary arguments.

(5.1) n >= k In In n,

(5.2) F/1/(6k) >- 2 lg n,

(5.3) nl/2>=k.

We first demonstrate that Theorem 5.1 implies the main theorem. If there are
more than n x n- 0.2

cr satisfying Sl(O’)> n then (2.8) implies

COST (T)>-n-k +.n!n-anZ>=n-k +k lnlnn,

in view of (5.1). On the other hand if less than n! x n -’1 of the cr’s satisfy Sl(r) > n ’z,
then (2.9) and Theorem 5.1 lead to

1 1 -0.)COST T) >= n k +- -. (n n x n k (ln ln n ln k 6)

>- n + k (In In n In k 6 n-1 In In n 2).

Again, using (5.1), we obtain

COST (T) >= n + -k (In In n In k 9).

Thus, the main theorem is true in both cases.

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 437

$.2. Some results on partial orders. Let P be a partial order on a set X
{xl, x2," ", xn}. Assume that all orderings on X consistent with P are equally likely.
We are interested in bounds on the probability of some element xi being greater than
another element xj (or all elements in some subset). For instance, if xi is the unique
maximal element in a component (in P) of size m, then the probability that xi is the
maximum of all n elements in X is clearly m/n, and it is also not difficult to show
that Pr (Xi >Xj) is at least m/(m +r), if xj is a nonmaximal element in a different
component of size r. A generalization of these facts is given below in two lemmas.

LEMMA 5.2. If Xi is a maximal element, then

f(xi)
Pr (xi is the largest element in X) =>’

n

LEMMA 5.3. ;IfX is a maximal element, and x a nonmaximal element in a different
component, then

f(Xi)
Pr (xi > xi) >-

f(xi) + h (xi)"

Intuitively, the above lemmas must be true, since knowing that some elements
in F(x) are greater than some elements outside F(xi) should not lower the rank
of xi. However, the proofs are not trivial, and will be derived in Appendix B as con-
sequences of a general theorem by Shepp [13]. (For further results of this type, see
Graham, Yao and Yao [3] and Shepp [133.)

LZMMA 5.4. Suppose xi is the unique element in a component C of size m, and xi
a nonmaximal element in a different component C’ of size A- m. Assume that A > 2k.
Define the quantity to be (Pr (xi > xj) + Pr (max {xi, xi} is in the top k 1 ofX)). Then

_-> min 1 e -m/A, 1 e -tm/A + for 1 < < k

Pro@ See Appendix C.

$.3. Ler bmts q(v). Let v be an internal node in the algorithm T.
Suppose v compares x, x.. We will give lower bounds on q(v) in terms of component
sizes such as f(x), h(x), etc. defined relative to the partial order P(v). We will assume
for the rest of 5 k _-> 2 and n _-> N.

LEMMA 5.5. If Xi is a nonmaximal element and x is in a component not containing
x, then ql(v)>- l/(h(x)+ 1).

Pro@ If xj is also nonmaximal, then ql(v)= 1, else by Lemma 5.3,

q (v) Pr (x. > Xi

LEMMA 5.6. If both xi and xi are maximal, then q2(v) _-> (f(xi) +f(xi))/n.
Proof. The properties of xi, xj being the largest element in X are mutually

exclusive. Hence q2(v)f(xi)/n +f(xj)/n by Lemma 5.2. I-]

LEMMA 5.7. /f Xi is a maximal element and xi a nonmaximal element in a different
component, then q(v) f(xi)/(f(xi)q.- h(xi)).

Proof. It follows directly from Lemma 5.3. [-1

LEMMA 5.8. Suppose xi is the unique maximal element in a component C, and x
a nonmaximal element in a different component. If h(xi)<=n /3 and h(xi)+h(xj)>=
n -(/6k) then

h(xi) k2 1
q(v)>--kh(xi)-3 n7/-----g.

438 ANDREW C. YAO AND F. FRANCES YAO

Proof. Let m h(xi), m’= h(xi) and A m + m’. Then by assumption

(5.4) m <= n 1/3 and A >= n -(/6k).

Clearly A > 2k. By Lemma 5.4, we need only show that

(5.5) l e_km/a >= k m___ k2 1
m
,-3 7/6,n

and

(5 6) min 1-e-/+ _-> -3k
l<t<k m’

As e <= 1-x + 1/2x 2 for x >= 0, we have

n7/6

(5.7) 1-e-km/a>km--
A 21()

2

kmm’- kS-m’-m21()2

Now, from (5.4),

m
< n-(2/3-1/6k)(.8) S=

This implies m/A < and hence

(5.9) m’>1/2A.
Using (5.8) and (5.9) in (5.7), we obtain

(5.10) 1--e-km/a>--km--(m
k
m m -7/6

m’
2k + >= --3k2n -(4/3-/3k) >- k-;- 3k2n

This proves (5.5).
For 1 < < k,

11) 1-e-tm/a+\2n]{-- > =>n-1/6+l/6t.2 -(k-l)>= 2kn -(2/3-1/6),(5

where we have used (5.4) and the fact n ->N > kZ4. We now use (5.8) and (5.9) to
obtain

1- e-’m/a + >=2ks >-
m’

This implies (5.6) immediately. 71

$.4. Completing the proo[. As in 3.3, we construct a merge-free M(r) corres-
ponding to the merging process for r, and assign q(u)= q(v) to each u M(r)x. Let
o- be any ordering that satisfies Sl(O’)-< n’2. We will show that

(5.12) Y q(u) -> k(ln In n -In k -6).
u.M(o’)t

This would prove Theorem 5.1, as

a(o’)= Y’. q(v)>= Z q(v)= Z ,(u).
S(cr) S’(cr) M(o’)t

To prove (5.12), we first partition the set of nodes in M(r) into upper and lower
parts, U--{ulw(u)>-n /3} and t-{ulw(u)<n/3}. Let V’={ulue U, lson[u]eL,

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 439

rson [u]L}, V" ={u [u eL, father [u] U- V’}, and V V’U V". (These definitions
are similar to those used in Appendix A, and properties P1-P5 there remain true.)

We now partition V into seven disjoint parts V1, V2," ", VT. For each u V,
we assign u to a unique V according to the following procedure, which halts as soon
as u is assigned.

Procedure Decompose;
step 1" If there is some u’ D(u) where the joining comparison is not between

two maximal elements, then assign u to V1.
[comment" If u is not assigned in step 1, then the joining comparison at u creates

a component C(u) with a unique maximal element; recall that C(u)
consists of the xi’s that label the leaves in DL(U).]

step 2: If u V’, then assign u to Vz.
[comment: If u has not been assigned after step 2, then u must be in V" and

father [u exists.]
step 3: If father [u] compares a nonmaximal element in C(u) with any element,

then assign u to V3.
step 4: If father [u] compares the maximal element of C(u) with another maximal

element (in a different component), then

/ V4 if the comparison is anomalous of degree at most [na/5],
assign U to

V5 otherwise.

step 5" If father[u] compares the maximal element of C(u) with some non-
maximal element (in a different component), then

V6 if w (father [u]) <- n
assign U to

V7 if w (father [u]) > n

1-1/6k

1-1/6k

end Decompose.

Let W Y’,,v, w(u) (1_-<i_-<7), and

Y E g,(u’) if s {1, 2, 4},
Vi u’D(u)

A, E o(father [u]) if {3, 6, 7},
Vi

v(y" o(u’)+q(father[u])) if i{5}.
u’D(u)

In analogy with discussions in Appendix A, it is not difficult to see that V7 is a
cross section (recall Definition 3.2), and that

(5.13) Y’, W n,
1__<i__<7

and

(5.14) 2 qg(u) >= 2 Ai.
uM(o-)t 1_-<i<_-7

We will now find lower bounds to the Ai’s in terms of the W’s. We treat first Ai
for s {1, 3, 6}, which are "costly" and thus efficient algorithms should not have large
W for these values of i.

LEMMA 5.9. A +A3+A6>=(WI + W23t" W6)Yl -(1-1/6k).

440 ANDREW C. YAO AND F. FRANCES YAO

Proof. For each u V1, some u’ D(u) has a comparison involving a nonmaximal
element. Thus, by Lemma 5.5, Yu’O(u q(u’) >= 1/(2nl/3) We have

(5.15) Al >-lVl.n -1/3.

Similarly, by Lemma 4.5, we have

(5.16)

As each u V has w(u)<-2n 1/3

(5.17)

Formulas (5.15)-(5.17) lead to

(5.18)

we have for i {1, 3}

Thus,

(5.19)

Ai >=1/4 Wi n -:z13 >= Wi n -1-16k), for {1, 3}.

For each u V6, we apply Lemma 5.7 to father [u] and obtain

W(U) -(1-1/6k)(father [u]) _-> -> w(u)n
w (father [u])-

A6 w(u)n -(1-1/61) W6n -(1-1/61)

v6

Combining (5.18) and (5.19), we obtain the lemma.
LEMMA 5.10. W4 8/’t 11/15.
Proof. By the limited-anomaly theorem (Theorem 4.1),

Iv4l<-_(2pn ’/] + 1)s,(o-) -< 8n ’4,
since sa(r)-< n ’2 by assumption. As each u V4 has w(u)<= n /3, we have

W4
< V4ln 1/3 < Shill 15

LEMMA 5.11. A2>=(Wz/3n) lgn-1.
Proof. Let u Vz. For each u’D(u), q(u’)>=w(u’)/n by Lemma 5.6, as the

corresponding comparison is between normal maximal elements. This gives, by Lemma
3.2,

1
,)

1E ;(u’)>-_- Y w(u >_--w(u)(lgw(u)-l).
u’D(u) n u’D(u) El

As w(u) >- n 13, we have

Therefore,

(u’)>--w(u) lgn-1
n

A2 >-- Z w(u) lgn-1 _->nlgn-1.Fl V:z

LEMMA 5.12. A>-(WI5n) lgn-1.
Proof. If [VI 0 then W5 0 and the lemma is clearly true. We thus assume that
> 0. For each u V,

1
q(u’)>=-w(u)(lg w(u)-l).

u’D(u) F

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 441

Thus, using Fact B in 3.2, we have

(5.20) 2 2 q(u’) >-- 2 w(u) lg w(u)- W5 >-_- W51g -1
V5 u’D(u) 11 Vs gl

Now, for each u V5, let the comparison at father [u] be between xi and x., where
xi is the maximal element of C(u). By Lemma 5.6,

(father [u]) _->

w(father [u])
>

f(xi) +f(xi) >_
n n

n
1/5]

Thus,

(5.21) Y q(father [u])>-_lVsln -4/5

7

Formulas (5.20) and (5.21) lead to

1 W5(5.22) As _->- W5 lg +l vsin

1/3 if x. is normal,

if xi is anomalous.

By standard minimization technique (e.g., see the proof of Fact E in Appendix A),
(5.22) yields

1 1/5 1 1
A5 _->- W5 lg ((ln 2).n)+- W51--- 1.

The lemma follows, noting that lg In 2 + l/In 2 > 0.
LEMMA 5.13. AT>-k ln[(n + 1)/(n W7+ 1)]-3.
Proof. Let u VT, we write u’ =brother [u]. By Lemma 5.8 and (5.3), we have

q(father [u]) >- k
w(u) 3k21 w(u) 3-.1
w(u’) n ’’’>=k ’)W bl tl

As V7 is a cross section, we obtain from Lemma 3.3 that

w(u) n+l
A7>=k -3>-_k In -3.
v w(u’) n- WT+ 1

We are now ready to prove (5.12), and hence Theorem 5.1. Using Lemmas 5.9,
5.11, 5.12, 5.13 and formula (5.14), we have

uM(o’)

lg11 lg n: (Wl -+- W3 q- W6)11 -(1-1/6k) +
3n W2 +-n W5 + k In

n+l

n+l-W7
Making use of (5.2) and (5.13)

(5.23)
E

uM(cr)t

lgn
q(u)_->-7--(Wl+ W2+ W3+ W5+ W6)+k In

3n

n+l

n-W7+l

lgn
(n W7)-=-- + k In

3n

n+l W4
n Wv + l

5 -n g n.

-5

442 ANDREW C. YAO AND F. FRANCES YAO

From Lemma 5.10 and (5.2),

W4
lg n <__8 n 11/15 lg n

(5.24) -lgn<__2 4/15(1.5n 5 n n

Therefore, (5.23) leads to

lgn n+lY, q(u) > + k In -6,
(), x--n x+l

for some x, 0 _-< x _-< n.
A standard minimization gives

(lg n](u)>=k ln\-}-6>=k(lnlnn-lnk-6);uM(o’)t

which is (5.12).
This completes the proof of the main theorem. [-1

Appendix A: proof o Lemma 3.5. The lemma is clearly true when n <-8. We
shall thus assume that n > 8. Note that, in this range,

(A.1) nl/3 > max {31- lg n, 1/2 In In n}.

We say a node u Mz to be of category 1 if g(u)=min {W1, W2}/(W1-[-W2), and
of category 2 otherwise. For a node u to be of category 1, we must have

min {wl, w2} < Wl + w2

wl + w2 n

implying

(A.2) W(R) WI-[- W2 4-.

Let us divide the set of nodes of M into an upper part U and a lower part L
according to whether or not w(u)>=nl/3/2. As n > 8, the root must be in U and all
leaves are in L. Now consider the set V’ of lowest nodes in U, i.e.,

V’={uIu U, lson[u]L, rson[u]L},

and the set V" defined by

V"= {ulu L, father [u] e U- V’}.

An alternative characterization of V" is given by

V"= {u[u L, father [u] U, brother [u] e U}.

Let V V’O V". The following simple properties are easy to check.
PI" V’ and V" are disjoint.
P2: Any two distinct nodes in V have no common descendants.
P3: Any two distinct nodes in V" have distinct fathers; furthermore, the set

{father [u]lu V"} is disjoint from the union of descendants of nodes in V.
P4" V" is a cross section of M.
P5: The family of sets {DL(u)lu V} forms a partition of the leaves of M.

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 443

We partition V V’ V" into V (1 -< <-4) as follows. The set V1 is simply V’.
Sets V2, V3, V4 are given by

V2 {u[u V", father [u] is of category 2},

V3 {ulu V", father [u] is of category 1, w(father [u]) < n2/3},
V4 {u[u V", father [u] is of category 1, w(father [u]) _>- n2/3}.

The definitions are illustrated in Fig. 5.

FIG. 5. A schematic illustration of sets U, L, V’= V1, V"- V _J W .J W4; nodes in V’, V" are labeled
as v’, v", respectively.

Let W,. =Yuv, w(u) for 1_-<i<-4. Define

Aa= E E g(u’),
Va u’D(u)

A2
Vz (u’D(u)y" g(u’) + g(father [u])),

Ai g(father [u]), 3, 4.
Vi

As an immediate consequence of property P5, we have

(A.3) Y W=n.
1__<i<_4

Now, from properties P1-P3, we have

(A.4) g(u) >- Z A.
M 1----<i=<4

Our plan is to first derive lower bounds to Ai in terms of W, and then apply (A.4)
to prove Lemma 3.5.

FACT C. If w(u)<x/-, then .u,O(u) g(u’)>-_(1/n)w(u)(lg w(u)-l).
Proof. We may assume that u M, as the assertion is clearly true when u is a

leaf. Now each u’D(u) must be of category 2 (w(u’)<x/), and hence g(u’)=

444 ANDREW C. YAO AND F. FRANCES YAO

w (u’)/ n. Using Lemma 3.2, we have

1
Y g(u’) =-1 w(u’) >=- w(u)(lg w(u) 1). I"!

u’D(u) n u’D(u) Fl

FACT D. Aa >-(W1/3n) lg n -2.
Proof. Each u V1 satisfies w(u)<2(na/3/2)<=x/-, and hence from Fact C,

A E E g(u’) > E
1
-w(u)(lgw(u)-l).

V u’D(u) u Va El,

As w(u)>-n/3/2 (since u U), we have

1 () W1
al>-- Z w(u) lgn-2 =>--n lgn-2. [3

n uV

FACT E. A2 (W2/3n) lg n 3.
Proof. The statement is obviously true when V:] 0. We shall thus assume that

IV21>0. For each u V2, g(father [u])= w(father [u])/n >- 1/(2n/3), since father[u]
is of category 2 and is in U. Making use of Fact C, we have

a2"- g(u’)+ 2 g(father[u])
ue V2 u’eD(u) V2

1
>- Z w(u)

(lg w(u)-l)+lV212nZ/3.
We now use Fact B to obtain

(A.5) A: > Wz
lg W2 IV2]--- V--2 1 +

2n Z/-------g

The right-hand side expression d (I V2I) achieves its absolute minimum over V. e [0, o)
at IV2] 2W2/(n 1/3 In 2), where

d(I Vzl)_ w2 lg ---n{ln2 1/3) -1- 1 W2>_WZlgn_3.
ln2 n -3n

Thus, formula (A.5) implies

w(A.6) A2 >=--n lg n -3,

proving Fact E. [-1

The derivation of (A.6) from (A.5) is a standard argument, and similar derivations
will henceforth be referred to as "by standard minimization technique" with details
omitted.

For each u V3 U W4, w(brother [u]) >- n/3/2 > w(u), and father [u] is of category
1. Thus,

(A.7) g(father [u])=
w(u)

w(father [u])"

FACT F. A3>= W3/n 2/3.
Proof. For each u e V3, w(father [u])< n 2/3. Using (A.7), we have

w(u) W
A3 ’, g(father[u])= >- 2/3.

v3 v3 w (father u]) n

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 445

FACT G. A4>-(1-1/2nl/3)ln[(n+l)/(n W4+l)].
Proof. For each u V4, w(u) < nl/3/2 and w(father [u])_-> n

have
2/3. Using (A.7), we

Thus,

g(father [u]) w(u)_ w(u) (1- w(u))w(father [u]) w(brother [u]) w(father [u])

w(brother [u]) 2n1/3

(A.8) A4= E g(father [u])>- 1-2 /3
v4 w (brother [u])

As V" is a cross section of M by property P4, so is V4. Fact G then follows from
(A.8) and Lemma 3.3. [3

We will now finish the proof of Lemma 3.5. Using Facts D-G, we obtain from (A.4)

., g(u)>Wl+W21gn+W3 (lnl) n+l

M, 3-- n2--+ 1-
2 /3 In -5.

n-W4+l
Using (A.1) and (A.3), we obtain then

, g(u)>_Wi+W2+W31gn+ 1_
2 /3 lnwI+w2+w3+I

(A.9)
-> 1 2nl/3 lgn+ln n/l)x+l

-5,

where x W1 + W2 + W3.
By standard minimization technique, we obtain from (A.9)

Y. g(u)>(1 nll)(lnlnn-1)-5>lnlnn-7,
ul, 2 /3

where (A.1) was used in the last step. This proves Lemma 3.5.

Appendix B: proof of Lemmas 5.2 and $.3. Let A ={al, a2,’", a,}, B
{bl, b.,..., b,,}, X ALI B, and (O0, <) be a partial order on X which contains no
relation of the form ai > bj or ai < bj. Let J be a set of inequalities {ail> bjl, ai2 >
bi2,’ ’, aip> bp}, and let O1 be the partial order generated by (20 U J. The following
result is proved by Shepp [13, Theorem 2].

THEOREM B1 (Shepp [13]). Let E be an event of the form (a> btl) ^ (a>bt_) ^’" ^ (a, > bt). Then Pr (EIQ1) _-> Pr (E Oo).
Remark. As usual, the probability Pr (E Oi) is defined with the assumption that

all linear orderings of X consistent with Oi are equally likely.
We will now use the above theorem to prove our lemmas. Recall that, in Lemmas

5.2 and 5.3, a partial order P on X {xl, x9.,..., x,} is given and xg is a maximal
element. LetA =F(xi),B =X-A, andY ={xr>xl[XrA, xlB, (Xr>Xl).P}. Define
Q0 P-J. It is easy to see that Qo and J satisfy the requirements for Theorem B1.
The partial order Q1 is clearly just P.

To prove Lemma 5.2, let E be the event ^xt (x > Xl). Then

IAI f(xi)Pr (E Oo) -= n

446 ANDREW C. YAO AND F. FRANCES YAO

Using Theorem B1, we obtain

Pr (Xi is the largest element in X under P} Pr (E O) _-> Pr (E Oo)
f(xg)
n

This establishes Lemma 5.2.
To prove Lemma 5.3, let E denote the event ^x,n(x)(Xi > Xl), As the event E

implies Xg > xi, we have

Pr {xi > xi under P}>_-Pr (E[P)= Pr (El 01).

Using Theorem B1, we obtain

IA[f(xi)
Pr (E Q1) -> Pr (E Qo) IAI + In(x,)l- f(x) / h(x,)"

Lemma 5.3 follows.

Appendix C: proot of Lemma 5.4. Let/3 (t) be the quantity/3 when the component
C’ has been sorted and xj is the tth largest in it. Then, denoting by p(t) the probability
that xj is the tth largest in C’ under partial order P, we have with m’= A-m,

= E p(t)(t).
ltm’

As x is not a maximal element, p(1)= 0. Therefore, the lemma would follow, if we
can show that for all 1 < m’,

{ 1-e-km/a, 1-e-’m/a+ for 1 <t’ <k(C.1) (t) min

Let fl(t) al + a2, where

a probability that x > xi,

a2 probability that max {x, x} is in the top k 1.

Clearly,

a 1 (probability X < X]) 1
t)

(m

But,

In (1--t/A) em(-t/a).

Thus,

(c.2) a >= 1 e -tm/A.

t)A-m+l

AVERAGE-CASE COMPLEXITY OF SELECTING THE kTH BEST 447

Formula (C.2) proves (C.1) for the case k <= t<-m ’. We shall now restrict our
attention to the case 1 < < k’ min {k, m’ + 1}. In this range,

a2 Pr (max {xi, xj} is in the top k 1 of X)

=> Pr (the tth largest element in C U C’ is in the top k 1 of X)

Pr (the tth largest element in C U C’ is the/th largest in X)
t<=l<k

E
t<=l<k

Taking only the term and using the assumption A > 2k, we obtain

(C.3) a2 _-> -> _-> when 1 < < k’
n n-1 n-t+ 1- n

From (C.2) and (C.3) we see that for 1 < < k’

(t)=a+a2>-l-e-’/a+

Thus, (C.1) is also true in this case.
This completes the proof of Lemma 5.4.

Acknowledgments. We wish to thank David Matula for helpful suggestions and
a careful reading of the manuscript.

REFERENCES

[1] R. W. FLOYD AND R. L. RIVEST, Expected time bounds for selection, Comm. ACM, 18 (1975),
pp. 165-172.

[2] F. FUSSENEGGER AND H. N. GABOW, A counting approach to lower bounds for selection problems,
J. Assoc. Comput. Mach., 26 (1979), pp. 227-238.

[3] R. L. GRAHAM, A. C. YAO AND F. F. YAO, Some monotonicity properties of partial orders, SIAM
J. Alg. Disc. Meth., 1 (1980), pp. 251-258.

[4] L. HYAFIL, Bounds for selection, this Journal, 5 (1976), pp. 109-144.
[5] D. G. KIRKPATRICK, Topics in the complexity of combinatorial algorithms, Computer Science Depart-

ment Technical Report TR 74, University of Toronto, Toronto, Canada, 1974.
[6] D. E. KNUTH, Mathematical analysis of algorithms, in Information Processing 71 Proceedings of the

1971 IFIP Congress, North-Holland, Amsterdam, 1972, pp. 19-27.
[7] ., TheArt ofComputerProgramming, vol. 1, FundamentalAlgorithms, Addison-Wesley, Reading,

MA, 1968.
[8] The Art of Computer Programming, vol. 3, Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
[9] D. W. MATULA, Selecting the tth best in average n + O(log log n) comparisons, TR 73-9, Washington

University, St. Louis, 1973.
[10] V. R. PRATT AND F. F. YAO, On lower bounds]’or computing the ith largest element, Proc. 14th

IEEE Symposium on Switching and Automata Theory (1973), pp. 70-81.
[11] A. SCHNHAGE, M. PATERSON AND N. PIPPENGER, Finding the median, J. Comput. System Sci.,

13 (1976), pp. 184-199.
[12] L. A. SHEPP, The FKG inequality and some monotonicity properties o]’ partial orders, SIAM J. Alg.

Disc. Meth., (1980), pp. 295-299.
13] M. SOBEL, Technical Reports 113,114 (Nov. 1968), Department of Statistics, University of Minnesota,

Minneapolis.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1103-0004 $01.00/0

THE EQUIVALENCE PROBLEM FOR DETERMINISTIC
TWO-WAY SEQUENTIAL TRANSDUCERS IS DECIDABLE*

EITAN M. GURARI"

Abstract. The equivalence problem for deterministic two-way sequential transducers is a long time
open problem which is known to be decidable for some restricted cases. Here, the problem is shown to
be decidable also for the general case. In fact, the result holds even when the devices are allowed to make
some finite number of nondeterministic moves.

Key words, transducer, decidability, PSPACE-completeness

1. Introduction. The problem of deciding the equivalence of deterministic two-
way sequential transducers was first posed in [2]. Since then the problem has been
shown to be decidable for the restricted cases in which the input heads are allowed
to make only some finite number of reversals [5] or when the input strings are over
some bounded language (i.e., a language of the form a * a k*, where al,.. ", ak are
distinct symbols) [6]. These results are known to hold even when the devices are
allowed to make some finite number of nondeterministic moves [5]. In this paper the
above decidable results are shown to hold also for the general case, i.e., for determinis-
tic two-way sequential transducers that are allowed to make some finite number of
nondeterministic moves. On the other hand, it should be noted that the equivalence
problem is known to be undecidable for nondeterministic one-way sequential trans-
ducers [4], [9]. The reader is referred to, e.g., [1] for the applicability of transducers
in defining translations.

The results of this paper are given in the next section. The remainder of this
section is devoted to recalling the (informal) definitions of the devices used in this paper.

A two-way sequential transducer, e.g., [2] is a two-way finite-state automaton
which is augmented by an output tape. At the start of each computation, the two-way
sequential transducer is set to a specific initial state, the input head is on the leftmost
character of the input string and the output tape contains blanks only. An atomic
move consists of changing the state of the finite-state control, moving the input head
-1, 0 or 1 positions to the right and writing 0 or 1 nonblank characters on the output
tape. Two such devices are said to be equivalent if they agree on all their input-output
relations defined by their corresponding accepting computations. (Accepting configur-
ations are assumed to be halting configurations.) A two-way sequential transducer is
said to be deterministic if in each of its configurations it has at most one choice of
next move. A reversal-bounded m-counters machine, e.g., [8] is a one-way finite-state
automaton which is augmented by rn (=> 1) counters. Each of the counters is capable
of storing any nonnegative integer. On each atomic move, at most one of the counters
is incremented by -1 or +1, while in every computation, a counter can alternately
increase and decrease its value by no more than some finite number of times.

2. The results. Theorem 1 below is the main result of this paper. The proof of
Theorem 1 generalizes an idea in [5].

THEOREM 1. The equivalence problem is decidable for determin&tic two-way
sequential transducers.

* Received by the editors December 19, 1979 and in revised form May 13, 1981. This research was
supported in part by the National Science Foundation under grant MCS 79-09967.

t Department of Computer Science, State University of New York at Buffalo, Amherst, New York
14226.

448

EQUIVALENCE PROBLEM FOR SEQUENTIAL TRANSDUCERS 449

Proof. Let Ma and M2 be any two given deterministic two-way sequential trans-
ducers. Without loss of generality it is assumed that M1 and ME have a (same)
distinguished symbol that they output when and only when they enter a. halting
configuration. Then a (nondeterministic) reversal-bounded 2-counters machine M is
constructed such thatM halts on some input if and only if M1 and ME are inequivalent.
(Note that M can be simulated by a pushdown automaton whose pushdown store
behaves like a counter.) The result then follows from the decidability of the emptiness
problem for reversal-bounded m-counters machines [5], [8].

M, when introduced with an input string, starts its computation by nondeter-
ministically determining some positive integer, say v, and putting it into its counters,
say Ca and C2. Then M nondeterministically simulates (in parallel) the computations
of Ma and M2 on such an input. However, whenever M, 1 or 2, is to output a
symbol, M instead decreases Ci by 1 or leaves Ci unchanged depending on whether
C contains a nonzero or a zero value, respectively. In addition, M records in its
finite-state control the vth symbols in the outputs of M1 and ME if and when they are
encountered. M halts (on the given input) if and only if Ma halts in an accepting
configuration while Mz does not halt in an accepting configuration, M2 halts in an
accepting configuration while Ma does not halt in an accepting configuration, or M1
and ME halt in accepting configurations but the symbols recorded in the finite-state
control of M are distinct. The simulation of an accepting computation of M, 1, 2,
is given below.

In every accepting computation of M, its input head visits each of the symbols
of the input strings at most s times, where s is the number of states of M. This is
because M,. is deterministic and a repetition of a state on a symbol of a given input
string implies a nonhalting computation. In addition, every such halting computation
ofM can be described by a time-input graph which shows the sequence of the transition
rules used during the computation (see Fig. l(a)). A node is at coordinate (r,/x) in
the graph if and only if it corresponds to the transition rule associated with the (th
move in the computation and just before this move the input head of M was at the
/x th symbol of the input string.

Now, consider any accepting computation of M. Then a linear tree, say T, which
describes the computation can also be constructed (see Fig. l(b)). Each node in T
corresponds to an ordered set of transition rules with a separator dividing the set into
two. The ith node in T is associated with the ith symbol of the input string, say a, where

(i) the corresponding set of transition rules includes exactly those being used on
the moves involving ai and this in their order of being used; and

(ii) the separator divides the set of the transition rules into those used till (and
including) the instant in which the vth output symbol is written (e.g., a subset of
O1,’ all in Fig. 1) and those used after the vth output symbol is written.

Thus, in simulating an accepting computation of M the device M needs just
nondeterministically determine a sequence of ordered sets of distinct transition rules
with a separator dividing each such set into two, where the sequence of these sets
corresponds to the linear tree which describes the desired computation.

From the discussion above, the following algorithm can be given to describe the
computation of the counter machine M on a given input.

v ,- (nondeterministically determine a positive integer); Ca - v; C2,- v;
Maaccept ,- ’false’; M2accept ’false’;
initialize V1 initialize
while both V and V2 contain at least one transition rule do
ben Va *- next VI; V2 - next V2; end;

450 EITAN M. GURARI

,
time

a7 input

(a)

FIG. 1. A description of an accepting computation of a deterministic two-way sequential transducer by
(a) a graph and (b) a linear tree.

if Maccept and V contains at least one transition
rule then reject; (*improper simulation*)

if not Maccept and V contains more than one transition
1, 2

rule then reject; (*improper simulation*)
it Mlaccept # MEaccept then accept; (*exactly one of M1 and

M2 accept the input*)
if Mlaccept and MEaccept then

if C1 C2 0 then
if syml sym2 then accept; (*both M1 and ME accept the

input but their v th output
symbols are distinct*)

reject
At any given instant of the computation, V/holds the ordered set of the transition
rules used by M/ in the moves from the input symbol under consideration, 1, 2.
However, if the ordered set consists of more than si elements (i.e. M/enters an infinite
loop), then only the (at most si + 1) transition rules till and including the first repetition
of transition rule are held in V/. In addition, V/ holds a separator which divides the

EQUIVALENCE PROBLEM FOR SEQUENTIAL TRANSDUCERS 451

set into two. Moreover, associated with each transition rule in V is the direction of
the input head movement (i.e. -1, 0 or 1) just before the transition rule is reached.
(In Fig. 11 the corresponding values of V/are ((c1, 0), *), ((a2, 1), *, (a15, -1)), ((a3, 1),
(c9,-1), (ao, 0), *, (c4,-1), (c6, 1)),. ., (*, (teE0, 1)).) Whenever M (nondeter-
ministically) determines a new value for V,. it also"

(a) reads an input symbol and checks that all the transition rules in the previous
value of V are on such a symbol. This step, however, is not performed when V/is
initialized;

(b) decreases Ci by the value which equals the number of symbols contributed
to the output of M,. by the transition rules that precede the separator in V/;

(c) sets Maccept to equal true if the last transition rule in V corresponds to a
move to an accepting state;

(d) checks that the (new) value of V/is compatible with its previous value;
(e) searches the simulated portion of the computation (given by the (new) value

of V/ and the previous value of V,.) for a pair of consecutive transition rules, where
the first transition rule immediately precedes a separator while the second transition
rule immediately succeeds a separator. If such a pair is found, then M sets symi to
equal the output symbol of the first transition rule in this pair. lq

For every two given deterministic sequential transducers M and M2 which are
allowed to make some finite number, say k, of nondeterministic moves, two corre-
sponding equivalent two-way sequential transducers 5/1 and A/2 can be constructed
with each of them being a union of 2k deterministic two-way transducers. (At most
two choices of next moves are assumed in each configuration of M, 1, 2). On a
given input, M/, 1, 2, simulates its/’th deterministic two-way sequential transducer.
(The choice of , 1 _-</" =< 2k, is made nondeterministically.) The deterministic two-way
sequential transducer, in turn, simulates the computation of M on the given input.
However, whenever M is to make its/th, 1 -< =< k, nondeterministic move, the next
move of the deterministic two-way sequential transducer is determined according to
the value of the /th bit in the binary representation of (zero corresponds to one
choice and one corresponds to the other choice). Thus, M1 and M. are inequivalent
if and only if there exists an input-output relation definable by an accepting computa-
tion of a deterministic two-way sequential transducer which constitutes M but which
is defined by none of the accepting computations of the deterministic two-way sequen-
tial transducers constituting M3-i, 1 or 2. Hence, the proof to Theorem 1 can be
generalized to show also the next result.

THEOREM 2. The equivalence problem is decidable]’or deterministic two-way
sequential transducers which are allowed to make some finite number ofnondeterministic
moves.

The nonemptiness problem for deterministic two-way finite-state automata is
known to be PSPACE-complete [7]. On the other hand, the problem is solvable in
tcm time for reversal-bounded m-counters machines whose number of transition rules
is [5]. Thus, from [5], [7] and the proofs to Theorems 1 and 2, it follows that the
inequivalence problem is PSPACE-complete for the transducers considered in
Theorems 1 and 2. (See, e.g., [3] for the definition of PSPACE-complete.)

REFERENCES

[1] A. AHO AND J. ULLMAN, The Theory ol Parsing, Translation and Compiling, vol. 1, Prentice-Hall,
Englewood Cliffs, NJ, 1972.

[2] R. EHRICH AND S. YAU, Two-way sequential transductions and stack automata, Inform. and Control,
18 (1971), pp. 404-446.

452 EITAN M. (3URARI

[3] M. GAREY AND D. JOHNSON, Computers and Intractability: A Guide to the Theory o]:NP-Completeness,
Freeman, San Francisco, 1978.

[4] Z. GRIFFITHS, The unsolvability of the equivalence problem for e-free nondeterministic generalized
machines, J. Assoc. Comput. Mach., 15 (1968), pp. 409-413.

[5] E. GURARI, Transducers with decidable equivalence problem, TR-CS-79-4, Univ. of Wisconsin Mil-
waukee, 1979; revised, TR-CS-81-182, State University of New York at Buffalo (1981).

[6] E. GURARI AND O. IBARRA, Some decision problems concerning sequential transducers and checking
automata, J. Comput. and System Sci., 18 (1979), pp. 18-34.

[7] H. HUNT, On the time and tape complexity of languages I, Proc. of the Fifth Annual ACM Symposium
on Theory of Computing, 1973, pp. 10-19.

[8] O. IBARRA, Reversal-bounded multicounter machines and their decision problems, J. Assoc. Comput.
Mach., 25 (1978), pp. I16-133.

[9] -------, The unsolvability ofthe equivalence problem for e-free NGSM’s with unary input(output) alphabet
and applications, this Journal, 4 (1978), pp. 524-532.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

() 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0005 $01.00/0

THE WORKING SET SIZE DISTRIBUTION FOR
THE MARKOV CHAIN MODEL OF PROGRAM BEHAVIOR*

M. HOFRIt AND P. TZELNIC:

Abstract. The history of modelling of the address sequences generated by computer programs (often
termed "program behavior") follows a familiar pattern: the better a hypothetical model fits experimental
evidence, the less amenable it is for calculation. In this paper programs that generate successive page
references that can be described by a first order Markov chain are considered. We produce a closed form
expression for the distribution and usable expressions for the first moments of the steady state size of their
working set of pages. These expressions are also specialized for the independent reference model and the
Easton model. Only standard Markov chain theory is used.

Key words, program behavior, paging algorithms, Markov chain model, working set, miss rate function,
reverse chain, taboo probabilities

1. Introduction.
1.1. It is well known that the performance of virtual memory management policies

depends significantly on certain properties of the sequence of addresses generated by
the active programsmthe so-called program behavior (PB).

Since the late sixties, people have attempted to model (analytically) program
behavior. Early efforts concerned the independent reference model, IRM (Denning and
Schwartz [1]), and the last recently used stack model, LRUSM (Denning, Savage and
Spirn [28]). Both these models proved to be only partly effective in capturing the most
prominent feature of real life behavior of programs known as locality ofreference (Spirn
[20]). The main redeeming quality of these models is that both are zero-order Markov
chains (albeit with different state spaces), and as such they lend themselves easily to
analysis.

Standing out among the analytical results that have been obtained for these models
is the characterization of the working set by its mean for the IRM [1], as well as for the
LRUSM (Lenfant [22]). The pmf of the working set size has also been obtained for the
IRM (Vantilborgh [5]). Another important result for the IRM is the miss rate of the
popular paging algorithm LRU (Gelenbe [23]).

1.2. The search for better models naturally leads to the representation of PB by
stochastic processes more general than the zero order Markov chain. A prime candidate
is the 1irst-order Markov chain model (MCM). Higher order Markov chains can be
reduced, by conventional techniques, to first order.

A Markov transition matrix has been used to characterize the evolution of a
program’s "states" (Aho, Denning and Ullman [24]), in order to find an optimal paging
policy. This elusive target was sought using various optimization techniques (Aven and
Kogan [7], Ingargiola and Korsch [25]). Special cases of the MCM have been investi-
gated (Freiberger, Grenander and Sampson [11]). Several other papers investigate the
validation of the MCM (Bogott and Franklin [8], Shedler and Tung [26]).

The interest in Markov chain modelling has been revived by the realization that PB
is best modelled as a "phase process", evolving at two levels (Spirn [20]). At the higher
level, a so-called macro mechanism governs the transitions among the macro states, or

* Received by the editors February 18, 1980, and in final revised form June 3, 1981.

" Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel., Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania.
Present address: M/S 1218, WANG Laboratories, One Industrial Avenue, Lowell, Massachusetts 01851.

453

454 M. HOFRI AND P. TZELNIC

phases. Lower level micro mechanisms, specific to each phase, control the page
reference generation (transitions among the micro states--page references).

While such a stochastic complexity is beyond the IRM, the LRUSM and their
variations, a MCM (or, as proposed in [11] and [20], a semi-Markov model) can do the
job. A nearly decomposable Markov transition matrix, where diagonal subblocks are
approximated by the IRM or other simple models and the migration between subblocks
represents phase behavior, has been suggested (Courtois [3]). Another approach based
on a MCM is that of Tzelnic and Gertner [19], where a Markov phase generator is
overlaid on intraphase IRMs. A description of the clustering of page faults around
phase transitions is thereby obtained. The miss rate for the LRU algorithm for the
MCM is obtained by Tzelnic [18], [27]. This is computationally better than previous
results (Franklin and Gupta [9], Glowacki [10]).

Lehman [15] has recently proposed a system modelling methodology, based on a
special workload model suitable for the description and generation of PB. This is an
MCM displaying phase behavior. Wen-Te K. Lin [16] uses a higher order Markov chain
to model various activities of an operating system (CP/67), among them PB, and
presents a statistical inference method to detect "regime" (phase) processes.

1.3. In this paper the program behavior is modelled by a general MCM defined
over the same state space as the IRM (the address space of a program, reduced to its
pages). The main result is the pmf of the working set size (Proposition 1). Its mean is
obtained as a computationally manageable closed formula (Proposition 2).

The technique used in 2 consists of a stochastic characterization of the number of
distinct states visited by a Markov chain on a certain path. Proposition 1, which
produces the distribution of this random variable, is a novel result. This random
variable might be termed length ofpath (Tzelnic [18], [27]), to distinguish it from the
well-known first passage time (the number cd steps taken to reach for the first time a
given state (Kemeny and Snell [13])).

The length of path (related to a notion of capacity in the context of potential theory,
as applied to Markov chains) appears not to have received any formal consideration. It
has considerable conceptual interest for applications where probabilistic walks on
graphs might be beneficially described not only in terms of the number of steps taken,
but also by the number of distinct nodes traversed (probabilistic automata, compu-
tational complexity, etc.).

The tools used to establish Proposition 1 are routine probabilistic techniques
(taboo probability, effective conditioning, the inclusion-exclusion principle of
combinatorial analysis). What renders them methodologically important in the present
context is the demonstration of how an essentially path counting procedure leads to
closed expressions.

1.4. The working set concept and its important implications for optimal multi-
programming control have been extensively presented (Denning [2]). The working set
(WS) is defined as a set process W(t, r) comprising at time all the distinct page
references through the course of the last r references. It is suggested that W(t, r) is a
good estimator of the locality of reference at time and the near future. Here rtheWS
"window"is a parameter of the model, and its choice determines the goodness of the
estimation. We denote the size of W(t, r) by w(t, r). The "pure" WS memory
managementpolicy is implemented by keeping in memory only the w (t, -) pages of the
current WS. To regulate the multiprogramming load only those tasks whose working
sets are loaded in main memory are eligible to receive processor service.

MARKOV CHAIN MODEL 455

The object of analysis usually is the limit of w(t, r) as o, if it exists. In 2 the
pmf of w(r) and its first two moments are computed for the MCM. This extension of
similar results for the IRM comes at a nonnegligible cost: first, whereas the IRM uses
n 1 parameters to completely describe the evolution of the reference strings, just as
the LRUSM does [20], and Easton’s model makes do with n [12], the MCM requires
n (n 1). This makes the process of estimating the required parameters a longer, more
expensive operation. Second, the calculations of the quantities of interest mentioned
above are more complex in the face of the more elaborate dynamics. Still, using the
procedure in 2.7, based on Proposition 3, the mean size of the working set can be
computed at a reasonably low expenditure.

1.5. In 3 we show that Denning and Schwartz’s formula 1 for the mean WS size
for the IRM is indeed a special case of our result. We also apply our result to Easton’s
special MCM [12].

In 4 we give a numerical example. A MCM displaying phase model charac-
teristics is stipulated and the aforementioned quantities of interest are calculated. The
WS size distribution we thus obtain is multimodal, in striking agreement with the
empirical observations.

2. Working set size distribution.
2.1. Let the page reference generator be a first order time homogeneous Markov

chain over the set of states N {1, , n }. Further, assume it is ergodic (in particular,
irreducible and aperiodic). Let its transition matrix be P. We identify the state of the
chain at time t, X(t), with the page referenced at time t. Conditioned on the page
reference generated at time t, the probabilities of the next(t + 1)stpage reference
are then given by

Pr [X(t + 1)=]lX(t)"- i] Pi.
Let be the steady state distribution of this chain (77P). Let D (.r?) denote the

diagonal matrix whose elements are rri, 1,..., n; and let/ denote the matrix
transpose of P.

2.2. Following Kemeny and Snell [13], we define the reverse process of X(t) as the
process that corresponds to the evolution in reverse order of the original chain. It is
further assumed that the process X(t) has as initial distribution (at 0) its stationary
distribution. This last assumption makes the reverse process thus defined a Markov
chain, with the transition matrix

(2.2) / [D()]-aPD(),
(or termwise, ij=’jPji/’i).

Furthermore, the matrix P possesses the same steady state distribution, , as the
direct chain 13].

From the matrix/3 we introduce n matrices/3j, each being the zero matrix, with the
exception of column] which is column ./of/3. We also find use for the n matrices
defined by

(2.3) _/3, =/3 _/,,

i.e., identical to/6 with the exception of a zero column].
The reverse chain is a natural tool to use when the dynamics of the WS of the

program are considered, since given X(t) it is P that governs its characteristics directly
(in other words, through a backward looking window).

456 M. HOFRI AND P. TZELNIC

2.3. In the following propositions, we assume that the initial memory state (= the
set of program pages that is in main memory) is not important or, alternatively, that is
"large enough". Note that it is useless to say the process is in "steady state" since what
concerns us requires observing the chain as it evolves.

The WS at time t, W(t, r), is defined in terms of the process {X(t)} as W(t, z)=
{ili{X(t-+l), X(t-r+2),...,X(t-1),X(t)}}, and w(t,r) is the number of
members of this set.

PROPOSrrION 1. The conditional probability that the working set size at time is k,
given that page i is referenced at time t- 1, is

(2.4)
Pr [w(t, -)= klX(t + 1)= i]

Z (-1)- n- Z (Pi,+’’ ’+ ,).
/=1 k l<=jl<...<hNn 1=1

(See the note below on the perhaps peculiar conditioning.)
Proof. Briefly presented the argument runs along the following lines"
1) Given the state of the memory reference process at time + 1, - transitions

governed by P determine W(t, -).
2) It is convenient to interpret the event {w(t, -)= k} as "the pi’ogram avoids

precisely n- k pages during t--+ 1 to t".
3) Denote by Axli the event: {X(t--+ 1),..., X(t)} avoids the set of pages L

given that X(t + 1) i.
4) Let Srli denote the sum of probabilities Y.xPr[Ali], the summation being

carried over all sets ! s.t. III r.
5) Then by 2) above and the inclusion-exclusion principle [14],

()Pr[w(t,r)=kli]= Z (-1)
n-k+v

v=O V

6) The probability that starting from the next (under/) - references are all within
a set of pages J is given by

(/9,, +... + pi,),r, Jl {]1,...,]l}.
r---1

7) Using 4) and 6) we obtain for the value of S, conditioned on X(t + 1)

S,I, E (Pi, +"" + P,_,),,]n-r {11 in-r},

the summation being on all sets of size n- r.
8) Substituting the last result into 5) and putting k-v yields (2.4) (when we

note that S, =0).
Using Proposition 1, we obtain, by removing the conditioning on X(t + 1);
COROLLARY 1. The steady state pmf of the working set size is

(2.5) Pr[w(r)=k]= Z (-1)k-/
n- Z i(Ph+’’’+h)

l=O k (l]x<...<hn) i,]=l

Note. Proposition 1 was stated using an "unnatural" conditioning---normally
W(t, ’) is of interest at time t when X(t+ 1) is not known. Indeed, Pr[w(t, -)=

MARKOV CHAIN M’ODEL 457

ktX(t) i] can be evaluated as well, and one obtains via essentially the same route,

Pr [w(t, r)= klX(t)= i]

"",_ (&+..
l=1 k n I j=l

where irA is i when A holds and 0 otherwise.
This, however, is a more complex expression, and its derivation is less intuitive.

Inasmuch as our main interest lies with the unconditional distribution Pr [w(t) k], and
clearly

ar [w(t, r) k] Y, Pr [w(t, r) klX(t) i] Pr [X(,t) i]
i=1

Y. Pr[w(t,r)=klX(t+l)=]]Pr[X(t+l)=]]
]=1

and, further, in the limit -+ 0o, both randomizations use the same pmf r, Corollary I is
indeed the result we need.

2.4. Using (2.5) the moments of the steady state WS size can now be computed.
Denote; the mean by S(r)"

S(r) E[w(r)] Y. k Pr [w(r) k].
k

PROPOSITION 2.

(2.6) S(z) n 2 rr,(-/3k)
k=l

(2.7) S(r) k Pr [w(r) k] Y, k (_l)k_l n
k=, k=l l= k

where

St-- i "tTi (J’l "’’’ij=l 1-<_h<...<h_n

By changing the order of summation over k and in (2.7) and summing over
u k--l from zero to n, we obtain

S(7") Sl Z (--1)"
n

(u + 1).
/=1 =0 U

The stm over u can be split into two components

(2.8) Y (-1) "-Itl,n,
=0 U =0 U

where &,j is one when] and zero otherwise. Therefore

l<--jl<...<jn_i<=n
(& +... +

=n- "/’/’i (_/k)/’,
i,/=1 k=l

458 M. HOFRI AND P. TZELNIC

(See 2.8 concerning the evaluation of these quantities.)
In an analogous manner, we also obtain

S(2)(r) E[w2(r)] n2Sn -(2n 1)Sn-1 + 2Sn-2
(2.9)

=n2(2n-1) rri (_Pk),+ 2
id=l k=l

whence the variance is immediate.

i,j=l

2.$. A related interesting result is an expression for the miss rate at equiliibrium,
M(r), in the present model, under the WS policy. M(-) is defined as
limt_. Pr [X(t) W(t-1, r)]. This is derived by observing that the present model
satisfies the assumptions of 111, by virtue of which the following relation was shown to
hold"

M(z)=S(z+I)-S(z).

COROLLARY 2.

(2.11) M(r)=
k=l i,]=1

2.6. We now present alternative expressions for $(r) and M(r). These perhaps are
not as intuitive in derivation as the preceding ones, but are computationally superior.

PROPOSITION 3.

(2.12) S(r)= 2 7r(_/3),,
s=O],k=l

(2.13) M(r)= 7rk(_t3k).
k,i=

Proof (directly from Proposition 2).

(2.14) S(r) n U.k(r),
k,]=l

where
A recursive evaluation for these U(r) follows"

(2.15) 71"h
, 7"i’ieikkh (_/k);

h=l i=1

U/k (r 1) rr (_) "-1
kl

This difference equation for U(r) has the initial value

(2.16)

These are: the considered reference strings are infinitely long; the stochastic generator is time-
homogeneous’ the correlation between the references X(t) and X(t + k) vanishes in the limit k .

MARKOV CHAIN MODEL 459

and thus yields

"r--1

(2.17) Ujk(’l’)’-7]’j--7]’k (_pk)Skj.
s=0

Substituting in (2.14) we obtain

S(z) n j + y. (_/3),j= 2

and therefore

k,j k,j 0 =0 j,k

M(r)=$(r+ l)-$(r)= . rr(_)j.
j,k=l

2.7. Remarks.
1. In evaluating M(r), it is not necessary to evaluate all of (_/3k)’; it suffices to

evaluate for each k only the kth row of these matrices via the obvious rOWk(k)i=
Erow (_/3)’-’]_/3.

2. The last relations suggest the following calculation scheme:
(a) $(1)= 1;
(b) M(r) as given in (2.13);
(c) S(-+ 1)=S(r)+M(r).

3. Using a familiar representation of the mean WS size [1],

S(r) 1 rkFk(S)
s=0 k=l

where Fk (") is the distribution function for the inter-reference interval for page k, we
get, by comparison with (2.12),

(2.19) Fk(S) 1-
j=l

(This is actually a compact way to represent the summation over all sample paths.)

2.8. Complexity of calculations. It is of some interest to evaluate the number of
operations involved in the various expressions obtained for S(r), M(r), etc. (essentially
additions and multiplications of elements of/3 and ; no account is taken of loop
control variables, the calculation of itself and various "bookkeeping" chores).
Equation (2.4) requires, for each k and i, nr =1 l(’) and for the complete (condi-
tioned) pmf, for every i, n2",’(n + 1)2n-2 operations. Covering all adds a factor of n. The
computation of the steady state pmf of the working set size (2.5) requires therefore
about the same number of operations as that needed for (2.4) reduced by a factor of n. A
straightforward calculation of (2.6) requires n2(n- 1)2r operations (some elaboration
indicates that this figure can be rather simply reduced by a factor of n by explicitly using
7? /. The calculation is more complex to control, however). Equation (2.12), using
the procedure of Remark 1, 2.7, can be done in n37" operations (approximately the
same as the elaborate calculation of (2.6)). Some of these complexities can be somewhat
reduced by employing the like of StraJ3en’s algorithm.

3. Special cases. As an illustration let us evaluate the above expressions for two
simple models of program behavior.

460 M. HOFRI AND P. TZELNIC

3.1. Independent reference model. Given that Pij I, Yq= PJ 1, the following
results for the IRM follow:

(3.1) 7ri pi, ii Pq p#

for i, j= 1,..., n, r>-l. Hence

S(r)=n- E 71"i(Pk)ilr-" n_EEpipi(l_pkf--(l_Bik)
k=l i,i=l k ii

(3.2)
=n- (1-pg),

k=l

consistent with the results in [1].

3,2, Easlon’s model [12], This model makes use of a Markov chain of special
structure. It is claimed to be a good description of some interactive data base reference
strings [12]. The transition probabilities are given by

(3.3) eii oti 1 r + l’ti, ei] j rlj,],

where 0 < r <_- 1, Ei=I /i 1 and /i > 0 for 1, ., n. For this model, we can easily
verify that:

(3.4) 71"i--- li, Pi,, i,] 1,..., n.

In order to compute S(r) for Easton’s model, we use the following relation (which is
proved beIow):

(3.5) . (k)= (1--flk)-[(1--k)(1--aik)+ 8,k(1--ak)].

With this it follows that

Hence,

k rZ(k)’--(1--flk)-x E li[(1--[k)(1--ik)dr’ik(]--Olk)]
i,1=1

(1 --[k)r-1 E Ai[(1 --ilk)+ ik(r-- 1)]

(1-)-[1-fl + X,(r- 1)]

(1 flk)-l(1 --k @ rak

(1-- k)-(1-- Ak).

(3.6) S(r)=/’/-- . "lTi(_k)1""- n- (1-- Ak)(1-- rAk)-1,
k,i,]=l k=l

which is identical with Easton’s result.
To prove the relation (3.5), one may argue as follows’ Y.j (_/3k) is actually the taboo

probability of not entering state k, following an exit from state i, through m successive
steps (along any sample path of the reverse Markov chain, .,(t)).

Two cases here have to be considered, corresponding to k or k in the initial
state. Due to the sample structure of the Markov chain, the above probabilities are
(l--fig) in the first case and (1--k)m-(1--ak) in the second one.

MARKOV CHAIN MODEL 461

A computational proof, which has the side benefit of yielding an explicit represen-
tation of the powers of _Pk, is given in [17]2 and 18].

Note. Both examples above happen to possess self-dual transition matrices (i.e.,
P P). This is neither a requirement of any of the procedures developed here nor does
it help in the calculation.

4. Example.
4.1. We present here a special MCM that exhibits phase behavior. The locality sets

are disjoint in this example. Whereas this assumption limits the use of near decom-
posability approximation techniques, it is not required for the exact calculations.

This example is not a full validation of the MCM. We do not attempt to estimate a
Markov transition matrix from an actual program reference trace and then to compare
the theoretical and the empirical distributions of the WS size. The example merely
illustrates the capability of the MCM to produce multimodal distributions of the WS
size, in agreement with well-established empirical evidence.

It also shows how affordable our computational procedure is when combined with
the "near-decomposition" approximation method (Courtois [3]), even for larger
address spaces than considered here. Thus we present the exact as well as an approxi-
mate pmf. Both are bimodal and almost identical (the maximum error is 7%). While to
obtain the exact pmf (for an address space of 10 pages) about 300,000 multiplications
are necessary, fewer than 12,000 suffice for the calculation of the approximate pmf.

4.2. We assume that the 10 x 10 page transition matrix P is given as displayed in
Fig. 1. Note that the two square diagonal blocks corresponding to pages 1, 2, 3 and 4 to

.1 .545 .33

.64 .261 .0592

.29 .29 .401

.0231 .00865 .00288

.02 .00998 .0175

.0286 .0357 .0143

.0064 .0213 .0171

.0197 .0172 .00246

.0165 .0212 .00708

.0121 .0194 .0121

.00287 .0043 .00646 .000717 .000717 .0043 .00502

.00118 .00474 .001.18 .00592 .00829 .00711 .0118

.00384 .00256 .000426 .00298 .00213 .00341 .00426

.0692 .0807 .104 .049 .141 .259 .262

.0175 .227 .127 .13 .0798 .247 .125

.0964 .0357 .339 .0286 .182 .139 .1

.196 .113 .1 .203 .0128 .164 .166

.204 .0319 .00491 .17 .214 .155 .182

.172 .236 .21 .0566 .0731 .0840 .123

.145 .206 .102 .206 .0654 .102 .131

FIG. 1. The page transition matrix P.

10, respectively, have much larger elements than the offdiagonal blocks. This suggests
that this model has two phasesmlet these be called Phase I and Phase Ilmwith the
above locality sets. Using a computational procedure based on (2.5), the limit pmf of the
working set size

D(r,k)=Pr[w(r)=k], k=l,...,10, r=l,...,10,

is obtained as displayed in Fig. 2.
Frown this (an easier way would be to use the procedure outlined in 2.7, without

first calculating the pmf) the mean WS size, $(r), and the miss rate, M(r), are obtained
as displayed in Fig. 3 for all r 1, , 10. Figure 4 exhibits graphically the pmf D (r, k)
for -= 4, 6, 8 and 10.

2 An earlier version of this paper.

462 M. HOFRI AND P. TZELNIC

2
3
4
5
6
7
8
9
10

1.0

1 2 3 4 5 6 7 8 9 10

.215 .785

.0587 .56 .381

.0184 .365 .472

.00625 .246 .471

.00223 .172 .458

.00082 .124 .449

.00031 .00914 .444

.00012 .00684 .440

.00004 .0517 .436

.145

.21 .0672

.206 .138 .0247

.173 .179 .0665

.137 .191 .110

.107 .184 .145

.0853 .167 .168

.00719

.0024 .0017

.048 .00688

.O747 .0161
.00031
.00153

FIG. 2. The WS size probability mass function, D(t, k), ’, k 1,. , 10.

.000028

s(z)
M(z)
S’(r)
M’(’)

1 2 3 4 5 6 7 8 9 10

1.0 1.78 2.32 2.74 3.09 3.38 3.63 3.66 4.07 4.26
.785 .538 .421 .344 .292 .255 .228 .207 .19

1.0 1.78 2.31 2.7 3.0 3.23 3.43 3.58 3.71 3.82
.782 .523 .391 .3 .237 .192 .157 .131 .11

FIG. 3. The WS mean size and the WS miss rate. S(r), M(-r), "r= 1," ", lOmexact solution"
S’(z), M’(z), 1,..., lO--approximate solution.

A global maximum at k 3 is common to all (corresponding to the size of Phase I
locality set); a marked knee, at k 5, appears for - > 4, becomes a second maximum for
z >= 7 and drifts to k 7 as - becomes 10 (co(responding to the size of Phase II locality
set).

About 280,000 multiplica,tions were performed to obtain these quantities.

4.3. Following Courtois [3] we derive from the matrix P a completely decom-
posable matrix P’ consisting of two strictly disjoint localities corresponding to Phases I
and II above:

P=P’+eC,

where e 0.0786, and the error matrix C satisfies

max]cil 1.
i,/= 1,... 10

Thus, the micro-level models are again MCM as specified by the transition matrices
P (Phase I) and P2 (Phase II) displayed in Fig. 5. The steady state probabilities that the
macro model is in Phases I and II are

rl 0.622 and 7"/’2 0.378,

respectively. The exact pmf’s of the WS size for the micro models P1 and P2 can now be
calculated as in 4.2,

Dl(Z, k) Pr [Wl(’) k], k 1,... 3, -_-< 10
(4.1)

D2(r, k) Pr [W2(’/’) k], k 1,.. 7, r_-< 10,

and the approximate pmf of the WS size for the phase model is then obtained as

(4.2) D’(’,k)=zriD(’,k)+zr2D2(’,k), k_-<lO, ’-< 10.

MARKOV CHAIN MODEL 463

FIG. 4. The WS size probability mass function. $(r, k), k 1,. ., 10, r =4, 6, 8, 10.

In (4.2) the RHS terms corresponding to those values of k that are not covered in (4.1)
must be taken as 0.

Figure 6 displays D’(r, k) in tabular form, and Fig. 7 displays them graphically for
the same window sizes as in 4.2. It can be seen that the relative error

max
ID’(r,k)-D(r,k)l

D(r,k)

P P2

.1 .545 .354

.64 .261 .099

.309 .29 .401

.104 .0807 .104 .049 .141 .259 .262

.0648 .227 .127 .13 .0798 .247 .125

.175 .0357 .339 .0286 .182 .139 .1

.241 .113 .1 .203 .0128 .164 .166

.243 .0319 .00491 .17 .214 .155 .182

.217 .236 .21 .0566 .0731 .0849 .123

.189 .206 .102 .206 .0654 .102 .131

FIG. 5. The micro-model page transition matrices, P1 and P2.

464 M. HOFRI AND P. TZELNIC

1
2
3
4
5
6
7
8
9

10

2 3 4 5 6

1.0
.0218 .782
.006 .575 .365
.0019 .379 .489 .113
.0065 .256 .518 .175
.00235 .178 .529 .176
.00087 .128 .504 .148
.00033 .0934 .553 .113
.00013 .0693 .565 .081
.00005 .052 .576 .056

.0451

.102 .0118

.145 .0369

.165 .0696

.166 .103

.155 .132

.00153

.0O629 0.0

.0152 0.0

.O282 0.0

8 9 10

FIG. 6. The WS size probability mass]:unction (approximation). D’(,r, k), "r, k 1, , 10.

increases with - and is less than 7%. The approximate mean WS size and miss rate (S’(z)
and M’(z), respectively) are displayed in Fig. 3.

The number of multiplications required for the approximate solution is about
19,,000 (more than 20 times fewer than for the exact computation).

D’(’,k)
0o

0.5"’

0.2.

0.I"

FIG. 7. The WS size probability mass function. D’(-, k),k 1,. ., 10, " =4, 6, 8, 10.

MARKOV CHAIN MODEL 465

5. Conclusion.
5.1. In this paper it was shown how quantities related to the WS of a program can

be handled when the program obeys the Markov chain model. Specifically, we produced
expressions for the mean and variance of the WS size at equilibrium.

Although the calculations are inherently of the path counting type, closed expres-
sions were obtained for two special models of program behavior. As is clear on
examining the complexities calculated in 2.8even for the closed expressionsand
on considering the difficulty of estimating the matrix P, even if a program did exist for
which all the MCM assumptions held, using our expressions to evaluate the optimal ,
say, womo te foolhardyand this even before external effects of the computing system
have been taken care of. How the MCM can serve is as a test-bed on which different
memory management policies can be compared. Obviously, it is desirable that such a
model display "real world" characteristics, and this the MCM can do.

The following fact is also worth a remark. When it comes to computing the pmf of
w (-), IRM [5] requires about as much work as the MCM does. Moreover, as shown in
[18], the same holds when computing the miss rate of the least recently used paging
algorithm. These measures all present an essentially exponential computational
complexity, no matter which program behavior model is used.

5.3. A promising approach towards the validation of the MCM is by using the WS
size pmf. MCM parameters (transition matrix) are estimated from an actual program
trace. From this, the WS size pmf is computed and then compared to the empirical
distribution. However, for programs with large address spaces, the exact computation is
not feasible. Using the decomposition approximation instead limits the validation to a
class of special cases. Nevertheless, this class is large enough to include the programs of
interest" those for which the transition matrix has a nearly block-diagonal form with
small size blocks (small, nearly disjoint locality’sets). Such a program of validation is
currently being undertaken.

REFERENCES

[1] P.J. DENNING AND S. C. SCHWARTZ, Properties ofthe working setmodel, Comm. ACM, 15 (1972), pp.
191-198.

[2] P. J. DENNING, Working sets past and present, IEEE Trans. Soft. Eng., SE-6 (1980), pp. 64-84.
[3] P. J. COURTOIS, Decomposability, Academic Press, New York, 1977.
[4] P.J. COURTOIS AND H. VANTILBORGH, A decomposable modelofprogram paging behavior, Acta Inf.,

6 (1976), pp. 251-275.
[5] H. VANTILBORGH, On the working set size distribution and its normal approximation, BIT, 14 (1974),

pp. 240-251.
[6] ARVIND, R. Y. KAIN AND E. SADEH, On reference string generation process, Proc. 4th ACM

Symposium on Operating System Principles, 1973, pp. 80-87.
[7] O. I. AVEN AND YA. A. KOGAN, Stochastic control of paging in a two-level computer memory,

Automatica, 11 (1975), pp. 309-313.
[8] R. P. BOGOTT AND M. A. FRANKLIN, Evaluation of Markov program models in virtual memory

systems, Software-Pract. Exp., 5 (1975), pp. 337-346.
[9] M. A. FRANKLIN AND R. K. GUPTA, Computation of PF probabilities from program transition

diagrams, Comm. ACM, 17 (1974), pp. 186-191.
[10] C. GLOWACKI, A closed form expression of the page fault rate for the LRU algorithm in a Markovian

reference model of program behavior, Proc. International Computing Symposium, E. Morlet and
D. Ribbens, eds., North-Holland, Amsterdam, 1977, pp. 315-318.

11] W. F. FREIBERGER, U. GRENANDER AND P. D. SAMPSON, Patterns in program behavior, IBM J. Res.
Dev., 19 (1975), pp. 230-243.

[12] M. C. EASTON, Model for interactive data base reference strings, IBM J. Res. Dev., 19 (1975), pp.
550-557.

466 M. HOFRI AND P. TZELNIC

[13] J. G. KEMENY AND J. L. SNELL, Finite Markov Chains, D. Van Nostrand, Princeton, NJ, 1960.
[14] W. FELLER, An Introduction to Probability Theory and Its Applications, vol. I, 3rd ed., John Wiley, New

York, 1968.
[15] A. LEHMAN, Performance evaluation and prediction of storage hierarchies, Proc. 7th IFIP W.G.7.3

International Symposium on Computing Performance Modeling, Measurement and Evaluation,
May 1980, Toronto.

[16] WEN-TE K. LIN, Analysis of a VM operating system, 4th International Symposium on Modeling and
Performance Evaluation of Computer Systems, Vienna, Feb. 1979.

[17] M. HOFRI AND P. TZELNIC, On the working set size for the Markov chain model ofprogram behavior, in
Performance of Computer Systems, M. Arato et al., eds., North-Holland, Amsterdam, 1979, pp.
393-405.

18] P. TZELNIC, Stochastic models ofprogram behavior in paged virtual memory systems, Ph.D. Thesis, Israel
Institute of Technology, 1979.

[19] P. TZELNIC AND I. GERTNER, An approach to program behavior modelling and optimal memory
control, J. ACM, to appear.

[20] J. R. SPIRN, Program Behavior: Models and Measurements, Elsevier-Holland, Amsterdam, 1976.
[21] W. F. KING IIi, Analysis of demand paging algorithms, Proc. IFIP Congress, Ljubljana, Aug., 1971,

TA-3-155-TA-3-159.
[22] J. LENFANT, Evaluation sur des modeles des comportement de programme de la taille d’ un ensemble de

travail, Proc. International Symposium Rocquencourt, Apr., 1974, pp. 218-236.
[23] E. GELENBE, A unified approach to the evaluation of a class of replacement algorithms, IEEE Trans.

Comp., C-226 (1973), pp. 611-618.
[24] A. V. AHO, P. J. DENNING AND J. D. ULLMAN, Principles of optimal page replacement, J. ACM, 18

(1971), pp. 80-93.
[25] G. INGARGIOLA AND J. F. KORSH, Finding optimal demand paging algorithms, J. ACM, 21 (1974),

pp. 40-53.
[26] G. S. SHEDLER AND C. TUNG, Locality in page reference strings, this Journal, 1 (1972), pp. 218-241.
[27] P. TZELNIC, The length of path for finite Markov chains, and its application to modelling program

behaviour and interleaved memory systems, ORSA-TIMS Meeting, Jan., 1981, Boca Raton, Florida.
[28] P. J. DENNING, J. E. SAVAGE AND J. R. SPIRN, Models for locality in program behavior, Comp. Sci.

Rept. TRol07, Princeton Univ., Princeton, NJ, 1972.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

982 Society for Industrial and Applied Mathematic.,

0097-5397/82/1103-0006 $01.00/0

RAPID MULTIPLICATION OF RECTANGULAR MATRICES*

D. COPPERSMITHS"

Abstract. The number of essential multiplications required to multiply matrices of size N N and
N N’172 is bounded by CN2 log N.

Key words, matrix multiplication, tensor rank, algebraic complexity

Introduction. Let Rank(K, M, N) denote the number of essential multiplications
required to multiply a KM matrix by an M N matrix, i.e., the rank of the
3-dimensional tensor defining this matrix multiplication. We show here, by two
different routes, the existence of a positive number ce such that Rank (N, N, N) -<
CN2 log2 N.

THEOREM. There is a positive constant a 2 log 2/5 log 5 0.17227 such that

Rank ((N, N, N)) O(N2(log N)2).
Remark. This agrees well with the trivial lower bound

Rank ((N, N, N))->N2.

Proof. The proof may be done in two ways. Each relies on existing basic construc-
tions (each due to Sch/Snhage), and minor modifications to existing techniques for
combining basic constructions (i.e., the exponential direct sum theorem, partial matrix
multiplication and approximate algorithms). The modifications involve (1) selecting a
binomial coefficient to maximize an "area" rather than a "volume" (which allows the
agreement between upper and lower bounds) and (2) doing two arguments at once
(e.g., the exponential direct sum theorem and approximate algorithms) which serves
only to improve the "error bound" from N to C(log N)2.

Proof version 1 (partial matrix multiplication). Begin with the following construc-
tion, due to Sch6nhage [3]:

(all + x2a12)(b21 / x2b11)(c11) + (all + x2a13)(b31)(Cll xc21)

/(all / x2aE2)(bEl xb12)(c2)

+ (al + x2a23)(b31 + xb2)(Cl2 + xc21)-(al)(b21 + b31)(Cll + c2)

xE(allbc / allb12CEl / alEbElC11 / a13b31Cll / aEEb21c12 / a23b31c12)

+x3p(a,b,c,x).

This construction performs an approximate evaluation of the partial matrix
product

(all a12 a13 b21 0 Cll c12
trace

0 a22 a23/
b31 0,

C21 C22/

with five multiplications. Notice that five is also the trivial lower bound for this matrix
product, obtained by counting independent elements of the matrix A. It is this equality

* Received by the editors July 17, 1980, and in final form October 16, 1981.
Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,

New York 10598.

467

468 D. COPPERSMITH

of lower and upper bounds which will allow the tight agreement between lower and
upper bounds in the theorem, namely N2 -< Rank (N, N, N) <- CN2 log2 N.

The matrix product D AB can be thought of as the sum, as j goes through 1
to 3, of the outer products a,,jbj.,; then the indicated trace is the sum, over and k,
of di,kCk, i. Among these three indicated outer products, we have two of dimension (2,
1) and one of dimension (1, 2).

Now iterate (tensorize) this construction M times. The formation of the product
of the new, large matrices A and B, now involves 3M outer products, of which (for
each m between 0 and M) we have (M)2" outer products of dimension (2",

Fix values of M and m. Then, mimicking Sch6nhage’s proof of partial matrix
multiplication [3], we may create a constant matrix A’ of dimension (2", 2M) and a
matrix B’ of dimension (2 2M-"), such that each maximal minor of A’ or B’ has
nonvanishing determinant. (Here we require that our underlying field is large enough;
the rationals will do.) Suppose we want to multiply matrices A" of dimension (2",
(u)2") and B" of dimension (()2", 2M-m). We start with a 1-1 mapping of the
columns of A" onto those columns of A" with exactly 2 nonzero entries. For each
such column of A, compute the inverse of the (2", 2") minor of A’ whose rows
correspond to the nonzero entries in this column of A. Multiply this inverse by the
appropriate column of A". Fill in the rest of A with zeros. Then we have A"= A’A.
Similarly create B such that BB’= B". These matrices are created without essential
multiplications, since A’ and B’ are constant matrices of scalars, and scalar multiplica-
tions don’t count in the rank of a matrix multiplication problem. Then finally, A"B"
(A’A)(BB’)-A’(AB)B’. The multiplication AB can be done in 5M multiplications
in the ring of polynomials in x, and the left multiplication by A’ and the right
multiplication by B’ are again scalar multiplications which don’t enter into the calcula-
tion of rank.

Thus we have, so far, that

Border Rank ((2", (raM)2 ", 2M-m))-- 5M,

where Border Rank is the number of essential x-polynomial multiplications required
to perform a given matrix multiplication.

The new wrinkle in our proof lies in our choice of m. Rather than choose m to
maximize the "volume" of the left-hand side (the product of all three dimensions),
which would enable us to minimize the exponent/3 for symmetric matrix multiplication
(rank (N, N, N) O(Nt3)), we instead select m to maximize the "area" of the projection
onto the first two dimensions. Namely, we choose m (4M/5) as that value of m
which maximizes the product of (2") and ((raM)2"). This product is just ()4", which
is a term in the binomial expansion of (4 + 1)M; thus it is maximized when m/M
4/(4 + 1), and for that value of m we have (raM)4 5MM-1/2K for some constant K,
by Stirling’s formula. (Naively, the largest term in the binomial expansion of (4 + 1)M

must be at least (4 + 1)t/(M + 1), and Stirling’s formula just gives a tighter bound.)
This gives us that

Border Rank ((24M/5, (4M/5)24t/M5

or

Border Rank ((24M/5, K5M2-4M/SM-1/2, 2t/5)) -< 5M.

RAPID MATRIX MULTIPLICATION 469

Now do the same arguments, with first and second dimensions reversed, to get

Border Rank ((K5M2-4M/5M-1/2, 24M/5, 2M/5))_--< 5M.
Multiply (tensorize) to get

Border Rank ((K5MM-1/2, K5MM-/2, 22M/5)) _--< 5 TM.
Letting N K5MM-/2 we get

Border Rank ((N, N, N)) _-< K’NE(log N),

where a 2 log 2/5 log 5 0.17227, and K’ is some constant.
As usual, each multiplication in the ring of polynomials in x can be done as a

convolution, via Fourier transforms, and since the degree of the product polynomials
does not exceed 8M (each basic construction entails polynomials of degree 4, and
the degrees are additive in the 2M iterations, yielding a total overall degree of 8M),
each such polynomial multiplication involves only 8M + 1 essential multiplications.
Combining these results, we have that

Rank ((N, N, N)) _<-K"N2(log N)2,

as desired.
Remarks. If we were more careful, we would probably get a bound of

K,,N2(log N)3/2.
Sch6nhage’s construction involves two parameters k and n, each of which must

be an integer greater than 1. The present theorem goes through exactly for each
choice of k and n, and the value of c so obtained is

2 log ((k- 1)(n 1)+ 1)
kn + 1) log (kn + 1)

The present theorem selects k n 2 to maximize c at 2 log 2/5 log 5.
The technique of partial matrix multiplication is due to Sch6nhage [3], and is

valid in more generality than presented here. Here we are specializing his results
(particularly by choice of m) to make possible the agreement between upper and
lower bounds in our theorem.

Proof version 2 (via exponential direct sum theorem). Begin with Sch6nhage’s
construction which performs two completely disjoint matrix multiplications, of sizes
(k, n, 1) and (1, 1, (k 1)(n 1)), in kn + 1 multiplications over the ring of polynomials
in x. The construction is similar to that given above for partial matrix multiplication,
and will not be repeated. His specialization to k n 4 gives the exponent 2.54...
for symmetric matrix multiplication.

Note again that kn + 1 is the best possible result for this case, since the number
of independent variables in the first two dimensions is kn for the first matrix and 1
for the second, thus kn + 1 in all. Again this is the fact which will allow the close
agreement between upper and lower bounds in the theorem.

Represent this construction as

(,) Border Rank ((k, n, 1) +(1, 1, (k- 1)(n 1)))= kn + 1.

Again we fix values of k and n which will maximize the eventual value of c’,
namely k n 3, and go through the proof for these fixed values, bearing in mind
that the proof works for the general values as well.

470 D. COPPERSMITH

Then (.) becomes

or in other words,

Border Rank ((3, 3, 1)+(1, 1, 4))= 10,

((3, 3, 1)+(1, 1, 4)) -- 10(1, 1, 1),

which can be tensorized by (a, b, c) to obtain

((3a, 3b, c)+(a, b, 4c)) 10(a, b, c).

Here means "homomorphic image by approximating algorithm", and summation
of several matrices implies direct sum (the matrices are completely disjoint).

Suppose we are allowed to do M arbitrary multiplications in the ring of poly-
nomials in x. That is, we have at our disposal M(1, 1, 1). We wish to apply (**) as
often as possible; thus we divide M into groups of 10, with possibly some left over,
and from M(1, 1, 1) we get at least (M/10-1)(3, 3, 1)+(M/10-1)(1, 1, 4). That is,
there are at least (M/IO-1) disjoint groups of 10 among the M multiplications we
are allowed, and each group will yield a (3, 3, 1) and a (1, 1, 4), all disjoint. Apply
(**) to the (M/10-1)(3,3,1) to get at least ((M/10-1)/10-1)(9,9,1)+
((M/10-1)10-1)(3,3,4). Similarly applying (**) to (M/10-1)(1,1, 4) we get
((M/10-1)/10-1)(3, 3, 4)+((M/10-1)/10-1)(1, 1, 16). Combining, and doing
the implied divisions, we get at least (M/100-1.1)(9, 9, 1) + (2M/100- 2.2)(3, 3, 4)+
(M/100-1.1)(1, 1, 16). Continue in like fashion. After k iterations we have at least

---2.5)(3i, 3j, -i),

as can be proved by induction.
Again nothing is new; this is just a proof of the exponential direct sum theorem

[3]. But now we choose our/" to maximize, again, the "area" of the resulting expression,
i.e., its projection to the first two dimensions, rather than its volume. Indeed, choosing
f to maximize the product of the binomial coefficient with the first two dimensions,
that is, roughly,

we get the value of/" 9k/10. Fixing k we may choose M so that the factor (()M/IOk)
is just greater than 2.5; this will insure us that we will have at least one piece of size
(3, 3, 4k-). Thus we choose:

9k 2.5(10k)
j=--, M= 1+ ()

With these choices, we get that

Border Rank ((3, 3, 4k-))<-M,
or, in terms of k,

Border Rank ((39k/l, 39k/l, 4k/1))_--< 2.5(o)

RAPID MATRIX MULTIPLICATION 471

Again we use Stirling’s approximation to get that

k) C’ k/lO 1/210k9-9 k-
9k/10

Letting N 39k/l and substituting, we get

Border Rank ((N, N, N"’)) < C"NE(log N)1/2.

Here a’ is (2 log 4)/(9 log 9)= .1402, or in general, (2 log ((k 1)(n 1)))/
(kn log (kn)).

Again, we may replace Border Rank by Rank (i.e., eliminate the x-polynomials)
at the price of a factor of N. (The error bound is not as good as before, since we
have no nice bound on the degrees of the x-polynomials.) Thus we get

Rank ((N, N, N’))= O(N2+e).
Conclusion. We present, by two different routes, means by which matrix multipli-

cation problems of size (N, N, N") can be done with N2+e operations, for numbers a

strictly bounded away from 0. We do not see directly how this can be used to accelerate
the symmetric matrix multiplication problem, but we present the result as interesting
in its own right, and also with the hope that progress may be made in this new and
different direction towards the solution of the symmetric matrix multiplication
problem.

Perhaps one can find a way of arguing that if this theorem holds for some ce
between 0 and 1, then it must hold for a larger a, and that the sequence of a’s so
obtained would converge to 1. But I see no path which such a construction would take.

Another result which would be of interest, and which we cannot seem to obtain,
would be the existence of a number a > 1 such,that Rank ((N, N, N)) O(N+"+).
We can almost get this result, namely, by similar techniques, for each/3 > 0 there is
an a > 1 such that

Rank ((N, N, N)) O(N’+l+t (log N)3/2).
A literature search shows that in 1976 Brockett and Dobkin obtained the related

result

Rank ((N, N, log N)) N2 + 0 (N2).
The present result is incomparable, in the sense that we do a larger problem and
require a larger number of multiplications.

Note. More recent results by Coppersmith and Winograd [4] (this issue, pp.
472-492), combined with these techniques, all yield a better estimate of a"

Rank ((N, N, N)) O(N2+e) for ce 0.197.

Acknowledgment. The present paper was inspired by a conversation with Victor
Pan.

REFERENCES

[1] R. W. BROCKETT AND D. DOBKIN, On the number of multiplications required for matrix multiplication,
this Journal, 5 (1976), pp. 624-628.

[2] V. YA. PAN, New combinations of methods for the acceleration of matrix multiplication, Comput. Math.
with Appl., 7 (1981), pp. 73-125.

[3] A. SCHNHAGE, Partial and total matrix multiplication, this Journal, 10 (1981), pp. 434-455.
[4] O. COPPERSMITH AND S. WINOGRAD, On the asymptotic complexity of matrix multiplication, this

Journal, this issue, pp. 472-492.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1103-0007 $01.00/0

ON THE ASYMPTOTIC COMPLEXITY OF
MATRIX MULTIPLICATION*

D. COPPERSMITH" AND S. WINOGRAD"

Abstract. The main results of this paper have the following flavor: Given one algorithm for multiplying
matrices, there exists another, better, algorithm. A consequence of these results is that to, the exponent
for matrix multiplication, is a limit point, that is, it cannot be realized by any single algorithm. We also
use these results to construct a new algorithm which shows that to < 2.495548.

Key words, matrix multiplication, complexity, tensor product construction

1. Introduction. In this paper we investigate the number of arithmetic operations
needed to compute the product of two "general" matrices, A and B. As is customary,
we assume that the entries aij and bjk of the matrices are indeterminates, and we study
the multiplicative complexity of the system of bilinear forms Cik abk.

We will restrict our attention to bilinear noncommutative algorithms, that is, to
algorithms in which each multiplication is of the form (iiaijaii)(ik flkbik) where
/3’k are elements of some field F, the field of constants. (The aiis and bikS are indetermin-
ates over F.) The advantage of thus restricting the class of algorithms is that we can
use the "tensor product" construction. This means that if there exists an algorithm
for multiplying two n n matrices using K multiplications, then there exists an
algorithm for multiplying two n2 n 2 matrices using K2 multiplications. More gen-
erally, if there exist two algorithms a and a’, where a computes A.n x Bnp using K
multiplications, and a’ computes Am,., Bn,p, using K’ multiplications, then there
exists an algorithm a" a (R) a’ which computes A,.,n, Bn,p., using KK’ multiplica-
tions. Another advantage of bilinear algorithms is that if there exists an algorithm for
computing A.n Bn. using K multiplications then there exist five other algorithms,
each usingK multiplications, which computeA, B,,Apm B,n, Apxn XBm,
A, xB,,, A,, x Bpn, respectively [1] (see also [11]). On the other hand, it is
known that if there exists an algorithm (not necessarily bilinear) which computes
A, xBnp using K multiplications/divisions, then there exists a bilinear algorithm
for the product A,n Bn using no more than 2K multiplications.

Let M(n) nn(F) be the minimum number of multiplications needed to compute
An xBnn (by a bilinear algorithm). We define

to (F) inf {ton (F)ln >-_ 2}.

The notation serves as a reminder that ton (F) may depend on the field of scalars F.
We call to (F) the exponent of matrix multiplication.

It is well known [2] that to(F) is also the exponent when we consider the total
number of arithmetic operations. More precisely, let M’(n) n’(F) be the minimum
number of arithmetic operations needed to multiply two n x n matrices. Let to’(F) be
defined as to’ (F) inf {to’n (F)ln > 2}, then to’ (F) to (F).

The properties of bilinear algorithms imply [3] that if there exists an algorithm
for computing A,,n Bnp with K multiplications, then, for every r, there exists an
algorithm for computing the product of two r x r matrices with fewer than Cr
multiplications, where C is a constant independent of r, and to 3 log K/log (mnp).

* Received by the editors April 21, 1981, and in final revised form August 20, 1981.

" Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

472

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 473

In the rest of this section we will recapitulate some of the previous results which
have a bearing on the material of this paper.

In 1969, Strassen [3] showed that it is possible to multiply two 22 matrices
using 7 multiplications, and therefore that to(F)_<-log 7/log 2 2.807 for every F. In
1978, Pan [4] showed that it is possible to multiply two n n matrices using 1/2n 3 +-n2-
1/2n multiplications, and in particular, that it is possible to multiply two 48 48 matrices
using 47216 multiplications. Therefore to (F) =< log 47216/log 48 2.780 for every
field F. In 1979, Bini et al. [5] considered the computationof the product of matrices
over the field F(A), where A is a new indeterminate. The sense in which they defined
the computation will be described in the next section. They showed that over F(A) it
is possible to multiply two 12 12 matrices using 1000 multiplications and therefore
to (F(A)) -< log 1000/log 122.779. Bini [6], showed that to(F(A))=to(F) and there-
fore to(F)_<- log 1000/log 12 for every field F.

Sch6nhage [7] showed that the direct sum conjecture [8] does not hold when we
consider computations over F(A). He showed that it is possible to compute (over
F(A)) both A,B, and AB,x using mn + 1 multiplications, where k
(m 1)(n 1). Because this construction of Sch6nhage is the springboard of the work
reported in this paper, we will describe it in more detail in the next section. With
each algorithm for computing A,,,,, B,p, using K multiplications, Sch6nhage
defined the associated equation i (minip)= K. (We use the direct sum notation to
emphasize that all the indeterminates, which are the entries of the A,,,,,s and B,,o,s,
are distinct.) Sch6nhage then proved that if r is the zero of the associated equation,
then to(F)<=3r. In particular, if we take m n =4 in Sch6nhage’s construction, we
obtain that to(F)<_-3r < 2.548, where - is the zero of the equation 16" + 9"= 17.

Pan [9] gave another construction of algorithms for the direct sum of products
of matrices. In particular, Pan’s construction.yields an algorithm for computing
AslXBz (Azxll xB5(AIoXBo using 156 multiplications. As a con-
sequence of this construction we have to(F) _-< 3 log 52/log 110 2.522.

In the next section we will describe what is meant by computing over F(h), and
illustrate the power of this concept by describing Sch6nhage’s construction. In 3,
we will generalize the construction of Sch6nhage. A consequence of this generalization
is that to(F) is a limit point, i.e., to(F)<to(n) for all n. In 4, we will modify the
proof of 3 to show that if we have an algorithm a for computing the direct sum of
products of matrices having a special property (to be defined in 4), then there exists
an algorithm a’ for computing the direct sum of products of matrices having the same
property. The importance of a’ is that the zero of the equation associated with a’ is
smaller than the zero of the equation associated with a. Thus a’ yields a better estimate
of to (F). We will iterate this result to show that to (F) <_- 2.498. In 5 we will generalize
the tensor’product construction. This generalization will enable us to better utilize
the result of 4, and we will show that to(F)<= 2.4956.

The main result of 6 is that to (F) is a limit point in a strong sense. More precisely,
we show there that no algorithm for h-computing the direct sum of matrix multiplica-
tions can yield the exact value of to (F).

2. A-computations. In this section, we will describe the concept of h-computa-
tions which was introduced by Bini et al. [5], [6]. Our use of the term h-computation
is identical with the concept of approximate computations of [5], [6], [7], [9]. We
adopt the terminology of h-computations to emphasize that h is an indeterminate,
and that the computation is exact. That is, the h-computation is a tool for obtaining
the exact product of two large matrices, not an approximation.

474 D. COPPERSMITH AND S. WINOGRAD

We will start this section with the definition of an algorithm (bilinear) for a system
of bilinear forms. This will serve the dual purpose of reviewing known results, as well
as establishing the notation we will use in the rest of the paper. Next, we will define
the concept of A-computations, and relate it to the ordinary concept of computations.
We will end the section with a description ot a class of algorithms which was discovered
by Sch6nhage [7]. These algorithms illustrate the power of A-computations; they also
serve to introduce the constructions which we use in the rest of the paper.

Let {xl, x2, , xr, yl, y2, , ys} be a set of r + s distinct indeterminates, and let
G be a field. Let Bk be the bilinear form Bk i=1 i=1 biikxiyi, k 1, 2, ", t. We
will also use Bk to denote the r s matrix whose (i, f) entry is biik. If we denote the
(column) vector (xl, x2, , xr)T by x, and the (column) vector (yx, Y2, Ys) T by y,
then the bilinear form Bk can be written as XTBk y. We will use to denote the system
of bilinear forms (Ba, BE, Bt). To continue our double use of the same symbol
to denote both the bilinear form and the matrix which defines it, we use to denote
the 3-tensor whose (i,], k) entry is biik.

DEFINITION 2.1. A (bilinear) algorithm a over G is two sequences Ml(X),
M2(x), ", ML(x) and Na(y), N2(y), ", NL(y), where Ml(X) Y.7=1 aliXi is a G-linear
form of {xx, x2,’" ", x,} and Nt(y)= Y.i=a flliy is a G-linear form of {yl, Y2," Ys},

1, 2, , L. We denote L by Ix (a).
DEFINITION 2.2. An algorithm a is said to (be able to) compute the system of

bilinear forms =(B,B2,’’’ ,Bt) if for each k 1, 2,..., there exist L
elements "Ylk E G such that Bk = "ylkMl(X)Nl(y).

At times it will be convenient to use a matricial form of Definition 2.2. Let
denote the L r matrix (ali), and let fl denote the L s matrix (/li). The algorithm
can compute the system of bilinear forms (BI, BE,’’’, Bt) if for every k 1, 2,., there exists an L L diagonal G-matrix Ck such that

Bk xTc rCky, k 1, 2," , t,

or in terms of the matrices Bk

Bk =arCkfl, k 1, 2," ", t.

We can continue Definitions 2.1 and 2.2 and conclude: The system =
(B, B2,’", Bt) Of bilinear forms can be computed by an algorithm a with Ix(a)- L
if there exist elements of G, a,, li, Ylk (1 r, 1 j s, 1 k t, 1 L) such that

(2.1) B= 2 2 x y k=l,2,’",t.
l=1

Let a denote the vector (, a2,.. ’, a/r), l denote the vector (fll, firE, ",

fll), and I the vector (Y/l, YI2,’ "’, Ylt). AS was pointed out by Strassen [8], equation
(2.1) is equivalent to the requirement on the tensor :

L
(2.2) l I l.

l=1

Equation (2.2) is called a decomposition of into L triads. The smallest integer L
such that there exists a decomposition of into L triads is called the rank of and
is denoted by Rk ().

Let = == bkxy, k 1, 2,’", t) and = = =1 k$], k
1, 2,’’’, t) be two systems of bilinear forms. (The xis, ys, $s and]s are all
distinct.) The system ’= is called the direct sum of and , and the tensor

’ is denoted by ’ .

ASYMPq?’OTIC COMPLEXITY OF MATRIX MULTIPLICATION 475

Let . and be as before. The r sg tt tensor ’ whose ((i, r), (i, f), (k, k))
entry is bijkb rr is calle t the tensor product of and and is denoted by ’ .

We will now list, ithout proof, some well-known facts.
Fact 2.1. Let a b the algorithm M(x), ,M(x); N(y), , N(y), and let a’

be the algorithm aaMa (x), a:M:(x), ., aM(x); bNa(y),..., bN(y) for some 2L
elements at, bl G, no ne of which is 0. If a can compute the system of bilinear
forms, then so can a’.

Fact 2.2. Let :=(bi) be an r xsxt tensor, and let U=(,) be an rxr
nonsingular matrix, V (.,) be an s x s nonsingular matrix, W (W,) be a x
nonsingular matrix. L, et ’ (b’i’i,,) be the r xsxt tensor defined by b’i’’k’

=11=1 i’]’:’bi]k. Then Rk (’)= Rk). Moreover, if =
/=1 l l @l is a de,composition of N, then ’=7= (Ua) @ (VI) @ (WVl) is
a decomposition of ’.

Fact 2.3. Let ="+" and be four tensors, then @(’+")=
@’+@", and (’+") @ ’ @ +"@.
Fact 2.4. Let =.’’" and be four tensors, then (’@")=

’@", and (’") @=’@"@.
Fact 2.5. Following [7] ve use (m, n, p) to denote the system of bilinear forms

of the product of an m >(n matrix by an n x p matrix, that is, of the system (Bk
i=a xiiYik, 1 m, : p). Then (m, n, p) (m’, n, p’) (mm’, nn pp).

,k} {,i,k} isFact 2.6. Let (bik) axad ’=(b=().=(i).=(k)), where :{i,
:a

some permutation of the symb,ls i, f, and k. Then Rk ()= Rk (’). In particular,
Rk ((m, n, p))= Rk ((n, p, m))=:Rk ((p, m, n))= Rk ((n, m, p))= Rk ((m, p, n))=
Rk ((p, n, m)).

Fact 2.7. Let and ’ be two tensors. Then Rk (’)Rk () Rk (’).
L L’ ,Moreover, if l=a l @ l @ ’l and l’= at, @ l’ @ are decompositions

of and ’ L’ L ,respectively then ,== (at a (fit fir) (l’)
is a decomposition of ’.

We are now ready to consider ,-c,mputations. Let F be a field, and let A be an
indeterminate over F. Every nonzero e.lement g F(A) can be written uniquely as
g=ZdP(z)/(1--O(A)), where P(A)and O(A) are polynomials with coefficients in E
P(0) 0, O(0)= 0, P and 1- O re relatively prime, and d is an integer. We call -d
the deficiency of g, and denote it ’by clef (g). We extend the definition of deficiency to
vectors, matrices, and tensors. If a (a.x, a2,’’ ", a,) is a vector in F(A)" we define
def (a)= maxa==, {def (a)}. Similarly we define the deficiency of a matrix M (Mi)
as def(M)=maxi.i{def(Mii)}, and the deficiency of =(bik) as def()=
max.i,k {def (bik)}. There are ot)vious relations between deficiencies; for example,
def (gxg2)= def (g)+def (g2). Tt tese rel[ations are very similar to those which hold for
degrees of polynomials, and we, will not elaborate them.

An element g=AdP(A)/(1--O(A))F(A) can be viewed as the Laurent power
series A dp(A)=o O(A)i. This pr esentatio,n of g motivates the next definition.

DEFINTIOY 2.3. Let g=A aP(X)/(1-O(A)) be an element of F(X). For every
integer we define the mappin cf" F(A)F by cry(g)= 0 if i< d, and c(g) is the

-d)i.(i- d)th coefficient of the polyn()mial P(A) i=o O(We call cry(g) the ith coefficient
of g. We extend the definitio ,n of cf to vectors, matrices and tensors. If a=
(ax, a2,’’’, a,) is in F(X)" thertcfi(a)=(cfi(a), cfi(a2),’", cfi(a,))F". We define
cfi(M) and cf() in a similar w ay.

The concept of A-comput ttion enables us to use algorithms over G =F() to
compute a system of bilinear forms over F.

476 D. COPPERSMITH AND S. WINOGRAD

DEFINITION 2.4. Let 9 (B1, B2, Bt) be a system f F-bilinear forms, and
let a be an F(h)-algorithm. We say that a can h-compute if there exists a system
9 (BI, B2, , Bt) of F(h)-bilinear forms such that:

(a) a can compute .
(b) def (9) _<- 0.

(c) c[0().

Remark 2.1. Conditions (b) and (c) of Definition 2.4 i ply that def (Bk)= 0 for
k 1, 2, .., whenever none of the BkS is. 0.

Most of the properties of computations are enjoyed by’ A-computations. We will
now state, and prove., the property analogous to Fact 2.7.

PROPOSITION 2.1. If a can A-compute 9 and a’ can A-compute 9’, then there
exists an algorithm a=a(R)a’, which can A-compute t(R)’, satisfying /x(a)=
/x (a)/,t (a’).

Proof: Let (a)= L and /x(a’)= L’. Let and 1’ be the F(A)-bilinear forms
satisfying the conditions of Definition 2.4. By Fact 2.7 (R) ’ has a decomposition
into LL’ triads. Let be the algorithm of this deco,mpo,sition. But def ((R) ’)=
def () + def (’) -< 0, and therefore cfo((R) ’) c./0() (R) cfo(’) (R) I’. Thus

(R) ’ satisfy the conditions of Definition 2.4.
Our next task is to connect A-computations with ordinary computations. More

precisely, given an F(A)-algorithm a which can A-compute the system ’ of F-bilinear
forms, we will construct an F-algorithm a’ which can also compute .

Let a be an F(A)-algorithm which can A-compute , and let . be the system
of F(X)-bilinear forms of Definition 2.4. Then/k ; TI,kMI(X,)NI(y), k 1, 2,. t,
where L tz(a). By Fact 2.1 we may assume that. M/(x) and N/(y) are polynomials in-
A (l 1, 2,. ., L) with coefficients F-linear’forrrs in the xis and ys respectively, such
that A does not divide M/(x) or N(y). If a satisfies this assumption we say that a is in
A-canonical form. We define the deficiency of a as def (a, N)= max/,g {def (Y/,k)}, and
the degree of a as deg (a)= max/{deg (MlOt)), d,eg (N/(y))}, where deg (P(A)) denotes
the degree of the polynomial P(A).

We now have, for each k 1, 2,. ., t"

(2.3)

L

Bk cfo(B) E Cfo(’)/l,kJl(X)ml(y))
/=1

g

E def’tk) cl"--](’Jll,k)cf1"(Ml(X)Nl(y))"
l= j=0

Recalling that Cf-l(’Yl.k)F we see that if a’ is ant F-algorithm which can compute
the system of F-bilinear forms {cf.(Mt(x)N(y))]l - :-] -<_def (a), 1 -<_ -<_L}, then a’ can
compute

It is well known that the coefiicient:s of the polynomial T(A)-
n+l(Y’./=0 xiX)(F.j=o yX J) mod A can be computed by, an algorithm ’ satisfying/.t (qf)

t.,r(n) where 2n + 1 <- ixr(n <- 1/2(n + 1)(n +2). Ther, efore there exists an F-algorithm
a’ which can compute {cf.(M(x)Nl(y))lO<-f<-det (a), l<-l<-L} satisfying /x(a’)_
/(def (a,))/(a). We have thus proved:

PROPOSITION 2.2. If a is an F(X)-algorithm hich can A-compute 9, and a is
in A-canonicalform, then there exists an F-algorithm a’ which can compute 9 satisfying
/x (a’) /.tF (def (a,))/z (a).

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 477

Examination of (2.3) shows that we have also proved the following proposition:
PROPOSITION 2.3. Let a be the F(A)-algorithm (Ma (x), ., ML(X);

N(y),’’’, N(y)) which is in A-canonical form. If a can A-compute , then so .can
the F(A)-algorithm a’= (M(x)+M’l (x),... ,M(x)+M’ (x); N(y)+N’x (y),..-,
NL(y) +N’L (Y)) whenever max/{def MI (x) def N[(y)} < -def (a, t) Moreover,
def (a’,)= def (a,).

DEFINITION 2.5. Let 8 be a system of bilinear forms. We :define Rkx (’)=
rnin/z(a), where the minimization is over all algorithms which can A-compute ’. In
[7] Rka() is called the border rank of .

Let A (x; A) be an m n matrix whose entries are linear forms in the indetermin-
ates {xl, x2, ’, Xr} with coefficients in F(A). We assume further that def (A(x; A)) 0.
Let Ao(x) be the m n matrix Ao(x) Cfo(A (x; A)). We will use pr(A (x; A)), respectively
p (A (x; A)), to denote the maximum number of rows, respectively columns, of A (,x; A)
which are linearly independent over F(A). By a slight abuse of notation we use p(Ao(x))
and pc (Ao(x)) to denote the maximum number of rows, respectively columns, of Ao(x)
which are linearly independent over F. It is easily verified that p(Ao(x))_<-p(A(x; A))
and that p (Ao(x)) _-< p (A (x; A)). We thus obtain:

PROPOSITION 2.4. Let 8 be the system of bilinear forms A(x)y, where y is the
column vector y= (yl, y2, , y), then Rkx (8)max (p(A(x)), p(A(x)).

The usefulness of A-computations for studying the complexity of matrix multipli-
cation comes from the fact that the deficiencies add under tensor product. This is,
def (a (R) a’, (R) 9’) def (a,) + def (a’, 8’). Thus if an algorithm a can A -compute
(n, n, n), with deficiency d, there exists an F(A)-algorithm a’ for computing (n , n , n)
with deficiency sd satisfying/x(a’) =/.(a). Therefore there exists an F-algorithm fi
which can compute (n , n , n) satisfying/x (fi) _-< t.tF(Sd)l.6 (a) <-- (ds + 1)2/z (a)s. There-
fore, using the terminology of the introduction we have to(F)<-loglx(a)/logn.
The same reasoning shows that if a can A-compute (m,n,p) then to(F)_-<
3 log/z (a)/log mnp.

This last relation between to and/x (a) was generalized by Sch/Snhage [7]. We will
now describe Sch6nhage’s algorithms and state his generalization.

CONSTRUCTION 2.1. Let m > 1 and n > 1 be two integers. Consider the following
F(A)-algorithm a(m, n), given by

(a) Mij(x,)= (xi + N(y, q) (y + Art,s), l<--_i<--_m, l<--j<n.

(b) M,,i(x, [j) x, A N,(y, n) Y, 1 =< j < n.
i=1

(c) M, (x, 1) xi, Nn (y, n) Y, Ar/ 1 _<- < m.
1=1

(d) M,, (x,)= x,,, Nmm (y, 11)=

(e) Mo.o(X, t)= 2 x, No,o(r, 11)=
i=1 i=1

We see immediately that a(m, n) can A -compute xiYi, 1 <- <- m, 1 <-] <-_ n, and also
--2 n--1

that A (i=1Y=I Mii(x, lj)Nii(y, 11)-Mo.oNo.o) Y’.j=I Y= :iir/i. That is, a(m, n) can
A-compute (m, 1, n)(1, (m 1)(n 1), 1), while/z (a(rn, n))= mn+ 1.

The usefulness of this construction for studying the value of to rests on the
following theorem, due to SchSnhage [7].

478 D. COPPERSMITH AND S. WINOGRAD

THEOREM 2.1. Let a be an F(h)-algorithm which can h-compute]iN__l (mi, ni, Pi),
so that for some we have mg +ng + pi > 3, and let " be the root of the associated equation

N, (miniPi)= tx(a).
i=1

Then to <-3’.
We apply Theorem 2.1 to a(4, 4) of Construction 2.1. We obtain that to(F) _-< 3-

2.548, where r is the root of the associated equation 16" + 9"= 17.
COROLLARY 2.1. Let izv__l (mg, ni, Pi) be as in Theorem 2.1. Then to <= 3" where

" is the root of the equation

(2.4) Y. (mgngpg Rkx (rag, nu Pi)
i=1 i=1

We call (2.4) the equation associated with)gu__ (rag, ng, pi).

3. Generalization of Sch6nhage’s construction. We will now generalize the con-
struction of Sch6nhage which was described in the end of the last section. The main
result of this section is that if a is an algorithm which can A-compute a system of
bilinear forms and if a is a nonminimal algorithm in a way which will be made precise
in the statement of Theorem A, then there exists an algorithm a’ which can A-compute
903(1, R, 1) satisfying /z (a’) /z (a). (The quantity R will be defined later in ’this
section.) Indeed, Theorem A is the basic technical result of this paper, and most of
the other results are consequences of this theorem. Before stating, and proving,
Theorem A we have to establish some notation and terminology.

DEFINITION 3.1. Let a (Ml(X), M2(x), ’, ML(X); N(y), N2(y), ’, NL(y)) be
an algorithm which can A-compute (1, R, 1). We say that (1, R, 1) is isolated
(relative to a) if

R L

(1, R, 1) E uil)i E
i=1]=1

for some cl, c2," ",CLeF(A). That is, if a not only A-computes (1, R, 1) but also
computes it. In the case that cj 0 for all/" 1, 2,..., L we say that (1, R, 1) is full
and isolated (relative to a). In the tensorial notation, if is the tensor for (1, R, 1),
and ’.= Xl (R) Il (R) ’Yl is the decomposition of by a, then (1, R, 1) being isolated
means that we have the matrical equality (i,/’, 1) (i,/’, 1), and (1, R, 1) is full and
isolated means that we further require that yl 0 for all 1, 2, , L.

In this paper we will either prove, or demand, that (1, R, 1) be full and isolated.
That is, the algorithm a will satisfy

R L

(1, R, 1) E Llil.)i E c/..M/.(x).mj(y)
i=1 j=l

where 0 ci F(A) for all] 1, 2, , L.
As in the last section, we use r to denote the number of x indeterminates, and

s to denote the number of y indeterminates. We will characterize an F(A) algorithm
a= (M(x), Mz(x),..., M(x); (N(y), N2(y),’’’, N(y)) by the two matrices c and
/3, where a is the L r matrix defined by

(M(x), M2(x), M/(x)) x7,a ,
and/3 is the L s matrix defined by

(NI(y), N2(y),..., N(y))= yT-/ .

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 479

In the rest of the paper we will assume that Rk (a) r and Rk(/) s. This assumption
means that we cannot reduce the number of indeterminates appearing in a by replacing
the xis by an invertible linear combination of new indeterminates, and similarly for
the yjs.

THEOREM A. Let a be an F(A) algorithm which can A-compute a system of
F-bilinear forms. If there exists an L x L nonsingular diagonal matrix C with entries in
F(A), where L (a), so that arC =0, then there exists an algorithm a’ which can
A-compute @(1, R, 1) satisfying:

(a) ix (a’) x (a) L,

(b) R =L-r-s>-_O,

(c) (1, R, 1) is full and isolated (relative to a’).

Proof. Before proving the theorem we should note that the assumption that
T L

a C/3 0 means that =1 ciM.(x)N(y)= 0, where ci,] 1, 2,..., L, are the diagonal
entries of C. That means that a is not a minimal algorithm, and therefore Rk (,)< L.

One more comment: We will prove that R- L-r-s >-_0. In case R =0 then
(1, R, 1) is vacuous, and then what we mean by "(1, R, 1) is full and isolated (relative
to a’)" is that there exist 0 c F(h), 1 _-</’ <_- L, so that

L

0 E c}M} (x)N (y)
]=1

where a’= (Mi (x), M[(x), , M’L (x)’, Ni (y), N[(y), N’t. (y)).
And now to the proof of the theorem. By the assumptions that Rk (a)= r and

Rk (C) L we have that Rk (arC) r. Therefore there exists an L x (L- r) matrix Q
so that a TCQ 0, and Rk (Q) L- r. But a rC/ 0 and Rk (/3) s so we may assume
that Q (V]/), where V is an L x (L r s) rfiatrix satisfying Rk (V) L r s. This
shows that L-r-s -> 0, as stated by the theorem.

Similarly there exists an L x (L-s) matrix so that OrC/3 =0, and Rk (/.))=
L- s. We may also assume that (ula), where U is an L x (L- r- s) matrix
satisfying Rk (U) L r s.

Consider the (L- s) x (L- r) matrix I OTc. Because Rk (0T) L- s,
Rk (C)= L, Rk (I’)= L- s, we have Rk (I’)__> L-r- s. On the other hand,

]fI/r OTcrr (-T) c v (u
Tcv uT

TCv ol
TCil] (’1)

where W is the (L-r-s)x(L-r-s) matrix UrCV. Because L-r-s>-Rk(W)
Rk (lf)=>L-r-s, we have that Rk (W)= L-r-s R. With no loss of generality
we may assume that W =I(R), the R x R identity matrix; for if not we can replace
Q by

f,(W- 0

0 t(s))
(I(s) being the s x s identity matrix), that is, we can replace V by VW-1.

We will now construct the algorithm a’. Let sol, so2, .., sen and r/, r/2,. ., r/R be
T Tnew indeterminates. Let u,u,..., uL be the L rows of U and vL v,...,vL be

the L rows of V. We define a’= (M (, x), M (:, x),. ., Mk (, x); N (1, Y),
N (1, y),. , N[(n, Y)) by M (, x) A du,T. +M.(x), 1 _--<]--< L, and N.’ (0, Y)
,’*v’l +N.(y), 1 <-] <-L. Here j is the column vector 1= (:1, :2," , scR)T and 1 is the
column vector 1= (r/l, r/2,..., r/)T. The integer d is chosen so large that a’ can

480 D. COPPERSMITH AND S. WINOGRAD

A-compute . In other words, the algorithm a’ is specified by a’= (Adula) and
/3’= (AaVI/). All that is left to show is that a’ can A-compute (1, R, 1)= i=1 irli so
that (1, R, 1) is full and isolated.

Let Cl, c2, ’, CL be the diagonal entries C, and let cj A-2dcj, 1 <--] <--L. Then

L

/=1

This proves the theorem.
Remark 3.1. An examination of the proof shows that we can replace the require-

ment Rk (C)= 1 by Rk (C)= L-p. In this case the algorithm
(1, R, 1), where R L r s p. The term (1, R, 1) is still isolated but is. not necessarily
full anymore.

We will now state, and prove, several consequences of Theorem A.
COROLLARY 3.1. Let a be an F(A) algorithm which can A-compute a system

ofF-bilinear forms. Let C be an L L nonsingular diagonal matrix wit.h entries in F(A),
where L Ix(a). There exists an F(A)-algorithm a’ which can A-compute @(1, R, 1)
satisfying Ix (a’) Ix (a) + p, where p Rk (7"C), and R tx (a)- r s + p.

Proof. Let Cl, c2, ’, cc be the diagonal entries of C. Let a (Ml(x), , ML(x);
N(y),..., No(y)). Then because Rk (aT"C)=p we obtain that 1 cjM.(x)N.(y)
T T,...- -,P

X cz PY=i=I ML+i(X)NL+i(y). Define the algorithm by =(MI(x),M2(x)," ",

Me(x), M+(x),..., Mc+o(x); N(y), N2(y),..., N.(y), Nc+(y), .., N+o(y)). The
algorithm a can clearly A-compute 8, and it also satisfies 0 ’.-- cjM(x)N.(y)-’.’l
ML+i(x)NL+(y). Apply Theorem A to

COROLLARY 3.2. For every m, n, p there exists an algorithm a’ which can A-
compute (m,n,p)@(1, R, 1) such that Ix(a’)=Rk((m,n,p))+n, where R=
Rk ((m, n, p))-n(m +p- 1). Here Rk ((m, n, p)) is the rank of the tensor (m, n, p),
i.e., the smallest L so that an algorithm a]’or computing (m, n, p) exists, with Ix (a) L.

Proof. Let a be an algorithm for computing (m, n, p) with Ix (a) L. That is, there
exist elements lik in F such that

L

(3.1) E XiiYik E "YlikMl(X)Nl(y), l<=i<-m, l<-k<-p.
j=l /=1

Consider the bilinear form t# /=1 ("*i=1 aixij)(EPk bkYik) Ei=I Ej=I E aibkXiiYjk.
By equation (3.1) we have

-" E . . aibkTlikml(X)Nl(y)=, . . aibkTlik Ml(X)Nl(y).
i=1 k=l /=1 l= i=1

From the assumption that Rk ((m, n, p)) L we conclude that for every 1, 2, , L
there exist i, k such that "Ylik O. It is well known [10, vol. 1, p. 86] that because F(A)
has infinitely many elements, there exist aiF(A)(1 <-i <-_m) and bk F(A)(1 _-<k _-<p)
such that 0 # Cl ,= ,Pk= aibk’Yltk, 1, 2," L. Choosing C diag (c 1, c," , c),
we now have Rk (C) L and Rk (arC) n. The corollary now follows from Corollary
3.1. 1

COROLLARY 3.3 (SchSnhage’s construction). For every m >-1, n >-1 there exists
an algorithm a which can A-compute (m, 1, n)0)(1, (m 1)(n 1), 1) such that Ix(a)=
mn+l.

Proof. It is known that Rk ((m, 1, n))= ran. Apply Corollary 3.2. 1

ASYMPT(’)TIC COMPLEXITY OF MATRIX MULTIPLICATION 481

COROLLARY 3.4. For any n > 1, if Rk ((n, n, n))= n then to < too.

Proof. It was shoran in [12] that Rk ((n, n, n))->_2n2-1, and therefore too> 2 and
too2/3 > 1. Let a be an dgorithm which computes (n, n, n) satisfying/x(a) n ’. There-
fore, for any positive iJateger s there exists an algorithm as which computes (n s, n s, n
and satisfies tz(as)= n o. By Corollary 3.2 there exists an algorithm as which can
A-compute (n s, n s, in s)(1, Rs, 1), satisfying (as) n s’ + n s, where Rs
nS’-2n2S + n s. Since too> 2, the n s’ term dominates. Now choose s so large that
RT/3> n s. Such an s exists because to0/3 > 1. The equation associated with this a’s
is n3S+R=nS--in. If we take z=to0/3 we have nS+RT/3>nS’+n s, so the
root rl of the equation satisfies 3’1 < too. By Theorem 2.1, to =< 3Zl < too.

Corollary 3.4 says that no single algorithm for computing (n, n, n), like the
algorithm of Strasse:n [3] for (2, 2, 2), can give us to. The next corollary says that under
certain conditions, the root of the associated equation does not yield to either. Before
stating this result w’e need some notation.

Let a be an algorithm. We use O(a) to denote p(a)= minc {Rk (a rC/)}, where C
ranges over all/x 0a)x/x (a) nonsingular diagonal matrices.

COROLLARY 3.5. Let a be an algorithm which can h-compute @i= (mi, ni, p),
and let ro be the r,oot of the associated equation. If/z (a) > max {Yi= mini, Y.g=l ngpi} and
ix(a)’> O(a), the o) <3r0.

Proof. We will apply Corollary 3.1 to the algorithm ad (a)(R)d. (We use X(R)d to
denote the d-fold tensor productX (R) X (R). (R) X). The algorithm ad can h-compute
td =((i= (mi, ni, pi))(R)d, and therefore (using the notation of Theorem A) re

nipi)d= s d. It is also easy to verify that p(aa) <p(a)d(E i----1 mini)a r.,, and Sd (Y.i=
Because/x(a) > max (r, s), and/z (a)’ > p(a), we can choose d so large that (ix(a)a re
ds + p(a)a)TM > p(a)a. By Corollary 3.1, applied to aa, there exists an algorithm a’ which

can ,h-compute (GI=I (mi, hi, pi))(R)d ((1, R, 1} where R tx(a)Cl-rU-s d +p(a)d, and
t(a’} Ix(a) + p(a). The equation associated with a’ is"

d

((mnpi)’) +R’= [.l,(ll)d -t-iO(tl) d.
i=1

But, by the choice of d, and by the fact that Y.I--- (miniPi)= tx(a), we obtain
d

((minipi)") +RZ>N(ll)d q-p(O)d.
i=1

So if we denote the root of (3.2) by z, Theorem 2.1 yields to _<-3’rl < 3z0. I3
We can apply Corollary 3.5 to Sch6nhage’s construction. Consider Sch6nhage’s

algorithm, , which h-computes (4, 1, 4)((1, 9, 1) using 17 multiplications. It can be
shown that p(a)_-<9. Direct calculation shows that 17>9, where - is the root of
16"+9"= 17. Corollary 3.5 then states that to <3-. More than that, the proofs of
Corollaries 3.5 and 3.1 and Theorem A give us a method for constructing the algorithm
whose associated equation has a root smaller than ’.

4. Further consequences of Theorem A. In the end of 3 we used Theorem A
to show that a certain class of algorithms is not optimal. That is, if r is the root of
the; equation associated with algorithm a, we used Theorem A to construct an algorithm
a’, having "< z as the root of its associated equation. The main result of this section,
Theorem B, will serve to show that the algorithms constructed by Theorem A and
Corollary 3.1 cannot be optimal either. If ct is the algorithm constructed by Theorem
A, then Theorem B will enable us to construct a sequence of algorithms a2, t13,"

with the associated roots z2, z3," satisfying ’i/ < % 1, 2, .

482 D. COPPERSMITH AND S. WINOGRAD

In this section, we will concentrate on algorithms which can A-compute (1, R,. For the sake of definiteness we will assume that (1, R, 1) is the first bilinear form
in the system (1, R, 1). We will begin the section by provilag that "fullness" and
"isolation" are closed under tensor product construction.

PROPOSITION 4.1. Let a A-compute q (1, R, 1)03 an d a’ A-compute c,
(1, R ’, 1) O) d$’. If (1, R, 1) and (1, R ’, 1) are isolated (relative to ,a and a’, respectively)
then (1, RR’, 1) is isolated relative to a (R) a’. Furthermore, if (1,, R, 1) and (1, R’, 1)
are full and isolated, then so is (1, RR’, 1).

Proof. Because the ((i, i’), (],/"), (1, 1)) entries of (R) q’ satisfy ((R) ’)
((i,i’), (], f’), (1, 1))=(i,], 1)’(i’, f’, 1); and similarly for (R) c,, we have (’ (R) ’)
((i, i’), (], f’), (1, 1))= ((R) ’) ((i, i’), (./, f’), (1, 1)). So (1, RR’, 1) is isolated if (1, R, 1)
and (1, R’, 1) are isolated.

LLet a decompose (1, R, 1) as -’.i=1 3gl () 11 () /I, and let a’ decompose
(1, R, 1) as Y’.l,=a tl, (R)I]l’ (R) /l,. Then a (R) a’ decolrnposes (R) ’ as

L’ L(R) =El’=1 Y-t=1 (Otl(al’)(((l’)((’l(’l’)" The (1,1) entry of ’l () is
y.lYl’,I, which is not zero if yl. 0 and yl’,l 0 for all l= 1, 2,... L and 1’--
1,2,.’. ,L’.

It will be convenient, in the rest of this section, to give a separa.e designation to
the indeterminates which appear in (1, R, 1). We will therefore denote the x-indeter-
minates of (1, R, 1) by q, SeE, ..., SCR, X, X2, "’’, X, and its y’-indeterminttes
by /1, r/2, ", r/R, y, Y2,’’ ", Ys. (This notation is somewhat in conflict with the one
we have used up to now. The "old" meaning of r is now replaced by R + r, and the
"old" meaning of s is now replaced by R + s. We trust that this change of notation
will not cause confusion.) We will also denote the (column) vector
(, 2," ", R, X, X2," ", Xr) 7" by (, x), and the (column) vector (rt, /," ", r/R, y,
Y2, "’, Y)7" by (1, Y).

Even though the next theorem, Theorem B, is an immediate consequence of
Theorem A we will not label it as a corollary. The central role it plays in this sec.tion
justifies calling it a theorem. But before we state the theorem we need a lemma.

LEMMA 4.1. Let a be an algorithm which A-computes (1, R, 1) so that
is full and isolated. Let r and s denote the number of xi’s and yi’s of , then

tz(a)-r-s >=R.

Proof. Bcv assumption that (1, R, 1)is full and isolated we have that (1, __R,/zl()a=xili=,j=lCjM.(,x)N(,y) for some 0cF(A), I]L, where L).
Construct the algorithm a (MI(, x), M2(, x),..., M(, x), , 2," ’, R; N(, y),
N2(, y)," ’, N(, y), nl, 2," , R). The algorithm fi can also compute (1, R, 1)

and satisfies g (a) g (a) + R. But a also has the property that c.(, x).(, x)
0. Theorem A, applied to fi, states that (a) +R g (6) > r + s + 2R he

statement of the lemma follows.
THEOREM B. Let a be an F(A)-algorithm which can A-compute (1, R, 1). If

(1, R, 1) is full and isolated relative to a, then there exists an F(A)-algorithm a’ whi.ch
can h-compute (1, R *, 1) and satisfies (a’) (a), where R * (a) r s R.
Moreover, (1, R *, 1) is full and isolated (relative to a’).

Proof. Let a= (M(,x),M2(,x),... ,M(,x);N(,y), N2(,y)" ,())By the assumption that (1, R, 1) is full and isolated we have =
c.(, x).(, y) where 0 c F(A) for all 1, 2,..., L. Let 6 be the algoritm
6 (M(x), M2(x),’’’, (x); (y), 2(y),"’", (y)) obtained by setting 0,
1 iR. We thus obtain 0== c(x)(y). The algorithm 6 can, clearly, ,-
compute . Apply Theorem A to to obtain an algorithm a’ which can A-compu.te

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 483

R*, 1) so that /z (a’) (fi) =/z (a), (1, R*, 1) is full and isolated, and R*
/x (a)-r- s. The fact that R*=>R is a restatement of Lemma 4.1.

If an algorithm a A-computes (1, R, 1)(i= (mi, ni, Pi)) SO that (1, R, 1) is full
and isolated, and if, furthermore, R <R*= tx(a)-r-s =/x(a)-Yi= mini-i=l nipi,

then Theorem B guarantees the existence of an algorithm a’, with associated root z’,
which satisfies 7.’ < 7., where 7. is the associated root of a. But what if R (a)-r-s?
In this case, we can always find another algorithm, namely, a’= a(R)a, which also has
7. as its associated root, and which satisfies/z (a’)- r’-s’> R’. We will now state and
prove this assertion.

COROLLARY 4.1. Let a be an algorithm which can h-compute (1, R,
()i=1 (mi, ni, Pi)) SO that (1, R, 1) is full and isolated. There exists an infinite sequence
of algorithms a=al, a2, a3,’" so that ai can A-compute (1, R(f),I)

t(i)
maO_- ((j), n(j), p(j))), and such that 7.1 7. 7., where 7.i is the root associated

with
Proof. We will break the proof into two parts. If can ,-ompute (1, R,

where (1, R, 1) is full and isolated, then (R)-a’ can ,-ompute ((1, R,
) (R) ((1, R, 1(R))-(1, R 2, 1(R)[((1, R, 1 (R))(R)((R) (1, R, 1)(R)((R))-
(1, R 2, 1) ’ so that (1, R 2, 1) is full and isolated. Let r’ and s’ denote the number

2of x and y indeterminates of ’, and, respectively, r and s those of. Then r’ 2Rr + r
and s’= 2Rs + s2. Let L denote/x (a); then simple calculations show that

(4.1) L2-r’-s’=LZ-r2-s2-2(r+s)R =(L-r-s)2+2(r+s)(L-r-s-R)+2rs.
But, by Theorem B, L r s _-> R, and therefore (4.1) implies L2 r’- s’ > R 2.

The second part of the proof starts with the observation that the roots associated
with a and a (R)a are the same. We therefore define ai+l (ai (R)ai)*, where the *
indicates the application of Theorem B.

Example 4.1. It will be convenient to establish some "shorthand" convention.
We use

L (ml,//1, pl)[)(m2,//2, P2))"" "(mt, nt, Pt)

to denote that there exists an algorithm a which can ,-compute i=1 (mi, ng, pg) such
that/z(a) L. By applying Corollary 3.2 to the regular computation of (3, 1, 3), or
alternatively by appealing directly to Sch6nhage’s construction (Construction 2.1), we
obtain

10-(1, 4, 1>(R)<3, 1, 3>
where (1, 4, 1> is full and isolated. The root of the associated equation, 7.1, satisfies

37.1 =2.5938833.

Using the tensor product construction we get

(4.2) 100- (1, 16, 1)2(3, 4, 3)(9, 1, 9)

where 2(3, 4, 3) denotes (3, 4, 3)(3, 4, 3). The root of the associated equation is

7’2 7.1.

Applying Theorem B we obtain

100-, (1, 34, 1)@2(3, 4, 3)(9, 1, 9)

with the associated root, 7.2, satisfying

37.2 2.5198543.

484 D. COPPERSMITH AND S. WINOGRAD

We again use the tensor product construction and get

10000(1, 1156, 1)034(9, 16, 9)03(81, 1, 81)034(3, 136, 3)

with the associated root

If we apply Theorem B we obtain

4(27, 4, 27)2(9, 34, 9)

="/’2.

(4.3)
10000 (1, 3334, 1)034(9, 16, 9)@(81, 1, 81)

)4(3,136, 3)@4(27, 4, 27)2(9, 34, 9)

whose associated root, 7.3, obeys

37"3 2.4998847.

When we apply Theorem B to the "tensor" square of the algorithm of (4.3) we
obtain the associated root, 7.4, where 37.4 -2.4977718. The size of the algorithms as
well as the fact that 7.4 is not much smaller than 7.3 dictated that we stop the iterative
process here.

Example 4.1, as well as the proof of Corollary 4.1, used a straightforward
application of Theorem B. Yet the effects of applying Theorem B are a little subtle.
For example, when we start with Sch6nhage’s construction for (1, 9, 1)(4, 1, 4),
which gave Sch6nhage the smallest value of 7., we did not get as much improvement
in the values of the associated root as in Example 4.1. The reason was that r + s for
(1, 4, 1)(3, 1, 3) was smaller than the value of r + s for (1, 9, 1)(4, 1, 4). We will
illustrate this phenomenon in the next exa.rnple, where we deliberately make the
algorithm "worse," but reduce the value of r + s. But by applying Theorem B we more
than get back what we sacrificed by reducing the efficiency of the algorithm.

Example 4.2. We start with the algorithm of (4.2). By identifying indeterminates
we can turn 2(3, 4, 3) into (6, 4, 3). We now have

100- (1, 16, 1)(6, 4, 3)@(9, 1, 9),

whose associated root, 0-, satisfies

3tr 2.6230934 > 37".

Applying Theorem B we get

(4.4) 100 (1, 46, 1><6, 4, 3)@(9, 1, 9)

whose associated root, 0"2, satisfies

(4.5)

30"2 2.5104566 < 37"2.

The "tensor product" construction now yields

10000 (1, 2116, 1)03(36, 16, 9)@(81, 1, 81)

0)2(6, 184, 3)032(9, 46, 9)2(54, 4, 27)

whose associated root is

0" 0"2,

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 485

and the application of Theorem B yields

10000 (1, 3502, 1)(36, 16, 9)(81, 1, 81)

2(6, 184, 3)@2(9, 46, 9)2(54, 4, 27)

with the associated root, 0"3, satisfying

(4.6) 30"3=2.4993366.

However, we could have modified (4.5) by replacing 2(6, 184, 3) by (6, 184, 6)
and would have obtained

10000- (1, 2116, 1)(36, 16, 9)(81, 1, 81)

(6, 184, 6)2(9, 46, 9)2(54, 4, 27)

with associated root, 0"3*’, satisfying

30"3*’ 2.5171476 > 30".

But by applying Theorem B we get

(4.7)
10000-> (1, 4606, 1)(36, 16, 9)(81, 1, 8)

@(6, 184, 6)@2(9, 46, 9)2(54, 4, 27)

whose associated root, 0"3*, satisfies

30"3* =2.4978379<30"3.
Another application of "tensor product’" construction and Theorem B yields the

associated root, 0.*, where 30.4* 2.4966600.
This last construction of 0. is not the best possible. The following easy-to-verify

fact explains why.
Fact 4.1. Let a A-compute (1, R, 1)(@I=I (mi, ni, pi)). Then there exists

an algorithm aT which can A-compute (1, R, 1)i= (pi, ni, mi) such that:
(a) (fiT)
(b) If (1, R, 1) is full and isolated relative to a, then (1, R, 1) is full and isolated

relative to aT

Moreover, if we denote by r the root associated with (a (R) a)* (i.e., the application of
Theorem B to a (R) a), and by r’ the root associated with (a (R) aT)*, then r’-< r with
equality if and only if i= mini ti= niPi.

If we use Fact 4.1 on the algorithm of (4.7) we get 30"4*’ 2.4966271.

5. Generalized tensor product construction. The construction of the algorithm
a (R) a’ from the two algorithms a and a’ was one of the main tools which enabled us
to exploit Theorems A and B. In this section we will generalize this construction. The
generalized construction will enable us to obtain a slightly better estimate of o than
the one given in the end of 4. In addition, the construction may be of interest in its
own right. Rather than subject the reader to a maze of notation, we will give only an
informal description of the construction.

THEOREM 5.1. Let ca be an algorithm which can ,-compute the system of bilinear
forms =[= r, with tx(a)= L. For each r 1, 2, ..., n, let a) be an algorithm
which A-computes the system of bilinear forms (), with /z(a(r))=L’. Then we can
construct an algorithm c, called the generalized tensor product of a and (a(x),

486 D. COPPERSMITH AND S. WINOGRAD

a(z), ", a(")) and denoted by c a (R) (a(1), a(z), ., a(")), satisfying:

/x () LL’,

can h-compute (i (R) (i)).
i=1

Further, if =(1, R, 1) is a full isolated inner product (relative to a), and
(1, R’, 1) is a full isolated inner product (relative to a()), then (R) a) (1, RR’, 1)
is a full isolated inner product (relative to).

Sketch of construction. Choose a large integer d, and let a" be the algorithm
obtained from a by substituting A a for A. Then a" uses L multiplications to -compute
r=l r. Further, each bilinear form in 7--1 is computed correctly mod (a).

Take L’ copies of algorithm a", thus using LL’ multiplications to h-compute
L’.=aL’. . (Here L’. denotes ..., the direct sum of L’
copies of .)

Let us develop some notation here. Denote by : (r’) the system of x-variables
in r. Similarly r/r (rtj,) is the system of y-variables in . The product :rt will
denote the system of bilinear forms r. When we have several copies of , indexed
by or f, we will denote by (:r) (:,i’) the system of x-variables in the ith copy of .

Consider the algorithm a(), which uses L’ multiplications to h-compute (). In
() of (r) by the system (:)i of x-variables ina() formally replace each x-variable x

() in a(r) by the system (rt)..the ith copy of r. Similarly, replace each y-variable y
Wherever a(r) requires a linear combination of x-variables i alg(h)xg, take the corres-
ponding linear combination of systems, component by component: (Yi alg(h)scg,i), and
similarly for y-variables. Interpret each product in a(as a system of bilinear forms
similar to . This reinterpretation of algorithm a() tells us how to use L’ copies of
the exact computation of the system of bilirear forms r, to A-compute r ()(r).
Unfortunately, we only have available A-computations of these L’ copies of r.
However, these A-computations are correct modulo (A d), and if d is chosen large
enough (d > def (a), at)), the inexactness introduced by using these A-computations
instead of exact computations will not affect our algorithm’s ability to A-compute

We summarize the construction. Use LL’ multiplications, arranged according to
L’. . Then for each r, use the L’ copiesalgorithm a", to A-compute L’. --Gr=l

o the -computation of , arranged according to a suitable interpretation o
algorithm a), to X-compute (R)). This completes the desired construction"
algorithm c uses LL’ multiplications to -compute]"__ (R)). We omit the proof
of the statement about ull isolated inner products.

Remark. This construction is not canonical, in that it depends on the choice o
an integer d. However, we choose to refer to it as "the generalized tensor product"
because o its relation to the usual tensor product. This relation is as ollows: i
and) ’ for r 1, 2,..., n, then (R) (’, ’,. , ’) can -compute (R) ’ and
requires LL’ multiplications, just as a (R) ’ can -compute (R) ’ and requires LL’
multiplications. However, the actual algorithms are slightly different, and the exact
bilinear orms they compute (as polynomials in) are different, although they agree
mod (h).

Now let us use the generalized tensor product construction to improve our matrix
exponent to.

Example 5.1. We will start with the algorithm of (4.4) of Example 4.2, that is,

(5.1) 100- (1, 46, 1)03(6, 4, 3)03(9, 1, 9).

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 487

That means that we also have algorithm

(5.2) 100- (1, 46, 1)(3, 4, 6)(9, 1, 9).

We now construct a’= a (R) (a, a T, a), where a is the algorithm of (5.1) and a
the algorithm of (5.2). When we apply Theorem B to a’ we obtain

T

(5.3)
10000 (1, 3646, 1)2(6, 184, 3)2(9, 46, 9)

@2(54, 4, 27)03(18, 16, 18))(81, 1, 81)
4-and the root of the associated equation, 0"3, satisfies

30"+3 =2.4982509<30"3
where 0"3 is given by (4.6).

We can modify (5.3) by replacing 2(6, 184,3) with (6, 184, 6), and applying
Theorem B to this modified algorithm yields

10000 (1, 4750, 1)03(6, 184, 6)2(9, 46, 9)
(5.4)

0)2(54, 4, 27)03(18, 16 18)(81, 1, 81)
++and the associated root, 0"3 satisfies

+30"4- 2.4968212 < 30"3.
Because the algorithm a of (5.4) does not satisfy r s, Fact 4.1 suggests that the next
step is to compute (a (R) aT)*. We will not describe the resulting algorithm, but only

+mention that its associated root, 0"4, satisfies
4-30"4 =2.4957018.

One more application of the construction of the proof of Corollary 4.1 yields an
+associated root, 0- which satisfies

30-+ 2.4956631.

Another use of the generalized tensor product construction is to increase the
number of direct summands, even at the expense of r + s. We will illustrate that in
the next example.

Example 5.2. The starting point of this example is the algorithm a of (5.4). Using
the generalized tensor product to obtain a’= a (R) (a, a, a, Ij, a, IJ), where I6 is the trivial
algorithm which computes 10000(1, 1, 1), we obtain an algorithm whose associated
root, r4*, satisfies

3r4" 2.4956168 < 30--.
Using Fact 4.1, and then the construction of the proof of Corollary 4.1 we obtain

(5.5) o < 2.4955640.

The estimate of (5.5) is not the best that can be gotten. By a rather intricate and
lengthy construction we can obtain

(5.6) to < 2.4955480.

We will not describe this construction. It does not use any new idea beyond the ones
described in the last two sections. Our only justification for presenting (5.6) is to
indicate to the reader the extent to which we succeeded in reducing the estimate of o.

488 D. COPPERSMITH AND S. WINOGRAD

6. o as a limit point. In 3 (Corollary 3.4) we saw that if Rk ((n, n, n))= n
then w < w0. In 4 (Corollary 4.1) we saw that if a is an algorithm which A-computes
(1, R, 1)((rN=l (mr, nr, Pr), SO that (1, R, 1) is full and isolated, then w<3z, where -is the root of the associated equation. In this section we will generalize these two

N
results. We will show that for every system of bilinear forms =(r=l (mr, nr, Pr),
w <3" where z is the root of the equation associated with I; i.e., z is the root of
the equation

N

(mrnrPr) RRx ().
r=l

In order to prove this result we will need to prove the following fact about Rk (9),
which may be of interest independently. Let @rN=l (mr, n, Pr) SO that for some r
we have mr + nr + Pr > 3, then 3Rk()>Yrl mrnr +Yr= nrpr +Y= prmr.

We now turn our attention to this last result. In order to prove it we will need
some well known facts.

Fact 6.1. Let =]rN=l(m,n,p)=A(x)y. Then r(A(x))=Er= mrPr and

A(x))

yrN= nrPr. Therefore, by Proposition 2.4, Rk() >= max (Yr__ mrPr,
npr).
Fact 6.2. Rkx ()rN=l (mr, n

N
Pr)) Rkx (Gr=l (nr, gr, mr))-- Rkx ()rN=.lN(Pr, mr,

nr)), and therefore 3Rkx (9)>=ta +tb +to, where =)r=l (mr, m, Pr), ta Y’r=X mrnr,
N

tb .rN= nrPr, tc Er= Prmr.
Remark 6.1. The fact that Rkx ()_-> tc shows that the algorithms of examples

4.1, 4.2, 5.1, and 5.2 are all minimal.
(r) 1<i<Fact 6.3. Let Zi.k, --mr, 1 < k <--Pr, 1 < r<-N be the t ErL1 mrPr bilinear

forms of Or/V= (mr, nr, Pr). (r)Leti.k F be t eleffaents ofF such that for each r 1, 2, ,
r(r) (ErN= f(r),.(r)N there exists i(r), k k (r), so that fi, k 7A O. Then Rkx Eprk=l Ei=I fi,k i,k)

ErN=I Hr.
The first theorem of this section is:

THEOREM 6.1. Let be the system -r (mr, nr, p). Then 3Rkx()= t + tb + t
if and only if]:or every r 1, 2,..., N, we have mr nr Pr 1.

Proof. If mr=nr=Pr 1 for every r=l,2,...,N then, clearly, 3Rka (9)=
ta + tb + tc 3N.

We will assume now that Rka()=tc and show that if ta=tb=t then
mr nr Pr 1 for all r 1, 2,..., N. We will prove this assertion by induction on
L Rkx (). If L 1 the assertion is obvious, so we will assume that L > 1.

(r) (r)o (r) NLet Zi,k=Ei=lXi,jYj,k_, l<-i<=mr, l<-__k<=pr, l<=r<=N be the L=tc=r= mrPr
bilinear forms of =(r= (mr, n,pr). Let a=(Ma(x;A), M2(x;A),’.’, ML(x;A);
N(y; A), Nz(y; A), ., NL(y; A)) be a minimal algorithm which A-computes t. If we

(r)denote by z the L-dimensional column vector whose entries are the z/.ks, and by ax
the L-dimensional column vector whose entries are the products Mr(x; A)Nr(y; A),
then there exists an L x L F(A)- matrix T so that z =x Tax, where = denotes equality
modulo A. Moreover, by Fact 6.1, T is an invertible matrix.

Let T, Ta,. ., T be the L rows of T. We may assume that def (71) >- def (Tz)=>
>-def (T), for if not we can permute the entries of z and the rows of T so that

the assumption is satisfied.
The key observation of the proof is that if S is an L x L F(A)-matrix satisfying

def (S)_-< 0 then z =x Tax implies Soz =x (ST)r, where So cfo(S).
Let T/.i denote the (i, j) element of T; then (by possibly permuting the columns

of T and the entries of ax) we may assume that def (T.I)= def (Tx)-> def (T/.x) for all

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 489

2, 3, ., L. LetS be the triangular F(h)-matrix

1 0 0 0 O-
t2 1 0 0 0

t3 0 1 0 0

t 0 0 0 1

where ti r/,1/T1,1. The assumption on T1,1 implies that def (S) 0, and clearly both
S and So Cfo(S) are invertible. Therefore,

SoZ (ST)xr T’xr.

By construction, T,I T1,1, and T[1 0 for 2, 3,. ., L; that is, T’ is of the form

TI,1 T1,2
0

T’= 0

0

T(1)

We now permute the rows of T() (and the last n- 1 coordinates of Soz) so that
def (T))_->def (T(2)_->.. .->def (T(L1)_). We can now repeat the process and define
the F(h)-matrix S(1), where

-1 0 0 O 0-
0 1 0 0 0
0 t 1 0 0
0 t 0 1 0

0 t’L 0 0 1_

etc. Because T was nonsingular, we see that there exists a nonsingular F(h)-matrix
so that"

(i) T is upper triangular,
(ii) def (,)= 0,
(iii) So Cfo(S) is nonsingular,
(iv) goZ
Let fT ,,(r)=(ti.) be the last row of So. Because of (i) and (iv) we have

_(r)fz = ’,(MN), and therefore Rk (fz)= 1. By Fact 6.3, Ii, =0 for all r=
1, 2,. , N except r to. With no loss of generality let ro N; then Fact 6.3 implies

(N) PN (N)that nN 1. Moreover, [Tz must be of the form (.,i1 aix, (Y’-k= OkYl,k), for some
a F, bk F, 1 <= <= mv, 1 <= k <= PN. With no loss of generality assume that def (ME)

m, N) and cfo(N) y,,,r= bky N)def (NL)--0, and that cfo(ML)= Ei=I aixi,1 1.k.
We will now show that the assumption L ta tb tc implies that mN PN 1.

Assume mN > 1, and with no loss of generality that a--amN 50. Let ML
N-1,= agxg + ax,Nl + h, where def (h) < 0. We now substitute t(x; A)

-1/a(Li= aixi, + h) for Xm,,1 in the algorithm a to obtain an algorithm a’ satisfying
/x (a’)_-< L- 1. Because def (t(x; h))_-< 0 we see that the algorithm a’ can h-compute all

(r)the z i,k, r 1, 2, N- 1, as well as all the z (N)
i.k, 1, 2,’’’, mN--1, k 1, 2,

490 D. COPPERSMITH AND S. WINOGRAD

PN. This new system ’ has t’ ta--1, t’b tb, t’c tc--pN. By Fact 6.1 L-1 >_-/x(a’) >_-

Rkx (’) _-> t, tb, SO L >--_ tb / 1, contradicting our assumption that L tb. Similarly we
obtain that p 1. Thus we have shown that mr nr ps 1.

If we now effect the same substitution x,,.l t(x; h)=-h/a we see that a’
A-computes ’)/N=I (mi, ni, Pi), and therefore L 1 _->/z (a’) _-> Rkx (’) t’ t,
t’ =L-1. By induction hypothesis we also have mi=ni=pi 1 for all i=
1, 2, , N- 1. This proves the theorem.

Remark 6.2. The same argument as in the proof of Theorem 6.1 shows that if
Rkx() tb t then mi ni 1 for all 1, 2, , N.

COROLLARY 6.1. Let $ ()i (mi, ni, Pi). If ta tb t >N then Rkx (I)> ta.
The next theorem, Theorem C, is a generalization of Theorem A of 3. In the

statement of Theorem C and the lemma preceding it, we will employ the same
terminology as in Theorem A.

LEMMA 6.1. Let a be an algorithm which can A-compute 03(1, R, 1) so that
(1, R, 1) is full and isolated. Let a’ be an algorithm which can A-compute ’, and let
L’ (a’). Let C’ be an L’ L’ nonsingulardiagonalF(h matrix so that Rk (a’TC’fl ’)
p’. If p’<-R then there exists an algorithm fi which can A-compute I03t’()(1, R’,
so that:

(i) /x (a) =/z (a) +/z (a’),
(ii) R’= z(a)-r-s, where r is the number of xi’s in’ and s is the number

of yi’s in
(iii) (1, R’, 1) is full and isolated.
Proof. Let a (M, M2," ", ML; N, N2," ", NL), L =/z (a). Let a’ (M, M,
M[," N,N’2, "., N[,). By assumption there exist cl, c2,’’’, c e F(A), c # 0,

R L’ -tl<i<-L, so that Yi= ciMiNi=i=l uivi. Also, by assumption, 2.i= cglwgvg

o’ //i(x" h)/Qi(y" h), where c is the (i, i) term of C’ We may also assume thati=1

def(M)_-<0, def(]Qi)_-<0, l<=i<-_p ’, for otherwise we can replace c’ by hc’, with
0 h F(A) so that def (h) is small enough.

Let al (M1, M2, ’, ML; N, N2, , NL) be the algorithm obtained from a by
replacing ui by -M and vi by N, for all i=l,2,...,p’. Let a2=a+a’=
(M, M2, ML, M’, M, ML, N1, N2, NL, N’, N2, N’, be the
algorithm which "concatenates" aa and a’. By construction .il.C]+

R,i’= cMiN -,=,/ uv, so a2 can A-compute (R)’(R)(1, R, 1) where R=R-
p’0 and (1, R1, 1) is full and isolated. Theorem B, applied to a2, guarantees the
existence of with the desired properties.

THEORElVi C. Let a be an algorithm which can A-compute , where I (a)= L. Let

’ be an algorithm which can A-compute ’, where t (’)- L’. Let C be a nonsingular
diagonal L L F(A)-matrix so that Rk (a TC/3) p. Let C’ be a nonsingular diagonal
L’ L’ F(A)-matrix so that Rk (a’C’fl ’) la’. Suppose L + p r s - la’, where r and
s are the number of xi’s and yi’s, respectively, in , and that L’-r’-s’- O. Then for
every k0 there exists an algorithm k which can A-compute O)k" ’O)(1, Rk,
so that"

(i) tX(k) L + kL’ + o,
(ii) Rk=L+p-r-s+k(L’-r’-s’),

(iii) (1, Rk, 1) is full and isolated.
Proof. By Theorem A there exists an algorithm t11 which A-computes

1, R’, 1) satisfying"
(a) /x (al) L + p,
(b) R’=L+p-r-s,
(c) (1, R’, 1) is full and isolated.
Apply Lemma 6.1 to a and a’ to obtain aa. Now proceed by induction on k > 1.

ASYMPTOTIC COMPLEXITY OF MATRIX MULTIPLICATION 491

By induction hypothesis there exists an algorithm k-1 satisfying (i), (ii) and (iii) of
the statement of the theorem. Apply Lemma 6.1 to tk_ and a’ to obtain fig.

Let a,/x (ca)= L be an algorithm which can A-compute a system of bilinear forms. We define p(a) to be p(a)= min Rk (arC), where the minimization is done over
all possible nonsingular L x L diagonal F(A)-matrices C. We also define p() to be
min p(a), where the minimizationis over all algorithms which can A-compute and
satisfy (a)= Rkx (). It should be observed that p(a), and therefore p(), cannot
exceed r the number of xs of , or s the number of yis of . With this terminology
established, we have the following consequences of Theorem C.

COROLLARY 6.2. Let be a system of bilinear forms, and let a be an algorithm
which A-computes . If (a)r + s then for every k there exists an algorithm
(ak) k(a)+p(a), which can A-compute k (1, R, 1), where R
p(a)+ k((a)-r-s), so that (1, R, 1) is full and isolated.

Proof. Choose C so that Rk (arC) p(a), and let ’=, a’= a, C’= C. Then
p(a)+(a)-r-s p(a). Apply Theorem C.

In particular, if a of Corollary 6.2 satisfies (a)= Rkx () and p(a)= p() then
e obtain"

COROLLARY 6.3. If Rka () r + s then for every k there exists an algorithm
(ak)=kRkx()+p(), which can A-compute k.(1, R, 1), R=p()+
k (Rk() r s), so that (1, R, 1) is full and isolated.

If we apply Corollaries 6.2 and 6.3 to 1 (m, n, p) we obtain"
COROLLARY 6.4. Let il (mi, hi, p), and let a be an algorithm which can

A-compute . If tx (a) > t + tb then < 3, where is the root of the associated equation
N

(miniPi)r.
Proof. Let (a)-ta-t I 1. Choose k so large that (p(a)+ kl)>p(a). y

N
Corollary 6.2 there exists a, (a)=k(a)+p(a), which can A-compute k ’i=
(mi, ni, pi)@(1, p(a)+kl, 1). By constru6tion k Zi (minipi) +(P(a)+kl)>
k(a) + p(a), so r’, the root of the equation associated with a, satisfies r’ < r. Therefore
3r’<3r. U

In particular, if we choose a of Corollary 6.4 so that (a) Rkx (), p(a) p(N)
we obtain"

N
COROLLARY 6.5. Let =@=x (m, hi, p). ff Rkx() > t + tb then w <3r where

N
r is the root of the associated equation Rkx() i= (miniPi)

COROLLARY 6.6. Let =@ia (mi, hi, Pi), and let a be an algorithm which can
A-compute . ff (a)>max (t, tb) then w <37, where r is the root of the associated
equation (a) si= (miniPi)

Proof. Let ’= @ @. @ be the k-fold tensor product of with itself.

’ can be A-computed by a’= a @ a @... @ a, where (a’)= (a)g. ’ also satisfies
t, tb t. The equation associated with ’ (and a’) is (a)k =1 (miniPi)) SO

it has the same root as the equation associated with (and a). Let k be large enough
that (a’) > t + t;. Apply Corollary 6.4 to ’ and a’.

COROLLARY 6.7. Let =@=1 (mi, hi, Pi). If Rk }>max (ta, tb) then w <3r,
where r is the root of the associated equation Rkx() i’ (miniPi)’.

Our final result combines Theorem 6.1 (more precisely Corollary 6.1) and
Theorem C (more precisely Corollary 6.6).

NTHEOREM D. Let =@i= (mi, ni, Pi), and let a be an algorithm which can
(minip) >N then w < 3r, where r is the root of the associatedA-compute . If i=1

N
equation (a)= i=1 (miniPi)

Proof. By Fact 2.6 there exists an algorithm a’ which can A-compute ’=
@il (hi, p, m) so that (a’)= (a), and there also exists an algorithm a" which can
A-compute " @i (pi, mi, hi) so that (a")= (a’)= (a). Then the algorithm

492 D. COPPERSMITH AND S. WINOGRAD

a + a’ + a" can h -compute 03’". But satisfies t [b t’c ta + tb + to. So
satisfies the condition of Corollary 6.1, and therefore/z (fi)= Rkx ()> ta tb. But

the root of the equation associated with (and fi) is the same as the root of the
equation associated with (and a). Apply Corollary 6.6 to and ft. I3

NCOROLLARY 6.8 Let ’--Gi=I (mi, ni, Pi). If ., (mi, n pi)>N then to<3%i= i

where r is the root of the associated equation Rkx() /N__ (miniPi).
7. Conclusions. The main results of this paper, Theorems A and B, provide us

with tools for generating new, and improved, algorithms for old ones. However, we
do not have good estimates, except by direct numerical calculations, for the amount
of improvement. The examples given in the paper indicate that after a few iterations
of Theorem B, the improvement is marginal. We would like to have a "closed-form"
formula of the limit of, say, iterating the construction of Corollary 4.1, perhaps an
equation whose root is the limit. We leave the investigation of this problem to the
reader.

The generalized tensor product construction provided us with further improve-
ment of our estimate of to. This improvement was small, but we hope that this
construction is of interest in and by itself, and could help us in future investigation
of the asymptotic complexity of matrix multiplication.

The results which we obtained were by either adding a direct summand (1, R, 1)
(Theorem A), or by increasing the value of R (Theorem B). We believe that better
results would have been obtained had we succeeded in adding, or improving, more
than one direct summand. Another avenue for continuing the line of investigation of
this paper, is replacing (1, R, 1) by the more general tensor (R1, R2, Ra). We leave
these suggestions as a challenge to the reader.

The results of the last section (6) show that no algorithm for A-computation of
a direct sum of matrix multiplications can yield a - so that to 3’. This strongly
suggests that the only way of determining to is by exhibiting an infinite scheme of
matrix multiplication algorithms. We leave that, too, as a challenge to the reader.

REFERENCES

[1] V. YA. PAN, On schemata for the computation of matrix products and for matrix inversion, Uspekhi
Mat. Nauk, XXVII, 5 (167) (1972), pp. 249-250 (in Russian).

[2] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[3] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[4] V. YA. PAN, Strassen’s algorithm is not optimal, Proc. 19th Annual ACM Symposium on the Foundation

of Computer Science, 1978, pp. 166-176.
[5] D. BINI, G. LOTTI AND F. ROMANI, Suboptimal solutions]’or the bilinearforms computational problem,

Nota Interna B78-26, November 1978, Istituto di Elaborazione della Informazione, Pisa.
[6] D. BINI, Relations between exact and approximate bilinear algorithms, applications, Calcolo, 17 (1980),

pp. 87-97.
[7] A. SCHONHAGE, Partial and total matrix multiplication, this Journal, 10 (1981), pp. 434-455.
[8] V. STRASSEN, Vermeidung yon divisionen, J. Reine Angew. Math., 264 (1973), pp. 184-202.
[9] V. YA. PAN, New combinations of methods [or the acceleration of matrix multiplication, Cornput. Math.

with Appl., 7 (1981), pp. 73-125.
[10] B. L. VAN DER WAERDEN, Algebra, vol. 1, 7th ed., Frederic Ungar, New York, 1970.
[11] J. E. HOPCROFT AND J. MUSINSKI, Duality applied to the complexity of matrix multiplications and

other bilinear forms, this Journal, 2 (1973), pp. 159-173.
[12] L. C. LAFON AND S. WINOGRAD, A lower bound for the multiplicative complexity of the product of

two matrices, Centre de Calcul de L’Esplanade, U.E.R. de Mathematique, Univ. Louis Pasteur,
Strasbourg, France, October 1979.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

(C) 1982 Society for Industrial and Applied Mathematics

0097-5397/82/1103-0008 $01.00/0

A LUBRICANT FOR DATA FLOW ANALYSIS*

BARRY K. ROSENt

Abstract. This paper deals with concepts recently introduced to avoid duplication of effort when
several global data flow problems share the same underlying control flow. The flow scheme is the control
flow portion of the input to data flow analysis. By finding a family of formal expressions called a flow cover
for a given flow scheme, one can be ready to solve any problem with that scheme by interpreting the
expressions in light of the remaining portions of the problem. Our main result relates the problem of
finding a flow cover to that of finding regular expressions to describe certain sets of paths in the graph.
The following is a major consequence of this relationship (slightly oversimplified). If a family of formal
expressions acts like a flow cover for one special problem constructed from a given flow scheme, then it
is a flow cover. The constructed problem has several algebraic properties that fail in some of the problems
encountered in practice but that may be assumed anyway, at least when one wishes to construct flow covers.
Applications include updating a given flow cover in light of a small change in the flow scheme, and improving
upon the folkloric way to cope with multiple entry nodes.

Key words, data flow analysis, optimizing compilers, control flow, regular expression, lattice

1. Introduction. Because our main result removes friction by letting us assume
convenient things without loss of generality, we call it a lubricant, and specifically a
wolog lubricant. A whimsical but instructive example of wolog lubrication will be
considered before the technicalities begin. In designing a trap to catch one specific
bear, we can use whatever we know about that bear’s habits. Park rangers would have
much less trouble protecting bears and people from each other, if they could apply a
result of the following form"

THEOREM 1.1. In every national park there is a certain bear, called the canonical
bear, such that any trap effective for this one bear is effective for any bear in the park.

To certify a bear trap, we can assume without loss of generality that the bear to
be trapped is canonical. Because they have unusually regular habits, canonical bears
are relatively easy to trap. A trap that is certain to catch the canonical bear of
Yellowstone Park is also certain to catch any other bear in Yellowstone Park, even
if the other bear’s habits are different in ways that seem to invalidate the argument
certifying the trap. As a principle of wildlife management, Theorem 1.1 is absurd.
Yet it becomes true when "national park" and "bear" and "trap" are replaced by
appropriate technical terms from data flow analysis. After stating the theorem we will
outline what the terms mean.

THEOREM 1.2. For every flow scheme (G, E) there is a certain 3-way algebraic
context (L, M), called the canonical algebraic context, such that any reduced flow cover

for (G, E) relative to the class {(L, M)} is also a reduced flow cover for (G, E) relative
to the class of all 3-way algebraic contexts.

It takes three ordered pairs to specify a data flow analysis problem. The flow
scheme (G, E) is a finite directed graph G together with a set E of nodes in G
designated the entry nodes. (Flow schemes under various constraints not imposed
here are often called "program flowgraphs" and the like.) The algebraic context (L, M)
is a set L together with a set M of maps U’LL, under more or less standard
assumptions. (Details are in 2.) For the present, members of L may be thought of
as "assertions" in a special language. The algebraic context of a problem specifies
what kind of information is sought (with L) and what kinds of changes in this

* Received by the editors October 14, 1980, and in final form September 15,1981.

" Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598.

493

494 BARRY K. ROSEN

information can be readily computed (with M). The third pair, which is not mentioned
in Theorem 1.2, links the first two pairs. The local and entry information (f, E) is a
map f: (arcs of G) M together with a map E E L. When control enters the program
at rn in E, we know that the assertion Em is true. When control flows along an arc
c from n to p and x in L is true at n, then we know that ()c)x is true at p. From all
this information we try to compute global information: a map I (nodes of G) L such
that Ip is true whenever control reaches p.

In practice it is very common for several problems to share the same underlying
control flow. To avoid duplication of effort in solving such a family of problems,
[7, 2] introduced the other concepts involved in Theorem 1.2. A flow expression for
a flow scheme (G, E) is a formal expression X that will have a value IX] in M after
the algebraic context (L, M) and the local information have been specified. The
specific syntax of flow expressions here departs from [7] along lines suggested by [8],
[9]. For the moment, all that matters is the fact that evaluation of these expressions
presupposes an algebraic structure involving three operations on M. Flow expressions
are only meaningful when the contexts of interest2 all have these operations. Because
three ways to operate on M are required, we speak of 3-way contexts.

A flow cover is a family of flow expressions whose values can be used to solve
flow problems. For each entry node m and each node p there is an expression X(m, p)
with value IX(m, p)] in M depending on the problem at hand. Applying this value
to the entry assertion Em in L yields IX(m, p)]Em in L as what the flow cover
propagates to p from entrance at m, with all paths from rn to p in G accounted for.
Combining the values [X(rn, p)]Em for all rn in E in a suitable way yields the desired
global information Ip in L. Some of the uses of flow covers appear in [7]; others will
appear later in this paper.

It is often useful to consider flow covers relative to some special class of contexts
(L, M) or to some special class of local and entry information pairs (f, E). Only for
problems with inputs in the special classes does a relative flow cover claim to work.
For example, idempotent contexts have U U U for all U in M, where is ordinary
composition of maps. The traditional "bit vector" data flow problems all have idem-
potent contexts, and idempotence is heavily exploited in the literature on such
problems. To exploit idempotence when constructing flow covers, we can replace
subexpressions.of the form X.X by the corresponding subexpressions of the form
X. (Here, X is a flow expression and. is a formal operator that will later be interpreted
as composition of maps.) Applying this rule to a flow cover yield a simpler family of
expressions, but one that is only a flow cover relative to the class of idempotent contexts.

A reduced flow cover is one whose flow expressions have all been simplified as
much as possible by applications of rules from some given set of rules. Theorem 1.2’s
use of the word refers to nine rules to be stated in 2. Like the idempotence rule
X.X X, each of our rules removes an operator from an expression. Ordinarily,
application of a rule restricts a flow cover to contexts where the corresponding algebraic
equation holds, as when U U U justifies use of the rule X.X X. Eight of our
rules are universally valid, but one of them fails in some important contexts. Neverthe-
less, we may use this rule without loss of generality when we construct flow covers.
It is valid in the canonical context, and that suffices by Theorem 1.2. (Other algebraic

The value of the map E at the argument m is written Em rather than E(m), with parentheses
reserved for grouping. Thus (fc)x indicates that f is applied to c, yielding a map which is "then applied
to x.

As is explained in [7, 1], the contexts for which flow expressions are meaningful include all those
for which elimination algorithms may be used.

LUBRICANT FOR DATA FLOW ANALYSIS 495

properties of the canonical context can be similarly exploited.) The canonical bears
of Theorem 1.1 are relatively easy to trap because they have regular habits. The
canonical contexts of Theorem 1.2 are relatively easy to cover because they involve
regular sets of strings. Readers of [7] may have already noticed that constructing a
flow cover for a given flow scheme is somewhat like constructing a regular expression
for the language accepted by a given finite automaton. The analogy is much closer
than the author could imagine at the time [7] was written, without the benefit of later
work here and in [8].

Some important concepts from data flow analysis have been reviewed in discussing
the main result. Proving it will require more detail, to appear in 2. For a given flow
scheme (G, E), 3 constructs the canonical context and establishes some preliminary
lemmas. Given (G, E) and a family of reduced flow expressions that is a flow cover
relative to the canonical context, 4 proves Theorem 1.2 by showing that the family
is indeed a reduced flow cover relative to all 3-way contexts. In the process a stronger
result emerges; this is stated as Theorem 4.4. Devised independently some months
after the April 1979 report that became [8], our proof is much like that of a narrower
result [8, Thm. 6] in the same spirit. The heart of Theorem 4.4 is the fact that any
reduced "path cover" is a flow cover, where a path cover is a family of flow expressions
that behaves nicely when the expressions are interpreted as sets of strings of arcs.
Specifically, the set of strings of arcs associated with X(m, p) should be the set of all
paths from m to p in G. If this holds for all choices of m in E and p in N, then the
family of flow expressions is a path cover for (G, E). Data flow analysis is one of
several applications for path covers; others appear in [8]. Section 5 explains some
applications of Theorem 4.4, especially to the problem of updating a given path cover
to reflect a small change in a flow scheme. Section 6 considers finite approximations
to the information in the canonical context and shows that this context is equivalent
to an infinite family of contexts, each with L fnite. Finally, the historical remarks in
7 relate this paper to some folklore and to [3], [7], [8], [9].

2. Background. Throughout this paper a graph is a finite directed graph. A graph
G has a set N of nodes and a set A of arcs. Each arc c runs from a node n to a
node p. Certain strings (i.e., finite sequences) of arcs are paths. The null string h is a
path from any node to itself. A nonnull string c (c1"" cr) for r > 0 is a path if and
only if ci is an arc to the same node that ci/l is from, for all with 1 <-i-< r-1. If Cl
runs from n while Cr runs to p, then c is a path from n to p and we write c:n- p.
Suppose a map [c :L L has been associated with each arc c in G. Then is extended
to paths in the obvious way:

fc (fc)o" (fcl) for c (cl c,).

In particular fh 1L, where the identity map 1L takes everything in L to itself. Many
sets L are important in data flow analysis. The properties of L presupposed by the
usual algorithms are discussed in [7, 1], which should be consulted for motivation
and historical remarks. Here we will briefly review some key points and introduce
some simplifications. The intuition in [7, 1] is more or less standard, but no two
authors use quite the same machinery. (Earlier formulations like [4], [6] are subsumed
under [7].)

An algebraic context for data flow analysis is a pair (L, M), where L is a complete
lattice and M is a set of isotone maps U" L L. The partial order on L is denoted
<-, the top of L is denoted T, and the greatest lower bound operation (mapping
subsets of L to L) is denoted/. (As usual, we abbreviate/ {x, y} to x ^ y.) The set

496 BARRY K. ROSEY

Majl of all isotone maps from L to L is also a complete lattice, and similar notation
is used. Thus/ and ^ denote operations on Man also. What have eome to be called
elimination algorithms presuppose that M is closed under some of the operations on
Ma. The closed contexts of [7] satisfy

(2.2.1) M contains 1/ and the constant Tt with value

(2.2.2) M is closed under and ^ as operations on Mall.

A third operation @ on M is also presupposed. This operation need not be defined
on Man, but its values must be bounded above by those of an operation @all defined
on Ma. Let N be the set {0, 1, 2, 3,... }. For U, V in M,I let V @a, U in Man be
defined by

(2.3.1) V@all U=/ {VUIrN).

The set M is required to have a binary operation @:M xM M such that

(2.3.2) V@ U V @all U for all U, V in M.

For all x in L the value (V@ U)x is bounded above by the preceding condition; for
some x in L the value (V@ U)x is bounded below by the following condition:

(2.3.3) (Vx L)(x <-_ Ux implies Vx <- (V@ U)x).

A closed context with this third operation @ will be called a 3-way context here.
What are called rapid closed contexts in [7] are 3-way contexts that satisfy additional
conditions, to be discussed at the end of 7. Rapid closed contexts seem to be the
3-way contexts that arise in practice,3 but’working within the broader class of all
3-way contexts is much more convenient.

A strongly distributive map U :L L has U(/k X)=/ {Ux Ix X} for all non-
empty X

L. A strongly distributive context (L, M) has each U in M strongly distribu-

tive, in which case an operation @ on M satisfies (2.3.2) and (2.3.3) if and only if it
is the restriction of @all to the subset M M of Ma, Mau. (Details are in the proof
of Lemma 2.8.) Therefore a strongly distributive closed context is a 3-way context if
and only if M is closed under @al. A great convenience when it holds, strong
distributivity is known to fail in some important contexts.

Given a graph G, aflow expression for G is a regular expression overA considered
as a set of symbols, with the understanding that the syntax of regular expressions has
been slightly enriched for reasons to emerge later. Specifically, the simplest flow
expressions are the constants ("b" and "") and the variables (each arc c in A).
More complicated expressions are built by applying the usual Kleene operators" if Y
and Z are flow expressions, then so are the formal concatenation Y. Z, the formal
union Y w Z, and the formal star Y*. We add another binary operator (R) and rules

(2.4) Y(R)Z- Y*’Z & Y*- Y(R)A.

We could consider one of the operators (R) and * to be merely an abbreviation, defined
by one of the rules (2.4), but it will be more convenient to admit the operators on an
equal footing. Either one can be eliminated as the need arises.

In practice, vectors have fewer than 1099 components. It is nevertheless unwise to write N < 1099

into the definition of N-dimensional vector spaces. The situation here is analogous.

LUBRICANT FOR DATA FLOW ANALYSIS 497

Once a 3-way algebraic context (L, M) and local information f:A-M have
been specified, any flow expression X has a value IX] in M. Specifically,

(2.5.1) [b]=-l-t & [A]= 1/. & [c] =fc, all c in A,

(2.5.2) Y. Z] [Z]o[Y] & Y w Z] [Z] ^ Y],

(2.5.3) [Y*]=I@[Y]&[Y(R)Z]=[Z]@[Y].

As in [7], we will usually honor the role of f in evaluating flow expressions by writing
[X:f] rather than just [X]. This will resolve the ambiguity in "the value of" when
more than one choice of local information is to be considered. Where there is no
chance of confusion, the briefer [X] will be used within proofs.

It is possible to have V@U Vo(1L@U) and hence [Y(R)Z][Y*.Z]. The
first rule in (2.4) is therefore not universally valid for the calculations in data flow
analysis. Use of invalid rules is rightly frowned upon in most situations, but here it
is permissible. In the canonical context we will never have V@ U Vo(1L@ U).
Valid for the canonical context, the rules (2.4) may be used freely in constructing flow
covers.

A flow expression is reduced if and only if none of the rules listed below are
applicable to it, even after any uses of (R) have been replaced by * according to (2.4).
The nine rules defining reduced flow expressions are conveniently divided into two
groups. The first group consists of rules for simplifying expressions with the constant
h. There are four rules:

(2.6.1) Y’A Y&A’ZZ &h h-h &h*h.

The second group consists of rules for simplifying expressions with the constant b.
For b on the right of an operator symbol we have

(2.6.2) r.bb & rb Y.

For b on the left of an operator symbol we have

(2.6.3) [&.Z&]&&wZ-Z & &* - A.

The bracketed rule is only valid in contexts with UTc T/ for all U in M. This fails
in the traditional bit vector contexts and many other naturally occurring contexts, but
the rule may still be used in constructing flow covers. When all five rules for expressions
with 4 are used, we find that 4 itself is the only reduced flow expression involving
4. Other advantages to using all five rules will emerge in due course.

LEMMA 2.7. Let a nontrivial flow expression be one that contains variables. Every
reduced flow expression is either or A or nontrivial.

Proof. By structural induction we show that any trivial flow expression X can be
reduced to either 4 or A. This is immediate for X a constant or variable. For X
formed by a binary operator, we have subexpressions Y and Z with X Y Z. Note
that Y and Z are both trivial and that can be assumed to be either, or w. By the
induction hypothesis, we can assume without loss of generality that Y is 4 or .
Likewise for Z. If Y is 4, then (2.6.3) reduces X to 4 or Z and hence to 4 or .
Now suppose Y is . If is., then (2.6.1) reduces X to Z and hence to b or . If

is w, then (2.6.1) or (2.6.2) reduces X to A. For X formed by the star operator,
we have a subexpression Y with X Y*. By the induction hypothesis, we can assume
without loss of generality that Y is 4 or . Now (2.6.3) or (2.6.1) reduces X to . 1

LEMMA 2.8. Let (L, M) be any 3-way context and let f:Aa - M. LetX be a flow
expression. Then the value [X:f] can be approximated by values ofX in 3-way contexts

498 BARRY K. ROSEN

with isotone @ operations. Specifically, let [X :all f] be the value ofX when f is considered
as a map into Ma (the set of all isotone maps from L to L) and the @ operation on
Mal is @all from (2.3.1). Then IX :f]-< IX :all f], and they are equal if (L, M) is strongly
distributive.

Proof. Induction on the structure of X is used. Note that and ^ are isotone
while (2.3.2) generalized to V@ U-< V’@a U’ for all U, V in M and all U’, V’ in
Ma with U =< U’ and V-< V’. In the strongly distributive case, it will suffice to show
that

(1) @ is the restriction of @all to M xM in Mall X Mall.
For U, V in M we will show that V@ U V @all U0 Consider any z in L and let
x A { Urz r N}. Then strong distributivity implies

x-<A {UrZ [r N-{0}} U(A {USz[sN}) Ux.

Therefore x <- Ux and (2.3.3) implies Vx <= (V@ U)x <- (V@ U)z because x =< z and
V@ U is isotone. But strong distributivity implies (V @al U)z Vx, so (V @all U)Z
(V@U)z. The reverse inequality holds by (2.3.2), so V@U= V@aIU and (1)
holds.

As in 1, a flow scheme (G, E) together with an algebraic context (L, M) and
local information (f, E) are what we need to specify a data flow analysis problem. A
problem is solved by any ! :No +L with values small enough for lp to be a safe
assertion whenever control reaches p [7, Def. 1.2]. The maximum solution (often
called "MOP" for "meet over (all) paths") is of course

ImaxP A {(re)Era [m e E & e: m - p in G},
but finding /max is sometimes impossible [6, Thm. 7]. A good solution is one large
enough to dominate any fixpoint [7, Def. 1.3]. One way to find a good solution is to
find an appropriate family of flow expressions and then evaluate them. Rather than
restate the definition [7, Def. 2.3] of flow covers, we will restate what they do for us.

LEMMA 2.9 [7, Lemma 2.4]. Let (G, E) and (L, M) and (f, E) specify a data
flow problem, with (L, M) being a 3-way context. Suppose (G, E) has a flow cover gg,
assigning a flow expression X(m, p) to each (m, p) in E x No. Then a good solution is
obtained by setting, for each node p in G,

Ip A {[X(m, p): f]Emlm E}. [3

3. The canonical context. Throughout this section, a flow scheme (G, E) is given.
Let be the set of all subsets of A, the set of all strings (i.e., finite sequences) of
arcs. The formula (2.1) for composing the maps encountered along a path makes
sense for any string c in A, even if c is not a path. Given local information f" Ao M
in some algebraic context (L, M), we can map into Ma (all isotone maps from L
to L) by defining/z :0o’ Mall as follows:

(3.1) /xs A {fclc s s} for all s in Av.
Given a flow expression X, a 3-way context (L, M), and local information/:Ao-+ M,
we can interpret X in Man by considering IX:f] in M _c Mal. On the other hand, we
can interpret X in Mall by an indirect route. Treating X like any other regular
expression, we will define Xae in and then compare/xXe with IX :f]. Unequal in
general, they will be close enough for us.

The constants "&" and "h" are interpreted as the corresponding sets of strings:

(3.2.1) bz b a Me {A }.

LUBRICANT FOR DATA FLOW ANALYSIS 499

Each variable c is interpreted as the corresponding set with one member, the string(c):

(3.2.2) ce {(c)}.

For X Y=Z with formal operator in {., w, (R)} and for X Y*, we use the Kleene
operations on .:
(3.3.1) Y" Z)e Y"Z,
(3.3.2) (Y w Z)e Y.wZ.,

(3.3.3) (Y(R)Z)se Y) Z & (Y*)se= (Yse)*.

Before comparing IX :f] with tzX:e in general, we need to study Xe more closely
when X is reduced.

LEMMA 3.4. LetX be a reduced flow expression. Then

(1) x= iff x=,
(2) X=A iff Xe={A},

(3) X is nontrivial iff (:lA)(c e Xe).

Proof. Looking only to the right of "iff" in (1), (2), (3), we find three conditions
on X that are mutually exclusive and exhaust all possibilities. These conditions
therefore partition the reduced flow expressions into three sets R1, R2, R3. By
Lemma 2.7, the conditions to the left of "iff" in (1), (2), (3) also partition the reduced
flow expressions into three sets, call them L 1, L2, L3. Moreover, L1

_
R 1 and L2 R2

by (3.2.1). To show that the two partitions are equal, it will suffice to show L3_ R3.
Induction on the structure of X will be used to show that any nontrivial reduced X
has a nonnull path in Xz.

If X is a constant or variable, then X is ari arc c and has the string (c) in Xe by
(3.2.2). To continue the induction, suppose X YZ. (The case X Y* is like that
ofX Y(R)Z.) Because X is reduced, the subexpressions Y, Z are reduced and cannot
be &.

Suppose X is Y.Z. Then Y, Z cannot be A. By Lemma 2.7 and the induction
hypothesis, we can choose A in Y and d A in Ze. Then c. d A in Y. Z:e X.

Suppose X is Y w Z. Then Y, Z cannot both be A. By Lemma 2.7 and the
induction hypothesis, we can choose e A in Y:e w Ze Xe.

Suppose X is Y(R)Z. Then Y cannot be A. By Lemma 2.7 and the induction
hypothesis, we can choose e A in Y:e and d (possibly A) in Ze. Then . d A in
Y Ze X.z.

LZMMA 3.5. Let X and Y be reduced flow expressions. If Y is a subexpression of
X then each d in Ye is a substring of some e in X..

Proof. Without loss of generality we can assume that some Z has eitherX Y=Z
or X Z = Y for one of the binary operators =. Note that Z is impossible because
X is reduced. Therefore Z. By (3.3) and familiar properties of the Kleene
operations used to build X from Ye and Z, each d in Y is a substring of some
in Xe.

LZMMA 3.6. Let (L, M) be a 3-way context. Let X be any flow expression for
(G, E). Let f :A-->M. Let tz be as in (3.1). Then [X :f]<-ixX:e, and they are equal if
(L, M) is strongly distributive and X is reduced.

Proof. By Lemma 2.8, we can assume without loss of generality that @ is isotone.
Let "SD&R" be a local abbreviation for "(L, M) is strongly distributive and X is
reduced" in the following induction on the structure of X. ForX a constant or variable

500 BARRY K. ROSEN

we have [X] =/xXze directly from the definitions. Otherwise we may assume X is
Y =Z for a binary operator in {., w, (R)}. By the induction hypothesis, Y]-</x Yze
and [Z] <-/xZe (with if SD&R).

Suppose X is Y.Z. Let 7 Y and r Zze. If SD&R, then Y 4’ and Lemma
3.4(1) implies r/ b. We calculate"

[x]=[Z]o[Y]
_-< tzr txr/ (with if SD&R.)

A {fblb e (n" C))= (n’ C)

(with if SD&R)

=/xX:e (by (3.3.1)).

A similar but simpler calculation handles the case X Y Z, with only needed
after the first =< because A is associative. We use (3.3.2) in place of (3.3.1).

Finally, suppose X Y(R)Z. We proceed essentially as above, with isotonicity of
@ needed for the first -<. Skipping some intermediate steps now, we calculate"

[X] =</z(@/xr/ (with if SD&R)

<-- A {(/d) (fOr)o...o (fcl) d e (& r s N & c

(with if SD&R)

=/x (r/*. r)=/Xe (by (3.3.3)).

In all cases, [X]<=lxX.z by a chain of inequalities that become equalities if
SD&R. 1

This section has still not justified its title. It is time to construct the canonical
context for (G, E). For all :, r/in let : -< r/if and only if r/___ . Then . is a complete
lattice with T:e b. Why did we not define -< to be

_
(which would make Te be A)?

Intuitively, if r/_ : then we know more about a string c if we know c s r/ than if we
only know c s :. Sets that are small according to correspond to strong assertions
and hence should be large in .

For each r/in there is an isotone map At/" --> defined by

(3.7.1) (Ar): :’n {c’ dies : and d

This map is strongly distributive and has (Ar/)-I’e =-l-:e (A-l-ze):. Let

(3.7.2) {An ln }.
Then includes the identity map le A{A} as well as the constant map T ATe
with value Te. Thanks to the. and operations of , the set is closed under the
and ^ operations on isotone maps"

A’oAn A(r/. () and A(^ An A(r/ ().

Thanks to the * and operations on , the set / is closed under @ defined by
restricting @11 from (2.3.1) to x

a(@an

LUBRICANT FOR DATA FLOW ANALYSIS 501

In short, (, /) is a strongly distributive 3-way context with UoT T for all U
in /. This is the canonical context for (G, E).

Let fcan :At3 " // have

(3.8.1) AanC A{(C)} for each arc c,

while each m in E determines E," E with

(3.8.2) E.n (if n m then {h } else b).

Linking (G, E) and (, J//) with the local and entry information (fcan, Era) specifies a
data flow analysis problem, the canonical problem with entry at m.

LEMMA 3.9. Let , :Nt3 ’ be the maximum solution to the canonical problem
with entry at m in E. For each node p, ,p is the set of all paths from m to p in G.
Moreover, this is the only good solution to the problem.

Proof. Direct calculation shows that o,p is the set of all paths from m to p.
Because (,) is strongly distributive and has UTe T:e for all U in, the maximum
solution is a fixpoint and is therefore the only good solution for any problem with
context (, /).

Finally, we note two useful identities verified by direct calculation. All in
satisfy

(3.10) (A:){A } :,
and this implies that all flow expressions X satisfy

(3.11) [X

4. Proof of the main theorem. Throughout this section, a flow scheme (G, E) is
given. The canonical context (,) is as in 3. A familyW {X(m, p)lm E & p Nt3}
of flow expressions is a path cover if and only if all m in E and p in Nt3 have X(m, p)e
equal to the set 5,p of all paths from rn to p in G. All of the lemmas in this section
assume that is a reduced path cover (i.e., a path cover whose flow expressions are
reduced in the sense of 2). The lemmas will establish that any reduced path cover
is also a reduced flow cover relative to the class of all 3-way contexts. It will be helpful
to consider the family of all flow expressions that are subexpressions of expressions
in . Note that members of are also reduced.

Whenever nodes u, v are such that Xze is a set of paths from u to v, let (u, v) be
called a source/target pair for X. For example, (re, p) is a source/target pair for
X=X(m,p) in the path cover because X(m,p).=,p. All pairs (u, v) are
source/target pairs for X=4 by Lemma 3.4(1). All pairs (u, v) with u =v are
source/target pairs for X h by Lemma 3.4(2). What are the source/target pairs for
general nontrivial X in ?

LEMMA 4.1. Let X be in ; and suppose X is nontrivial. Then X has a unique
source pair (u, v). If X= Y.Z, then Y and Z have source pairs (u, w)
and (w, v) for some w. IfX Y Z, then Y and Z both have (u, v), as a source/target
pair. If X Y* or X Y(R)Z, then Y has a source/target pair (u, u) and Z has a
source/target pair (u, v).

Proof. By Lemma 3.4(3) and the fact that a nonnull path runs from a unique u
to a unique v, X can have at most one source/target pair. To prove existence of a
source/target pair we use induction on the structure of X, but with downward rather
than the usual upward motion. Let sc X:e.

The basis for the induction is the case in which X is X(m, p) in W, and in this
case (rn, p) is a source/target pair. To continue the induction, we consider any X in

502 BARRY K. ROSEN

that has a source/target pair (u, v) and hasX YZ for one of the formal operators. In the course of showing that Y and Z have source/target pairs, we will also show
that these pairs relate to (u, v) in the asserted way. Let 7 Ye and r _-Z.

Suppose is .. Then Y and Z are nontrivial. By Lemma 3.4(3) there are # A
in and d#h in sr with e.d in .(=s. Therefore e.d:uv in G and some node
w must have e’u w and d’w v. Because any e’ in rt and any d’ in " have e’. d and
e. d’ in s also, (u, w) and (w, v) are the desired source/target pairs.

Suppose = is . Then

s and sr

_
s, so Y and Z have (u, v) as a source/target

pair.
Suppose is (R). Then Y is nontrivial and Z is either h or nontrivial. Any e in

andanydinsrhavee.danddbothin*.sr=s,soe:uuandd:uv.
LEMMA 4.2. Let (L, M) be a 3-way context. Let J :N--> L be a fixpoint for a

problem with this context and with local information/:A M. Let X be in ; with
source/targetpair (u, v). Then Jv <-IX f]Ju. In particular, all m in E and p in N have

(1) Jp <= IX(m, p f]Jm.

Proof. Induction on the structure of X is used. If X is (resp. A), then the claim
reduces to Jv-< q-z (resp. Ju <-Ju). If X is an arc, then the claim holds by definition
of fixpoints. In all other cases, X is nontrivial by Lemma 2.7 and can be assumed to
have the form YZ. Source/target pairs for Y and Z are as in Lemma 4.1.

Suppose a is., with (u, w) and (w, v) as in Lemma 4.1. By the induction hypothesis,
Jv <- [Z]Jw <- [Z][Y]Ju [X]Ju.

Suppose ta is w. By the induction hypothesis, Jv <-[Z]Ju and Jv <-[Y]Ju. There-
fore Jv <-_ ([Z] ^ Y])Ju [X]Ju.

Supposeta is (R). By the induction hypothesis, Jv <-_[Z]Ju and Ju <-[Y]Ju. We
apply (2.3.3) for x =Ju to infer that Jv <=[Z]Ju <-_([Z]@[Y])Ju =[X]Ju.

LEMMA 4.3. Let (L, M) be a 3-way context. Let f:A6 M. Each path e: m p
with rn in E and p in N6 has IX(m, p):f] =<re.

Proof. By Lemma 3.6, [X(m, p) f]<=lxX(m, p)e
To be a flow cover is to be a family of flow expressions with the properties

claimed in Lemma 4.3 and Lemma 4.2(1), so we have shown that any reduced path
cover is also a flow cover. A little more work leads to the main theorem, with Theorem
1.2 as a corollary. To be a flow cover adequate for any problem solvable by elimination,

only needs to be a flow cover relative to the class {(,)} of contexts and the
class {(Lan, E)}m E} of local and entry information pairs.

THEOREM 4.4. For any family = {X(m, p) m E & p N,} of reduced flow
expressions, the following three conditions are equivalent:

(1) is a path cover,

(2) is a flow cover relative to the class of all 3-way contexts,

(3) gis a flow cover relative to the classes {(, M)} and {(Lan, E,,) m e E}.

Proof. The lemmas in this section have already accomplished the difficult part,
which is the proof that (1) implies (2). That (2) implies (3) is trivial. Finally, Lemma
3.9 and (3.11) show that (3) implies (1). Vl

The phrase "relative to the class of all 3-way contexts" is becoming tiresome.
From now on, "flow cover" without any explicit qualification will be used.

COROLLARY 4.5. Let be a reduced flow cover. For all m in E and all p in N,
there is a path from m to p in G if and only ifX(m, p) is not .

LUBRICANT FOR DATA FLOW ANALYSIS 503

Proof. By (2) implies (1) in Theorem 4.4, is a path cover. There is a path from
rn to p in G if and only if o,p b if and only if X(m, p). . Lemma 3.4(1) completes
the proof.

COROLLARY 4.6. Suppose the family T is the result of transforming the expressions
in a flow cover by applying rules valid for regular expressions, then reducing with the
rules (2.6). Then is a flow cover.

Proof. The original flow cover is also a flow cover relative to the canonical
context. Rules valid for regular expressions are valid for data flow analysis in this
context, so is a flow cover relative to the canonical context and hence (by (3) implies
(2) in Theorem 4.4) a flow cover.

$. Applications. Flow covers for looping structures (e.g., the while statement in
[7, Lemma 5.9]) are derived by a somewhat laborious process in [7]. The flow covers
produced by general procedures are optimized by hand. Thanks to Theorem 4.4, the
flow covers claimed in results like [7, Lemma 5.9] are obtained with hardly any effort.
They are obviously reduced path covers, and therefore they are flow covers.

Tarjan [8] shows that various path problems (e.g., finding shortest paths) can be
solved by a path cover. For each problem an appropriate interpretation of regular
expressions can be provided, as when (2.5) is the interpretation appropriate for data
flow analysis. The problem of finding a (reduced) path cover for a given flow scheme
(G, E) is the canonical path problem because its solution leads to solutions for the
others. The special cases E N .and IEI 1 arise frequently. The general case can
be treated either by assuming E N (and then discarding superfluous expressions)
or by iteration over E (with each entry node in turn treated as "the" entry node by
an algorithm assuming IEI- 1). Another way to treat multiple entries with algorithms
that assume single entries will emerge from the results in this section. Our results do
not logically depend on Theorem 4.4, but we call them "applications" because they
owe their significance to Theorem 4.4 and the similar results for other path problems
in [8].

Known algorithms for the canonical path problem range from [1, Alg. 5.5] (simple
and directly applicable to E N, but with O(INGI3) cost) to the fast method of [9]
(complicated and directly applicable only if IEI 1, but with essentially linear cost on
reducible4 flow schemes). The slower-but-simpler method described in [9] has
O(IAI log INI) cost on reducible flow schemes. Both methods from [9] also work
on single-entry schemes that are not reducible, but the cost bounds are not so simple
to state. The simpler method from [9] is likely to work well in practice, especially
when IEI << INcl.

The path cover algorithms just discussed are designed for use in situations where
a large flow scheme is the input. Another kind of situation is also of interest. The
large flow scheme is the result of a small change in a previously processed scheme.
The algorithm retains the previous scheme and its path cover. The input is the small
change, not the entire large scheme, and the task is to update the previous path cover
without redoing all the work. We begin with the easiest kind of updating. If H is the
result of deleting some arcs from G, it should be possible to quickly derive a path
cover for (H, E) from one for (G, E).

TIEOREM 5.1. Let T be a path cover for (G, E) and let H be the result of deleting
some arcs from G. For all (rn, p) in ENH, let Y(rn, p) be derived from X(m, p) in
two stages. First, replace each occurrence of a deleted arc by an occurrence of the

4 Reducibility is a property of many single-entry flow schemes. It has several characterizations [5].
Most of the flow schemes arising in data flow analysis are reducible.

504 3A . OSZN

expression ok. Second, reduce the resulting expressions. Then is a reduced path cover

for (H, E).
Proof. Let D be the set of arcs deleted from G to form H. By structural induction

it is easy to show that
Y(m, p)se X(m, p)e c (A -D)* X(m, p). c A.

The paths from m to p in H are exactly the paths from m to p in G that use only
arcs in H, so is a path cover because is a path cover.

The process by which Y(m, p) is derived from X(m, p) in Theorem 5.1 will be
called "b-ing out" the deleted arcs hereafter. Theorem 5.1 is both stronger and simpler
than an earlier result [7, Lemma 2.10] because it uses the rule b. Z b despite the
fact that many 3-way contexts (L, M) have V Tt T for most choices of V.

Theorem 5.1 deals with the easiest aspect of updating a given path cover to reflect
a change in the flow scheme. It is more difficult to add arcs than to delete them, of
course, but addition of an arc running to an entry node can be handled without much
trouble.

THEOREM 5.2. Let T be a path cover for (G, E) and let H be the result of adding
a new arc c to G, such that the source node sc is already in N and the target node tc
is already in E. Let Z be the result of reducing the flow expression [c. X(tc, sc)](R)c.
For all (m, p) in E x NI let Y(m, p) be the result of reducing the flow expression

X(m, p) [(X(m, sc). Z) X(tc, p)].

Then is a reduced path cover for (H, E).
Proof. To simplify notation, we deliberately confuse expressions W with their

values W in . Because is a path cover and the reduction rules preserve values
in , we find that Z considered in satisfies

Z [{(c)}’ X(tc, sc)]*" {(c)}

[{(c)}" (Paths from tc to sc in G)]*. {(c)}

(Paths from sc to tc in H that begin and end with c).

Therefore, as each path from rn to p involving c has a first and a last occurrence
of c,

Y(m, p) X(m, p) [(X(m, sc). Z) X(tc, p)]

(Paths from m to p in H that do not involve c)

w (Paths from m to p in H that involve c)

(Paths from m to p in H).

Therefore ag is a path cover. El
This theorem is reminiscent of the induction step in the proof of [7, Lemma 2.8],

but here the proof is both shorter and more detailed because the construction is
simpler. Ease of updating when the target of an added arc is already in E motivates
an interesting departure from traditional ways of applying data flow analysis in
compilers. Traditionally, the theory assumes that E has only one node. If necessary,
a new node and some arcs (from it to the actual entry nodes) are added to enforce
this assumption before analysis begins. When the ability to update flow covers for
added arcs is wanted, it may instead be advantageous to pretend that E is larger than
it really is. (When the flow covers are used, only the real entries should be considered.)

LUBRICANT FOR DATA FLOW ANALYSIS 505

The combinatorics of letting E be most of N6 may seem unfavorable at first glance"
IE NI is close to INI2. However, the flow schemes usually encountered in syntax-
directed analysis [7, 4-6] represent very small fractions of the total control flow.
It is easy (and advisable, for the sake of readability) to write programs wherein all
flow schemes encountered have very few potential entry nodes, no matter how large
and complex the programs themselves have to be.

Real additions to the set of entry nodes can occur when programs are changed
by the introduction of goto statements, so we need to cope with them anyway. With
the understanding that E is maintained somewhat larger than the real set of entry
nodes, it becomes possible to cover each addition of a node nl to E by a variation
on what is already known about a node no already in E. Together with Theorem 5.1,
the next two theorems provide all the updating capability needed to cope with arbitrary
changes in programs with unrestricted goto statements. As in [7], a rigorously correct
general statement is somewhat complicated, yet what actually happens in typical
situations is quite simple and intuitive. To provide a little motivation for one of the
concepts to be used, let us momentarily think of the arcs in G as bridges in the New
York metropolitan area. An arc string without repetitions could list the bridges to be
crossed along a certain route, say from Yorktown Heights to Kennedy Airport. If the
Whitestone Bridge is closed for repairs, then an arc string that begins with this bridge
can be detoured to some alternate bridge, perhaps the Throg’s Neck Bridge. (For
present purposes only the first bridge along a route might be closed for repairs.) This
situation is a very special case of the following definition.

DEFINITION 5.3. A detour scheme for a flow scheme (G, E) consists of a set
of arcs and a map 8 A w {h }. An arc string e (cl. cK) is detourable if and
only if it is nonnull and the first arc c is in . The detour of e is the string like e but
with c replaced by 8c. (Replacement by A is deletion, which shortens the string.)

In the motivating example with the Whitestone Bridge (WS) and the Throg’s
Neck Bridge (TN), we have {WS} and 8(WS)= TN. In general there is a curious
situation when a repeated arc b is in . The first time we try to follow b we are
detoured along 8b, but thereafter we can follow b. Driving to the airport is confusing
enough without attempting to interpret the general case in terms of the motivating
example. Suffice it to say, the general case does arise in our approach for updating
path covers. The following lemma will be useful.

LEMMA 5.4. Let (, 8) be a detour scheme and let X be a flow expression for a
flow scheme (G, E). Let ’ be the set of all dewurs of detourable strings in Xe. Then
there is a reduced flow expression X’ with ’= X’, such that X’ can be constructed
from X by structural induction.

Proof. The basis for the induction is the case where X has no proper subex-
pressions. If X is an arc c in , then X’ is taken to be 8c. Otherwise X’ is taken to
be b.

To continue the induction, suppose X is Y= Z, with subexpressions Y, Z that
have been detoured by reduced flow expressions Y’, Z’. Let Ynone be the result of
b-ing out all arcs in Y, so that Ynone is either b or h. If n is., then X’ is taken to be
the result of reducing

(i) Y" Z) k.) Ynone" Z’).

If is , then X’ is taken to be the result of reducing

(ii) Y’wZ’.

506 BARRY K. ROSEN

If = is (R), then X’ is taken to be the result of reducing

(iii) [Y’.(Y(R)Z)]Z’.

In all three cases, we calculate that :’ X).
Because a copy of Z and a modified copy of Z both occur in (Y Z)’ when = is

or (R), a complex expression X can in general have a much larger detoured expression
X’. In practice, however, expressions will not be represented as strings or trees but
as acyclic list structures (also called "dags" or "collapsed trees") wherein a subex-
pression may be simultaneously the ith operand of one operator occurrence and the
/’th operand of another operator occurrence. With such sharing, the size of X’ is
bounded by a linear function of the size of X in even the worst case. Typically, the
many b and A subexpressions introduced by the construction of X’ will leave X’
smaller than X after reduction.

THEOREM 5.5. Let be a path cover for (G, E) and let no, n be nodes in G such
that no E and there is an arc from no to n in G. A reduced path cover for
(G, E w {n 1}) can be constructed from T by structural induction.

Proof. We must choose Y(nl, p) for arbitrary p in N. The flow scheme (G, Ew
{nl}) has a detour scheme ({i}, 6), where 8(i) h. The given expression X X(no, p)
from has a convenient property: the set s’ from Lemma 5.4 is precisely the set of
all paths from n to p in G. Therefore the reduced flow expression X’ provided by
the lemma may be used as Y(nl, p) in

THEOREM 5.6. Let be a path cover for (G, E) and let H be the result of adding
a new node n and some arcs, as follows. There is a set COPY of arcs out from a node
no in E, such that each arc in COPY is copied to an outarc of nl with the same target
as in G. A reduced path cover tfor (H, E w {n 1}) can be constructedfrom by structural
induction.

Proof. Because nl has no inarcs in H paths from m to p in H are the same as
paths from m to p in G whenever m # nl and p Hi. We must choose Y(m, p) when
n is one of the nodes m, p. For p n
and m n we apply Lemma 5.4. The flow scheme (H, E w {n 1}) has a detour scheme
(COPY, 6), where 6 maps each copied outarc of no to the corresponding outarc of
nl. The given expression X X(no, p) from has a convenient property: the set :’
from Lemma 5.4 is precisely the set of all paths from n to p in H. Therefore
the reduced flow expression X’ provided by the lemma may be used as Y(nl, p)
in .

To avoid maintaining E much larger than the set of nodes that could easily become
real entry nodes (if they are not already), it will be helpful to handle certain changes
with another theorem. The updating accomplished by the next theorem could be
accomplished by the previous ones, but only by treating an inconveniently large
number of nodes as entries.

THEOREM 5.7. Let be a path cover for (G, E) and let H be the result of adding
a new node nl and two arcs, asfollows. There are distinctnodes no and n2 (notnecessarily
in E), such that n2 has no outarcs in G. An arc from no to n
to nz are added in H. A reduced path cover for (H, E) can be constructed from by
using the following formal equations]:or all m in E, then reducing the expressions
Y(m, p) so defined.

(1) Y(m, p) X(m, p) if p N andp n2,

(2) Y(m, n1)= Y(m, no)" i,

(3) Y(m, n2)=X(m, n2)w[Y(m, nl).e].

LUBRICANT FOR DATA FLOW ANALYSIS 507

Proof. Because n2 has no outarcs in H, paths from m to p in H are the same as
paths from m to p in G whenever p nl and p n2. The new paths in H from m to
nl or to nz are accounted for by (2) and (3).

This theorem and Theorem 5.1 can be applied several times to yield
[7, Lemma 6.6], whose greater complexity is due partly to the simultaneous handling
of several nodes nl and partly to the intrusion of deletion. Indeed, the five theorems
in this section are so simple that the reader may wonder why they are called "theorems"
in the first place. Here the word honors utility, not difficulty. As [7, 6] and work
cited there point out, practical structured programming sometimes goes beyond the
classical control structures with escapes (like leave or return statements) and jumps
(general goto statements). It is useful to maintain accurate control flow information
despite the perturbations due to occasional escapes and jumps in an evolving large
program. Our theorems are tools for this task, and perhaps for updating tasks associated
with other path problems [8].

Consider the problem of applying a path cover algorithm that assumes IEI- 1 to
schemes with multiple entries. As in the traditional way to force IEI 1, we add a
new node no and arcs from no to the actual entries, transforming the original scheme
(G, E) to a scheme (H, {no}) with IN ,I- IN I / 1 and]Artl IA I / IEI. After finding a
path cover for the new scheme, we get one for (H, {no} E) by IEI applications of
Theorem 5.5. For rn in E and p in Na, the paths from rn to p in G are exactly the
paths from m to p in H, so this path cover is also good for the original scheme (G, E)
as soon as we discard the now superfluous expressions for paths from no or to no. It
is likely that the cost of applying a single-entry algorithm once and then applying
Theorem 5.5 several times will be less than the cost of applying the single-entry
algorithm several times, especially when "cost" includes the space occupied by acyclic
list structures. Unlike several independent applications of the single-entry algorithm,
our approach leads to shared subexpressions among expressions for different entries.
Unlike the folkloric addition of no to G, our approach does not require that the tables
associated with each data flow problem be augmented with special entry information
at no and special local information along each outarc of no. In compilers and other
systems that use data flow analysis, such augmentation is undesirable because it
introduces several opportunities for error in an enterprise that already has more than
enough of them. We only augment G while constructing the path cover; the artificial
node and its outarcs have disappeared by the time local and entry information needs
to be manipulated.

6. Finite approximations. Lemma 2.8 illustrates the technical convenience of
working with all 3-way contexts rather than just with rapid closed contexts. Without
loss of generality, we can sometimes assume that @ is isotone. Perhaps, however, the
flow scheme (G, E) has a flow cover f relative to the class of all rapid closed contexts
that is not a flow cover relative to the class of all 3-way contexts. Though inappropriate
for the canonical context (which is 3-way but not rapid), may be adequate for all
practical purposes and may be more efficient to use than any of the flow covers general
enough to cope with any 3-way context. We introduced 3-way contexts for theoretical
convenience, not to model a practical need. Have we been too clever?

This section provides a strong negative answer. Covering relative to the canonical
context is no harder than covering relative to a certain countably infinite set of rapid
closed contexts, each of which has a finite lattice. Any flow cover general enough for
all members of this modest set of rapid closed contexts is general enough for all 3-way
contexts. Intuitively, the rth context in our set corresponds to symbolic execution with
the understanding that only paths of length at most r are to be traced. The symbolic

508 BARRY K. ROSEN

execution system knows about longer paths, but it cannot distinguish one from another.
The canonical context (=,) considers sets of strings of arcs. So does the rth context
((r), /(r)), but it can only distinguish between strings of length at most r. Funda-
mentally, the reason that the family {(=r, /) r N} is equivalent to (=,) is quite
simple. A string is a path if and only if all its prefixes are paths, and all its prefixes
have length at most r for r the length of e. Questions about e may depend on questions
about shorter strings but not on questions about longer strings. The technical working
out of this insight is somewhat subtle, but readers familiar with projection pairs and
limits from denotational semantics will recognize old friends.

For each r in N let a) be the set of all strings in A that have length at most
(r)r. Let to be the set of all strings in A that have length greater than r. Finally, let

(r)(6.1.1) ,(r)

(r)Thus = is a finite subset of =, with 2]a members. Any set 7 in can bc
approximated by a set H(r)/in =r that knows the short paths in ’7 and also whether
7 contains long paths:

(r) (r)).(6.1.2) 1-I(r)/ (if n --a then /else n to

LEMMA 6.2. Let n be in . Then n f3 {IIr)n r N}.
Proof. In (6.1.2) we have / I-I(r)/ for all r. Conversely, consider any c in A

(r))such that c s I-I<r)’r/for all r. For r large enough to have c s a <r) we have (c s to and
conclude that cs /in (6.1.2).

Because ,(r) the Kleene operations are defined on), with the understand-
ing that. and * will often take arguments from r) to values outside <r). The map
Hr) nearly commutes with the Kleene operations"

(6.3.1) H(r)(:. /) I’[(r)(1-I(r):. 1-I(r)/),
(6.3.2) H(r)(s /)= H(r)s H(r)/,
(6.3.3) 1-I<r)(:*) II(r)((1-I(r):)*),
The map II<r) is also isotone when (r) is made into a complete lattice in the obvious
way, with s -<_ 7 if and only if /

For an algebraic context we need isotone maps on(as well as the lattice itself.
The construction of A/from (3.7) can be adapted to (r by using 1-I(r). For each in

,9(r) ,(r)(r) there is an isotone map A(r)T -’ defined by

(6.4.1) (A(r)/)s= II(r)[(A/)] for all

This map is strongly distributive and has (A(r)/)b b (A(r)b)s for all s, /in (r). Let

(6.4.2) d(r) {A(r)’r/[7 ,(r)}.
Then d//(r) includes the identity map on (’r)as well as the constant map with value b.
As in 3, we find that

(6.5.1) A(r)A(r)l7 A(r)I-I(r)(’17),

(6.5.2) A(r)T A A(r) A(r)(T k_) ’),

(6.5.3) A(r) @ A(r)/--- A(r)II(r)(/*" ’).

In short, ((r), //()) is a strongly distributive 3-way context with top-preserving maps.
This is the r-bounded canonical context for (G, E).

LUBRICANT FOR DATA FLOW ANALYSIS 509

Let fir).A --> //(r) have

(6.6.1) f(r) A(r)ii(r){(C)} for each arc c,

while each m in E determines E)" E--> ,,(r) with

(6.6.2) E)n (if n m then {A } else b).

Linking (G, E) and (,(r), ///(r)) with the local and entry information (f(r), E)) specifies
a data flow analysis problem, the r-bounded canonical problem with entry at m.

LEMMA 6.7. Let)"NG’->.’(r) be the maximum solution to the r-bounded
(r)canonical problem with entry at m in E. For each node p, o)p a is the set of all

(r)paths of length at most r from m to p in G, while o
_
)p if and only if there is at

least one longer path from m to p in G. Moreover, this is the only good solution to the
problem.

Proof. This is similar to the proof of Lemma 3.9, but now the calculation of
is not so direct. Consider any path c= (c1"" Cs) from m to p. By (2.1) and (6.6.1)
and (6.5.1),

(r)(f(r)c){h } [A(r)I-I(r){c}]{/ } 1-[(r){c} if s <_- r then {c} else 0

Because / in Ar) is LI, this implies that 5)p c a ir) is the set of all paths of length
(r)at most r from m to p while 0
_
)p if and only if there is at least one longer path

from m to p.
LEMMA 6.8. LetX be a flow expression. For all r in N let (r) be IX" f(r)]{A }. Then

Proof, By Lemma 6.2, it will suffice to show that r/= Xe satisfies 1-[<r)r/= :<r) for
all r. From (3.10) and (6.4.1) it follows that II(r)Tq--(A(r)Tq){A}, SO it will suffice to
show that A(r)’r/= IX ..f(r)]. But this follows from (3.3) and (6.5) by structural induction
on X (with (6.6.1) starting the induction).

THEOREM 6.9. Let YT assign a reduced]tow expression X(m, p) to each pair (m, p)
in E N. If YT is a]tow cover relative to the r-bounded canonical problem for each
r N, then YT is a flow cover.

Proof. By Theorem 4.4, it will suffice to show that all (m, p) have X(m, p)e d,p,
where 5,p is the set of all paths c’m--> p. Consider :<r) from Lemma 6.8 for X
X(m, p). By hypothesis and Lemma 6.7, we already have <r)=)p. By Lemma 6.8,

(6.10)

Lemma 6.7 also relates)p to mP by implying that any arc string c satisfies

(Vr N)(c)p) iff c mP.
By (6.10), this implies Xe o,p, l-I

7. Historical remarks. The notion that a path cover might assist in solving data
flow problems has been in the folklore for years. Early attempts to exploit regular
expressions were unsatisfactory because they had no discernable advantages over
known algorithms. The folklore is subsumed under rigorous formulations like
[3, Thm. 3.0] and [8, Thm. 5]. Standing alone, the folkloric results suffer from having
too few computational complexity bounds and too many presuppositions. Thanks to
other results in [3], [7], [8], [9] and the present paper, the folklore becomes more
interesting. Good complexity bounds are obtained for low-level analysis [9] and for
syntax-directed high-level analysis that nevertheless copes with arbitrary goto state-
ments [7]. Presuppositions like idempotence or strong distributivity, though common
in folklore, have been found to be unnecessary.

510 BARRY K. ROSEN

Even problems with nondistributive contexts can be accurately solved by finding
a flow cover for (G, E) and then evaluating the formal expressions in when local
information becomes available. This was first shown in [7], which introduced the flow
cover concept. When earlier work like [4] is read with flow covers in mind, the same
conclusion can be reached for very different ways of choosing . Written before there
had been a satisfactory unification of data flow analysis with other path problems, [7]
was very cautious with flow expressions. Properties of regular expressions were
deliberately deemphasized by using formal o, ^, and @ operators rather than the
Kleene operators in building the expressions. In nondistributive algebraic contexts it
is possible to have

(Vo u,) ^ (Vo u,) Vo(U, ^ u),
so it was prudent to avoid a syntax wherein the temptation to use rules like

Y Z) Y: Z) y c2 Y:) z
would be irresistable. Thanks to Theorem 4.4, we now know that the temptation need
not be resisted. The more intuitive syntax of regular expressions is now preferable
and has been used here, but with (R) added to retain an option for seeking very sharp
information [7, p. 190].

The "(1) implies (2)" part of Theorem 4.4 says that every reduced path cover is
a flow C_over, a result that was first obtained in [8, Thm. 6] under the assumptions (a)
that each node is reachable from the (unique) entry node m; (b) that Em _t_L (the
bottom of the complete lattice L); (c) that @ has the form V@U= VoaU for a
unary operator a (whose value at U is written U in [8]). Though popular in the
literature, assumptions (a) and (b) fail in some applications. For example, one of the
criteria for variable propagation (criterion (c) on p. 915 of [2]) is readily expressed
as a data flow problem where rn is not th actual program entry point and (a) fails.
On the other hand, (b) fails in interprocedural analysis. Of course there are technical
tricks by which (a) and (b) can be forced to hold in any situation, but the tricks require
more effort than they are worth. At best, they obfuscate applications wherein (a) and
(b) do not naturally hold. At worst, they introduce errors when someone uses an
incorrect trick or a trick incompatible with the one assumed by a coworker. It is really
simpler to refrain from assuming (a) and (b) until they are needed, which is seldom.
No need arises in [8]. The assumption (c) simplifies the calculations slightly, but our
use of binary rather than unary @ sometimes yields sharper information [7, p. 190].
The practical significance of binary @ is an open question, but it is prudent for a
general theory to err on the side of allowing more sharpness than is known to be
worthwhile. Binary @ is much more difficult to motivate than unary @, but the technical
difficulties are slight.

Casadei, Righi and Teolis [3, Thm. 3.1] independently showed that every reduced
path cover is a flow cover, under assumptions like (a) and (b). They also assumed that
certain infinite meets in Mall can be computed exactly within M. Their proof was quite
unlike ours, with one large induction on the number of nodes in G where we have
used several small inductions on the structure of regular expressions. Here and in [8],
the expressions are forced by reduction rules to have properties like Lemma 3.4(1).
The smaller set of rules in [8] lacks (2.6.1) and therefore is enough for the immediate
task but not for the neat characterization in Lemma 2.7. Here and in [8], subexpressions
of expressions in an arbitrary reduced path cover are shown to have source/target
pairs by downward induction, and then domination of fixpoints can be shown by
upward induction. The key ideas in our proof are thus the same as for [8, Thm. 6].

LUBRICANT FOR DATA FLOW ANALYSIS 511

The two papers complement each other. Thanks to the reductions of other path
problems to the canonical path problem by [8], our 5 has some hope of being
applicable beyond the original motivating application to data flow analysis of evolving
large programs. Thanks to our 6 (and whatever similar results can be obtained for
other path problems), solving the canonical path problem can with some justice be
considered necessary (as well as sufficient) for solving a variety of practical problems
in a uniform way.

We close this section by comparing the conditions (2.3) on @ in a 3-way context
with the conditions on @ in a rapid context [7, Def. 1.6]. The upper bound (2.3.2) is
the same in both cases, but the lower bound for rapidity is stronger than (2.3.3):

(7.1.1) VoA {(U ^ 1L)rlrN} <- V@ U.

Inspection of the proofs in [7] reveals that the weaker condition suffices. Indeed, each
use of (7.1.1) in [7] is like a use of (2.3.3) accompanied by a proof that (7.1.1) implies
(2.3.3). Easier to verify and easier to use, the weaker condition is a better choice all
around. When @ is restricted to have the form V@ U= VoaU for some unary
a :MM, condition (2.3.3) is equivalent to the condition used in [8, 6] for the
purposes served by (2.3.3) here.

Rapid contexts are also required to have a constant t such that

(7.1.2) V@ U can be computed from U and V in t steps,

where and ^ operations on maps are counted as single steps. This seems to be true
in practice, but there is no point in assuming it before one needs to state time bounds
that do not treat evaluations of @ as units. The only nonhistorical interest in the
strong conditions (7.1) lies in the possibility that some flow scheme might have a flow
cover relative to the class of all rapid closed contexts but unable to cope with some
of the 3-way contexts that violate (7.1). Theorem 6.9 shows that this cannot happen.

Acknowledgments. D. Kozen read an early draft of this paper and proposed
many improvements. K. W. Kennedy called the author’s attention to [8], [9]. The
resulting exchange of letters with R. E. Tarjan led to improvements in [8] and major
improvements in this paper. J. D. Ullman and the referees also provided helpful
comments.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. L. CARTER, A case study of a new code generating technique for compilers, Comm. ACM, 20 (1977),
pp. 914-920.

[3] G. CASADEI, R. RIGHI AND A. G. B. TEOLIS, An algebraic view of data flow analysis, manuscript,
April 1980.

[4] S. L. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analysis,
J. Assoc. Comput. Mach., 23 (1976), pp. 172-202.

[5] M. S. HECHT AND J. D. ULLMAN, Characterizations of reducible flow graphs, J. Assoc. Comput.
Mach., 21 (1974), pp. 367-375.

[6] J. B. KAM AND J. D. ULLMAN, Monotone data flow analysis frameworks, Acta Inform., 7 (1977),
pp. 305-317.

[7] B. K. ROSEN, Monoids for rapid data flow analysis, this Journal, 9 (1980), pp. 159-196.
[8] R. E. TARJAN, A unified approach to path problems, J. Assoc. Comput. Mach., 28 (1981), pp. 577-593.
[9],Fast algorithms for solving path problems, J. Assoc. Comput. Mach., 28 (1981), pp. 594-614.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1103-0009 $01.00/0

COMPLEXITY RESULTS FOR SCHEDULING TASKS IN FIXED
INTERVALS ON TWO TYPES OF MACHINES*

K. NAKAJIMA,t S. L. HAKIMI,, AND J. K. LENSTRA

Abstract. Suppose that n independent tasks are to be scheduled without preemption on an unlimited
number of parallel machines of two types: inexpensive slow machines and expensive fast machines. Each
task requires a given processing time on a slow machine or a given smaller processing time on a fast
machine. We make two different feasibility assumptions: (a) each task has a specified processing interval,
the length of which is equal to the processing time on a slow machine; (b) each task has a specified starting
time. For either problem type, we wish to find a feasible schedule of minimum total machine cost. It is
shown that both problems are NP-hard in the strong sense. These results are complemented by polynomial
algorithms for some special cases.

Key words, parallel machines, tasks, release dates, deadlines, computational complexity, NP-hardness,
polynomial algorithm

1. Introduction. We begin by considering the following problem. Suppose there
are n tasks T, T, and an unlimited number of identical parallel machines. Each
task T. requires a given processing time p and is to be executed without interruption
between a given release date r and a given deadline d r + pi. The tasks are independent
in the sense that there are no precedence constraints between them. Each machine
can execute any task, but no more than one at a time. The problem is to find the
minimum number of machines needed to execute all tasks as well as a corresponding
schedule of the tasks on the machines.

This problem is known as the "fixed job schedule problem" [6] and as the "channel
assignment problem" [8], [9], [10]. It has applications in such diverse areas as vehicle
scheduling [2], [15], machine scheduling [6, [8], and computer wiring [8], [9], [10].
As a special case of Dilworth’s chain decomposition problem, it is solvable in O(n 2)
time by the staircase rule of Ford and Fulkerson [3, p. 65] and by the step-function
method of Gertsbakh and Stern [6]. Hashimoto and Stevens [9], [10] presented some
interesting graph theoretical approaches to the problem and proposed an O(n2.)
algorithm, for which Kernighan, Schweikert and Persky [12] gave an O(n log n)
implementation. Recently, Gupta, Lee and Leung [8] independently developed a
different O(n log n) algorithm and also showed that any solution method for the
problem requires f(n log n) time.

In this paper we will consider a natural generalization of this problem which has
potential applications in the scheduling areas mentioned above. Again, there are n
independent tasks T1," ’, Tn, but there are two types of machines: slow machines
of cost C and fast machines of cost C > C. Each task T. requires a processing time
pi on a slow machine or q(<p) on a fast machine and is to be executed without
interruption between its release date r and its deadline d =r +p. It is assumed that
all numerical problem data are integers. In a feasible schedule, the tasks assigned

* Received by the editors July 30, 1979, and in final revised form September 9, 1981. This research
was supported in part by the National Science Foundation under grant ENG79-09724.

f Computer Science Division, Department of Electrical Engineering, Texas Tech University, Lubbock,
Texas 79409. Formerly at Department of Electrical Engineering and Computer Science, Northwestern
University, Evanston, Illinois 60201.

t Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
Illinois 60201.

Mathematisch Centrum, Amsterdam, the Netherlands.

512

SCHEDULING TASKS IN FIXED INTERVALS 513

to slow machines have to start at their release dates in order to meet their dead-
lines. For the tasks T assigned to fast machines, we make two different feasibility
assumptions:

(a) VST (variable starting times): T. may start at any time in the inverval [r., dj qj];
(b) FST (fixed starting times): T. has to start at time r.

A schedule using m slow machine and mr fast machines has total cost rnSC + rnrC.
For either problem type, we wish to find a feasible schedule of minimum total cost.

In 2 we show that the VST problem is NP-hard [1], [4], [5], [11], even if all
release dates are equal. In 3 we extend our techniques to prove that the FST problem
is NP-hard in the case of arbitrary release dates; the case of equal release dates is
trivially solvable in O(n) time. The NP-hardness results are "strong" [4], [5] in the
sense that they hold even with respect to a unary encoding of the data; this implies
that there exists no pseudopolynomial algorithm for these problems unless f9 W.

In 4 and 5 we consider the special case that q 1,] 1,..., n. We present
O(n log n) algorithms for the VST problem with equal release dates and for the FST
problem with arbitrary release dates, respectively.

TABLE
Summary of complexity results

p. arbitrary

q. arbitrary

r. arbitrary

NP-hard (2)

Open

VST

rj equal

NP-hard (2)

O(n log n) (4)

rj arbitrary

NP-hard

O(n log n)

FST

(3) O(n)

(5) O(n)

r. equal

(3)

(3)

These results represent an almost complete complexity classification of the
problem class under consideration, as demonstrated by Table 1.

2. NP-hardness of the VST problem.
THEOREM 1. The VST problem is NP-hard in the strong sense, even if all release

dates are equal.
Our proof holds for the case that Cr/C 3 and pffq 3,] 1,. , n. Theorem

1 dominates a previous result, stating that the VST problem is NP-hard in the strong
sense if the release dates are arbitrary, Cr/C is an arbitrary constant between 1 and
7, and pffqi 4, j 1,..., n [17].

Proof of Theorem 1. We have to show that a problem which is known to be
NP-complete in the strong sense is (pseudopolynomially) reducible to the VST
problem. Our starting point will be the following problem [5, p. 224, [SP15]]:

3-PARTITION: Given a set $ {1,..., 3t} and positive integers al,’ ’, a3t, b
with 4X-b < a < 1/2b,/" S, andsa tb, does there exist a partition of S into disjoint
3-element subsets Sl, , St such that Y’4s, ai b, 1, , t?

Given any instance of 3-PARTITION, we construct, in (pseudo-) polynomial
time, a corresponding instance of the VST problem with equal release dates as follows"

1. The cost coefficients are defined by C 1, Cr 3.
2. There are 4t tasks:

a-tasks T.,j S, with r 0, p 6a, q 2a,
b-tasks T/b, {1,..., t}, with r/b 0, p/b 3b, q/b b.

514 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

We claim that 3-PARTITION has a solution if and only if there exists a feasible
schedule with total cost at most C* 3t.

Suppose that 3-PARTITION has a solution {$1, ’, St}. It is possible to construct
a feasible schedule for all tasks on fast machines M(,..., M,r as follows (cf. Fig.
1)" for each e {1,. , t}, machine M processes the three tasks T.,] Si, in non’de-
creasing order of q value in the interval [0, 2b], and the task Tb in [2b, 3b]; note
that the starting time of each task falls within the required interval. The total cost of
this schedule is equal to tCr= C*.

Conversely, suppose that there exists a feasible schedule with total cost at most
C*= 3t. No slow machine can process more than one task. No fast machine can
process more than four tasks, since the completion time of the fourth task will be
larger than 2b and the starting time of a fifth task should be no larger than 2b. Let
there be m slow machines and mr fast machines. We have, by the hypothesis,
m + 3mr <-3t and, by the above arguments, m >-4t-4mr. The first inequality implies
that mr -<_ and the two together imply that mr >_- t. We conclude that mr t. It follows
that there are no slow machines and fast machines, each processing four tasks.

Instance of 3-PARTITION"

,t 3; b 25;] 2 3 4 5 6 7 8 9

t, 7 7 7 8 8 8 9 10 11

Solution’ {{1,2,9}, {3,4,8},{5,6,7}}

Corresponding VST schedule on t fast machines"

FXG. 1. Illustration o[the tranfformation in Theorem 1.

None of these fast machines can process more than one b-task, since otherwise
the completion time of the fourth task would be larger than 3b. It follows that the
ith fast machine processes exactly one b-task and three a-tasks T,/" E $i, withs, q’ -<
2b. Since Y.s q’ 2tb, we have Y.s, q 2b, 1,. ., t. The collection {$1," , St}
constitutes a solution to 3-PARTITION. F1

3. NP-hardness of the FST problem.
THEOREM 2. The FST problem is NP-hard in the strong sense.
THEOREM 3. The FSTproblem is solvable in O(n time ifall release dates are equal.
Our NP-hardness proof holds for the case that Cr/C (t + 2)/(t + 1) and pi/qi

z,] 1,..., n, where and z are input variables. Theorem 2 is. still true if Cr/C
is an arbitrary constant between 2 and 3 and p/q 2,] 1,. ., n [16]; the proof of
this further refinement is quite involved. Theorem 3 shows that the NP-hardness result
cannot be extended to the case of equal release dates, unless

SCHEDULING TASKS IN FIXED INTERVALS 515

Proof of Theorem 2. We will start from the following strongly NP-complete
problem [5, p. 224, [SP17]]:

NUMERICALMATCHINGWITHTARGETSUMS. Given a set $ {1, , t}
and positive integers al,"’, a,, bl,... ,bt, c,"’,ct with Yis(ai+bi)=Y.gsCi, do
there exist permutations a and/3 of $ such that a(i) + b,) ci, S?

We may assume without loss of generality that a <... < at, b <’" < bt and
ca < < ct. Further, we will assume that for any instance of this problem there exists
a positive integer z such that

z <aa < <at <2z <ba < <bt <3z <ca < <ct <5z.

(If this does not hold, then define z max {at + 1, bt + 1} and set ag ag + z, bi be +
2z, cg cg + 3z, S.) We will use the notation $’= {1,. , t- 1}.

Given any instance of NUMERICAL MATCHING WITH TARGET SUMS we
construct, in (pseudo-) polynomial time, a corresponding instance of the FST problem
as follows:

1. The cost coefficients are defined by C + 1, Cr + 2.
2. There are 2tz+ tasks:

a-tasks T, $,

b-tasks Tg, h S, S,

c-tasks TT, S,

d-tasks Ti, h S’, 6 S,

with r O,

with ri ah,

with r ci,

with ri 2z + zbi,

P zai, q ai,

pbhi zbi, qi bi,

Z
3 2pi=3 q=3z,

d 3 d 2
phi Z qhi Z

We claim that NUMERICAL MATCHING WITH TARGET SUMS has a solution
if and only if there exists a feasible schedule with total cost at most C* 3 + z + t.

Suppose that the matching problem has a solution (a,/3). It is possible to construct
a feasible schedule for all tasks on fast machines M{, $, and z- slow machines
M,g, h e S’, e S, as follows (cf. Fig. 2)" for each e $, machine M{ processes the tasks

b 2]T(g), T(i)(i), Ti in the intervals [0, a(i)], [a(i), a(i) + bt3(/)], [ci, ci + 3z (note that
a(i) + b,(i) ci), and each of the t- 1 machines MShi, h S’, processes one of the t- 1
tasks T,i, h S-{a(-(i))}, in [ah, ah + zbi] and one of the t-1 tasks T’i, h S’, in
[2z + zbi, 2z + zbi + z 3] (note that ah < 2Z). The total cost of this schedule is equal to
tCf + (t2- t)C C*.

Conversely, suppose that there exists a feasible schedule with total cost at most
C*. We make the following propositions.

PROPOSITION 1. Two a-tasks are not assigned to the same machine.
Proof. Each a-task is processed during the interval [0, z].
PROPOSITION 2. Two b-tasks are not assigned to the same machine.
Proof. Each b-task is processed during the interval [2z, 3z].
PROPOSITION 3. Two c- or d-tasks are not assigned to the same machine.
Proof. Each c- or d-task is processed during the interval [32"2 + z, 3z 2 + 32’].
PROPOSITION 4. An a-task and a b-task are not assigned to the same slow machine.
Proof. On a slow machine, each a- or b-task is processed during the interval

[2z-l,z+z].
PROPOSITION 5. A b-task and a c-task are not assigned to the same slow machine.
Proof. On a slow machine, each b- or c-task is processed during the interval

[5z 1, 2z + 2z + 1].
All tasks are assigned to at most machines, since (tz + 1)C > C*. Propositions

1, 2 and 3 imply that there are exactly 2 machines, each processing at most one
a-task, exactly one b-task and exactly one c- or d-task. These machines include at

516 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

Instance of NUMERICAL MACHING WITH TARGET SUMS"

t 3; z 4; i

Solution-

2 3

5 6 7

91011

14 16 18

2 3

2 3

Corresponding FST schedule on t fast machines and Z2_Z slow machines-

0 5 14

0 6 16

0 7

6

7

5

5

62

c’48T

64

c’48T2
18 66

42 44 108

43 44

45 48

47 48

%’ II
49 52

50 52

T11 "64

T2 "64

-]
108

T22 "64

112

1 2

116

116

FIG. 2. Illustration of the transformation in Theorem 2.

most fast ones, since (t2- t-1)C + (t + 1)cf> C*. Propositions 4 and 5 imply that
there are exactly fast machines, each processing one a-task, one b-task and one
c-task; hence, there are exactly 2- slow machines, each processing one b-task and
one d-task.

We denote the fast machines by M,(, E S, and the t=-t slow machines by
MShi, h e S’, e S. It may be assumed that T7 is assigned to M(, e S, and Thd to
Mhi, h S’, S. There exists a permutation a of S such that T<i) is assigned to
Mfi, isS.

Let us define the size of Taxi as bi, its processing time on a fast machine. The size
of a b-task on M/f is at most ci-a(i), and the size of a b-task on Mhi is at most
[(2z + zbi-a)/zJ bi. The sum of these upper bounds over all machines is equal to
s(c- a(i)) +s’,s b ,s b, which is the total size of all b-tasks. It follows
that all these upper bounds are actually achieved. More explicitly, for each s S, there
exists an index/3(i) S such that T(i),<i) is assigned to M,f., and there exists an index
y(i)e S such that the t-1 tasks Tbhi, h S-{y(i)}, are assigned to the t-1 machines

SCHEDULING TASKS IN FIXED INTERVALS 517

Mhi, h S’, while bTv(i)g is assigned to a fast machine. This implies that the functions
/3 and 3’ are permutations of S with y(/3(i))= a(i), S.

Since Tb(g)t(g leaves no idle time between T(i and T on M, we have
a(i + bt(g ci, S. The pair (a,/3) constitutes a solution to the matching problem.

Proof ol Theorem 3. In the FST problem with equal release dates, each task has
to start at the same time and therefore each machine can process at most one task.
It follows that an optimal schedule uses n slow machines and has total cost nCs. It
is constructed in O(n) time.

4. A well-solvable case of the VST problem.
THEOREM 4. In the case that qj 1, 1,. , n, the VST problem is solvable in

O(n log n) time if all release dates are equal.
The complexity of the VST problem with all qj 1 and arbitrary release dates

remains unresolved (cf. Table 1).
Proof of Theorem 4. In the VST problem with equal release dates, a slow machine

can process at most one task but a fast machine may be able to process more than one.
Let us assume that there are m fast machines, with 0 _<-m <= n, and let X, denote

the maximum number out of the n unit-time tasks that can be completed in time on
these machines. A schedule using m fast machines has to use n-X,, slow machines;
its total cost is equal to C, mC +(n-X,)C. It follows that an optimal schedule
has total cost mino__<,,_<_ {C.,}.

For each given value of m, the number X,, and a corresponding schedule on rh
fast machines can be found by an O(n log n) algorithm from Lawler [14], [7, p. 295].
Straightforward application of this algorithm for rn 0,.. , n would yield an overall
optimal schedule in O(n 2 log n) time.

However, all Xo, ’, Xn together can be determined by an O(n log n) algorithm,
which constructs a schedule on n fast machines with the property that, for any value
of m, the partial schedule on the first rn machines is an optimal schedule on m machines
[13]. This algorithm considers the tasks in order of nondecreasing deadlines and
assigns each task to the machine with lowest index on which it can be completed in
time. A formal statement is as follows.

VST ALGORITHM (only fast machines, all qi 1, all ri O)
Initialize. Reorder the tasks in such a way that d -< =< d,; set do-. Intro-

duce an array x of size n and set x,, 0, rn 1,. ., n Ix,, tasks have
been assigned to machine Mr,,,].
Introduce an array/x of size n [T will be assigned to Mt,]. Set rn 1.

Iterate. for j 1 to n do
begin

set m -if di_l <di then 1 else if x. < d. then m else m + 1;
set tzi m, xm xm + 1

end.
Finalize. Set Xo*- 0; for m 1 to n do set X, X,_ + x,.

It can be shown that X, is the maximum number of tasks that can be completed in
time on m fast machines, for m =0,..., n [13]. The algorithm requires O(n log n)
time to order the tasks, and O(n) time to construct the schedule and to determine
the values Xo,’",X,. It follows that an overall optimal schedule is obtained in
O(n log n) time. []

Note. Since x,, _->x,+, rn 1,..., n-l,X, is a concave function of m, so that
C, is convex. A similar observation will be exploited in the next section.

518 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

5. A well-solvable case of the FST problem.
THEOREM 5. In the case that qi 1,/" 1,. , n, the FST problem is solvable in

O(n log n) time.
The assumption that all q 1 is too strong" an analysis of the proof below shows

that our algorithm is applicable in the more general situation that the q/are bounded
from above by the minimum length of the interval between two different adjacent
release dates. Although this restriction still limits the practical value of our result, we
feel that the insight gained might be useful in the design of approximation algorithms
for the general FST problem.

Proof of Theorem 5. The development of our algorithm will proceed along the
same lines as in the previous section. First, we will assume that there are rn fast
machines and we will determine an optimal set of tasks to be scheduled on these
machines. Next, we will compute the minimum number of slow machines needed to
execute the remaining tasks. Finally, we will describe an efficient method to find the
optimal value of m.

We start by representing the problem data in a convenient way. Suppose that
the release dates assume k different values 1,’", r-k with 1<’’" <k. For
] 1,..., k, there are n tasks T1/,.. , T, with release dates r0. rnji ?i and
deadlines dl>-...>-d,j. We have n ==1 n and define n’=max<=<__k{n}. This
representation can be obtained by sorting the release dates and the deadlines in
O(n log n) time and applying a bucket sort [1] to order the tasks with the same release
date according to deadlines in O(n) time.

Let us now assume that there are rn fast machines M(,. , M, with 0 _-< rn -< n’.
For f= 1,..., k, each of these machines can process exactly one of the tasks
T,..., T. It is obviously optimal to assign Tit to M for j 1,..., k and i=
1,..., min {n, m}, so that the remaining tasks will be as short as possible. Let -,
denote the set of tasks that are not assigned to the rn fast machines, where ’o
{T1, , T,} and ,, , and let lm denote the minimum number of slow machines
needed to execute these tasks. A schedule using rn fast machines has total cost
Cr mCf+ I,Cs. It follows that an optimal schedule uses m* fast machines, where
Cm. mino=<, =<,, {C,, }.

For each given value of m, the number l,, and a corresponding schedule of the
tasks in ff, on Im slow machines can be found in O(n log n) time. This problem has
already been discussed in the first two paragraphs of 1. The following algorithm is
a slight modification of the channel assignment algorithm of Gupta, Lee and Leung
[8]; for simplicity, it is stated for the case that m 0.

FST ALGORITHM (only slow machines)
Initialize. Reorder the tasks in such a way that r <- <= r,; determine a permuta-

tion 8 of {1,..., n} such that d8(1)=< <- ds(,). Introduce a stack $ of
size n and push machine indices 1,..., n onto $ in such a way that rn
is on top of rn + 1, rn 1,. ., n 1. Introduce an array h of size n [T
will be assigned to M Set/" 1 1A

Ierate. while j -_ n do
if r <
then begin set A <-- top element of S; pop S; set <--] + 1 end
else begin pushA onto S; set <-- + 1 end.

Finalize. Set lo <-- maxi_<, {Ai}.

It can be shown that lo is the minimum number of slow machines needed to
execute all tasks. The algorithm requires O(n log n) time to order the tasks, and O(n)

SCHEDULING TASKS IN FIXED INTERVALS 519

time to construct the schedule and to compute the value lo. Since the release dates
and the deadlines have already been sorted, each application of this algorithm requires
only O(n) time. Straightforward computation of l, for m =0,..., n’ would yield an
overall optimal schedule in O(n log n + n’n) O(n 2) time.

However, it will be shown below that C, is a convex function of m, and this
property can be exploited to arrive at an O(n log n) algorithm. The convexity of C,
implies that, if C, < C,/x, then m* {0, , m}, and else m* {m + 1,..., n’}. Thus,
m* can be found by a bisection search as follows" for m [n 1, compute C, and
C,/1, reduce the domain of m* by a factor of two by eliminating either [0, m] or
[m+ 1, n’], and repeat the procedure on the remaining interval. The optimal value of
m is found in at most [log2 (n’+ 1)] iterations.

The entire algorithm requires O(n log n) time to sort the release dates and the
deadlines and, for each of O(log n’) values of m, O(n) time to compute C,. It follows
that an overall optimal schedule is obtained in O(n log n) time.

It remains to be shown that C, is a convex function of m. Since Cm mC + l,Cs,
we have to prove that l, is convex, or equivalently that

(1) l,_l-l,>-l,-l,+l, re=l,..., n’-l.

We define the degree of overlap of the set
such that [rj, dj). Let X,(t) denote the degree of overlap of ff, at and x,_l(t) the
degree of overlap of T,-I T, at t, i.e., X,-l(t) x,_l(t)-X,(t). It is known [9] that

(2) l, maxt {X,,(t)}, m 0,..., n’.

Since the number of tasks T ,-1- ’, and the lengths of their intervals [r, d) do
not increase as m increases, it is also true that

(3) Xm-l(t) >--X,(t) all t, m 0,..., n’- 1.

Defining t such thatXm(tm) maxt {Xm(t)}, m 0," ", n’, and applying (2), we rewrite
(1) as

X,-l(t,-l)-X,(t,) >-_X,(t,)-X,+(t,/x).

We have for the left-hand side that

Xm-l(tm-1)-Xm(tm) X,-l(t,-l)-X,-l(tm) + Xm-l(tm) >- x,-l(t,).

Similarly, we have for the right-hand side that

X,(t,)--Xm+l(t,+l) X,+l(t,)+ x,(t,)-X,+l(t,/l) <-_x,(t,).

Application of (3) for t, now implies the validity of (1). This completes the proof
of Theorem 5.

Note. By means ot ingenious counting techniques, the above algorithm for com-
puting a single value l, can be extended to an O(n log n) algorithm for computing
all lo,’’’, ln, together [13]; when the data have already been sorted, it requires only
O(n) time, as before. A similar result has been used in the previous section.

Acknowledgment. The authors gratefully acknowledge constructive suggestions
by B. J. Lageweg.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

520 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

[2] G. B. DANTZIG AND D. R. FULKERSON, Minimizing the number of tankers to meet a fixed schedule,
Naval Res. Logist. Quart., 1 (1954), pp. 217-222.

[3] L. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962

[4] M. R. GAREY AND D. S. JOHNSON, "Strong" NP-completeness results: motivation, examples and
implications, J. Assoc. Comput. Mach., 25 (1978), pp. 499-508.

[5], Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San
Francisco, 1979.

[6] I. GERTSBAKH AND H. I. STERN, Minimal resources for fixed and variable job schedules, Oper. Res.,
26 (1978), pp. 68-85.

[7] R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA AND A. H. G. RINNOOY KAN, Optimization and
approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math., 5 (1979),
287-326.

[8] U. I. GUPTA, D. T. LEE AND J. Y.-T. LEUNG, An optimal solution for the channel-assignment
problem, IEEE Trans. Comput., C-28 (1979), pp. 807-810.

[9] A. HASHIMOTO AND J. E. STEVENS, Path cover of acyclic graphs, ILLIAC IV, Document 239,
University of Illinois, Urbana, IL, 1970.

[10] ., Wire routing by optimizing channel assignment within large apertures, in Proc. 8th Design
Automation Workshop (1971), pp. 155-169.

[11] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[12] B. W. KERNIGHAN, D. G. SCHWEIKERT AND G. PERSKY, An optimum channel-routing algorithm
for poIycell layouts of integrated circuits, in Proc. 10th Design Automation Workshop, 1973,
pp. 50-59.

[13] B. J. LAGEWEG, Personal communication, 1980.
[14] E. L. LAWLER, Sequencing to minimize the weighted number of tardy jobs, RAIRO Inform., 10 (1976),

5 Suppl., pp. 27-33.
[15] J. K. LENSTRA AND A. H. G. RINNOOY KAN, Complexity of vehicle routing and scheduling problems,

Networks, 11 (1981), pp. 221-227.
[16] K. NAKAJIMA, On nonpreemptive multiprocessor scheduling with discrete starting times, Ph.D. disserta-

tion, Department of Electrical Engineering a,nd Computer Science, Northwestern University,
Evanston, IL, 1980.

[17] K. NAKAJIMA AND S. L. HAKIMI, On the NP-completeness of a real-time scheduling problem with
two types of machines, in Proc. 17th Allerton Conf. Communication, Control, and Computing,
University of Illinois, Urbana, IL, 1979, pp. 652-658.

SIAM J. COMPUT.
Vol.11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0010 $01.00/0

COMPLETIONS OF PARTIALLY ORDERED SETS*

BERNHARD BANASCHEWSKI" AND EVELYN NELSON"

Abstract. We show, for any subset system Z (as defined in Wright, Wagner, and Thatcher, T.C.S. 7
(1978), pp. 57-77) and any order preserving map f:QP of posets, the existence of a universal map
ur :P Pr where Pr is Z-complete and urf is Z-continuous. This generalizes to arbitrary subset systems the
result of Markowsky (T.C.S. 4 (1977), pp. 125-135) for chains, and the completions of Wright, Wagner,
and Thatcher for union complete Z; our method, different from theirs, uses the time-honored direct
construction of universal maps. Further, we obtain some results on the internal structure of Pr with regard
to Z-joins. Finally, we show that each element of the Z-completion of P is a Z-join of elements of P iff Z
is union complete.

Key words, partially ordered set, completion, subset system Z, Z-complete, Z-completion, Z-
continuous maps

In recent years, partially ordered sets (posets) have become increasingly important
to computer science. Of particular significance in this context are those posets which
have the kind of completeness properties that reflect general notions of approximation
(Markowsky [7], [8], Markowsky and Rosen [9], Wright, Wagner and Thatcher [12]).
In the absence of the desired completeness for a given poset P, one often considers
extensions QP which remedy this lack, preferably in a universal way. An additional
requirement might be that Q should rectify the join deficiencies of P in a computable
fashion.

The original result of this type is due to Markowsky [8] who shows that, for any
order preserving map’ Q P between posets, there exists a universal map ur" P Pr
where Pr is chain-complete and the composite ur/e’ Q Pr is chain-continuous. Follow-
ing this, Wright, Wagner and Thatcher [12] introduce a more general concept of
completeness and continuity, for posers and maps between them, in which their notion
of subset system Z replaces the collection of all chains. They prove the existence of
a universal Z-complete extension P

P, amounting to the counterpart of Markowsky’s

result in the special case where (i) Q has the same elements as P and is discretely
ordered, and]" maps the elements of Q identically, and (ii) the subset system Z is
union complete. It should be noted that, even under the hypothesis (i), this does not
generalize Markowsky’s case because the subset system given by all chains is not
union complete. However, Meseguer [10] subsequently showed that every subset
system Z is equivalent to a union complete one, thereby establishing, for arbitrary Z
and the maps as in (i), the existence of a universal map ur" P Pr where Pr is Z-complete
and u]" Q P is Z-continuous.

In this paper, we prove the complete generalization of Markowsky’s original
result to arbitrary subset systems Z, i.e., the existence of a universal map ur" P Pr
as above for all posets Q and all order preserving maps]"Q-P (Proposition 1).
Our proof is entirely independent of all previous ones, substantially shorter, and much
more direct; it uses the construction of universal maps which has long been familiar
in algebra and topology (e.g., Bourbaki [4, pp. 43-50]).

Besides the existence of the universal maps ur’ P P, we establish a number of
results showing how the elements of Pr are related to the image of ur in terms of joins,
either of Z-sets or of arbitrary sets (Proposition 2). In particular, for]" Q P with
trivial ZQ, we obtain a characterization of the image of ur in terms of Z-joins.

* Received by the editors August 8, 1980, and in final revised form September 25, 1981.

" Department of Mathematical Sciences, McMaster University, Hamilton, Ontario, Canada L85 4K1.

521

522 BERNHARD BANASCHEWSKI AND EVELYN NELSON

Further, as an application of these properties, we obtain a solution to an obvious
question, implicit in [12] and highlighted by Meseguer [10]" we show that all the
elements of the Z-completions P _P of posets P are actually reached as joins of
Z-sets in P if and only if Z is union complete (Proposition 3). Thus, union completeness
is precisely the property which ensures that the new elements are all, in a sense,
computable from the originally given ones.

The paper concludes with a number of observations concerning the category
of Z-complete posets and Z-continuous maps. In particular, we indicate how the
results of Meseguer [10] on the tensor multiplication in this category follow from
Banaschewski-Nelson [2].

Recall that a subset system Z assigns to each poset P a collection ZP of subsets
of P such that, for any order preserving map f’P (2, the direct image f(A)=
{f(a)la cA} belongs to ZQ for each A ZP. Obvious examples of such Z are given
by the following specifications of ZP for each P (see also [12])"

(1) all subsets of P;
(2) all subsets of P which are bounded above in P;
(3) all subsets A of P for which every pair in A has an upper bound in P;
(4) all (up) directed subsets of P;
(5) all chains in P;

and the variants of these obtained by additional cardinality restriction.
Also, for any such Z, Z’P ZP-{} is again of this type, as are arbitrary unions

or intersections of such Z.
Z is viewed as a parameter of (join) completeness and join preservation as follows"

A partially ordered set P is called Z-complete if and only if every A ZP has a join
llA in P, and a map f" P (2 between posets is called Z-continuous if and only if it
preserves all existing Z-]oins, i.e., whenever A ZP has a join in P then f(A) has a
join in Q and f(IIA)= Ill(A). We always assume that some ZP contains a set with
at least two elements and hence 2 Z2 for the two-element chain 2, which implies
that Z-continuous maps are order preserving.

Before proceeding we define some notions which will be used in later arguments.
First, for a subset X of a poset P, X, the loin closure ofX in P, is the set of all joins
II Y existing in P for subsets Y

_
X. X is called]oin-closed in P iff X X. Note that

(1) card () -< 2 card(x),
(2) . and
(3) if P is Z-complete then so is X, and the natural embedding of X into P is

Z-continuous.
Further, for a subset X of a Z-complete poset P, (X), the Z-loin closure ofX in

P, is the smallest subset Y __. P such that X
_

Y, and IIU Y for each U ZY, where
IIU is the join in P. An alternative description of (X) is that it is the smallest subset
of P containing X which is Z-complete and such that its natural embedding into P
is Z-continuous. Consequently it follows from (3) above that (X)_ X.

PROPOSITION 1. For any order-preserving map f’O P between posets O and P,
there exists a Z-complete poset Pr and an order-preserving map ur" P Pc with urf

1
O *P *Pr

R

COMPLETIONS OF PARTIALLY ORDERED SETS 523

Z-continuous, such that]:or any order-preserving map g: P R with R Z-complete and
gf Z-continuous, there exists a unique Z-continuous map h" Pr - R with hur= g.

Proof. Let $ be a set of representatives of the isomorphism classes of the
order-preserving maps g:P P’ with P’ Z-complete, gf Z-continuous and card (P’) -<
2 card(P). Then for each such g there exists s:P Ps in $ and an order-isomorphism
k :Ps P’ with ks g.

Let T rIss Ps be the product of the codomains (targets) of all the maps in $,
with the component-wise ordering; then T is Z-complete, Z-joins in T being formed
component-wise, and the projection maps p" T Ps for s e S are all Z-continuous.
Now, since T is a product, there exists a unique t" P T such that p,t s for each
s e S. Because Z-joins in T are formed component-wise, tf is Z-continuous. Let P
be the Z-join closure in T of the image of and let ut" P Pt be the target restriction
of to P. Then Pr is Z-complete, and since Z-joins in P are just the corresponding
joins in T, uff is Z-continuous.

Now the usual argument shows that u :P- Pf is the desired map: For any
order-preserving g :PR with R Z-complete and gf Z-continuous, let R’ be the
Z-join closure in R of the image of g. Then R’ is Z-complete, with Z-joins being
formed as they are in R and hence, for the target restriction g’ :R R’ of g, g’f is
Z-continuous. Also card (R’)=< 2card (P) and hence there exists s :P P in $ and an
isomorphism k :P - R’ with ks g’. Now let h ekps T R where e:R’ R is the
natural embedding; then h is Z-continuous and huz ekpur eks eg’ g as required.
The uniqueness of h follows from the fact that any two Z-continuous maps with
common domain and codomain which coincide on some set also coincide on the Z-join
closure of that set. El

Remark 1. This proposition provides an example of the categorical notion of

reflection. In general terms, if

_
is a subcategory of and A an object of 4 then a

reflection of A in

_
is an object RA in

_
together with a morphism r" A RA which

is universal among all morphisms s "A B, B in _, in the sense that each such s
determines a unique g" RA B for which s r:

A , RA

B

In particular,

_
is called a reflective subcategory of IN lit each object of has a

reflection in [!_ (Herrlich-Strecker [6, 36]). In order to recognize Proposition 1 as a
reflectivity assertion, take N as the category whose objects are all order preserving
maps u:OP (for fixed O) and whose morphisms with domain (source) u and
codomain (target) v are the commuting triangles

P

(,) O pll,.
If

_
is now the subcategory of consisting of the Z-continuous u" Q P with

Z-complete P and the triangles (.) with Z-continuous h then direct checking shows

524 BERNHARD BANASCI--IEWSKI AND EVELYN NELSON

that Proposition 1 expresses the reflectivity of

_
in K"

O h h order preserving,

s
is precisely the reflection of "O P. An immediate consequence of this observation
is that, instead of the direct proof given above, we could verify for one of the familiar
hypotheses known to imply its reflexivity in N. Such hypotheses generally have a first
part which here amounts to showing that

_
is complete and any limit in [l_ is also a

limit in , and a second part which expresses a "smallness" condition. As to the
latter, the r61e of the set $ in the above proof in fact establishes one such, the solution
set condition (Herrlich-Strecker [6 28]). Alternatively, one could verify the smallness
hypothesis of the special adoint functor theorem [6, 28.11] for the category [L; this
would provide the slickest proof of the proposition.

Remark 2. Of particular interest is the case when the above map ur" P Pr is an
embedding, i.e., uf(p)u(q) if and only if p_q for all p, q cP. This does not always
hold. For example, let "o + 1 --, o + 2 map the elements of o identically and top to
top’ if o c Z(o + 1) then any map u such that u" is Z-continuous must map the top
two elements of o+2 the same.

On the other hand, u" P Pf is indeed an embedding whenever " O P is itself
Z-continuous. To see this, we first recall that there always exists an embedding g’ P- P’
such that (i) P’ is complete and hence Z-complete, and (ii) g preserves all joins existing
in P, making it Z-continuous. For example, take P’ as the set of all up-sets A c__p
(i.e., if a cA then x cA for all x_a in P), ordered by reverse set inclusion, and
g(p) {xlxp}. Now, for any such g, gf is also Z-continuous, and hence g hu for
some h, making ur an embedding, too. Consequently, any choice of a Z-continuous
map into a given poset P provides a certain Z-completion, i.e., Z-complete extension,
of P. In particular, one has:

COROLLARY 1. Any posetP has a Z-completion fi
_
Psuch that any order preserv-

ing map P- R, R Z-complete, uniquely extends to a Z-continuous map P- R.
Proof. Let [PI be the discretely ordered set with the same elements as P and

apply Proposition 1 to f"]P[- P which maps the elements of P identically, using the
fact that all maps from a discrete poset are trivially Z-continuous.

COROLLARY 2. Any posetP has a Z-completion Psuch that any Z-continuous
map P R, R Z-complete, uniquely extends to a Z-continuous map 1 R. Moreover,
the inclusion map P 1 is Z-continuous.

Proof. Apply Proposition 1 to the identity map f’ P P.
The above results, for the special case where Z picks out the set of all chains in

each poset, are given in Markowsky [8]. On the other hand, for the Z which assigns
to each poset the collection of all its subsets, the completion provided by Corollary
2 is described in Herrlich [5, p. 78], identifying/5 _p as the completion given by all
down sets S of P (if x __= y and y c S then x c S).

An explicit construction of the completion P_P is given in Wright, Wagner and
Thatcher [12], for union-complete Z, which are defined as follows. Let A {xlx =_a

for some a cA}, and put ZP={A[A c ZP}, partially ordered by set inclusion;
then Z is called union-complete if and only if UA cP for all A c Z(P).

COMPLETIONS OF PARTIALLY ORDERED SETS 525

For these Z, ZP, which is evidently Z-complete, is the completion P, by the
embedding P P, which maps x to ${x}. Note that without the assumption of union
completeness, P need not be Z-complete. For example, let ZP consist of all chains
in P (this Z is not union complete, contrary to [12]). Then, for the poset P of all
finite subsets of an uncountable set E, ordered by set inclusion, ZP consists of all
down sets of P with at most countable union, but the union of a chain in P need
not belong to P; actually/5 is the entire power set of E, as can be seen from Iwamura’s
lemma (see also Markowsky [7]). On the other hand, Meseguer [10] obtains the
completion P_P for arbitrary Z from the construction in [12] by first proving that,
for each subset system Z, there is a union-complete Z such that Z-completeness
and Z-continuity are equivalent to Z-completeness and Z-continuity.

Next, we provide some description of the internal structure of. Pr for any 1. The
following notions concerning any poset P will be used for this: An element x c P is
called Z-foin irreducible if and only if x IIA andA c ZP implies x c A, and Z-compact
if and only if x ___IIA and A c ZP implies x

a for some a c A.

Further, we call ZO trivial for any (2 if and only if each A c ZO has a top.
PROPOSITION 2. For any map f" 0 P and the corresponding us P Pr if I

_
P

is the image of us then
(1) P is the Z-foin closure o] I in P.
(2) P is the foin closure ofL
(3) Every Z-foin irreducible element o] P belongs to L

Further, ifZO is trivial then
(4) Every element o] ! is Z-compact.
Proof. (1) follows directly from the proof of Proposition 1.
(2) follows directly from (1).
(3) The subposet of Pr consisting of ! a.nd all Z-join reducible elements of PC is

closed under Z-joins and hence equal to PC by (1).
(4) For any ccP, the map g’P-, 2 such that g(x)= 1 if and only if x_c is order

preserving and g" is Z-continuous since ZO is trivial. Hence there exists a unique
Z-continuous map h’P 2 such that hu g. Now, by (1), P {xlur(c)_x or h(x) 0}
since the latter set contains ! and is closed under Z-joins. Consequently, if u(c)EIIA
for some A cZP then 1 h(llA)=1 Ih(a) (a cA) and thus h(a)= 1 for some a
which means ur(c)Ea by the previous sentence. This shows ur(c) is Z-compact. I-1

The following consequence of (3) and (4) in this proposition characterizes the
image of ur inside PC for certain f’ O P. It may be viewed as the complete version
of which Proposition 3.7 in Wright, Wagner and Thatcher [12] is the forerunner.

COROLLARY 1. For any map f" 0 P. ifZO is trivial then the image of u consists
exactly of the Z-foin irreducible elements of P, and further, in P, Z-oin irreducibility
and Z-compactness coincide.

Proof. Since Z-compactness trivially implies Z-join irreducibility, (4) implies that
every element of the image of ur is Z-join irreducible, and (3) then yields the first
part of the corollary. In addition, (3) and (4) together show that Z-join irreducibility
implies Z-compactness. U

There are situations in which one is interested in Z-complete posets but only
Z’-continuous maps, where Z’P ZP-{} (Markowsky and Rosen [9]). The follow-
ing shows that, for appropriate P, the universal map u"P P relative to Z’ actually
has the corresponding universality property. For the Z which picks out the chains,
this type of completion is explicitly constructed in [9], and Markowsky [8] derives it
from the corresponding Z-completions.

526 BERNHARD BANASCHEWSKI AND EVELYN NELSON

COROLIAR 2. For any map f" O P and the associated map ut P Pt relative
to Z’, ifP has a bottom I then Pt is Z-complete.

Proof. Since Pt is the join closure of the image of us, ur(-t- is the bottom of Pr. 1
Remark. The following observation shows that (4) in the above proposition indeed

does not hold in general" if P is Z-complete then P =/5, the completion given in
Corollary 2 of Proposition 1, and hence (4) fails unless all elements of P are Z-compact.

Our last proposition characterizes the desirable property of completions, men-
tioned in the introduction, that all elements are actually obtained as Z-joins from the
given poset.

PROPOSITION 3. The following are equivalent for any subset system Z"
(1) Z is union-complete.
(2) For any f" O-P with trivial ZO and the associated ut" P Pt, each element

of Pt is the join of some ut(A), A ZP.
(3) For any P, each element of the Z-completion PP is the join of some A ZP.
Proof. (1)::),(2). Since P is Z-complete and ZQ trivial, the order preserving

map v’P-,P such that v(x) {yly =__x} determines a unique Z-continuous map
w’PtP such that wu v. Further, the Z-completeness-of P provides the map
s’ZP Pr given by s(A)=l lut(A). This s is Z-continuous since B =kAY, Y Z(,P),
implies s(B) tAut(B) lut(Y) .Ja Y[-AUt(A) s(Y), Now, swu[sv uf, hence
sw is the identity map on Pt and therefore s is onto.

(2) =), (3). Trivial.
(3):::>(1). Let t’P/5 be the map such that t(A)=IIA. Then, is order preserv-

ing, and hence, for any y Z(,P), t(Y) ZP so that lit(Y) II t.J Y exists in/5. Now,
by hypothesis, II kJ Y lib for some B ZP, and by (4) of Proposition 2 it follows
that each a Y is below some b B. On the other hand, each b B is below some
IIA t(Y) and since AP it has a cofinal subset C ZP; now, again by (4) of
Proposition 2, b =__ c for some c C and hence b A. This shows that kAY P. [3

We conclude with some comments on categorical properties of ZP, the category
of Z-complete posets and Z-continuous maps. For this, we first recall that the category
P of posets and all order preserving maps is complete and cocomplete. In particular,
limits in P are formed as they are in the category of sets, and it is easy to check that
the same holds for ZP, so that ZP is also complete. Further, the following arguments
show that Z is co.complete. The coproduct of a family (P)z, of Z-complete posets
is the completion P, described in Corollary 2 of Proposition 1, of the disjoint union
P of.the P(i I). The natural embeddings P P pr.eserve all joins, and the inclusion
P P is Z-continuous; thus, the embeddings Pg-* P are all Z-continuous. Moreover,
if fg’P (2 are any Z-continuous maps into a Z-complete poset O, then, because P
is the disjoint union of the Pg, there is a unique map f" P (2 extending all the]’.
Further, since any subset of P which has a join must lie entirely in one of the P, this
map f is Z-continuous, and hence has a uniq.ue Z-continuous extension f" P.O. It
is just as straightforward to show that this f is the only Z-continuous map P O
extending all the fg, and hence / is the required coproduct. Next, concerning
coequalizers" for morphisms f, f2"O R in ZP, let f" R - P be the coequalizer of

f and f2 in , and let us" P- Pr be the map determined as in Proposition 1. Then Pt
is Z-complete, uff is Z-continuous, and utff utff2. Moreover, if g" R- P’ is any
Z-continuous map into a Z-complete poset P’ with gf gf2, then there is a unique
order-preserving g"P- P’ with g’f= g. By the properties of us, there is a unique
Z-continuous h Pt P’ with hu, g’ and hence hutf g’f g. Thus utf Q Pt is the
coequalizer of f and f2 in ZP, and this completes the proof that ZP is cocomplete.
In addition, we note that this gives a moderately explicit description of the relevant

COMPLETIONS OF PARTIALLY ORDERED SETS 527

constructions. The mere fact of cocompleteness could also be obtained by verifying
the smallness hypotheses of the Special Adjoint Functor Theorem for ZP and then
applying the result that any complete category of this sort is also cocomplete (B6rger
et al. [3], Theorems 2.2 and 2.5).

Regarding injectivity and projectivity" the free Z-complete posets, i.e., the P for
discretely ordered P, are evidently projective with respect to onto maps, and so every
Z-complete poset is the image of a projective one and the projectives are exactly the
retracts of free ones. Markowsky [8] shows that there are no nontrivial injectives with
respect to monomorphisms in ZP for the Z which picks out all chains; the same is
easily shown for the Z for which ZP consists of all subsets. For some Z, the notion
of injectivity with respect to Z-continuous embeddings is more interesting: for example,
if all ZP are trivial then ZP P, and here the injectives with respect to embeddings
are precisely the complete posets (see Banaschewski-Bruns [1]). However, ZP need
not have any nontrivial injectives with respect to embeddings. For example, let Z
pick out all chains or all countable chains, and let 1 ZP be any nontrivial injective
with respect to embeddings in ZP. Now, as argued in the Remark following Proposition
1, there exists an embedding e" 1 P into a complete P, preserving all joins and hence
Z-continuous, and by injectivity there further exists an order preserving map s’ P I
such that se is the identity map on L This shows I is not discretely ordered, and hence
there exist a, b I such that a r--b. Let B be the countable poset pictured below, A
the subposet represented by the solid discs; then f’AI which maps the largest
element of A to b and all other elements to a has no extension to a chain-continuous
map on B’

Finally, the set [P, O] of all Z-continuous maps between any Z-complete P and
(2, with the usual pointwise partial order, is Z-complete so that Z has a functional
internal hom-functor in the sense of Banaschewski-Nelson [2]. In addition,by Proposi-
tion 4 of [2], ZP has universal bimorphisms, and Proposition 3 of [2] then shows that
these provide a tensor multiplication (R) for the internal hom-functor in ZP. This
means that [P (R) (2, R [P, [O, R]] for any Z-complete P, Q, and R, and this amounts
to a h-conversion for Z-continuous maps. These results are also proved, by somewhat
different arguments, in Meseguer [10]. In P, the tensor product is actually the same
as the product (Banaschewski-Nelson [2]). In general, by Lemma 1 in Nelson [11],
this holds in ZP if and only if all Z-sets are up-directed.

Aeknovledgments. We much appreciate the extensive and patient criticism pro-
vided by the referees and some helpful comments from V. Trnkova and J. Reiterman.

528 BERNHARD BANASCHEWSKI AND EVELYN NELSON

REFERENCES

[1 B. BANASCHEWSKI AND G. BrUNS, Categorical characterization of the MacNeille completion, Archiv
der Math., 18 (1967), pp. 369-377.

[2] B. BANASCHEWSKI AND E. NELSON, Tensor products and bimorphisms, Canad. Math. Bull., 19
(1976), pp. 385-402.

[3] R. BORGER, W. THOLEN, M. WISCHNEWSKY AND H. WOLFE, Compact and hypercomplete
categories, J. Pure Appl. Algebra, 21 (1981), pp. 129-143.

[4] N. BOUr3AKI, Theorie des ensembles, Ch. 4, Structures. Act. Sci. Industr., 1253, Hermann, 1957.
[5] H. HERRLICH, Topologische Reflexionen und Coreflexionen, Lecture Notes in Mathematics, 16,

Springer, New York, 1968.
[6] H. HERRLCH AND G. STRECKER, Category Theory, Allyn and Bacon, Boston, 1973.
[7] G. MArKOWSKY, Chain-complete posets and directed sets with applications, Alg. Univ., 6 (1976), pp.

53-68.
[8] G. MnRKOWSKY, Categories of chain-complete posets, Theoret. Comp. Sci., 4 (1977), pp. 125-135.
[9] G. MARKOWSKY AND B. ROSEN, Bases for chain-complete posets, IBM J. Res. Develop., 20 (1976),

pp. 138-14"7.
[10] J. MESEGUER, Ideal monads and Z-posets, Manuscript, Berkeley, 1979.
[11] E. NELSON, Z-continuous algebras, in Continuous Lattices, B. Banaschewski and R.-E. Hoffmann,

eds., Lecture Notes in Mathematics, 871, Springer, New York, 1981.
[12] J. B. WRIGIJT, E. G. WGNEg AND J. W. THaTCHEr, A uniform approach to inductive posets and

inductive closure, in Mathematical Foundations of Computer Science, G. Goos and H. Hartmanis,
eds., Lecture Notes in Computer Science, 53, Springer, New York, 1977, also appeared as T.C.S.,
7 (1978), pp. 57-77.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0011 $01.00/0

THE HAMILTONIAN CIRCUIT PROBLEM IS .POLYNOMIAL
FOR 4-CONNECTED PLANAR GRAPHS*

D. GOUYOU-BEAUCHAMPS"

Abstract. An algorithm for the determination of an Hamiltonian circuit in a 4-connected planar graph
is presented. The timing for this algorithm depends on n (where n is the number of edges in the graph);
the storage requirement also depends on n 3. This paper completes the result of Garey, Johnson and Tarjan
[SIAM J. Comput., 5 (1976), pp. 704-714] which claims that the problem is NP-complete for 3-connected
planar graphs. This algorithm is inspired by the proof of Tutte’s theorem which implies the existence of
Hamiltonian circuits in 4-connected planar graphs.

Key words. Hamiltonian, planar graph, complexity, bridge, planted plane tree, NP-complete

Introduction. The study of Hamiltonian circuit problems was greatly stimulated
by works of Cook [3] and Karp [12] about algorithm complexity in the early 1970’s.
In fact, this problem is NP-complete (see Corneil [5]). Garey, Johnson and Stockmeyer
[7] proved that the more restricted problem of Hamiltonian circuits for graphs with
maximum vertex degree 3 was also NP-complete. Garey, Johnson and Tarjan [8]
showed that the problem was still NP-complete for cubic 3-connected planar graphs.
Then it may be asked whether the Harniltonian circuit problem is NP-complete for
4-connected planar graphs. Such a question is indeed of interest as we have the result
of Tutte [16] which implies the existence of a Hamiltonian circuit for 4-connected planar
graphs.

The main purpose of this article is to show that the Harniltonian problem for
4-connected planar graphs is polynomial. This result enables us to determine more
exactly the frontier between the class of NP-complete problems and the class of problems
for which a polynomial algorithm is known.

We get this algorithm by using the proof of Tutte’s theorem (see Ore [14]). For
the computation of the complexity, we use the tree of recursive calls. In 1, the vertices
of this tree are labelled by subsets of the set constituted by edges of the graph.
Properties about these labels imply that the number of vertices of the tree
depends on n 2 (where n is the number of edges in the graph). In 2 we give an
overview of the proof of Tutte’s theorem, by induction on the edges of the
graph. Thus we deduce from it a recursive algorithm which is presented in 3. With
the result of 2, we prove in 4 that the timing and storage requirements depend

3on n.

1. Preliminary result. To describe an execution of any algorithm, we use a planted
plane tree. A planted plane tree (also called an ordered tree), is a rooted tree which
has been embedded in the plane so that the relative order of subtrees at each branch
is part of its structure (see Klarner [13]). In this paper we shall say simply tree instead
of planted plane tree, following the custom of computer scientists. If the ordering of
the sons of a vertex is eel, c2, ’", ap then we say that ai is on the left of cj if and
only if -< .

We can define a total ordering (called prefix ordering) on S, the set of vertices,
as follows:

A vertex a is on the left of if and only if one of two following conditions holds:
c and/ lie on the same branch and the depth of/ is greater than that of ce.

* Received by the editors February 18, 1980, and in revised form May 11, 1981.
t U.E.R. de Mathematiques et d’Informatique, Universit de Bordeaux I, 33405 Talence, France.

Present address, D6partement de Mathmatiques, Universit de Pau, 64000 Pau, France.

529

5 30 D. GOUYOU-BEAUCHAMPS

c and/3 lie on different branches, s is their minimal common ancestor and the
son of s lying on the branches of a is on the left of the son of S lying on the
branch of/3.

DEFINITION. A y-tree A is a 4-tuple (T, S, iT, y) where:
Tisatree,
S is the set of vertices of T,

is a finite set,
y is a mapping from S to (tT)-() satisfying the 5 following conditions:
(1) y(r) 7 for the root r of T,
(2) y(x) y(s) for any son x of s E $,
(3) if F(s) denotes the set of sons of s then

,(x) (s),
xeF(s)

(4) for any three sons xl, X2 and X3 Of $

,t, (x) tq o (x.) tq , (x) ,
(5) if xl and X2 (Xl on the left of X2) belonging to F(s) are such that y(xx)t3

y(x2) then, for any element 0 of y(xx)f3y(x2), there exist a single
pendant vertex y descendant of Xl such that 0 E y (y).

Let IXI denote the number of elements of a set X. For a given value of 161, we say
that a y-tree A is maximal if it has the greatest possible number of vertices. Figures
1 and 2 give examples of maximal y-trees for [61 2, 3 and 4.

We need the following result:

FIG.

/

THEOREM 1. If 161 n, a maximal y-tree has a maximum of 2n (n 1) + 1 vertices.
Proof. First, we remark that [y(s)] 1 for every leaf s of a maximal y-tree.
We prove Theorem 1 by induction on I 1, It is verified for small values of

see Fig. 1. Suppose that the theorem holds for 16[< n. Let A (T, S, iT, y) be a maximal
y-tree such that I71 n. We denote x l, x2, "", x, as the p sons (p => 2) of the root
r. Let 6’ be the union of y(x), y(x2), ", y(Xp--1), Let 6" be y(x,), xp being the
rightmost son of r. Suppose that t’= t?a U 2 and t?"= (72 U 63, where 61, 72 and 3
are mutually disjoint.

THE HAMILTONIAN CIRCUIT PROBLEM IS POLYNOMIAL 531

FIG. 2

Let u, v and w be]Yl[, [if2[and [ff31. Condition 2 on q-trees implies that u :/= 0.
The subtree A’ including xp and the descendant of xp is a tree which satisfies the

5 conditions. By the inductive hypothesis, the number of vertices of A’ is less than
or equal to 2(v + w)2- 2(v + w) + 1.

Let A" be the subtree including"
the root, the vertices xl, x2, ’, xp-1 and their descendants if p > 2,
the vertex Xl and its descendants if p 2.

By conditions 2 and 3, all vertices of A" except the leaves have at least two sons.
By condition 5, for every o) in (72, there exists a single leaf x of A" containing it.

Thus A" has at most v leaves x such that o(x) if2. Let w be an element of ff.
Let Ao be the subtree of A" consisting of the vertices x of A" containing o9. By

condition 4, the vertices of Ao have at most two sons (in Ao). The only vertices which
have two sons are on the rightmost branch, and this branch is composed of at most
u + v + 1 vertices because the label of any son of the root of Ao is bounded by u + v.
Thus Ao has a maximum of u +v + 1 leaves and A" has a maximum of u(u +v + 1)
leaves x such that q(x) f’l tT # . Hence A" has a maximum of v + u(u + v + 1) leaves,
and a maximum of 2(v + (u(u + v + 1))- 1 vertices.

But an, the number of vertices of A, is at most equal to the sum of vertices of
A’ and A" plus eventually one for the root when it is not in A". Hence

and

an --< 2(v + w)z- 2(v + w) + 1 + 2(v + u(u + v + 1))- 1 + 1

an <- 2n2- 2n + 1- 2v(u 1)-4u(w- 1).

By hypothesis, we have u>0, hence 2v (u -1) => 0. If w is different from 0, then
u(w- 1)-> 0 and an <--2n- 2n + 1 as u is not equal to 0.

5 32 D. GOUYOU-BEAUCHAMPS

Now, if w 0, u and v must be different from zero; by condition 2, we have
p > 2 and Iq(xi)] -< u + v- 1 for 1, 2, ..., p. Thus a branch of A" has a maximum
of u + v vertices. In the same way, A" has a maximum of v + u(u + v) leaves.

Let y be the rightmost leaf of A" such that q(y) is an element o) of 71. The
maximality of A implies that y has a brother y’ such that q(y’) contains o. Condition
2 implies that y has a second brother y" such that q(y") contains an element of o’
which is not in q(y’). So A" contains at least one vertex which has more than two
sons. Thus A" has a maximum of 2(v + u(u + v))-2 vertices. In the special case where
w 0, the root belongs always to A" and

an <=2v2-2v +l+2(v +u(u +v))-2.

Then an <=2n2-2n + 1-2(u- 1)(v-1). But both u and v are different from zero.
Thus we have (u-1)(v-1)_>-0 and in this case an is also lower than or equal to
2n2-2n +1.

Hence Theorem 1 is proved.

2. Overviev of the proof of Tutte’s theorem. For most definitions, e.g., planar
graph, circuit, face, we refer to Tutte [17] and Berge [2].

A closed Jordan curve J divides the plane into 2-connected open domains, the
interior domain (int J) and the exterior domain (ext J). For any pair of vertices jl j2
on a closed Jordan curve J and any point u e int J there exist Jordan curves T(j, u, j2),
having only their endpoints on J. Such a curve we call an inner transversal for J. A
circuit in a graph G is minimal when it has no inner transversals.

The vertices of attachment (or attachments) of a subgraph H of a graph G are
the common vertices of H and G\H.

A bridge of a circuit J in a graph G is a subgraph B of G satisfying the 3 following
conditions"

i) all the attachments of B are vertices of J,
ii) B is not a subgraph of J,

iii) no proper subgraph of B satisfies conditions (i) and (ii).
An immediate consequence of that definition is that for every circuit J of G, the edges
of G\J are partitioned (uniquely) into the bridges of J in G, with two edges belonging
to the same bridge iff they can be connected by a path that does not have any vertices
in common with J except possibly the end vertices. An inner bridge of a circuit J in
a planar graph G is a bridge of J which lies in J + int J. The vertex-connectivity number
K(G) of a connected graph G is the minimal number of vertices of which the
suppression separates G or reduces it to a single vertex. G is h-connected if its
vertex-connectivity number is ->h.

The paper is based on the proof of the following theorem.
TIJEOrEM (Tutte [16]). In a 2-connected planar graph G, let E be an edge lying

on the circuits Co and C1, boundaries of faces 1:o and F, while E’ is another edge of
C1. Then there exists a circuit K passing through E and E’ such that none of its bridges
have more than three attachments while the bridges having edges in common with Co
or C1 have two attachments.

CoroI.tAr’. Let G be any 4-connected planar graph having at least two edges.
Then G has an Hamiltonian circuit.

Summary of the proof. Let us call to mind the principal stages of the proof of
Tutte’s theorem given by Ore [14]. This proof is based upon induction on the number
of edges in the graph. It is divided into 4 paragraphs.

1) Construction of a circuit Do.

THE HAMILTONIAN CIRCUIT PROBLEM IS POLYNOMIAL 533

2) Construction of a circuit K.
3) Study of bridges of K and Do.
4) Modification of K.

We can easily convince ourselves that the theorem is true for graphs having few edges.
Let G be a 2-connected planar graph. The number of edges of G is n. We suppose

that the theorem holds for all graphs with less than n edges. Let E be an edge lying
on the circuits Co and C, boundaries of faces Fo and F, while E’ is another edge
on

1) Construction of the circuit Do. Let L be one of the two paths of Ca of which
terminal edges are E and E’. We call lo and In the terminal vertices of L (lo E and
In e E’). We eliminate from G all edges not belonging to C1 which have at least one
end point in [L] (the set of vertices on L not including the end points is denoted by
[L]). Then, we replace L by a single edge Lo. We obtain a graph G’. In G’, the edge
Lo lies on the boundary of two faces’ F; and F. F is the face which corresponds
to F1 in G. D and D are the minimal circuits of F; and F. D; corresponds to a
circuit Do in G (if we replace Lo by L in G’). The end points of the path composed
by the edges of Do\L belonging to Co are lo and another vertex: do (not necessarily
different).

2) Construction of the circuit K. We delete from G the inner bridges of Do and
we replace L by Lo. Let Go be the graph obtained. Go is a 2-connected planar graph
which has fewer edges than G. In Go, let Eo be the edge Lo and E an edge of Do\L
incident to do. As the theorem holds for Go, there exists a circuit K passing through
Eo and E; and satisfying the conditions of Tutte’s theorem.

3) Bridges of K and Do. The inner bridges of K in G fall into 4 types with
respect to Do:

a) 6o-bridges not attached on Do\L but ling inside Do,
b) 61-bridges with one attachment on Do\L and lying inside Do,
c) y-bridges with no edges inside Do,
d) e-bridges including edges inside Do and edges on or outside Do.

In FIG. 3 we indicate the various types of K-bridges.
The main properties of tfiese bridges are given by the following lemmas.
LEMMA 1. If the vertex do is an attachment of an inner bridge of K, then there

exists a 8a-bridge attached on do which includes all the edges of Co not on K. Otherwise,
the bridges ofK are only of type 6o and y.

LEMMA 2. Inner bridges ofK cannot have edges on Ca\L.
DEFINITION. An inner bridge B of K in G is exceptional if it satisfies one of the

following conditions:
i) B has more than 3 attachments.
ii) B meets Ca or Co and has more than two attachments.
LEMMA 3. An exceptional bridge has at least two attachments in [L].
LEMMA 4. An e-bridge has only two attachments, dl and d2, on K\L. These

attachments are both on K and Do.
4) Modification ofK. We call the L-section of a 80, 6a or e-bridge B the shortest

path of L (with respect to the number of edges) which contains all the attachments
of B on ILl. We say that a bridge B2 is enclosed by a bridge Ba if and only if there
exists a circuit N composed of edges of Ba and L and if B2 is inside N.

We call complex a set X of inner bridges of K which satisfies the 3 following
conditions:

i) There exists an exceptional bridge B0 in X, called the maximal bridge of X
which encloses all the elements of X\Bo.

5 3 4 D. GOUYOU-BEAUCHAMPS

!

FIG. 3

ii) All the inner bridges of K enclosed by Bo are in X.
iii) There exists no exceptional bridge of K which encloses B0.
We call the L-section of a complex the L-section of its maximal bridge. We define

3 families of complexes determined by the type of their maximal bridges: the 60, 81
and e-complexes. We make the observation that two complexes have no edges in
common and so are their L-sections.

For each complex, we construct a graph F which has a smaller number of edges
than G. We call bl and b. the end points of the L-section of a complex (bl is always
different from b2 by Lemma 3). On L, bl is the nearest vertex of 10 and b2 is the nearest
vertex of l,.

For a 8o-complex, F is defined by the complex, its L-section and an edge (bl, b2).
For a l-complex, F is defined by the complex B, its L-section and the two edges

(bl, dl) and (dl, b2) if we call dl the single attachment of B on Do\L.
For an e-complex, the construction of F is more difficult. First, we construct a

graph F’ consisting of the complex B, its L-section and the three edges (bl, dl), (dl, d2)
and (d2, b2) if we call dl and d2 the two attachments of B on Do\L.

Then we eliminate from F’ all edges which have at least one end point on dl or
da, except (bl, dl), (dl, d2) and (d2, b2).

Now the path A (b, dl, d2, b2) lies on two minimal circuits" K and C
A + S(b2, bl) where $ is a path through F’. The inner bridges for C are attached at
dl and some vertex sl on $, or attached at d2 and some vertex s2 on $ or attached
at dl and d2 and a single vertex So on S (see Fig. 4). If there exists no inner-bridge
attached at dl and d2 we define So as one of the vertices of S which separate the sets
{sl} and {s2}. F is obtained by deleting from F’ the inner-bridges of C and by replacing
A by a single edge (bl, b2).

In each case, for the graph F, we can apply the theorem and construct a circuit
J passing through:

the edge (bl, b2) for a 8o-complex,

THE HAMILTONIAN CIRCUIT PROBLEM IS POLYNOMIAL 535

. the edges (ba, da) and (da, b2) for a 8a-complex,
the edge (bl, b2) and the vertex So for an e-complex.

In the circuit K of graph G we replace the L-section of each complex by the
edges of J except:

(bl, b2) for a 8o-complex,
(ba, da) and (da, b2) for a a-complex,
(ba, b2) for an e-complex.

The resulting new circuit of G has no complex, and the proof of Tutte’s theorem is
completed.

L- section b
2

b b
2

FIG. 4

3. Presentation of the algorithm. The proof of Tutte’s theorem can be summar-
ized as follows:

1. The theorem holds for all graphs with’ a small number of edges, or for the
graphs which are reduced to a circuit.

2. Let G be a graph which has n edges. We obtain a graph Go by removing in
G all the inner-bridges of a circuit Do. The theorem holds for Go and we find a circuit
KinG.

3. The circuit K has p complexes K1, K2; "", Kp. The theorem holds for each
complex K1, K2, ..., Kp and we obtain circuits Ja, J2, "", J. Then we modify K
including J1, J2, ’, Jo.

From such a proof, we may deduce easily the following recursive algorithm written
in "pidgin" Algol"

Procedure proc (G, K)
Begin

If G is a circuit then K’= G else
Begin

Construct a circuit Do;
Construct a graph Go;
proc (Go, K);
for each complex F of K in G do

Begin
proc (F, J);
Modify K including J;

End;
End;

End;

536 D. GOUYOU-BEAUCHAMPS

The arguments of the procedure proc are the given graph G and the circuit K
we are searching for. We define recursively the level of a procedure’s call during the
performance of the algorithm as follows"

the first call of procedure proc has level 1.
the level of a procedure’s call is + 1 if it is activated by a procedure of which
the level is i.

We can make the 3 following remarks:
1) During a performance of the procedure proc, a B-complex does not have any

edge belonging to Go.
2) During a performance of the procedure proc, two complexes do not have any

common edge.
3) During a performance of the procedure proc, only e-complexes may have a

nonempty intersection with Go.
For the computation of the complexity, we need to prove the 3 following properties

about the common edges of graph Go and of an e-complex X, i.e., the edges of the
maximal bridge of K which lie on or outside Do.

Let X be an e-complex. We call Lx its L-section. We say that an edge of X is
special if it belongs to X and Go. Following paragraph 4 of 2, we can construct two
graphs F’ and F. Tutte’s theorem give a circuit J in F.

LEMMA 5. If a bridge ofJ in F’ contains an edge ofLx then it doesn’t contain any
special edge.

Proof. Let B a bridge of J in F’ which includes an edge b of L. By Tutte’s
theorem, B has two attachments because B meets circuit Ca. L is a path connecting
bl to b2. But bl and b2 belong to J. Thus there exist two vertices, xl and x2, belonging
both to L and J which are the only attachments of B (we can have x b and/or
x2 b).

Let c be a special edge. Then there exists a path Q composed by edges of the
maximal bridge of X which connects c to d. All the edges of Q are special and no
vertex of O but dl is on J. This condition implies that no vertex of Q is on L. But
da belongs to J and is necessarily different from x and x2. Now all the paths connecting
an edge of B to dl go through x or xz. Hence c cannot belong to B and Lemma 5
follows.

During the algorithm, the performances of the procedure proc are numbered in
the order of their calls.

During the performance of the procedure proc numbered n, all the objects used
(vertices, circuits, bridges and edges) are superscripted by n. For a performance of a
procedure proc numbered n, we say that an inner-bridge B" of the modified cycle K"
is useful if there exists a number m (m < n) such that:

i) the call n results from the call proc (G, K"),
ii) all the edges of B belong to an e-bridge of K" during the call of proc

numbered m.
The condition has a meaning because if the call n results from the call m, some

edges of G are edges of Gm.
LEMMA 6. During the performance of a procedure proc numbered n, a necessary

condition that an inner-bridge B of the modified cycle K be useful is that B has an
edge in common with C; or CT.

Proof. Suppose that B is useful. Then there exists a number m satisfying and
ii, i.e., there exist p numbers n l, n, ..., no (p--> 2) such that"

a) n=mandnp=n;
b) ni+ is the number either of a call proc (G’,K"i) or a call proc (Fn’,J’)

(i=2,... ,p-l);

THE HAMILTONIAN CIRCUIT PROBLEM IS POLYNOMIAL 537

C) rt2 m + 1 is the number of the call proc (G’, Kin);
d) all the edges of B belong to an e-bridge X" of K" during the call of proc

numbered m.
The algorithm "breaks" bridges and never merges them so the edges of B are the
only edges of X" on or outside D’.

Because of the definition of e-bridges, condition d implies that at least one edge
of B is on D’\Lm. But the edges of D’\L" are all on C72, so B has at least one
edge in common with C’2. Now suppose that B has at least one edge in common
with C;’ or C7’, say edge a. Since a belongs to B, a belongs also to G’/1.

If ni/a is the number of a call proc (G’, K’) we choose L’ for E/1 and an edge
of Di\Lni incident to d for E’ni+l and we have C C" \L"’ + and C?i+l

D’\L"’ + Lo’.
Since ce belongs to G"’+, a necessary condition that a belongs to Co or Ca’ is

that c belongs to C’+1 or C’’+1.
If ni+a is the number of a call proc (Fn’, JIt’) and if FIt’ is a 6a-complex, we choose

(b"’ EIt’+
1, da’) for and (b2’, da’) for E’It’+l. Then the only edges of Co’ and Ca’ in

GIt’+ are the L-section of F"’ and some edges of C’ if d’;’ d’. Thus a necessary
condition that a belongs to Co’ or Ca’ is that a belongs to C’+’ or C’;i+1.

If ni+l is the number of a call proc (F"’, J’) and if F"’ is an e-complex, we choose
(b’;’, bz’) for E"i+ and an edge of S"’ incident to sg’ for E’It’+. The only edges of Cg’ and
C’; in GIt’+ are the L-section of F"’. Thus a necessary condition that a belongs to C’ or
C’;’ is that ce belongs to C’+’ or C’;’+ since a belongs to G"’+’.

If ni+l is the number of a call proc(Fiti, J It’) and if Fit’ a 60-complex,
we choose for EIt’+ the edge (b’;’, b’) and for E’"’+1 an edge of the L-section of
The only edges of C’ and C’;’ in GIt’+ are the L-section of F"’. Thus a necessary
condition that a belongs to C’ or C’;’ is that a belongs to C’+1 or Ca

So if B" has at least one edge in common with C’ or C’;’+1, then Bit has at least
one edge in common with Cg’+ or C’;’+’ and the Lemma 6 is proved by induction.

LEMMA 7. Let a be a special edge during the performance of a procedure proc
numbered m. Then, during any call numbered n(n>m) which proceeds from
proc (G’, K"), the edge a cannot be a special edge.

Proof. Suppose that n is the first number greater than m such that a is a special
edge during the performance of the procedure proc numbered n. Suppose also that
this procedure proceeds from proc (G’, K").

During the performance of the procedure numbered n, ce belongs to an e-complex
XIt. Following paragraph 4 of 2, we can construct two graphs F’It and FIt. Tutte’s
theorem gives a circuit JIt in Fn. Let BIt be the bridge of J" which contains a. B" is also
a bridge of KIt which has been modified. Thus BIt is a useful bridge.

Lemma 6 claims that BIt has an edge in common with C or C. The proof of
Lemma 6 shows that BIt necessarily contains only any edge with the L-section Lx of
X". But Lemma 5 says that a bridge of JIt in F’It cannot contain at once an edge of
L and a special edge.

This contradiction implies Lemma 7.

4. Complexity of the algorithm. For the definitions of complexity, we refer the
reader to Shepherdson and Sturgis [15], Elgot and Robinson [6], Hartmanis [10],
Aho, Hopcroft and Ullman [1].

Now, with these definitions we can establish the following property:
PROPERTY 1. The complexity of the algorithm is polynomial if the complexities of

these following instructions are also polynomial:
i) Construct a circuit Do;

5 38 D. GOUYOU-BEAUCI-IAMPS

ii) Construct a graph Go;
iii) Modify K including J.
Proof. To describe an execution of the algorithm, we use a tree A. S is its set of

vertices. Each vertex of S represents a call of the recursive procedure proc. We define
q, a mapping from $ to (E) where E is the set of edges of H, the graph treated by
the algorithm, as follows:

For each vertex s e $, q(s) is the set of edges of H belonging to G, the parameter
of the procedure corresponding to s.

Every call of the procedure introduces at most two edges not belonging to/4:
Proc (G0, K) introduces Lo which does not belong to/4.
Proc (F, J) introduces (b, d) and (b2, d) for a 6-complex, (b, b2) for an e-

complex or a g0-complex. But all these edges become edges Eo or E for the called
procedure. So these edges cannot belong to the parameters of the procedures which
result from the called procedure and we can ignore them.

Then the 4-tuple (A, S, E, p) is a q-tree.
Conditions 2 and 3 for q show that Go, K, K2, ’’’, Kp are proper nonempty

subgraphs of G.
Condition 4 refers to contents of remarks 1, 2 and 3 of 3.
Condition 5 summarizes the result of Lemma 7 about e-complexes.
All executions of the algorithm can be described by such a q-tree, but some q-trees

do not illustrate any execution.
If the time complexity and space complexity of the three instructions are poly-

nomial, the number of primitive operations or the amount of auxiliary storage is
bounded by a polynomial function P(n) where n is the number of edges of G. For
each execution of the procedure we can overvalue the number of edges on which the
procedures work by the number of edges on which the algorithm works. Thus, the
complexity of the algorithm has overvalued the product of P(n) by the number of
vertices of A (i.e., by the number of calls of proc). Hence, following Theorem 1, this
function is overvalued by (2n 2- 2n + 1) P(n). Then the algorithm is polynomial and
Property 1 is proved.

The main result of this paper is included in the following theorem:
THEOREM 2. Time and space-complexity of the algorithm is overvalued in O(n3).
Proof. Property 1 claims that the complexity is in O(n2P(n)) where P(n) is an

over-estimation of the complexity of three instructions. But the complexity of the
instruction "construct a circuit Do" is linear because it amounts to passing through
the path L, to removing the edges attached to L and then to passing through the
minimal circuit of a face.

The instruction "construct the graph Go" is also linear because it prescribes to
determine and remove the bridges of Do in G.

Finally, the set of the p instructions "Modify K including J" is a linear instruction
because it does nothing but modify the marks of edges of K and F and because the
subgraphs F have no common edge.

So P(n)= n and Theorem 2 is proved.
In [9], we give an Algol program from this algorithm which uses planar maps

according to Jacques [11] and Cori [43.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1975.

THE HAMILTONIAN CIRCUIT PROBLEM IS POLYNOMIAL 539

[2] C. BERGE, Graphes et hypergraphes, Dunod, Paris, 1970.
[3] S. A. COOK, The complexity of theorem proving procedures, Proc. 3rd annual ACM Symposium on

Theory of Computing, 1970, pp. 151-158.
[4] R. CORI, Un code pour les graphes planaires et ses applications, Th6se de Doctorat d’Etat, Paris, 1973.
[5] D.G. CORNEII, The analysis o)egraph theoreticalalgorithms, Technical Report 65, University ofToronto,

Toronto, April 1974.
[6] C. C. ELGOT AND A. ROBINSON, Random access stored program machines, J. Assoc. Comput. Mach.,

11 (1964), pp. 365-399.
[7] M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some simplified polynomial complete problems,

Proc. Sixth Annual ACM Symposium on Theory of Computing, Seattle, May 1974.
[8] M. R. GAREY, D. S. JOHNSON AND R. E. TARJAN, The planar Hamiltonian circuit problem is

NP-complete, this Journal, 5 (1976), pp. 704-714.
[9] D. GOUYOU-BEAUCHAMPS, Un algorithme polynomial pour la recherche de cycles Hamiltoniens dans

les graphes 4-connexes planaires, Thse de 36me Cycle, Bordeaux, 1977.
[10] J. HARTMANIS, Computational complexity ol random access stored program machines, Math. Syst.

Theory, 5 (1971), pp. 232-245.
[11] A. JACQUES, Constellations et propridtds algbriques des graphes topologiques, Th6se de 36me Cycle,

Paris, 1969.
[12] R. M. KARl’, Reducibility among combinatorial problems, in Complexity of Computer Computations,

Miller and Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[13] D. A. KLARIER, Correspondence between plane trees and binary sequences, J. Comb. Theory, 9 (1970),

pp. 401-411.
[14] O. ORE, The Four Color Problem, Academic Press, New York, 1967.
[15] J. C. SHEPHERDSON AND H. E. STURGIS, Computability of recursive functions, J. Assoc. Comput.

Mach., 10 (1963), pp. 217-255.
[16] W. T. TUTTE, A theorem on planar graphs, Trans. Amer. Math. Soc., 82 (1956), pp. 99-116.
[17], Bridges and Hamiltonian circuits in planar graphs, Aequationes Mathematica, 15 (1977), pp.

1-33.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0012 $01.00/0

ON EDGE COLORING BIPARTITE GRAPHS*

RICHARD COLE" AND JOHN HOPCROFTf

Abstract. The present paper shows how to find a minimal edge coloring of a bipartite graph with E
edges and V vertices in time O(E log V).

Key words, edge coloring, bipartite graph, multigraph, matching, partition

1. Introduction. An algorithm for finding a minimal edge coloring of a bipartite
graph in time O(E log V) is presented. Polynomial time algorithms for this problem
have previously been given by Gabow in [2] and by Gabow and Kariv in [3], the best
time bounds being O(F_, log2 V) and O(V2 log V).

From the work of Gabow [2] and Gabow and Kariv [3] it is known that a fast
minimal edge coloring algorithm can be constructed from a fast bipartite graph
matching algorithm. The O (n 25) bipartite graph matching algorithm in [4] is not fast
enough for our purposes. However, a maximal matching is not required. A matching
covering all of the maximum degree vertices is sufficient. Two methods for finding
matchings covering all the maximum degree vertices are presented. The first method
illustrates the underlying ideas used in the second method which has a running time
of O(max {E, V log V log2 D}) where D is the maximum degree of any vertex. This
running time leads to an O(E log V) minimal edge coloring algorithm. In fact, the
time bound for the coloring algorithm is slightly sharper.

In 2 the notation and definitions are given. In 3 the first matching algorithm
is given, the heart of it being a partition algorithm. In 4 the second matching algorithm
is given, and in 5 the coloring algorithm is given.

2. Notation and definitions. Throughout this paper, G (V, E) denotes a graph
with vertex set V and edge set E. G (V1, V2, E) denotes a bipartite graph with
disjoint vertex sets V1 and V: and edge set E V V:. D denotes the maximum
degree of any vertex in V V LI V2, and M denotes the set of vertices having
degree D.

A graph is said to be regular if all its vertices have the same degree. A bipartite
graph is said to be semiregular if all the vertices in V have the same degree D, the
maximum degree of any vertex in G; it is said to be high-low ifthere exists an integer
k such that deg (v)=> k if v V, and deg (v) <- k if v V2.

A matching, N E, is a subset of the edges with the property that no two edges
have a common endpoint. A matching is said to cover a set of vertices, U, if every
vertex in U is an endpoint of an edge in the matching. It need not be the case that
both, or either, endpoints of an edge in the matching lie in U. In a semiregular bipartite
graph, a matching covering M, the set of maximum degree vertices, is a maximal
matching since M must include all of V1.

An Euler partition is a partition of the edges into open and closed paths, so that
each vertex of odd degree is at the end of exactly one open path, and each vertex of
even degree is at the end of no open path. Euler partitions exist in all graphs, not
just bipartite ones.

* Received by the editors December 16, 1980, and in revised form October 21, 1981. This research
was supported in part by the Office of Naval Research under grant N00014-76-C-0018.

t Department of Computer Science, Cornell University, Ithaca, New York 14853.

540

EDGE COLORING BIPARTITE GRAPHS 541

An Euler split of a bipartite graph G (Va, V2, E) is a pair of bipartite graphs
G1 (Va, V2, Ea) and G2 (Va, V2, E2) where Ea and E2 are formed from an Euler
partition of E by placing alternate edges of paths into E1 and E2. Any vertex of even
degree in G will have the same degree in both G1 and G2, while any vertex of odd
degree in G will have degrees in G and G2 differing by one. This implies that if D,
the maximum degree of any vertex in G, is even, then all the vertices in M have
degree D/2 in each of Ga and G2, and this i the maximum degree of any vertex in
G1 or G2. An algorithm for finding an Euler split in time O(E) is given in [2]. Euler
splits as defined need exist only in bipartite graphs.

A partition of a bipartite graph G (Va, V2, E) is a pair of bipartite graphs
G1 --(V1, V2, El) and G2--(Va, V2, E2), where Ea and E2 are disjoint, and the union
of Ea and E2 is E. The partition is M-containing if the vertices having maximum
degree in Ga include M and the vertices having maximum degree in G2 include M,
where M is the set of vertices having maximum degree in G.

An edge coloring of a graph associates a color with each edge in the graph in
such a way that no two edges of the same color have a common endpoint. As shown
in [1, p. 250] any bipartite graph has a minimal edge coloring using D colors, where
D is the maximum degree of any vertex in the graph.

3. First algorithm for finding a matching in a bipartite graph covering the vertices
of maximum degree. The algorithm runs in time O(E log V). Let G be the graph in
which we wish to find a matching and again let M be the set of maximum degree
vertices. If the maximum degree of any vertex in G is one, then E, the edge set of
G, is the required matching. Otherwise an M-containing partition of G into bipartite
graphs Ga (V1, V2, El) and G2 (Va, V2, E2) is made where Ea and E2 are both
nonempty. The algorithm is then applied recursively to that graph, of G and G2,
with the smaller edge set.

To partition G, an Euler split is made, giving graphs Ha and HE. If D, the
maximum degree of any vertex in G, is even, then the vertices in M have degrees
D/2 in both Ha and/-/2, and so H1 and HE provide an M-containing partition of G.
Otherwise, if D is odd, edges are moved between Ha and//2 so that vertices in Ha
have maximum degree Da, vertices in HE have maximum degree DE, and all the
vertices in M have degree D in Ha and degree DE in HE, for some pair (Dl, DE),
with Da +DE D. The method for moving edges is described below.

If D is odd, with D 4r / e and e + 1, then each vertex in M has degree 2r in
one of Ha or H2 and degree 2r + e in the other. So in one of Ha or HE at least half
the vertices in M have degree 2r / e. Without loss of generality, suppose that in Ha
at least half the vertices in M have degree 2r + e. Then let M1 be those vertices of M
that have degree 2r + e in Ha (and hence degree 2r in HE), and let M2 be the remaining
vertices of M.

In general, it will be the case that vertices in Ma have degree 2k in HE and degree
D- 2k in H, while vertices in ME have degree D-2k- d in Ha and degree 2k + d
in HE, for d + 1.

An Euler split of H2 is made giving graphs H2a and H22. The vertices from Ma
have degree k in each of H2a and H22. Some vertices from M2 have degree k in H21
and degree k + d in H22, while others have degree k + d in H2a and degree k in H22.
Without loss of generality suppose that in H21 at least half the vertices in M2 have
degree k + d (if necessary the labels H2a and H22 are swapped). Let M2 be those
vertices of M2 having degree k + d in H2a (and hence having degree k in H22), and
let M22 be the remaining vertices of M2. The vertices in M22 have degree k in H2a
and degree k + d in H22.

542 RICHARD COLE AND JOHN HOPCROFT

In the graph Ha U H21 the vertices in Ma U M2a have degree D k and the vertices
in M22 have degree D- k- d. In the graph H22 the vertices in Ma U MEa have degree
k and the vertices in M22 have degree k + d. Ma is set equal to Ma U MEa and ME is
set equal to M22, which reduces the size of ME by a factor of at least two, and Ha U HEa
and H22 become the graphs Ha and HE, the correspondence being chosen to maintain
the invariant given above. (The desired correspondence depends only on whether k
is even or odd.)

The process is repeated until Ma M when the vertices in M all have the same
odd, maximum degree in H1, and the same even, maximum degree in HE. Ha and HE
now provide the required partition of G into Ga and G2. The partitioning procedure,
for the case D is odd, is shown in algol-like form below.

procedure PARTITION
begin
comment. This procedure partitions the bipartite graph G- (V, V2, E) into

bipartite graphs Ga- (Va, V, Ea) and G2-(Va, V2, E), in the case that
D, the maximum degree of any vertex in Va U V2, is of the form 4r / e,
e=+/-l.
M set of maximum degree vertices in G;
Let Ha, H2 be an Euler split of G;
comment. At least half the vertices in M have degree 2r / e in one of Ha or

H2. Let it be in Ha. Let k r, d e.
Let Ma-(1 M, and has degree 2r/e in Ha;
Let M2 M Ma;
while (IMI 0) do
begin
comment. The vertices in Ma have degree D- 2k in Ha and degree 2k in
H2, while the vertices in M2 have degree D-2k- d in Ha, and degree
2k + d in HE, for some d + 1.

Let H21, H22 be an Euler split of H2;
comment. At least half the vertices in ME have degree k / d in either HEa or

H22. Let it be in HEa.
Let MEa {/2 fi ME, and v has degree k + d in HE1}
Let ME2 ME ME
if k is even

then Ha := Ha U H21, HE := H22;
else Ha := H22, H2 := Ha t_J HEa;

M1 := M1 ME1, ME := M22
comment. If k is even then the vertices in Ma have degree D- k in H1 and

degree k in HE, while the vertices in ME have degree D- k- d in Ha
and degree k + d in H2. Set k k/2.
Otherwise k is odd and the vertices in Ma have degree k in H1 and degree
D- k in HE, while the vertices in ME have degree k + d in Ha and degree
D-k-d in HE.
Then set k -(D- k)/2 and d =-d.

end
Ga := H1, G2 := H2;

end

Correctness. The correctness of the partition algorithm is shown by the following
lemmas.

EDGE COLORING BIPARTITE GRAPHS 543

LEMMA 3.1. All the vertices in M have the same degree in G1. Likewise, all the
vertices in M have the same degree in Gz.

Proof. The lemma follows from the inductive hypothesis:
At the start of the/th iteration of the while loop all the vertices in M have the

same odd degree D-2k in Ha, and the same even degree 2kg in H2. Likewise, all
the vertices in Mz have the same even degree D-2k- di in H1, and the same odd
degree 2ki + di in Hz, where d + 1, 1, 2, ... di and ki are the values of d and k
at the start of the ith iteration of the loop.
It is easy to prove the inductive hypothesis. I-1

LEMMA 3.2. For v M, v V1 t_J Vz, and for u M,

deg (v) in Gl-<deg (u) in G1, and

deg (v) in G2 deg (u) in G2.

Proof. The inductive hypothesis:

For vNl, v V1 Vz, and for u M1, deg (v) in Ha _-<deg (u) inH1, and deg (v)
in Hz-<_ deg (u) in H2,

is shown to be true at the start (and end) of each iteration of the while loop. The
lemma then follows. The inductive hypothesis is clearly true at the start of the first
iteration of the while loop.

Suppose the program executes an ith iteration of the while loop, and assume the
inductive hypothesis is true at the start of the ith iteration of the loop. It is known,
by the inductive hypothesis of Lemma 3.1, that all the vertices in M1 have the same
degree in Ha; furthermore, this degree is even. Let it be 2k. Suppose that a vertex v
in M has degree h in H2. By the inductive hypothesis of this proof, for the start of
the ith iteration, it is known that h =< 2k and that the degree of v in Ha is less than
or equal to the degree of u in H1. So v has degree at most k in each of H21 and H22,
and degree (v) =< degree (u) in both HigH21 and H22. Therefore the inductive
hypothesis is true at the end of the ith iteration of the loop (and at the start of the
(i + 1)st iteration, if there is one).

LEMMA 3.3. In G1 the vertices of maximum degree include M; likewise in G2.
That is, G1 and G2 form an M-containing partition of G.

Proof. By Lemma 3.1, all the vertices in M have the same degree in G1. By
Lemma 3.2, it is the maximum degree, and so in G1 the vertices of maximum degree
include M. Likewise in G2. [-1

LEMMA 3.4. G1 and G2 both have nonempty edge sets.

Proof. The following inductive hypothesis is established: the degree of the vertices
of M1 in H2 is even and nonzero at the start and end of each iteration of the while loop.

By construction, the degree of vertices of M1 in H2 is even throughout the
algorithm. At the start of the first iteration of the loop the degree of vertices of
in H2 is nonzero also. Assuming the program executes an ith iteration, suppose
inductively that at the start of the ith iteration the degree of vertices of M1 in H2 is
nonzero, 2k, say. Then the vertices of M1 will have the nonzero degree k in both
and H22. Thus the inductive hypothesis holds at the end of the ith iteration (and at
the start of the (i + 1)st iteration, if there is one), given that it is true at the start of
the ith iteration.

On termination of the while loop M M1, so the vertices in M have nonzero
even degree in H2, and thus in G2, which makes G2 nontrivial. Since the vertices in
M have odd degree in G and even degree in G2, they must have odd degree in G1,
implying that G1 is nontrivial. [-!

544 RICHARD COLE AND JOHN HOPCROFT

LEMMA 3.5. G1 and G2 form an M-containing partition of G, with both G1 and
G2 having nonernpty edge sets.

Timing. Each iteration of the while loop reduces the size of M2 by a factor of
at least two. So after at most O(log M) iterations of the loop]M2[0 and the partition
procedure terminates. So to partition G takes time O(E log M)<-_ O(E log E/D).

Thus there is a constant c such that the running time T(E) of the matching
algorithm is bounded by’

T(E) <= cE log E/D + T(E/2) O(E log E/D) <= O(E log V).

4. A second algorithm to find a matching in a bipartite graph, covering M,
the set of vertices of maximum degree. The algorithm runs in time O(E/
V log V (log D)2). Let G (V1, V2, E) be the graph for which a matching covering
M is wanted. By deleting some edges from E and increasing the multiplicity of other
edges, a multigraph H is constructed where the degree of each vertex in H is the
same as that of the corresponding vertex in G. Further, H will have only V log D
multiedges. Clearly, M is the set of maximum degree vertices in H. Thus there exists
a matching in H, that is also a matching in G, covering M. The first algorithm, given
above, is used to find this matching. By the advantage of the multiple edges in H, the
running time is made faster than on G.

To simplify the timing analysis, vertices of small degree (=<D/2) are "merged"
together, so that, with the exception of at most two vertices, all of the vertices in
V1U V2 have degrees between [D/2] and D in G. Now E O(V D). Two vertices
u and v are merged by replacing them with a vertex w, where all the edges that had
u or v as an endpoint now have w as an endpoint instead. To maintain the bipartite
property of G vertices from V1 are not merged with vertices from V2.

H is obtained from G by finding cycle8 among edges of a given multiplicity and
replacing alternate edges with edges of double multiplicity and removing the other
edges. In turn, all possible cycles are found among the edges of multipliciity one, of
multiplicity two, of multiplicity four, and so on, up to at most multiplicity 2 togt. Let
r [log D]. The graph induced by the edges of multiplicity 2 is acyclic since each
vertex can have at most one multiedge of that multiplicity, and so no cycles can be
found among these edges.

To find the cycles among edges of a given multiplicity, a depth first search is
carried out. When a cycle is found, the edges are removed from the depth first search
tree, alternate ones being given double multiplicity. The depth first search is then
continued from the vertex at the root of the cycle. When the search retreats from a
leaf because the only edge is the spanning edge into the vertex, the spanning edge
and vertex are deleted since they are part of an acyclic graph. Thus at any time the
depth first search tree consists of a simple path from the root of the search tree to
the vertex currently being examined.

When a spanning edge is deleted from the depth first search tree, it is added to
H, with the appropriate multiplicity. Also the acyclic graph with edges of multiplicity
2 is added to H. So H is a union of at most log D acyclic multigraphs with edges of
multiplicity 1, 2, 4,..., 2r, respectively. As an acyclic graph has O(V) edges, H has
O V log D) multiedges.

From H, a matching covering M is found by using the first matching algorithm.
Four copies of each edge are kept, one in each of H1, H2, H21 and H22. To effectively
use the multiedge when making an Euler split, each edge is made to occur as often
as possible at that point in the path; the multiplicities of the copies of the edges are
changed accordingly. Otherwise, the first algorithm is used unchanged.

EDGE COLORING BIPARTITE GRAPHS 545

Timing. H can be constructed in time O(E). For let G G1, G2, G3,’ ", Gr be
the sequence of multigraphs with edge multiplicities 1, 2, 4,..., 2r, respectively, with
Gi/l being the graph obtained by performing the depth first search on Gi as described
above, for 1, 2,.. , r- 1. The size of the edge set of Gi/ is at most half the size
of the edge set of Gi, and thus is bounded in size by JEll2 i. So there exists a constant
c such that the time taken to construct H is bounded by cE + cE/2 + cE/4 +... +
cE/2r=O(E).

The partition algorithm (from algorithm one) takes time O(V log D log E/D) to
halve the number of edges, counted according to their multiplicity, and thus the first
algorithm takes time O(V log D log E/D log E/V) to find a matching covering M.
So the overall time bound for the second algorithm is O(E) if E_->

O(Vlog V (loglog V)2) and O(Vlog V (logD)2) if E<O(Vlog V (loglog V)2),
which is always at least as good as the O(E log V) of the first algorithm.

5. Coloring the edges of a bipartite graph. An O(E log V) time algorithm for
finding a minimal edge coloring is given. Let G be the graph whose edges are to be
colored, and let D be the maximum degree of any vertex in G; then D colors are
used for the coloring. In the algorithm below, S denotes the collection of sets of edges
similarly colored.

procedure COLOR
begin

If D is odd
then using the second matching algorithm, find a matching N covering the

vertices in M. Color the edges in N with one color and delete N from G.
S := StA{N},D := D-l:

Make an Euler split of G to give two bip,artite graphs, G1 and G2, each having
D/2 as the maximum degree of its vertices;

WLOG assume G1 has a smaller edge set than
(otherwise swap the labels G and G2);

Color (G);
Let 2k <D/2 2k+-r. Add r sets of colored edges to G2 and delete them
from S;

Color
end

A similar method was used in [3]. That exactly D colors are used can be shown
by induction.

Timing. There exists a constant c such that, excluding the time taken to find
matchings, the time T(E, D) required by the algorithm is given by

T(E,D)= T(E1, [D/2J)+ T(E2CJE3, [D/2I)+cE,

where E1 is the edge set of G1, E2 is the edge set of G2, and E3 E is the union of
the r sets of colored edges added to G2. For D a power of two, T(E, D) O(E log D).
For D not a power of two, as]E3[<=[EI<=[E2[, T(E,D)=O(2Elog(D+2r))=
O(E log D).

The time required for finding the matchings is bounded by
O(max {E, V log V (log D)3}), and hence the total time required by the algorithm is
bounded by O(max {E log D, V log V(logD)3}), which is at least as good as
O(E log V) for a graph all of whose edges have multiplicity one.

546 RICHARD COLE AND JOHN HOPCROFT

6. Matchings in semiregular and high-low bipartite graphs. By pruning a high-low
graph, a semiregular graph with D k can be obtained, D being the maximum degree
of any vertex in the semiregular graph. On applying the second matching algorithm
to the semiregular graph, we obtain a matching covering the vertices of maximum
degree. As observed in 2, this is a maximal matching. High-low graphs and semiregu-
lar graphs were defined in [3] and the idea of pruning was given there.

Acknowledgments. The authors would like to thank the referees for their many
helpful comments.

REFERENCES

[1] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[2] H. GABOW, Using Euler partitions to edge color bipartite multigraphs, Internat. J. Comput. Inform. Sci.,

5 (1976), pp. 345-355.
[3] H. GABOW AND O. KARIV, Algorithms for edge coloring bipartite graphs and multigraphs, this Journal,

11 (1981), pp. 117-129.
[4] J. HOPCROFT AND R. KARP, An n 5/2 algorithm]:or maximal matchings in bipartite graphs, this Journal,

2 (1975), pp. 225-231.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0013 $01.00/0

COMPUTATIONAL POWER IN QUERY LANGUAGES*

HENRY W. DAVIS,- AND LEON E. WINSLOWt

Abstract. Primitive recursion, recursion and partial recursion are defined for languages which query
a relational data base. Necessary and sufficient conditions for a language to satisfy these properties are
given. The computational power of several extensions of the relational algebra is considered.

Key words, recursive functions, relational data base query language, relational algebra, computability

1. Introduction and basic definitions. This paper gives necessary and sufficient
conditions for a query language on a relational data base to support primitive recursion,
recursion or partial recursion. The purpose is to express these concepts in terms of
the more familiar ones of recursive function theory. We restrict ourselves to languages
which are at least as strong as the relational algebra and ask what additional strength
is necessary. The main result is the theorem of 2. In 3 we give some examples. A
model-theoretic approach to this problem may be found in [5]. (See especially Theorem
3.3.) Their conditions are very different from ours.

Let J {0, 1,... } denote the natural numbers. For rn 1, 2,... let ," be the
set of all finite subsets of J". Let a (al, ", ak) be a tuple of positive integers and
let q be a positive integer. A query o] type a and degree q (query, for short) is a partial
map from ,ax... x,ak to ,q. A query is partial recursive if and only if it is
a partial effectively computable function on its domain. It is recursive if and only if
it is partial recursive and total. It is primitive recursive if and only if it is partial
recursive, total and computable without use of unbounded minimization. A data base
is a tuple of finite relations over J. Thus queries map data bases into finite relations.

A query language L is a set of expressions: Expressions are classified analogously
to queries: Let a =(al,..., ak) be a tuple of positive integers and take q >-1. An
expression o1 type a and degree q (expression, for short) is a partial map from
,x... x,k to ,q. We require that the expressions in a query language be closed
under composition.

Let Q and E be, respectively, a query and an expression of the same type and
degree. If Q and E are undefined on exactly the same tuples of their domain and
agree where they are defined, then we say the expression E represents Q. A query
language L supports partial recursion if and only if for every partial recursive query
Q there is an expression E in L such that E represents Q. We say L is partial recursive
if and only if it supports partial recursion and every expression in L represents some
partial recursive query. Analogous definitions hold for recursion and primitive recursion.

We describe a simple algebraic query language called BA, for "basic algebra."
In it expressions are defined as follows:

(expression name)INPUT((list of relation names))

(degree specification)

(segment)

RETURN((relation name))

* Received by the editors December 19, 1979, and in final revised form September 15, 1981.
t Department of Computer Science, Wright State University, Dayton, Ohio 45435.

547

548 HENRY W. DAVIS AND LEON E. WINSLOW

The (list of relation names) following INPUT consists of formal arguments
representing relations. Upper case Roman letters, sometimes subscripted, are used
to represent the names of relations, formal arguments representing relations, variables
denoting relations, and expressions. There are an infinite number of such names. All
relations named in an expression are of fixed degree. The degree is specified via

(degree specification)"= (((relation name), (degree)),...),

where (degree) is an integer. A (segment) in BA is a finite sequence of assignment
statements. Segments are denoted by an upper bar, e.g. $. An assignment statement
has the form

(relation name) (infix string).

(infix string) combines relations via the operators union, set difference, Cartesian
product, projection and selection. We shall use here the notation of [8], 4.1. For
example 7rl,4(R) is the projection of R onto columns 1,4 and cr2>3(R) selects from
R tuples whose second component exceeds the third. denotes the empty relation.

The left sides of assignment statements in an expression are all local variables.
The (relation name) following RETURN is one of these local variables and its value
is returned when the expression is executed. The right side of assignment statements
may contain local variables, formal arguments occurring in the INPUT list, explicitly
defined relations (e.g., {(1,2), (1,3)}), and global variables. Global variables are rela-
tions which must be given values outside of the expression before the expression is
executed.

For example,

INPUT (R)

((R, 2), (Xo, 2), (Xl, 2))

Xo Tr1,4(o’a:3(R R))

XI#R UXo
RETURN (Xl)

defines an expression which maps the binary relation R into the union of R and the
composition R R. To evaluate an expression such as E, above, on a relation S and
put the result in T one writes T -E(S).

It is not difficult to see that the queries represented by expressions in BA are
exactly those represented by Codd’s relational algebra [4].

PROPOSrrION 1.1. (1) Define MAX to be a unary operator on relations by R-
{(max {r})" (r, r)R} ifR (andR - (otherwise. Then MAX may be simu-
lated by an infix string in BA. (2) Let S be a relation and P, O segments in BA. Then
the following constructs can be simulated by segments in BA: (a) IF S THEN
P, (b) IF S THEN (, (c) IF S THEN/5 ELSE (, (d) IF S THEN/5
ELSE Q.

Proof. (1) MAX(R) is simulated by rrx(R)-r2(crl>a(zrl(R) zr(R))). (2) Let us
show, for example, how to simulate (a). Denote by X1, ’, Xn all the relations which
occur on the left in the assignment statements of P. Denote $ by X0. Asssume
Y0, , Yn do not occur anywhere in P. Let i. denote the degree of X, 1 -< f =< n. The
required simulation is Yo " X0,’ Yn Xn, P, Xl (--- (Xl 7/-1... el (Xl x Y0))
(’rrl...i,(Yl Yo)),"" ,Xn <’-(Xn-qT1... in(Xn X Yo))[..J(’trl... i,,(Yn Yo)). 71

COMPUTATIONAL POWER IN QUERY LANGUAGES 549

2. The characterization theorem. Our characterization of recursion in query
languages uses several definitions. We say that a language L1 has at least the retrieval
power of L2, denoted L1 _>-L2, if and only if all queries which may be represented in
L2 may be represented in L1. A query language supports segment retrieval if and only
if it contains an expression of type (1) and degree 1 whose value on unary singleton
relations is given by {(k)}-->{(0),..., (k)}. Intuitively, this property implies the
existence of a bounded computation by which large relations may be created from
small ones. It is used in proving the lemma below.

Let P be any of the properties "partial recursion," "recursion," or "primitive
recursion." By a P-function is meant a function from tuples of J to J which has
property P. We say a query language L supports P on rows if and only if the following
is true"

Let fl," ", fq be P-functions from jt to J. Let O be a query of type (t) and
degree q defined by R {(fl(r),’’’, f(r)): r R}. Then there is an expression
in L representing O.

The support of P on rows is not as powerful as the support of P. For example, it does
not assure that the user can request such interrow information as column addition.
The next two definitions are designed to isolate a weak form of interrow retrieval
power.

Let R be a t-degree relation. By a lookup function on R is meant the characteristic
function CR of R; CR" jr._> {0, 1} by CR (X)’- 1 if and only if x s R. Most interpreted
query languages support such functions. If the user may also request basic calculations
in CR, then the user may get interrow information. For example, if R is unary, then
max {CR(X)* x’x <= 10} tells the user what the largest entry under 10 in R is. The
basic calculations in CR which we shall use are functions which are primitive recursive
in CR. (A formal definition may be found in [6, 45].) For our purposes we need only
consider unary relations R. We say that a query language L supports primitive recursion
in unary lookup functions if and only if the following is true:

Let R be a unary relation, CR its lookup function and F a function which is
primitive recursive in CR. Then there is an expression of type (1) and degree
1 in L whose value on unary singleton relations is given by {(x)}->{(F(x))}.
MAIN THEOREM. Let L >= BA be a query language. Let P be any of the properties

"primitive recursion, recursion," or "partial recursion." Then L supports P if and only
if (0) L supports segment retrieval, (1) L supports P on rows and (2) L supports primitive
recursion in unary lookup functions.

Proof. The necessity of the conditions is easy to see. For the sufficiency, assume
that L satisfies (0), (1) and (2). Let a (al, ’, ak), where ai >- 1, and take q -> 1. We
must show that all queries of type a, degree q, and satisfying property P are represented

jk lqin L. Let p’ and ’J be bijctions (i.., 1-1 onto functions)
which we specify later. Let F:jk-> j be a partial function. The situation is as in Fig.
1. As F ranges through all partial functions jk _> j, Q ranges through all queries of
type a and degree q, and conversely.

Let Qo be the query of type a and degree k given by (R1,’",Rk)
{p(R1,’",R)}. Let Ov be the query of type (k) and degree 1 given by R
{(F(r))" r eR}. Let 0 be the query of type (1) and degree q given by S
{(o-(max {s}))" s e S}. We shall define 0,r in such a way that their inverses are primitive
recursive (i.e., effectively computable without unbounded minimization) and 0o, 0
are primitive recursive queries represented in L. Assuming this has been done, let us
prove the rest of the theorem.

550 HENRY W. DAVIS AND LEON E. WINSLOW

al
0 kv vak >J

pq< J

FIG. 1

Let (2 be a query of type a, degree q, and satisfying P. Let F correspond to O
-1 -1as in Fig. 1. Since Fig. 1 commutes and /9 tr are primitive recursive, F is a

P-function. Since L supports P on rows, OF is represented in L. Let Eo, El, E2
represent (20, OF and O, respectively. Then the composite expression E2(EI(Eo))
represents (2 in L.

It remains to define p, cr and prove that they have the desired properties. In
order to define p we first define a bijection 4t’" v’ J. Let K and L’ be Cantor’s
pairing and projection functions of degree rn (see [9, p. 78])" Roughly speaking, K
maps each distinct tuple of degree m onto a distinct integer and L’ maps this integer
back into the ith component of the original tuple. Thus, {K"(x)’x R} is a distinct
set of integers for each distinct R. Let M’v J by M (empty set)=0 and
M({/’I, , /’k}) Y.k-- 2’. Thus the binary representation of M(S) has a 1 in the (i + 1)st
place from the right if and only if iS. We now define b"(R)=M({K"(x): x R}),
for all R v ". p is now defined by

tr is defined to be the inverse of pq. Since K and M are bijections, so are ff’, p and
tr. The following lemma completes the procf of the theorem.

LZMMA. Assume L =>BA satisfies (0), (1) and (2) of the theorem. Let p, tr be as
above. Then p tr are primitive recursive and Oo, O are primitive recursive queries
represented in L.

Proof. We consider (20 first. Let R be a relation of degree m. Consider the maps

o {(2:.,())R "rR}=T,

T 02
,{(max It})" (t) T} {(s)},

O1 is represented in L by (1). (22 is represented in L by Proposition 1.1 (1) and the
fact that L-> BA. 03 is represented in L by (2). As L is closed under composition
the query R {4t" (R)} is represented in L. Since BA supports Cartesian products and
L => BA, Oo is represented in L. Evidently (2o is primitive recursive.

To see that O is represented in L let K be a unary relation over J. Define
G J2 J by

O(k,f) =f 0

if there is a 1 in the/’th place from the right in the
binary expansion of k, => 1,

otherwise.

COMPUTATIONAL POWER IN QUERY LANGUAGES 551

Consider the maps

QO
K ,{(max {k}): (k) K} L,

Q1
L---{(x,/). (O <-_] <- x) ^ (x e L)I M,

M---{(G(m))" m M}= N,

N >N-{(O)I=P,

P ;{(L(p-1),..., L(p- 1))" p eP}= o(g).

As before, each of the Qi is represented in L and hence L supports Q,. (Q is
represented in L because L satisfies (0) and supports Cartesian products.) The formula-
tion above shows that Q is primitive recursive. Finally, it is apparent from their
construction that p and r have primitive recursive inverses.

3. Examples. Practical languages for (relational) data bases not only have at least
the retrieval power of BA but also allow arithmetic expressions to occur within query
expressions. In this section we indicate, through examples, what additional mechanisms
do to the computational power of such languages. To this end we shall addend to BA
a basic arithmetic capability. We want one that is simple, compatible with the other
operators of BA, and sufficiently weak that it can be simulated in most query languages
providing arithmetic capability. Let BA be the same as BA except that we now allow
a successor operator, NEXT, to be used in infix strings. NEXT is defined on relations
R of arbitrary degree by NEXT (R) {(rl + 1, .’.., rk + 1)" (rl,..., rk)R}. Let R be
a relation with attributes A 1,. , AK; Figs. 2(a), (b) and (c) show, respectively, how
the assignment statement $ NEXT (R) is simulated in QUEL [7], SEQUEL [2] and
QUERY-BY-EXAMPLE [10]. Thus BA would appear to be a relatively weak
arithmetic extension of BA.

RANGE OF X IS R
RETRIEVE INTO S(A 1 X.A 1 + 1,..., AK X.AK + 1)

(a)

ASSIGN TO S(A1,...,AK)
SELECT A 1 + 1,. , AK + 1
FROM R

(b)

Ix1[XKI I.

A1

XI+I

(c)

FIG. 2.

AK

XK+ 1

We now describe three extensions of BA. By an E-segment we mean an
"extended segment." E-segments are defined in the context of particular languages
below.

552 HENRY W. DAVIS AND LEON E. WINSLOW

The query language BL(BA) is obtained by closing BA with respect to
"bounded looping." More specifically, expressions in BL(BA) are like those of BA
except that E-segments rather than segments are used" (i) a segment is an E-segment;
(ii) the juxtaposition of two E-segments is an E-segment; and (iii) let $ be an E-segment
and R a relation; then

DO R TIMES

S

END-DO

is an E-segment. The meaning of (ii) is that the first and then the second E-segments
are to be executed. Let MAX be the operator of Proposition 1.1. The meaning of
(iii) is that, if MAX (R)= {(r)}, then 6’ is to be executed exactly r times. If r 0 or
MAX (R)= , then S is not to be executed.

The query language UL(BA) is obtained by closing BA with respect to
"unbounded looping." Expressions in UL(BA) are like those in BL(BA) with
E-segments now defined as follows’ (i)’ and (ii)’ are the same as (i), (ii); (iii)’ let S be
an E-segment and R a relation; then

DO WHILE R=
S

END-DO

is an E-segment. The meaning of (iii)’ is that if R then $ is not performed.
Otherwise it is performed repeatedly until R . If this never happens, then the
E-segment is not defined. In this case the co.rresponding expression is not defined on
the current arguments.

The test for R in (iii)’ may equivalently be replaced by a test for inequality
to " Using Proposition 1.1 (2) the construct of (iii)’ may be simulated by IF R
THEN R ,-{(1)} ELSE R1 , DO WHILE R1 - , , IF R THEN R1 ,
END-DO; here we assume R is not in S. Similarly for the converse. Both forms are
convenient. Notice, however, that Proposition 1.1 (2) carries over to UL(BA) only
so long as P, O are segments; they may not be E-segments.

UL(BA) slightly resembles the Chandra-Harel language QL in [3]. However,
QL is a much more general language! In it data bases may be over undefined entities
as opposed to the natural numbers considered here. In QL the degree of a relation
varies dynamically; in UL(BA) relation degrees are permanently fixed by the degree
specification. The projection, $, used in QL is different from that of UL(BA). fixes
the number of columns thrown out letting the number kept vary each time a statement
is executed. Such varying does not occur in UL(BA).

Let R be a relation and O an E-segment possibly referencing a local relation
variable L. We shall use below the fact that the following construct may be simulated
by an E-segment in BL(BA) and in UL(BA): DO ONCE FOR EACH r e R, L*- {r},
O, END-DO. The proof is an easy exercise and uses the NEXT operator.

TI-IEOIEM 3.1. BL(BA) is primitive recursive and UL(BA) is partial recursive.
Proof. The main part of the argument consists of verifying conditions (0), (1), (2)

of the main theorem. (0) is straightforward. It is easy to see that BA supports unary
lookup functions so the proof of (2) is essentially the same as that of (1). Consider
UL(BA) and, for simplicity, restrict attention to queries of degree 1. Let Rt=
{(f(r))’ (r) R }. Let be the class of functions f for which R - Rr is represented in

COMPUTATIONAL POWER IN QUERY LANGUAGES 553

UL(BA). One must show that contains the partial recursive functions. We shall
show that is closed under unbounded minimization and leave the rest for the reader.
Let g. jn+l_ j be in . Define f’Jn - J byf(y) lzx[g(x, y) 0], where y is an n-tuple
and/x is the usual minimization function. Let G be the E-segment part of a UL(BA)
expression representing N- Ng. Let R have degree n. The following expression
represents R Rr"

INPUT (R)

(degree specification for R, Rr, L, X0, X1 and the relations of

Rr,-
DO ONCE FOR EACH R R

L{r}

Xo+{(o)}

Xl - {(o)}

DO WHILE Xo s

N-XL
G

Xo+N-{(0)}
IF Xo THEN X ,- NEXT (Xx)

END-DO

R ,-R X
END-DO

RETURN (R)
Here we assume R, Rf, L, Xo, and X are names which do not occur in G.

Let G be an expression in BA of type (t) and degree t. Let R have degree t.
Let G*(R) denote RG(R)3G(G(R))..., provided this is finite. If it is not
finite, then G*(R) is not defined. We define LFP(BA) to be the same as BA except
that, for BA expressions G of type (t) and degree t, G* is a valid operator to use
in infix strings. Whenever G* is not defined, the expression containing it is undefined
on the current arguments. The definition for G* is suggested by Aho and Ullman [1,

5, method (3)] in connection with the calculation of least fixpoints over monotone
expressions.

THEOREM 3.2. LFP(BA) is partial recursive.

Proof. As LFP(BA) expressions are obviously effectively computable, it suffices
to show that LFP(BA)_-> UL(BA). It is not difficult to show that any E-segment in
UL(BA) which has nested DO WHILE’s may be rewritten without the nesting. Thus
it suffices to show how LFP(BA) can simulate the construct

DO WHILE R=
() s

END-DO
where S is a segment, not an E-segment.

554 HENRY W. DAVIS AND LEON E. WINSLOW

The simulation of (’) is via a construct of the form P, Yo G*(Y1), t. Here Y1
is a carefully chosen operand, P prepares Y1 and O decodes Yo so that the total effect
is as though $ had been executed the required number of times. P, (2 are segments,
not E-segments. G is an expression in BA.

Let X,..., Xk be R along with all local relation variables which occur in S.
They will be passed to G coded into the operand Y. G decodes, from its operand,
the current values of Xl,’’’ Xko If R ;, then G returns its input. If R , then
it executes S and returns a relation into which is coded the new values of X, , Xk.
In general, G’(Y) returns the status of q’s local relations and R after q has been
executed n times. Q must obtain from Yo- Ll,=o G (Y1) the latest such status. This
is made possible by having G increment a counter, which is coded into its input, and
return the new value as part of its output.

The coding mechanism is as follows. Y1 is a product of k + 1 relations: R0 x R x
Rk. R0 {(0)}. For >-1 Ri has Xi coded into it. We cannot set Ri--Xi because

some Xi may be and that would make Y . Thus we set

{(1)} x if X ;,
R {(0)}eg (X,+ if Xi

From Y1, G uses projections to determine the values of each Xi prior to executing
$. This is possible because the degree of each X is fixed in the UL(BA)-expression
containing (). It is also declared in the degree specification of G. The first component
of Ri reveals whether or not X is empty.

If S is executed (R), then the new values of Xi are coded into the returned
relation. They are coded using R,..., Rk as before; but the new R0 is the old Ro
incremented by one" R0NEXT (Ro). Thus the output from G has the same form
as the input, but reflects a more updated version of XI,..., Xk. If () is undefined,
then Ro will differ in each Gn(Y) so that the simulation will also be undefined. If ()
is defined, then R is eventually so G(Y)=Gi/(Y) for some i. In this
case the simulation is also defined. Q decodes the latest status of XI,..., Xk from
Yo as follows: Using the MAX operator, the tuples of Y0 with the largest first coordinate
are isolated. The updated Xi are obtained from these via projections. I-1

Acknowledgment. The authors wish to thank the referee for patiently pointing
out many ways to improve the original paper.

REFERENCES

[1] A. V. AHO AND J. D. ULLMAN, Universality of data retrieval languages, Proc. 6th ACM Symposium
on Principles of Programming Languages, San Antonio, TX, Jan. 1979.

[2] D. D. CHAMBERLIN, M. M. ASTRAHAN, K. P. ESWARAN, P. P. GRISFITHS, R. A. LORIE, J. W.
MEHL, P. REISNER, AND B. W. WADE, SEQUEL 2: a unified approach to data definition,
manipulation and control, IBM J. Res., 20 (1976), pp. 560-575.

[3] A. K. CHANDRA AND D. HAREL, Computable queries for relational data bases, J. Comput. System.
Sci., 21 (1980), pp. 156-178.

[4] E. F. CODD, A relational model for large shared data banks, Comm. ACM, 13 (1970), pp. 377-387.
[5] B. JAcons AND D. LAVINE, On completeness ofdatabase query languages, Tech. Rep. 699. University

of Maryland Computer Science Center, College Park, Maryland 20742, 1978.
[6] S. C. KLEENE, Introduction to Metamathematics, Van Nostrand, New York, 1952.
[7] M. STONEBRAKER, E. WONG, P. KREeS AND G. HELD, The design and implementation of INGRES,

ACM Trans. Database Systems, (1976), pp. 189-222.
[8] J. D. ULLMAN, Principles ofDatabase Systems, Computer Science Press, Potomac, MD, 1980.
[9] A. YASUHARA, Recursive Function Theory and Logic, Academic Press, New York, 1971.

[10] M. M. ZLOOF, QUERY-BY-EXAMPLE: a database language, IBM Systems J., 16 (1977), pp.
324-343.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0014 $01.00/0

APPROXIMATION ALGORITHMS FOR THE SET COVERING AND
VERTEX COVER PROBLEMS*

DORIT S. HOCHBAUM]

Abstract. We propose a heuristic that delivers in O(n 3) steps a solution for the set covering problem
the value of which does not exceed the maximum number of sets covering an element times the optimal value.

Key words, heuristics, complexity, set covering, vertex cover, linear programming, Russian method

The set covering problem seeks a collection of sets that cover all elements of
another given set at minimum cost. The problem is formulated as SC*= min c r.x
subject to Ax >-e for x a 0-1 n-vector, e (1,..., 1) and A a 0-1 matrix each column
of which is the incidence vector of one of the sets. This problem is NP-hard even
when c e and each row of the matrix has only two ones (see Karp [5]). In this case
the problem is known as the vertex cover problem.

One heuristic with guaranteed worst case behavior for the set covering problem
is the greedy. The heuristic solution value does not exceed Yaj-- 1/] times the optimum
where d is the maximum column sum of A (Chv,’ital [1]). This bound is tight even
for the vertex cover problem. Johnson [4] describes unweighted graphs of maximum
vertex degree d in which the greedy vertex cover solution is exactly _-1 1/ times
the optimum. The heuristic proposed yields a bound of 2 on the ratio between the
heuristic solution and the optimal vertex cover solution.

Let X(S) be the characteristic n-vector of a set S c {1, 2,..., n}. Let f be the
maximum row sum of A, and fs the maximum row sum in the submatrix of A defined
by the columns with subscripts in S. Denote b Aj the]th row of the matrix.

THZORZM. It takes a polynomial number of steps to find a cover the value of which
is at most f times the optimum.

Proof. Let x* be the optimal solution of the linear program min c T x subject to
Ax >-e, x >=0. Let y* be the optimal dual solution, i.e., that solves the problem
max e T y subject to y TA --< c, y => 0. It is easy to verify that for the set J, {/lY rAi ci}
the vector x(J,) is a cover. Also,

T Tc "x(J,)=(y "A)"

-<max (A. x(J,)). (yr. e)

(c sc*.

In order to obtain the set J, one needs to solve a linear program and that can be done
in polynomial time. Q.E.D.

The set J, is a cover but not necessarily a prime cover, that is, it may be possible
to find a proper subset of
we have as a corollary of the theorem that c r. x(S)-<fs. SC*. Such subset can be
derived by applying a greedy procedure or any other procedure for eliminating
redundant sets from

* Received by the editors July 1, 1980, and in revised form September 21, 1981. This research was
supported in part by the National Science Foundation under grant ECS-8204695.

5" School of Business Administration, University of California, Berkeley, California 94720.

555

556 DORIT S. HOCHBAUM

One special case of a subset of Js that is a feasible cover is Jp {j’[x > 0}. It
follows from complementary slackness that Jp

_
Js. Jp is obviously a cover though

not necessarily a prime cover, so a further elimination of members of this set may
still be possible.

Another special case is the set J {[x >_- 1 If}. Jr - J, and is a feasible cover. The
advantage of this particular cover is that we do not need to evaluate the exact fractional
solution x*. Instead, the only information necessary is whether xf [0, l/f) or x
[1/f, 1]. Employing the Russian method as proposed by Padberg and Rao [7] requires
O(n 3. H) steps where H is a parameter used to determine the radius of the initial
sphere and the perturbation vector 2-H’e to the right-hand side of the constraints.
Hence the algorithm requires only O(n 3. max [2, log2 2f]) steps to derive the set Jr.
Therefore, the LP-heuristic needs only O(n 3) steps to deliver a solution the value of
which is at most f times the optimum. This algorithm is comparable with efficient
network flow algorithms that deliver the fractional solution for the vertex cover
problem in dense graphs (Galil’s [3] algorithm for instance requires O(nS/3m 2/3) steps
for graphs with n vertices and m edges). The above discussion leads to the following
corollary of the theorem.

COROLLARY. It takes O(n 3) steps to obtain a cover the value of which is at most

f times the set covering optimal solution value.
For the case of the vertex cover problem the heuristic value does not exceed

twice the optimum. We now propose a heuristic that improves this bound for un-
weighted graphs. The dual problem in this case is also known as the maximum
cardinality matching problem when the condition "y a 0-1 vector" is added. Consider
the following procedure derived from the matching solution obtained by Edmonds’
algorithm [2]" Select all vertices in each blossom, then select all T-labelled vertices
and any 2k- 1 of the 2k out-of-tree vertices. Any subgraph spanned by an odd cycle
of length can always be covered by any r-1 vertices or at least (r + 1)/2 vertices, and
any blossom is constructed of pseudonodes spanned by odd cycles. The number of
vertices selected by the above procedure is at most (r 1)/[1/2(r + 1)] times the cardinality
of the optimal vertex cover, where r is the length of the longest odd cycle in the
graph. Since 2(r- 1)/(r + 1)= 2-[4/(r + 1)] we obtained a bound strictly less than 2.
(Note that for graphs with no odd cycles, i.e. for bipartite graphs, this procedure is
optimal.)

REFERENCES

[1] V. CHVATAL, A greedy-heuristic for the set-covering problem, Math. Oper. Res., 4 (1979) pp. 233-235.
[2] J. EDMONDS, Paths, trees and flowers, Canad. J. Math., 17 (1975), pp. 449-467.
[3] Z. GALIL, A new algorithm]’or the maximalflow problem, Proc. 19th Annual Symposium on Foundations

of Computer Science, 1978, pp. 231-248.
[4] D. S. JOHNSON, Approximation algorithms]’or combinatorial problems, J. Comput. System Sci. 9 (1974),

pp. 256-278.
[5] R. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations, R.

E. Miller and J. W. Thatcher, eds. Plenum Press, New York, 1972, pp. 85-103.
[6] G. L. NEMHAUSER AND L. E. TROTTER, Vertex packings: structural properties and algorithms,

Mathematical Programming 8 (1975), pp. 232-248.
[7] M. W. PADBERG AND M. R. RAO, The Russian method]or linear inequalities H: approximate arithmetic,

W.P. # 202, New York University, Graduate School of Business Administration, New York, 1980.

SlAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0015 $01.00/0

TWO SPECTRA OF SELF-ORGANIZING SEQUENTIAL SEARCH
ALGORITHMS*

AARON M. TENENBAUM" AND RICHARD M. NEMESf

Abstract. Two sets of algorithms for searching and dynamic reorganization of linear lists are presented.
Each set forms a spectrum, with the well-known move-to-front and transposition algorithms at the extrema.
A linear ordering on the stationary expected search cost of the algorithms in each of the two spectra is
established over a restricted set of probability distributions.

Key words, sequential search, search time, move-to-front algorithm, transposition algorithm, self-
organizing list

Introduction. Consider a sequential list of records R1,’’ ", Rn (where n > 2) in
which each record Ri is identified by a unique key Ki. A sequential search compares
a given argument K with each of the Kg in turn until K is found to equal some Kg or
until K is found unequal to them all. In the former case, the search is successful; in
the latter, it is unsuccessful. The number of comparisons made in the case when K K
is i. If p is the probability that the search argument K in a successful search equals
Ki, then the expected number of comparisons for a successful search equals Ei=I i. Pi.
Note that the assumption of success implies that Y,i= pi-- 1.

If the probabilities pg are known, the expected number of comparisons is minimized
by arranging the Ri so that pl->p2->... ->pn. However, the pi are rarely known in
advance. If zr is a permutation of the integers 1 to n and zr(i) is the integer in the
ith position of zr, then we may define cost (Tr) as the expected number of comparisons
in a sequential search, where the n records are arranged in the order
R(1), R(2),""’, R(,). Note that

(1) cost (r)=
i=1

We may extend the sequential search algorithm to an algorithm in which the
order of the records is altered each time that a sequential search occurs. The most
useful type of alteration is where the retrieved record is moved forward one or more
positions in the list. In this way more commonly accessed records move towards the
front of the list so that fewer comparisons are needed on subsequent retrievals.

Two well-studied "self-organizing" sequential search algorithms are the move-to-
front and transposition rules. In the move-to-front rule [1]-[3], [5]-[10], a retrieved
record is moved to the front of the list; in the transposition rule [1]-[2], [8]-[10], the
record is transposed with its predecessor on the list.

Consider any rule A which moves a retrieved record forward one or more positions
(unless the record is in the first position). The n! permutations of the records in the
list are states of a system in which a retrieval transforms one state into another. Since
it is possible to reach any state from any other by a sequence of one or more
transformations, the transformations form an irreducible Markov chain in which each
permutation rr has its own stationary probability probA (rr) [4]-[6]. Thus, we may
define the expected cost of such a self-organizing rule A, ec (A), by
(2) ec (A)= E probA (Tr) cost (Tr).

all

* Received by the editors June 4, 1980, and in revised form July 14, 1981. This material is based
upon work supported by the National Science Foundation under grants IST79-17568 and IST80-21350.

t Department of Computer and Information Science, Brooklyn College, City University of New York,
Brooklyn, New York 11210.

557

558 AARON M. TENENBAUM AND RICHARD M. NEMES

Given two such rules, A and B, ec (A)< ec (B) implies that rule A is eventually
"better" than rule B; rule A will require fewer comparisons over a large number of
retrievals.

Rivest [9] proved that ec (transposition) =< ec (move-to-front) and conjectured that
the transposition rule has lower asymptotic cost than all other rules, regardless of the
probabilities pl,"’, pn. Yao (cited in [1], [9]) showed that a distribution of prob-
abilities can be found for which the transportation rule is as good as the optimal rule,
assuming an optimal rule exists. This means that if any rule is best, regardless of
probability distribution, it must be the transposition rule.

A recent paper by Kan and Ross [11] has proved that the transposition rule is
optimal for any probability distribution in which p2--P3 pn in the class of
self-organizing algorithms for which no later element is moved to an earlier position
upon retrieval than an earlier element.

In this paper we examine two spectra of rules in which the transposition rule is
at one end and the move-to-front is at the other over the restricted class of probability
distributions for which P2 p3 Pn. We show that both these spectra are ordered
by expected cost, with the transposition rule having the lowest cost, the move-to-front
having the highest and the expected costs of the remaining rules in each spectrum
linearly ordered between these two extrema.

An expected cost theorem. Let us assume that P2 P3 p so that there is
a single record R1 with retrieval probability pl and all other records have the same
retrieval probability which we reference as pz. Of course, pz (1-pl)/(n- 1). Then
the n! steady states of the general search algorithm can be reduced to n states,
s1,’", s,, where si is the state in which the record R1 is in position i. Since all
permutations with R1 in position yield the same cost, the order of the remaining
n- 1 records is irrelevant.

Given a rule A, let qi(A) be the steady-state probability of si under rule A. We
may abbreviate qi(A) to simply qi when the rule under discussion is known. Applying
(1) the cost of searching a list in state si is given by

cost (Si) Pl + (n(n + 1)/2-i)pz.

We now show that cost (Si+I) > cost (Si) if and only if pl >P2. This is true since

cost (Si+I) cost (Si)’-(i + 1)pl +(n(n + 1)/2--i--1)p2--ipl--(n(n + 1)/2--i)p2

=Pl--P,

which is nonnegative if and only if pl => pz.
Applying (2) we may write a formula for the expected cost of a rule A under a

distribution in which pz p,"

(3) ec (A)= qi(A) cost (si).
i=1

It is intuitively clear that given two rules A and B and a distribution pl > pz p,,
rule A has lower expected cost than B if qi(A)> qi(B) for low values of i. That is, the
rule in which the most probable search argument (R 1) is more likely to be at the front
of the list has lower expected cost. Of course, if qi (A) > qi (B) for low i, then qi (B) > qi (A)
for high since qi(A)= qi(B)= 1. Similarly, if pl <p pn, then rule A has
lower expected cost than B if qi (A) < qi (B) for low values of i. The following expected
cost theorem formalizes this.

SEQUENTIAL SEARCH ALGORITHMS 559

THEOREM 1. Let A and B be two self-organizing sequential search rules. Then if
Pl>=P2 Pn and there exists a l <=k<=n-1 such that for all i<=k, qi(A)>-qi(B),
and for all i> k, qi(A)<-qi(B), then ec (A)-< ec (B). Similarly, ifpl <-p2 pn and
there exists a 1 <=k <-n-1 such that for all i<-k, qg(A)<=q(B), and for all i> k,
q(A >- q (B), then ec (A) -< ec (B).

Proof. We prove only the first half, where pa-> pz, since the proof of the second
half is analogous. From (3) we have that

ec (A)-ec (B)= qi(A) cost (si)- qi(B) cost (si)
i=1 i=1

k

E cost (&)(q(A)-qi(B))-
i=1 i=k+l

cost (si)(qi(B)-qi(A))

<-_cost (sk) E (qi(A)-qi(B))-cost (Sk/l) E (qi(B)-qi(A)).
i=1 i=k+l

But
k k k

Y (q,(A)-q(B))= , q,(A)- q(B)
i=1 i=1 i=1

=(1- q(A))-(1- qg(B))= (q(B)-q(A)).
i=k+l i=k+l i=k+l

k
Thus, ec (A)-ec (B)_-< (cost (&)-cost (Sk+)) Y’.i= (qi(A)-qi(B)). But cost (&) =<
cost(&/) and qi(A)>=qi(B) for i<=k. Thus ec(A)-ec(B)<-0, so that ec(A) -<

ec(B).
This theorem gives us a tool for proving that rule A has lower expected cost than

rule B under a distribution in which p: p,. We must show that pl >P implies
that qi(A)>= q(B) for all less than some k and q(A)<= q(B) for all i=> k and that
pl <p implies that the reverse inequalities are true.

A spectrum of rules. The first spectrum of rules which we examine consists of
n- 1 rules. Let 1 =< k <= n- 1. The rule POS (k) operates as follows: if an argument
is found in a record at a position/" > k, that record is moved to position k (and all
records in positions k through f- 1 are moved back one position); if an argument is
found at a position j =< k, that record is moved up one position (and the record which
was previously in position j- 1 is now placed in position f). Note that the rule POS (1)
is the move-to-front rule, while the rule POS (n- 1) is the transposition rule.

If P2 Pn, we use the notation q(k) as an abbreviation for q(POS (k)), the
stationary probability that R1 is in position under rule POS (k). When k is fixed,
we refer simply to qi as an abbreviation for qi(k).

We would like to show that for 1-<k-<n-2, ec (POS (k))>=ec (POS (k + 1))for
all probability distributions in which P2 Pn. For the trivial case in which pl p2

pn, the following theorem yields this result.
THEOREM 2. LetA andB be any two self-organizing sequential search rules. Then

ifp=p2 pn, qj(A)=qj(B)= 1/n for all] and, hence, ec (A) ec (B).
Proof. Obvious by symmetry.
For the case in which p p2, we wish to show that
(i) for l<=k<-n-2 and l<=jk, qj(k+l)>qj(k) if and only if p>p2, and that
(ii) for 1-<k -<n-2 and k <j<=n, qi(k + 1) <qi(k) if and only if px >p2.

560 AARON M. TENENBAUM AND RICHARD M. NEMES

These relationships are illustrated in Fig. 1 for the case pl > p2; the relative positions
of the graphs of qj(k) and qj(k + 1) are reversed for the case pl <p2. (These graphs
are illustrated as straight lines for clarity; however, in reality they are more complex,
as we shall see.) Together with Theorem 1, these inequalities prove that ec (POS (k)) ->
ec (POS (k + 1)).

!q(k)

1 k k+l n

q k + 1)
q,,(k)

FIG.

By the definition of the rules POS (k) and the steady-state probabilities qi, we
may write a series of equations which must hold for rule POS (k) for all 2 <_- k n 1:

(4)

(5)

(6)

(7)

q =(1-p2)qa+Paqz,

qi=p2qi_l+(1-p-p2)qi-t-plqi+l forall 1 <j<k,

qk =P2qk- +(k-- l)p2q, +P(l qi),
i=1

qi=(n-f + l)pzqi-+(f-1)pzqi forallk <.iNn.
From (4) and (5), we have that

This yields

(9) qj= qg for l <_- i, j <_- k.

This result, together with (6), yields

(10) (--1 kl (p_22) k-i)
-11 p__ +q= -(k-1)p i=

Although neither (4) nor (6) is valid for k 1 (the move-to-front rule), (10) is,
nevertheless, valid for k 1. This is true since the expression in (10) reduces to the
value px in the case k 1, and ql(1) obviously equals pl since the probability of R1
being in the first position under the move-to-front rule equals the probability of the
last previous request being for R 1, which equals pl.

(8) qi =P_! forl-<j<k.
q]+l P2

SEQUENTIAL SEARCH ALGORITHMS 561

LEMMA 1. For all 1 <- k <= n 2, qk(k + 1) > qk(k) if and only if pl > P2.
Proof. From (9), qk(k + 1) (Pl/P2)qk+l(k + 1). If we define r=pl/p2, then (since

p+(n-1)p2 1)pl=r/(r+n-1) and p2= l/if+n-l). From (10), we have that

1 1
qk(k +1) qk(k)

1 1
rqg+(k + 1) qk(k)

r Pl r i=1

11 1+ 2 +1
p r r

r2+r(k- 1-p)+p -k
2 2r r

(k 1) k-1

)f- rk-
r i=1

(r- 1)(r-p + k)

Of the three factors, (l/r)2 is always positive and

pa- 1 + kp2
__< p-

1 +(n -2)p2 <p- 1 +(n 1)p2
0

pz pz pz

so that (px- 1 + kpz)/p2 is always negative. Therefore, 1/q(k + 1)- 1/q(k)<O if and
only if r- 1 > 0, which is true if and only if pl >

LEMMA 2. For l <=k <-n-2 and l <-_j<-k, qi(k + l)>qi(k) if and only if pl >p2.
Proof. From (9),

q,(k)= {pl -i qi(k + l
q,(k) qk(k + 1)

Thus, qi(k + 1)> qi(k) if and only if q(k + 1)> q(k), which by Lemma 1 is true if and
only if px > p2. 71

LEMMA 3. For l <=k <=n -2, q,+(k + 1) <q+(k) if and only ifpx >p2.
Proof. From (7), qk+(k) ((n k)p2/(1 kpz))q(k). Thus,

q+l(k) (n k)pz qk(k)
q+a(k + 1) 1-kp2 q+(k + 1)"

From (10), and letting r px/pz,

q,+x(k) (n-k)pz(1-kpz+px Z=
k-1q+a(k+l) (1-kp)(1-(k-1)p2+p= r)"

We show that the numerator is greater than the denominator if and only if p >p2.
The difference between the numerator and denominator is

(np2 1) 1 kpa + Pl ’. r + Pl P2(n k)r (1 kp2)p2
i=1

=((n-1)p2-1)(1-kp2)+(np2-1)pl\ r-1
+plp2(n-k)r

rk -r) k=(kp2-1)pa+(np2-1)p
r-1

+plp2(n-k)r.

562 AARON M. TENENBAUM AND RICHARD M. NEMES

Since pl > 0, dividing by pl does not affect the sign, so we obtain

1)(r-r(kp-l)+(npz-
\ r-l+P2(n-k)r

r+n 1
1+ -1 (r-r n-k

r+n-1 \r-l} r+n-l

(11)
(rk-1)(n-k-1)

r+n-1

Since n > 2 and k -< n -2, (11) is positive if and only if rk 1 > 0, which is true if and
only ifr>lorpl>p2. [3

LEMMA 4. For 1 <-k <-n -2 and k <] <-n, qj(k + 1) < qj(k) if and only if pl >p2.
Proof. From (7),

qi(k + 1) I-I+=]_l (n- i)p2 qi(k)
qk+ k + l [-[+}"-1 1 ip2 q+l(k)

Thus, q(k + 1) < qi(k) if and only if qk+l(k + 1)<qk/l(k) which by Lemma 3 is true if
and only if pl > p2. 71

THEOREM 3. For 1 _<-- k -< n 2, ec (POS (k)) _c (POS (k + 1)) for all probability
distributions in which p2 pn.

Proof. Immediate from Theorem 2, Lemmas 2 and 4 and Theorem 1.

A second spectrum of rules. The second spectrum of rules which we examine
consists of n- 1 rules. Let 2=<k =<n. Rule, SWITCH (k) operates as follows: if an
argument is found in a record at a position j > k, that record is transposed with its
predecessor; if it is found at a position j =< k, that record is moved to the first position
in the list (and all records previously in positions 1 to /’-1 are moved back one
position). The rule SWITCH (k) is a hybrid of the move-to-front and transposition
rules. Note that SWITCH (2) is the transposition rule and that SWITCH (n) is the
move-to-front rule.

Forp pn, we use the notation qi(k) (or just simply qi when k is understood)
as an abbreviation for q(SWITCH (k)), the stationary probability that R is in position
under rule SWITCH (k).
We wish to prove that ec (SWITCH (k))-< ec (SWITCH (k + 1)) by showing that
(i) if Pl >P2, there exists 1 _-</" _-<n such that for all 1 <-i <-], q(k)>q(k + 1), and

for all] <i <-n, q(k)<-q(k + 1);
(ii) if p <p2, there exists 1 _<-] -<n such that for all 1 <-i <-], q(k)<q(k + 1), and

for all] < <- n, qi(k) >- qi(k + 1),
and invoking Theorems 1 and 2. Our strategy here is the same as that for the rules
POS (k) except that we merely prove the existence of a] where the inequality between
qi(k) and qj(k + 1) reverses rather than explicitly identify the point of reversal (as equal
to k) as we did for POS (k).

The equations relating the steady-state probabilities for rule SWITCH (k) are
the following:

k

(12) ql Plqi + (n k)p2ql,
i=1

(13) q=(n+.i-k-1)p.q+(k-f+l)pqi-1 for l<j<k,

SEQUENTIAL SEARCH ALGORITHMS 563

(14) qj (n 2)p2qj + Plqi+l + P2qi-1 for k -< j < n,

(15) q, (n 1)p2q, + Pq,-l,

(16) , qi 1.
i=1

(Equations (12)-(16) hold for all 2 -< k _-<n, but (14) is vacuous for the move-to-front
rule when k n and (13) is vacuous for the transposition rule when k 2.)

As before, let r pl/p2 so that Pl r/(r + n 1) and p2 1/(r + n 1).
LEMMA 5. For 2 <- k <- n,

k-2 (r + i)
ql(k)

1-I k-li=l (r + i)+(k- 1)). Y=+l r

Proof. From (13) we have that for 1 < f < k

k-]

qJ
1 (n 1)p2 + (k -j)p2 qi-1 r+k-

which yields for 1 < j < k

and, in particular,

[I-=1 (k i)
qi Hli=2 (k + r- i)

ql

(k-1)t
(17) qk-1

l-I-2 (r + i)
ql.

i=1

(This equation is vacuous for k 2.)
From (14) and (15), by induction we can show that for k <_-/" -< n

(18) q =qj_I/r.

This yields that for k _<-] _-< n

qk-1
q] rJ.k+l

which together with (17) implies that for k =</" =< n
(k-l)!

(19) qi
rj-+l H2 (r + i)

q"

(For k 2 the product is vacuous and is defined as 1.)
From (12) and (16),

ql=pl(1 qi)+ql(n-k)p2,
/=k+l

which together with (19) yields

(ql =Pl 1-ql 1-i=2 (r+i) ’=k+l/-+1 +(n-k)p2ql
i=1

564 AARON M. TENENBAUM AND RICHARD M. NEMES

or
Pl

(k-1)!pl rk_i_l1--(n k)p2 + ---5H/=I (r + i) i=k+l

k-2
Pl 1-Ii= (r + i)

rk-i-1(Pl + (k- 1)p) 1-I k__- (r + i)+ (k- 1)!el Y=k+
k-2

1-[i=1 (r + i)

i1+ (r+i)+(k-1)!
r i=1]=k+l

k-2
1-Ii=o (r + i)

k--1
rk-J[I= (r+i)+(k--1) i=k+

(Note that this equation holds for k 2 as well and reduces to

ql -n r2_ r-
r + 1 +=3 i=o

in that case.) [3
LEMMA 6. For 2 <-- k <- n 1,
(i) /f r > 1, ql(k) > ql(k + 1);
(ii) /fr< 1, ql(k)<qz(k + 1).
Proof. By Lemma 5,

and

q(k + 1)-1

-1

ql(k)-1
rk-]k-l+r (k-1)

"1"
r I-[i=o (r + i)

k +r k! El=k+2 rk+l-j

k-1r I-[i=o (r + i)

q(k)_l_q(k+l)_ 1 (k 1 + r)(k 1)I " k-j y.- k-s+1
i=k+lr -k! i=k+2r
k-1Hi=O (r + i)

(20)
1 (k- 1) (

,-1

--+ (k 1 + r)
r 1-Ik- (r+i)i=0

rk-i

+ (k 1 + r)rk-" k rk-
/=k+l

1 (k- 1) (n-1

=--+ (r-l) Zr I-I k-z (r+i) i=k+li=0

k-s + (k 1 + r)rk-n).
n-1

If r # 1, E/=k+l r

(21)

Now

(22)

k-i (r.-k r)/(r.-k (r 1)), so from (20),

1 (k- 1)! {r"-k--rql(k)-1 ql(k + 1)-
r
+

1-I k-1 (r + i) \rn-k + (k 1 + r)rk-")
i=0

n-k -kr -r r +k-1
’.-k + (k 1 + r)r ’

SEQUENTIAL SEARCH ALGORITHMS 565

If r>l,

and so

(k-)

1-Ii=o (r + i) rk

1 1 (rn-k+k-1.)ql(k)-l-ql(k + 1)-1 <--+ -_-
r r

--+ 1+ <--+ (k) O.

Thus, (i) is proven.
If

(k-l)! 1

I-I k-1 (r + i)
>--

i=O rk

and from (21) and (22), we get that

1 1 (rn-+k-1)ql(k)-l-ql(k + 1)-1 >--+ n-kr r

1 1(k-l) 1 1
--+ 1+

_
>--+ (k)=O,

which proves (ii).
LEMMA 7. For 2 <= k < n and k < j <= n,
(i) qj(k)<qj(k + 1) if and only if qj-l(k)<qi-l(k + 1);
(ii) q(k) > q(k + 1) if and only if q.-l(k)’> q-l(k + 1).
Proof. This follows immediately from (18). E!
LEMMA 8. For all 2 <= k <= n and 2 <= <= n,
(i) if r> 1 and qi_l(k)<=qi_l(k + l), then qj(k)<qi(k + l);
(ii) if r < l and q_l(k) >=qj_l(k + l), then qi(k) > qi(k + l).
Proof. Lemma 7 proves the statements for k < j _-< n. From (13) we have that for

l<]<k
k-/’+l

q(k) q-l(k).
r+k-]

We can extend this equation for the case k by using (18).
If r>l andq_l(k)<-qj_l(k+l)forsome 1 </’=<k,

k-j+1 (k+l)-j+l
q(k)=--------q_l(k)<

r+k-i r+(k+l)-/"

If r < 1 and qi_ (k) -> q._ (k + 1) for some 1 <] -< k,

k-f+l (k+l)-/+l
qj(k)=q_l(k)>

r+k-y r+(k+l)-i

q_l(k + l)=q(k + l).

q_l(k + l)=q(k + l).

Note that we are using the fact that for x, > 0, (x/y)> (x + 1)/(y + 1) if and only if
x > y and (x/y)< (x + 1)/(y + 1) if and only if x < y. [3

LEMMA 9. Let 2 <- k <= n.
(i) If r> l, there exists l <=j<=n such that for all l <=i<=j, qi(k)>qi(k +l), and

for all j < <- n, qi(k) <=qi(k + 1).

566 AARON M. TENENBAUM AND RICHARD M. NEMES

(ii) fir<l, there exists l <-]<-n such that ior all l <-i<=f, qi(k)<qi(k + l), and
]’or all f <i <-n, qi(k)>=q(k + 1).

Proof. (i) Let be the largest integer between 1 and n such that qj(k)> qj(k + 1).
Such an integer must exist by Lemma 6. By Lemma 8 if there were an integer less
than or equal to] such that q(k)<-q(k + 1), it would be true that q(k)<-q(k + 1),
which is not the case. Thus, for all l<=i<-j, q(k)>qi(k+l). By the choice of j,
q(k) -< q(k + 1) for all/" < <- n.

(ii) Let/" be the largest integer between 1 and n such that q(k)< q(k + 1). Such
an integer must exist by Lemma 6. Then by Lemma 8, for all 1 <= <=, q(k)<q(k + 1).
Bythe choice of/’, q(k)>=qi(k + 1) for all f<i<-n. [3

THEORZM 4. For 2<-k<-n-1, ec (SWITCH (k))_-<ec (SWITCH (k + 1)) for all
probability distributions in which p2 pn.

Proof. Immediate from Theorem 2, Lemma 9 and Theorem 1. I-1

REFERENCES

1] J. R. BITNER, Heuristics that dynamically alter data structures to reduce their access time, Ph.D. thesis,
Report UIUCDCS-R-76-818, University of Illinois, Urbana, 1976.

[2] ., Heuristics that dynamically organize data structures, this Journal, 8 (1979), pp. 82-110.
[3] P. J. BURVILLE AND J. F. C. KINGMAN, On a model for storage and search, J. Appl. Probability,

10 (1973), pp. 697-701.
[4] W. FELLER, An Introduction to Probability Theory and lts Applications, John Wiley, New York, 1968.
[5] W. J. HENDRICKS, The stationary distribution of an interesting Markov chain, J. Appl. Probability, 9

(1972), pp. 231-233.
[6] An extension oia theorem concerning an interestingMarkov chain, Ibid., 10(1973),pp. 886-890.
[7] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[8] J. MCCA3E, On serial files with relocatable records, Operations Res., 12 (1965), pp. 609-618.
[9] R. L. RIVEST, On self-organizing sequential search heuristics, Comm. ACM, 19 (1976), pp. 63-67.
10] T. C. TUAr AND R. C. T. LEE, The stationary probabilities o]’ the transposition heuristic and the moving

to the]ront heuristic for sequential searching, private communication.
[11 Y. C. KAN AND S. M. ROSS, Optimal list order under partial memory constraints, J. Appl. Prob., 17

(1980), pp. 1004-1015.

SIAM J. COMPUT.

Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1103-0016 $01.00/0

FINDING THE CYCLIC INDEX OF AN IRREDUCIBLE,
NONNEGATIVE MATRIX*

MIKHAIL J. ATALLAHS"

Abstract. The cyclic index 8 of an irreducible nonnegative square matrix is the number of eigenvalues
of maximum modulus of that matrix. If 8 1, the matrix is said to be primitive. The notions of primitivity
and cyclic index play an important role in the theory of nonnegative matrices. In the context of discrete
Markov chains, the words "period" and "aperiodic" are sometimes used in place of "cyclic index" and
"primitive", respectively. It is known how to test an irreducible nonnegative square matrix for primitivity,
but there is no known practical method for finding the cyclic index 8 in the general case. This paper presents
a time-optimal algorithm for finding 8.

Key words, matrix theory, graph algorithms, rooted spanning tree, breadth-first search, greatest
common divisor (gcd)

1. Introduction. We first review some known results, leading to the most com-
monly used method for testing primitivity. Throughout, A is an n x n irreducible
nonnegative matrix.

Frobenius [2] has shown that A is primitive if and only if, for some positive
integer m, A is positive (i.e., has all its elements positive). If A is positive, then so
is A m’ for all m’> m [2]. If A is primitive, let 0 be the smallest positive integer such
that A is positive. Wielandt [3] gave an example for which 0 n2-2n + 2 and stated
without proof that n2- 2n + 2 is actually an upper bound on 0. Holladay and Varga
[4] later gave a proof of this fact. Therefore, by computing A2, A4, AS, and
stopping after, in the worst case, O(log. n) such matrix multiplications, one can
determine whether A is primitive or not (i.e., w.hether 1 or > 1). But this approach
fails to determine in the general case and is computationally inefficient. Our
algorithm for finding is based on the work of Romanovsky [5], which is briefly
presented next.

Let G (V, E) be the directed graph whose adjacency matrix is the matrix
obtained by replacing every nonzero entry of A by 1. Since A is irreducible, G is
strongly connected. (In the context of Markov chains, G is known as the "transition
graph" of the chain.)

DEFINITION. A partition Vx, V2, VA Of the vertex-set V is said to be cyclic
if (x,y)E=>xV1 andyV2orxV2andyV3,.., orxVaandyVx (Fig.
1). (If A 1, we have the trivial case of V1 V.)

Observe that if V1,.. , Va is a cyclic partition of V, then the length of any closed
walk in G is a multiple of A. Romanovsky [5] has shown the following:

LEMMA 1. There exists a unique cyclic partition V, V of V. Moreover,

max {A there exists a cyclic partition Vx, , VA Of V}.

(For a proof the reader is referred to [5].)
Note that Lemma 1 implies that depends on the location of the nonzero entries

of A, but not on their magnitude. Therefore the problem is reduced to that of finding
the "cylic index" of a strongly connected directed graph G.

* Received by the editors May 27, 1981 and in final form November 11, 1981. This work was supported
by the National Science Foundation under grant MCS-79-05163.

" Electrical Engineering Department, The Johns Hopkins University, Baltimore, Maryland 21218.
Another commonly used criterion for primitivity is that if some diagonal element of A is nonzero

then A is primitive. This, however, is not a necessary condition for primitivity.

567

568 MIKHAIL J. ATALLAH

VA V

FIG. 1

It should be pointed out that in the context of discrete Markov chains producing
the cyclic partition V1," , V is as important as finding & Our algorithm finds 8 and
produces the cyclic partition V1,. ., V of V.

Now we proceed to describe the algorithm. We assume that the input is the graph
G rather than the matrix A.

2. The algorithm.
Input" An adjacency-list representation of a strongly connected directed graph

G (V, E). For every v V,

L(v) {u Vl (v, u) E}.

Output: The cyclic index 6 of G, and the cyclic partition V, V2," ", V, of V.
The following is an informal description of the algorithm. It is followed by a

pseudo-Algol program (Fig. 2). Throughout, assume that the gcd (greatest common
divisor) subroutine used is the Euclidean lgorithm [1].z (We insist, however that
gcd (0, x) x for all x _-> 0.)

Step O. A0.
Step 1. Let T be a spanning tree of G rooted, say, at vertex Vo.

For every vertex u, let d(u) be the length of the path in T from Uo to u.
Step 2. For each x V, look at all the elements of L(x)" for each y L(x), replace

the current value of A by gcd (A, Id (x) d (y) + 1 I).
Step 3. Do the following’

put Vo in set V.
put all vertices u having d(u)= 1 in set V2.

put all vertices u having d (u) A- 1 in set Va.
put all vertices v having d(u)= A in set V.

etc.

(end of algorithm).

It is easy to see that all of the steps described above are implemented in the
program of Fig. 2, where T is a breadth-first spanning tree. Note that Steps 1 and 2
are carried out simultaneously in the while-do loop and that we do not take the

2 As was pointed out by a referee, even the obvious brute force algorithm for gcd (a, b) can be
usedme.g., d min (a, b)" while d/a or d/b do d d- 1.

CYCLIC INDEX OF A NONNEGATIVE MATRIX 569

absolute value of d(v)-d(to)+ 1 because, since T is a breadth-first spanning tree, we
have

to L(v)::z),d(v)-d(to)+ 1 >-0.

(The proof of this fact is easy and is omitted.)

PROCEDURE CYCLIC.INDEX

Begin
A-0
Pick any vertex vo V
d(vo)-O
Enqueue v0 and mark it as being "old"
While queue not empty do

Begin
v - Dequeue
For each vertex o on L(v) do

If w is not "old" then
Begin
d(to)-d(v)+ l
Enqueue to and mark it as being "old"

End
Else do A ,- gcd (A, d(v)- d(to) + 1)

End
Output A
For each vertex v V do

Begin

Put v in Set V,
End

Output V,..., VA
End.

FIG. 2

We shall shortly prove that, upon termination of the algorithm, we have A & But
first we prove the following:

LEMMA 2. There exists a cyclic partition V1," Vs of V if and only if, for all
(x, y) E, s divides d (x d (y) + 1.

Proof. only if. Suppose that V1,"’, Vs is a cyclic partition of V, and suppose
(x, y) E. We must show that d(x)- d(y)+ 1 -ks, where k is an integer. Since G is
strongly connected, there is a path Pyvo from y to vo, having a length o, say, I. Now,
let Pvoy and Pox be the paths in T from vo to y and x, respectively.

Poy followed by Pyo is a closed walk of length d(y)+ I.
Pox followed by edge (x, y) followed by Pyvo is a closed walk of length d(x)+ 1 + l.
But the length of any closed walk must be a multiple of s (since V1," , V is a

cyclic partition of V). Therefore,

(1) d(y)+l=klS,

(2) d(x)+l+l=ks,

where kl and k2 are integers. Subtracting (1) from (2) gives

d(x) + 1 d(y) (k2- kl)S ks.

570 MIKHAIL J. ATALLAH

if. Suppose s divides d(x) d(y) + 1 for all (x, y) E. We must show that there
exists a cyclic partition V1,’ ’, Vs of V.

Create sets V1," ’, Vs as described in Step 3 of the algorithm (with s replacing
A). Now, suppose that (x, y) E, with x V/ and y V.. We must show that + 1 =-
f mod s. Since (x, y) E, it follows that s divides d(x)-d(y)+ 1, i.e.,

d(x)- d(y) + 1 ks (k integer).

Moreover, from the way Step 3 of the algorithm creates V and V., we have

d(x)---i-lmods and d(y)--f-lmods.

Therefore, (i- 1)-(f- 1)+ 1 --0 mod s, + 1 =-/" mod s.
From Lemmas 1 and 2, it follows immediately that:
THEOREM 3. 8 is the greatest positive integer which for all (x, y)E divides

d(x)-d(y)+l.
COROLLARY 4. When Step 2 o]: the algorithm terminates, we have
COROLLARY 5. Step 3 produces the desired cyclic partition VI, V of V.
Proof. The proof is identical to the proof of the "if" part of Lemma 2.
THEOREM 6. The algorithm we described takes O(IEI) steps, and, hence, is time-

optimal.
Proof. (In what follows, we make use of the fact that since G is strongly connected

we have V[O(]E[)).
It is clear that Step 1 takes O(IEI) steps. If we exclude the calculation of the gcd,

Step 2 also takes O(IEI)steps, because Y.x vlL(x)[IE]. Since A_-<IVI, the cumulative
cost of the gcd calculations in Step 2 is O(IE]) steps. Step 3, obviously, takes O(I VI)
steps. Therefore, the running time is O(max ([V], IEI))- O(1 1),

3. Conclusion. We have presented a time-optimal algorithm for finding the cyclic
index of an irreducible nonnegative square matrix.

4. Acknowledgments. This problem was brought to my attention by Professor
A. Karr [6] in his course on stochastic processes. I also sincerely thank Professor S.
R. Kosaraju for many useful suggestions. One of the referees pointed out the existence
of reference [7] where Professor Knuth describes a linear-time algorithm for finding
the cyclic index of a digraph. Both referees made many useful suggestions.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] G. FROBENIUS, Uber Matrizen aus nicht negativen Elementen, Sitzungsberichte der Preussichen
Akademie der Wissenschaften zu Berlin, 1912, pp. 456-477.

[3] HELMUT WIELANDT, Unzulegbare, nicht negativen Matrizen, Math. Zeit., 52 (1950), pp. 642-648.
[4] J. C. HOLLADAY AND R. S. VARGA, On powers of nonnegative matrices, Proc. Amer. Math. Soc., 9

(1958), pp. 631-634.
[5] V. ROMANOVSKY, Recherches sur les chafnes de Markoff, Acta. Math., 66, pp. 147-251.
[6] A. KARR, personal communication.
[7] D. E. KNUTH, Lecture notes delivered at the Matematisk Institutt of the University of Oslo, Norway,

1972-73.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

982 Society for Industiral and Applied Mathematics

0097-5397/82/1103-0017 $01.00/0

RELATIVIZING TIME, SPACE, AND TIME-SPACE*

RONALD V. BOOK,t CHRISTOPHER B. WILSON$ AND XU MEI-RUIt

Abstract. Consider the classes of formal languages specified by nondeterministic acceptors that operate
simultaneously within time bounds from a set " and space bounds from a set 6e. How large must the time
bounds be in order to obtain all of the languages specified by nondeterministic acceptors that operate
within space bounds from if’? How large must the space bounds be in order to obtain all of the languages
specified by nondeterministic acceptors that operate with time bounds from -? The first question is shown
to be equivalent (with appropriate restrictions on 6e and -) to the question of whether it matters if the
time bounds apply to all of the steps or only to the steps which query the oracle. The second question is
shown to be equivalent to the question of whether it matters if the space bounds apply to all of the
configurations or only to the configurations in which the oracle is queried. These results generalize a more
specific result [6] comparing NP with PSPACE. Also, it is shown that inclusions between the nondeterministic
and deterministic time hierarchies fail to translate downwards in some relativized cases.

Key words, complexity classes, relativizations, oracle machines, time, space, time-space, bounded
queries

Introduction. The problem of finding the precise relationship between computa-
tion time and space is very important in complexity theory. Because this relationship
remains unknown, there is an exponential discrepancy when upper and lower bounds
are both expressed in terms of time or space alone. For example, not only is it not
known whether a linear upper bound for space implies simultaneous upper bounds
of linear space and polynomial time but also it is not known whether a linear upper
bound far space implies a polynomial upper bound for time regardless of how much
space is used.

One method of approaching questions regarding the relationship between com-
plexity classes is to study relativized complexity classes. One might attempt to prove
that NP PSPACE if and only if for every or/cle set A, NP (A)= PSPACE (A); if
one could prove this, then one could conclude that NP PSPACE since it is known
that there exists a set A such that NP (A) PSPACE (A) [2], [3], [13], and knowing
that NP PSPACE would allow one to conclude that there exists a problem solvable
in linear space but not solvable in polynomial time [4]. It is known that if one restricts
the number of oracle queries a space-bounded oracle machine can make, then it is
sometime possible to obtain different results" If for any set A, NPQUERY (A) is the
class of languages accepted relative to A by nondeterministic oracle machines with
polynomial bounds on work space (and query tape) and polynomial bounds on the
number of oracle queries made in any computation, then it is the case that NP
PSPACE if and only if for all B, NP (B) NPQUERY (B) [6].

The subject of this paper is the question of whether a class of languages specified
by Turing machines with work space and running time simultaneously bounded is
equal to the class specified by machines with only the work space bounded, or whether
that class is equal to the class specified by machines with only the running time
bounded. For example, is the class of languages accepted by nondeterministic Turing
machines that use linear work space and polynomial running time equal to the class

* Received by the editors February 9, 1981, and in final revised form December 14, 1981. This research
was supported in part by the National Science Foundation under grant MCS80-11979. Some of these
results were announced at the 22nd IEEE Symposium on Foundations of Computer Science, Nashville,
Tennessee, October 1981.

t Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California
93106.

t Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
Harbin University of Science and Technology, Harbin, Heilongjiang, People’s Republic of China.

571

572 RONALD V. BOOK, CHRISTOPHER B. WILSON, XU MEI-RUI

of languages accepted by machines that use linear work space, or is that class equal
to the class of languages accepted by machines that operate in polynomial time? To
study these questions restricted oracle machines are considered. In the first case the
restriction involves bounding the number of oracle calls that can be made in any
accepting computation while simultaneously bounding the work space. In the second
case the restriction involves bounding the length of the work tapes in those configur-
ations in which oracle calls are made while simultaneously bounding the running time.
For example, every language accepted by a nondeterministic machine that uses linear
work space is accepted by another machine that simultaneously runs in polynomial
time and uses only linear work space if and only if for every oracle set A, every
language accepted relative to A by a nondeterministic oracle machine that uses linear
work space and can make only a polynomial number of oracle calls in any computation
is also accepted relative to A by a nondeterministic oracle machine that simultaneously
runs in polynomial time and uses linear work space. Also, every language accepted
by a nondeterministic machine that runs in polynomial time is accepted by another
machine that simultaneously uses linear work space and runs in polynomial time if
and only if for every oracle set A, every language accepted relative to A by a
nondeterministic oracle machine that runs in polynomial time and uses only linear
work space in those configurations that query the oracle is also accepted relative to
A by a nondeterministic oracle machine that simultaneously runs in polynomial time
and uses linear work space.

Sections 2 and 3 are devoted to establishing the results described above. In 4
potential hierarchies are investigated generalizing the results in [7] regarding relativiz-
ations of the question of whether the polynomial-time hierarchy is equal to PSPACE.

In 5 it is shown that there exist oracle sets that do not allow for negative
inclusions to translate upwards (or, equivalently, positive inclusions to translate down-
wards) not only in the case of time-bounded machines but also in the case of "bounded
query" machines.

It appears that the types of relativizations studied here and in [6], [7] have not
been investigated previously in complexity theory, in computability theory, or in the
study of complexity-bounded reducibilities. The results in the present paper as well
as those in [6], [7] suggest that there are fundamental issues still to be revealed. For
other results showing how varying access to the oracle can yield results differing from
the current state of knowledge about nonrelativized complexity classes, see [1], [10].

1. Preliminaries. It is assumed that the reader is familiar with the basic concepts
from the theories of automata, computability, and formal languages. Some of the
concepts that are most important for this paper are reviewed here and notation is
established.

For a string w, Iwl denotes the length of w. The empty string is denoted by e, lel 0,

An oracle machine is a multitape Turing machine M with a distinguished work
tape, the query tape, and three distinguished states QUERY, YES, and NO. At some
step of a computation on an input string w, M may transfer into the state QUERY.
In state QUERY, M transfers into the state YES if the string currently appearing on
the query tape is in some oracle set A; otherwise, M transfers into the state NO; in
either case the tape is instantly erased. The set of strings accepted by M relative to the
oracle set A is L(M, A) {wlthere is an accepting computation of M on input w when
the oracle set is A}. If M has no query tape, we write L(M).

Oracle machines may be deterministic or nondeterministic. An oracle machine
may operate within some time bound T, where T is a function of the length of the

RELATIVIZING TIME, SPACE, AND TIME-SPACE 573

input string, and the notion of operation within a time bound for an oracle machine
is just the same as that notion for an ordinary Turing machine. An oracle machine
may operate within some space bound S, where S is a function of the length of the
input string, and here we require that the query tape as well as the ordinary work
tapes be bounded in length by S.

For any space bound S and any set A, let NSPACE (S, A) (DSPACE (S, A)) be
the class of languages accepted relative to A by nondeterministic (respectively, deter-
ministic) oracle machines that operate within space bound S(n). Let NSPACE (S)-
NSPACE (S, b) and DSPACE (S)= DSPACE (S, b). For any time bound T and any
oracle set A, let NTIME (T, A) (DTIME (T, A)) be the class of languages accepted
relative to A by nondeterministic (respectively, deterministic) oracle machines that
operate within time bound T(n). Let NTIME (T) NTIME (T, b) and DTIME (T)
DTIME (T, b).

If 6e is a set of space bounds and A is a set, let DSPACE(,A)=
LI{DSPACE (S, A)[S 6t’} and NSPACE (Se, A) {NSPACE (S, A)[S 5}, and let
DSPACE (6e) DSPACE (, b) and NSPACE (Se) NSPACE (6, b). If 3- is a set of
time bounds and A is a set, let DTIME (3, A) tA{DTIME (T, A)IT 3-} and
NTIME (if, A)= {NTIME (T, A)IT if}, and let DTIME (3)= DTIME (3, b) and
NTIME (-) NTIME (, b).

Let PSPACE (A)= tA___ DSPACE (nk, A). It is known [11], [12] that for every
set A and all k => 1, NSPACE (n,A)_DSPACE (n2’,A) so that PSPACE (A)=
Ua NSPACE (n’,A). Let PSPACE PSPACE (b).

For any set A, let NP (A) (P (A)) be the class of languages accepted relative to
A by nondeterministic (resp. deterministic) oracle machines that operate within
polynomial time. Let P= P (b) and NP NP (b). For any set A, let DEXT (A)=
U{DTIME (2", A)[c > 0} and let NEXT (A) U{NTIME (2c, A)[c > 0}. Let DEXT=
DEXT (b) and NEXT NEXT (b).

Let poly= {nklk >0 an integer} and lin= {knlk >0 an integer}.

2. Time-space vs. space. In this section we define classes of languages specified
by oracle machines that are bounded simultaneously in both time and space and by
oracle machines that are bounded simultaneously in both space and the number of
oracle queries allowed. Then we establish our first result.

Let T and S be functions from the natural numbers to the natural numbers. A
tisp (T, S) oracle machine is an oracle machine such that on every input w, if there is
an accepting computation on w, then there is an accepting computation which simul-
taneously uses at most T([w[) steps and at most S([w[) work space. For any oracle set
A, let NTISP (T, S, A) be the class of languages accepted relative to A by nondeter-
ministic tisp (T, S) oracle machines. Let NTISP (T, S)= NTISP (T, S, b).

If is a set of time bounds and 5 is a set of space bounds, then for any oracle
set A, let NTISP (3, 6, A) t_J{NTISP (T, S, A)IT 3", S 5}, and let NTISP (3,)
NTISP (if, 6, b).

We would like it to be the case that any machine running in time T and space
$ is a tisp (T, $) machine. The definition requires that the two bounds be achieved in
the same accepting computation, so that a deterministic machine running in time T
and space S is a tisp (T, S) machine. For nondeterministic machines we achieve the
same condition by requiring familiar "honesty" conditions.

A function S is constructible if there is a deterministic Turing machine M such
that on every input string w, M’s computation on w halts having used work space
S([w[) and exactly S([w[) tape squares are marked on some work tape.

574 RONALD V. BOOK, CHRISTOPHER B. WILSON, XU MEI-RUI

A function T is a running time if there is a deterministic Turing machine M such
that on every input string w, M’s computation on w halts in exactly T(Iw I) steps.

If T is a running time and S is constructible, then the pair (T, S) is compatible
if there is a deterministic tisp (T, S) machine that makes no oracle queries and that
witnesses the fact that T is a running time and S is constructible.

It is clear that if a pair (T, S) is compatible, then for every oracle set A and every
language L in NTISP (T, $, A) there is a nondeterministic tisp (T’, S’) oracle machine
M such that L(M, A)= L and for every input string w, every computation of M on
w uses at most T’(Iwl) steps and at most s’(Iwl) work space, where T’ is O(T) and
S’ is O(S).

If a pair (T, S) is compatible, then it is the case that for some c > 0 and all n >_-0,
n <= T(n) <-_ 2s<. We are interested in situations where T(n) o(2s<)). For example,
let T(n)=n for some integer k and let S(n)=n; is NTISP(T,S) equal to
NSPACE (S)? More generally, if {nlc a positive integer} and 5t {chic a positive
integer}, then is NTISP (, 5e) equal to NSPACE (St)? We approach these questions
by relativizing NSPACE () in one particular manner.

Let T and S be functions from the natural numbers to the natural numbers. A
qusp (T, S) oracle machine is an oracle machine such that on every input w, if there
is an accepting computation on w, then there is an accepting computation which makes
at most T<lwl> oracle queries and uses at most S([w[) work space. For any set A, let
NQUSP (T, S, A) be the class of languages accepted relative to A by nondeterministic
qusp (T, S) oracle machines.

If ff is a set of time bounds and 6e is a set of space bounds, then for any set A,
let NQUSP (-, , A) (_J{NQUSP (T, S, A)IT 5Y, S 9}.

It is clear that if (T, S) is a compatible pair, then for every set A and every
language L in NQUSP (T, S,A) there is a nondeterministic qusp (T’, S’) oracle
machine M such that L(M, A)= L and for every input string w, every computation
of M on w makes at most T’(Iw I) oracle queries and uses at most s’<lwl) work space,
where T’ is O(T) and S’ is O(S).

For any functions T and S and any set A, NTISP (T, S, A)_ NQUSP (T, S, A)_
NSPACE (S, A), and NQUSP (T, S, b)= NSPACE (S, b)= NSPACE (S).

For a set of functions, we say that a function g is O() if there is some f
such that g is O(f).

For the main results we require that the sets and 90 of bounds satisfy the
following conditions.

Condition 2.1. The set ff is a set of running times and the set St’ is a set of
constructible space bounds such that

(i) for every T s 5r and S s St, the pair (T, S) is compatible;
(ii) for every Tts (SsSt’) and c>0, the function T2(n)=cTa(n)

(Sz(n) cS(n)) is bounded above by some function in - (resp. St’);
(iii) if Tx, T2s if, then the function T(n)= Ta(n)T2(n) is O(Sr);
(iv) if S, $2 s 5, then the function S(n)= S(S2(n)) is O(5e);
(v) if T and S s St, then the function T’(n) T(S(n)) is O(’).
Now we can establish our first result.
THeOReM 2.2. Let and 9 be sets of bounds satisfying Condition 2.1. The

following are equivalent"
(a) NTISP (, St)= NSPACE
(b) For every set A, NTISP (if, , A) NQUSP (if, 6v, A).
Proof. That (b) implies (a) is trivial since NTISP (if, 9, b)= NTISP (, St) and

NQUSP (if, St, d)= NSPACE (9).

RELATIVIZING TIME, SPACE, AND TIME-SPACE 575

To show that (a) implies (b), choose a set A. We have already observed that
NTISP (, Y, A)

_
NQUSP (, Y, A). To prove the other inclusion, we must take an

arbitrary L1 NQUSP (, , A) and show that L is in NTISP (, , A).
If L1 is in NQUSP (r, , A), then there is a nondeterministic oracle machine M1

and functions T and S with the properties that for any n _-> 0 in any computa-
tion on an input of length n, M makes at most T(n) oracle queries, M1 uses at most
S(n) work space, and L(M,A)=L. Let LE={ID # ID[ID is an instantaneous
description of M such that M is in the initial state or M1 is in the YES state or M
is in the NO state, ID is an instantaneous description of M such that M1 is in an
accepting state or M is in the QUERY state, and there is a computation of M1
beginning with IDa and ending with ID and in this computation neither the QUERY
state nor any accepting state is entered except in instantaneous description IDa}. The
oracle machine MI uses work space S 6 and so from M1 one can construct a
nondeterministic (nonoracle) machine M2 such that L(M2)= L2 and M2 uses work
space at most S(]ID # IDol). By hypothesis NTISP (3, 6)=NSPACE (6) so that
L2 NSPACE (S) and Sl 6 imply that for some T2 5r and $2 6, there is a
nondeterministic tisp (T2, $2) machine M3 such that L(M3)---L2. Using M3 we will
show the existence of a nondeterministic tisp (T3, $3) oracle machine M4 such that
L(Ma, A)=L where T3 is in " and $3 is in 5, thus concluding that L is in
NTISP (, 6, A).

Since M4 is nondeterministic, it is sufficient to describe its accepting computations.
On input string w, M4 writes the initial instantaneous description of M1 on input string
w, call it ID0, on one of M4’s tapes. Next, M4 writes a marker # at the right end of
the string ID0. Then M4 nondeterministically guesses an instantaneous description,
call it ID1, of M and writes this string to the right of the marker so that this tape of
M4 now contains ID0 # IDa, with the requirement that the string ID represent an
instantaneous description of M4 in either an accepting state or in the QUERY state.
From this point M4 acts as in (i).

(i) If M4 has generated ID2i # ID2i+, then M4 simulates a computation of M3
on ID2i # ID2i/l. If this computation is accepting and ID2i/ represents an accepting
instantaneous description ofM, then M4 halts in an accepting state. If this computation
is accepting and ID2i/ represents an instantaneous description ofM in state QUERY,
then M4 acts as in (ii). If this computation is not accepting, then M4 halts in a
nonaccepting state.

(ii) If M4 has generated ID2g # ID2/1, ID2i # ID2i+ L2, and ID2i+1 represents
an instantaneous description of M in state QUERY, then M4 queries the oracle and
replaces string ID2g # ID2/ with the proper successor IDa(/ of the instantaneous
description represented by ID2/1. Thus, ID(i/ represents an instantaneous descrip-
tion of M either in state YES or in state NO, depending on whether the string on
the query tape represented by ID2i+ is or is not in A. Next, M4 writes a marker at
the right end of the string ID2(/. Then M4 nondeterministically guesses an instan-
taneous description, call it ID2(/1/1, of M and writes this string to the right of the
marker so that this tape of M4 now contains ID2(i+1 # ID(g/l/, with the requirement
that ID2(// represent an instantaneous description of M4 in either an accepting
state or in the QUERY state. From this point M4 acts as in (i).

It is clear from the description of M4’s accepting computations, M4 accepts input
string w relative to oracle set A if and only if there is an accepting computation of
M1 on w relative to oracle set A if and only if w L(M1, A)= LI. Since M uses at
most work space S(Iwl) on any computation on input string w, M4 can initially mark
S(Iw[) tape squares so that when M4 writes ID2i or ID2i+ for any i->_0, then those

576 RONALD V. BOOK, CHRISTOPHER B. WILSON, XU MEI-RUI

strings have length no greater than Sl(iwl). The machine M3 uses work space at most
$2. Thus M4 uses work space at most S3(rt) where for all n, S3(rt)--$2(2S1(n)). From
the conditions on 9o including the fact that 6e is closed under composition and $1,
S2s, S3e6e. Whenever M4 writes ID2i:ID2i/l, M4 needs IID2i#ID2i/ll <-

2S(]wl) + 1 steps; whenever M4 simulates M3 to determine whether ID2i yields ID2/+1,
M4 needs at most T=(S (Iwl)) steps; since M1 makes at most T(lwl)oracle queries,
each accepting computation of M4 on input string w L(M4, A)-L has at most

T (Iwl) steps. By hypothesis, the set of time bounds in 3 is closed under
composition with functions in 9’ and is closed under multiplication, so that the function
T3(n) T2(S(n))" Tl(n) is in 3- and thus M4 runs in time T3. Thus, M4 is a tisp (T3, $3)
oracle machine and L1 L(M4, A) NTISP (3, 6e, A).

A special case of qusp machines was studied in [6], [7].
If " is a set of functions that are both running times and constructible space

bounds, then for any oracle set A let NQUERY (, A) NQUSP (3, 3, A). For any
set A let NPQUERY (A) NQUERY (poly, A).

In [6] it is shown that NP=PSPACE if and only if for every A, NP (A)=
NPQUERY (A). Here we generalize this result.

THEOREM 2.3. Let be a set of functions that are both running times and
constructible space bounds, and the pair 3-, satisfies Condition 2.1. Then the following
statements are equivalent:

(a) NTIME ()= NSPACE (3-).
(b) For every set A, NTIME (3, A) NQUERY (3, A).
Theorem 2.3 is a corollary of Theorem 2.2.

3. Time-space vs. time. In this section we define classes of languages specified
by oracle machines that are bounded simultaneously in both time and in the size of
instantaneous descriptions when the oracle’is queried. We compare these classes with
those specified by oracle machines that are bounded simultaneously in both time and
space.

Let T and $ be functions from the natural numbers to the natural numbers. A
tiqs (T, S) oracle machine is an oracle machine such that on every input w, if there is
an accepting computation on w, then there is an accepting computation which simul-
taneously uses at most T(lwl) steps and every time the oracle is queried every work
tape is bounded in length by S(]w]). For any set A, let NTIQS (T, S, A) be the class
of languages accepted relative to A by nondeterministic tiqs (T, S) oracle machines.

If is a set of time bounds and 5 is a set of space bounds, then for any set A,
let NTIQS (-, 6e, A)= 1,3{NTIQS (T, S, A)IT , S 9}.

For any functions T and S and any set A, NTISP (T, S, A)c_ NTIQS (T, S, A)_
NTIME (T, A), and NTIQS (T, S, b)= NTIME (T, b)= NTIME (T).

THEOREM 3.1. Let and 6 be sets of bounds satisfying Condition 2.1. The
following are equivalent:

(a) NTISP (-, 9) NTIME (3-).
(b) For every set A, NTISP (, 6e, A) NTIQS (’, 6e, A).
Proof. The proof is similar to that of Theorem 2.2. We point out some of the

differences and leave the details to the reader.
For arbitrary A and arbitrary L1 in NTIQS (3, 6e, A), we must show that L1 is

in NTISP (if, 6e, A). If M1 is a nondeterministic tiqs (T1, $1) oracle machine such that
L(M1, A)= L1, T , and Sx 6e, then we lose no generality by assuming that for
every w in L(Ma, A) every accepting instantaneous description of M1 on w has length
at most S([w[). From M1 one can construct a nondeterministic (nonoracle) machine

RELATIVIZING TIME, SPACE, AND TIME-SPACE 577

M2 such that L(M2) L2 andM2 operates in time TI([IDa # IDt 1), so that the hypothesis
NTISP (if, 5)= NTIME (-) yields L2 NTISP (if, 5).

The proof now proceeds just like that of Theorem 2.2. [q

Examples of pairs of sets ff of time bounds and 5 of space bounds which satisfy
Condition 2.1 and hence the hypotheses of Theorems 2.2 and 3.1 are the following:

(a) = {nk]k > 0 an integer} and
6 {kn Ik > 0 an integer};

(b) 5r {nklk > 0 an integer} and
6e {n (log n)k[k >0 an integer};

(c) -= {2(gnklk > 0 an integer} and
{kn Ik > 0 an integer};

(d) if= {2(gnklk > 0 an integer} and
6e= {n (log n)lk >0 an integer};

(e) ’= {2(l"lk > 0 an integer} and
6 {nklk > 0 an integer}.

Neither Theorem 2.2 nor Theorem 3.1 is as strong as one might wish. The main
problem is the portion of Condition 2.1 demanding closure under composition for
the sets of bounds. If a set v of time bounds or space bounds contains a function
such as f(n) 2 and is closed under composition, then DTIME () NTIME ()
DSPACE () NSPACE () and there is no need to consider relativizations of any
kind. Notice that the proofs of Theorems 2.2 and 3.1 use closure under composition
in a crucial way. We do not know how to avoid this problem.

Let us return to the situation of polynomial time and linear space. It is
known that NP NSPACE (lin) [4] and so either NTIME (poly, lin) NP or
NTIME (poly, lin) NSPACE (lin) (possibly both). Thus, from Theorems 2.3 and 3.1
there exists a set A such that NQUSP (poly, lin A) NTIQS (poly, lin, A).

Certain separation theorems for NTISP classes are known [8]. These theorems
have the following form: If (T1, S1) and (T2, $2) are compatible pairs and if T2 ($2)
grows sufficiently faster than T1 (resp. $1), then NTISP (T1, S) g NTISP (T2, $2). If
one could show this type of theorem for fixed S, then using the technique of [5] one
could obtain results such as NTISP (r/k, n) NTISP (r/k+, n) and hence conclude that

k NTISP (n k, n) g NSPACE (n).

4. Hierarchies. Observations of Doner [9] regarding diagonalization arguments
lead to the following fact, the proof of which is left to the reader.

PROPOSITION 4.1. There exist sets A ar/d B such that neither NTISP (poly, lin, A)
nor NSPACE (lin, B) is closed under complementation.

It is not known whether either NTISP (poly, lin) or NSPACE (lin) is closed under
complementation so that one might consider possible hierarchies based on
NTISP (poly, lin) or NSPACE (lin) just as the polynomial-time hierarchy is based in
NP 14], 161. This type of investigation was carried out in [7] by considering relativized
hierarchies with NP(.) and NPQUERY(.) as operators. Here we develop general
results similar to those in [7] but beginning with Theorems 2.2 and 3.1.

Let and 6e be a pair of sets of bounds satisfying Condition 2.1, and
let A be a set. Let NTISP1 (,6e, A)=NTISP(,6e, A), and for each i_->l,
let NTISP(+a) (;Y, 5e, A) U{NTISP (5r, 5e, B)IB NTISPi) (St, 5, A)} and let
NTISP(*) (, 5e, A) Ui__>I NTISP(i) (;Y-, 5e, A). For each => 1, define NSPACE
A), NTIME(i) (;Y,A), NQUSP() (;Y-,,A), and NTIQS() (;Y-,Se, A) similarly, and
define NSPACE*) (Se, A) U__>a NSPACE(i) (St’, A), NTIME*) (St, A)
U=>a NTIME(i) (-, A), NQUSP(*) (;Y, , A)= Ji__>l NQUSP(i) (, , A), and

578 RONALD V. BOOK, CHRISTOPHER B. WILSON, XU MEI-RUI

NTIQS(*) (’, , A)= Ui>I NTIQS(i (-, 5, A). Write NTISP(i) (, 5), NSPACE(i)

5), NTIME(i) (-), NTISP* (if,), NSPACE*) (), and NTIME(*) (if) in the case

THZOZM 4.2. Let and be a pair of sets of bounds satisfying Condition 2.1.
The following are equivalent:

(a) NTISP(*) (if,)= NSPACE(*) ().
(b) For every set A, NTISP(*) (if, , A) NQUSP(*) (if, , A).
The proof of Theorem 4.2 will follow from the proof of Theorem 2.2 once a

preliminary result is established.
LZMMA 4.3. Let and be a pair of sets of bounds satisfying Condition 2.1. For

every set A, NQUSP2) (if, , A) U{NTISP (if, , B)}B NQUSP (if, , A)}.
The proof of Lemma 4.3 is similar to that of Theorem 2.2 and is left to the reader.
A result similar to Lemma 4.3 yields the following fact.
THZOZM 4.4. Let and be a pair of sets of bounds satisfying Condition 2.1.

The following are equivalent:
(a) NTISP* (if,)= NTIME*) (if);
(b) For every set A, NTISP* (if, , A) NTIQS* (if, , A).
Apparently classes of the form NTISP*) (,) or NSPACE*) () have not

been studied previously. In one case they may be of independent interest. The class
of rudimentary predicates has been studied from the point of view of complexity
theory. Let NL denote the class of languages accepted by nondeterministic machines
that run in linear time, i.e., NL NTIME (lin) NTISP (lin, lin), and for every oracle
set A, define NL*) (A) as above. Wrathall 17] has shown that the class of rudimentary
predicates is precisely NL*= NL*(). Clearly NL*) DSPACE (lin). Since NL
NTISP (poly, lin), NL*) NTISP*) (poly, lin) and it is not known whether this
inclusion is strict.

5. On downwards translation. Generally, equalities at a low level of some com-
plexity hierarchy imply equality at higher levels. It is not known whether the converse
holds. For example, if P NP, then DEXT NEXT; but if DEXT NEXT, then all
we know about P ? NP is that every tally language in NP is in P.

When we consider relativized complexity classes, there are examples that show
that equality above does not imply equality below: there is an oracle A such that
P (A) NP (A) but NP (A) co-NP (A) [2]. Here we provide evidence that it will be
difficult to prove that equality above implies equality below.

The first result concerns classes specified by time-bounded machines.
THZORZM 5.1. There exists an oracle set A such that P (A)NP (A) but

DEXT (A) NEXT (A).
Proof. Let P1, P2," be an enumeration of all deterministic polynomial-time-

bounded oracle machines and let NP1, NP2," be an enumeration of all nondeter-
ministic polynomial-time-bounded oracle machines. Without loss of generality, assume
that for, each 1, 2,.. , pi is a polynomial that bounds the running time of both Pi
and NP.

Let El, E2, be an enumeration of all deterministic exponential-time-bounded
oracle machines and let NEa, NE2,... be an enumeration of all nondeterministic
exponential-time-bounded oracle machines. Without loss of generality, assume that
for each 1, 2,. ., eg is an exponential function (for some C, > O, e(n) 2c’") that
bounds the running time of both E and NEi.

For any set B, let L(B)= {x[there exists a y such that Ix[ly[and xy B} and
let S(B)= {(i, x, 0")1 the machine NEi accepts x relative to B in less than 2" steps},
where (.,.,.) is a suitable encoding function. Clearly, L(B) is in NP(B).

RELATIVIZING TIME, SPACE, AND TIME-SPACE 579

We construct an oracle set A in stages. At stage n the set An is constructed from
An-1 such that An-1

_
An. The construction guarantees that (i) L(A) P (A), and (ii)

y S(A) if and only if y021yIA. Since L(A) is in NP (A), the first condition shows
that P (A) NP (A).

The second condition shows that DEXT (A)= NEXT (A) since x L(NEi, A) if
and only if (i, x, 0c’lxl) S(A) if and only if y 02 A where y (i, x, 0c’lxl), and for each
there exists a f such that machine Ej can read input x and write y on its query

tape, with y (i, x, 0’lxl), within ej(Ix[) steps.
At some odd stages of the contruction, we will cancel an index f when it can be

guaranteed that L(Pi, A) L(A). At even stages condition (ii) is guaranteed.
During the construction of A, strings will be reserved for A or A. Strings not

reserved for either A or A will be considered to be in A if queried. Once a string is
reserved for a set nothing done later affects its status.

Let g(i) be defined as follows" g(0)= 1 and g(i + 1)= 22") + 1.
Stage n 0. Let Ao .
Stage n 2k + 1. If several preconditions are met by at least one index f, then

cancel the least such one; otherwise, skip this stage. The preconditions are as follows"

(1) There is an such that g(i)= n;
(2) p(n) < 2k+l + k + 1;
(3) 2n<2k/l+k+l;
(4) pi(n) < 2g(i + 1).
If index j is cancelled at this stage, find some x such that Ix n and for no y

with lyl- n has xy been reserved for either A or fi. Run machine P. with oracle set
A,_ on input string x and reserve for A all unreserved strings queried. If Pi accepts
x relative to A,_, then for all y with]yl- n, reserve xy for fi; in this case, it is
guaranteed that x e! L(A). If Pi rejects x relative to An-l, then for some y such that
lyl Ixl and xy is not queried in its computation on x relative to An-, place xy into
A; in this case, it is guaranteed that x L(A). Thus, if index j is cancelled at this
stage, then L(A L(Pi, A).

Stage n 2k. Consider each string y such that]yl k and y has the form (i, x, 0’).
For such a y, run NEi with oracle set An-1 on input x for at most 2 steps. If some
computation of NEi with oracle set A,-1 accepts input x in at most 2 steps, place
219-1

y , intoA and reserve for fi those unreserved strings queried in one such computation.
If no computation of NEi with oracle set An- accepts input x in at most 2 steps,
then determine whether the addition of some unreserved elements to An- will cause
acceptance. There are two cases"

Case (a)" If so, then place those unreserved strings queried on an accepting path
appropriately into A and . Also, put y02’’1 into A.

Case (b): If not, then do nothing except reserving y02 for .
These two cases ensure that the behavior of NEi on x is immune to any other

possible additions to the oracle A.
Consider the construction at stage n 2k + 1. Preconditions (2) and (3) ensure

that the construction at this stage does not reserve for A or any string y0
2ty

which
may have to be reserved according to the requirements of the next even stage.
Precondition (2) implies precondition (4), and precondition (4) ensures that what is
reserved at this stage does not affect the availability of an x (the xys will have length
2g(i + 1)) at the next odd stage.

At any odd-numbered stage, say n 2k + 1 g(i), we must guarantee that we
can find some x (Ix[n) such that for no y ([y[Ix]) was xy reserved. This entails
examining the number of strings reserved during previous odd- and even-numbered

580 RONALD V. BOOK, CHRISTOPHER B. WILSON, XU MEI-RUI

stages. By precondition (4), no previous odd-numbered stage carries out a simulation
where any string queried has length 2n. So only the even-numbered stages cause
concern. Now at any stage 2l, fewer than 2 strings are reserved by machines represented
by any of the 21 possible encodings, hence fewer than 221 strings are reserved. So the
total number of strings reserved by all previous even-numbered stages is less than

22 22k+2/k__1 < =2. There are 2" sets H(x)-{xyllxl--lylt so since fewer than 2
strings will have been reserved by stage n, there must exist some x for which no
element of H(x) is reserved. This means that at any stage numbered n -2k + 1 that
is performed, one can find some x of length n such that for no y of length n will xy
be reserved for either A or A. Once such an x is found one may still have to find
some xy not queried during that stage. But by precondition (2), pi(n) is less than 2
which is the size of H(x). Thus not all elements of H(x) can be queried by the
computation of Pi on input x. For each f, the preconditions (1)-(4) will be satisfied
infinitely often, so every index] will eventually be cancelled. Hence, for every index
j, L(P., A) e L(A) and so L(A)

_
P (A).

In an even-numbered stage, strings of the form y021"1 are placed into A or fi. We
must guarantee that these strings were not previously reserved. At an even stage
n 2]yl, the runningltime of any machine encoded by a string of length]Yl is less than
2lyl, so no string y02 could be queried and, hence, reserved. At the odd-numbered
stages precondition (2) ensures that queried strings will not be so long and precondition
(3) ensures that what is added to A and A to produce a string in L(A) and L(A) will
not be so long. This guarantees that condition (ii) is satisfied. ?l

Theorem 5.1 appeared earlier in [15].
Baker, Gill and Solovay [2] established the existence of a set B such that

NP (B)-P (B) contains a tally language, i.e., a language on a one-letter alphabet.
Thus, for this particular set B, DEXT (B) NEXT (B). In contrast, Theorem 5.1
establishes the existence of a set A suizh that P (A)NP (A) but DEXT (A)=
NEXT (A), so that NP (A)- P (A) contains no tally languages.

It is known [4], [5] that NP DEXT, PSPACE DEXT, and PSPACE NEXT.
The questions "PSPACE c__? DEXT" and "PSPACE _? NEXT" lead one to study
the proof of Theorem 5.1. The time bounds pi," for the oracle machines Pi serve
only to bound the number of queries made in Pi’s computations and to bound the
lengths of the strings on the query tape. Thus, we have the following result.

THEOREM 5.2. There exists an oracle set A such that PQUERY(A)
NPQUERY (A) but DEXT (A)= NEXT (A).

Finally, the techniques of Simon and Gill [13] can be used to establish the following
result.

THEOREM 5.3. For every recursive set A that is not in PSPACE, there exists a
recursive set B such that APSPACE(B) but ANPQUERY(B), so that
NPQUERY (B) PSPACE (B).

REFERENCES

[1] D. ANGLUIN, On relativizing auxiliary pushdown machines, Math. Systems Theory, 13 (1980),
pp. 283-299.

[2] T. BAKER, J. GILL AND R. SOLOVAY, Relativizations on the P =? NP question, this Journal, 4
(1975), pp. 431-442.

[3] T. BAKER AND A. SELMAN, A second step towards the polynomial hierarchy, Theoret. Comput. Sci.,
8 (1979), pp. 177-187.

[4] R. BOOK, On languages accepted in polynomial time, this Journal, 1 (1972), pp. 281-287.
[5], Translational lemmas, polynomial time, and (log n)J-space, Theoret. Comput. Sci., (1975),

pp. 215-226.

RELATIVIZING TIME, SPACE, AND TIME-SPACE 581

[6],Bounded query machines: on NP and PSPACE, Theoret. Comput. Sci., 15 (1981), pp. 27-39.
[7] R. BOOK AND C. WNATHALL, Bounded query machines: on NP and NPQUERY (), Theoret.

Comput. Sci., 15 (1981), pp. 41-50.
[8] A. BNUSS AND A. MEYEN, On time-space classes and their relation to the theory o[real addition,

Theoret. Comput. Sci. 11 (1980), pp. 59-69.
[9] J. DONEN, Relativized complexity classes, submitted for publication.

[10] R. LADNER AND N. LYNCH, Relativization o[questions about log space computability, Math. Systems
Theory, 10 (1976), pp. 19-32.

[11] W. SAVITCH, Relationships between nondeterministic and deterministic space complexities, J. Comput.
Syst. Sci. 4 (1970), pp. 177-192.

[12] I. SIMON, On some subrecursive reducibilities, Ph.D. dissertation, Stanford University, Stanford, CA,
1977.

[13] I. SIMON AND J. GILL, Polynomial reducibilities and upwards diagonalizations, Proc. 9th ACM
Symposium on Theory of Computing, 1977, pp. 186-194.

[14] L. STOCKMEYEN, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976), pp. 1-22.
[15] C. WILSON, Relativization, reducibilities, and the exponential hierarchy, M.S. thesis, University of

Toronto, Toronto, 1980.
[16] C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976),

pp. 23-33.
[17] ., Rudimentary predicates and relative computation, this Journal, 7 (1976), pp. 194-209.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

(C) 1982 Society for Industiral and Applied Mathematics

0097-5397/82/1103-0018 $01.00/0

RANKING AND UNRANKING OF 2-3 TREES*

UDAI GUPTA,t D. T. LEEt AND C. K. WONG

Abstract. In this paper we consider the generating, ranking, and unranking of 2-3 trees with n keys.
We propose a linear ordering among these trees. The problem of ranking is to determine the rank of a

given tree in this ordering, while unranking means constructing the tree of a given rank. The main result
is that ranking and unranking can be done in O(n) time after a preprocessing step that takes O(n 2) time
and space.

Key words, algorithms, 2-3 trees, permutation, ranking and unranking

1. Introduction. The problem of generating, ranking and unranking binary trees
and k-ary trees has received considerable attention in the recent past [2], [8], [9],
[10], [13], [14]. Typically, a one-to-one correspondence is established between a class
of trees and certain integer sequences. It is then shown how these sequences can be
generated in order (usually lexicographic) and how given a sequence its position in
this ordering can be determined (ranking) and vice-versa (unranking). These pro-
cedures have obvious uses in the generation of random data to test and predict the
behavior of algorithms that manipulate these classes of trees.

In [14], Zaks and Richards present algorithms for generating, ranking and unrank-
ing all trees with ni nodes having ki sons each, 1, 2,. , t, and no + 1 leaves (where
no--l<=i<_t(ki-1)ni). Their algorithm for generation runs O(n) time where n
Eo<__i<__tni The algorithms for ranking and unranking take O(n(t+ 1)) time after a
preprocessing step that takes O((t+ 1)u) time and O(u) space, where u--1-Ii<=i<=tni.
Alternatively, if no preprocessing is done, then ranking and unranking can be done
in O(n2(t + 1)2) time. Although the authors deal only with ordered trees, it is clear
that their methods can be applied to binary trees and k-ary trees after augmentation.
However, the methods of Zaks and Richard cannot be applied to 2-3 trees.

2. 2-3 trees. A variety of balanced-tree schemes have been proposed for the
organization of information so as to guarantee worst-case logarithmic search times.
One such scheme, called "2-3 trees" was introduced by J. Hopcroft (see, for instance,
[1], [5]). A 2-3 tree is a tree in which each internal (nonleaf) node has 2 or 3 sons,
and every path from the root to a leaf is of the same length. Internal nodes contain
1 or 2 keys depending upon whether they have 2 or 3 sons respectively. Since we
are only interested in the structure of the tree, the key values are immaterial and keys
will henceforth simply be shown as dots.

Our problem then is to devise algorithms to generate all 2-3 trees with n keys
and to rank and unrank these trees. Figure 1 shows the 4 different 2-3 trees with 7 keys.

2.1. Encoding and ordering. We shall represent a 2-3 tree with n keys by a
sequence ala2a3"" ak that is obtained as follows" Starting with the lowermost level
of internal nodes, list the number of sons of each node, level by level ending with the

* Received by the editors July 31, 1980, and in final revised form November 20, 1981.

" Northwestern University, Evanston, Illinois 60201.
Northwestern University, Evanston, Illinois 60201. The research of this author was supported in

part by the National Science Foundation under grant MCS-7916847.
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598.
Alternatively, the keys may be stored only in the leaves and internal nodes may contain only

navigational information].

582

RANKING AND UNRANKING OF 2-3 TREES 583

2333 3233 3323

2222222

FIG. All the 2-3 trees with 7 keys.

root. Within the same level the listing is done from left to right. The sequences
corresponding to the trees in Fig. 1 are listed below each tree.

If the sequence ala2"" ak represents a 2-3 tree with n keys, then it must have
the following properties:

1) i(ai--1)=n;
2) a{2,3},i=l, 2,...,k;
3) If k > 1, then there exist lo, ll,’’’, lr such that

(1)
0=/o</1<"" "<lr-=k-1, /r=k,

lg- li-1 a for 1, 2,.. , r- 1.
li<j<=li+

We shall call a sequence that satisfies properties 2) and 3) a feasible sequence, and
one that satisfies properties 1), 2) and 3) an n-feasible sequence. Property 3) says that
every feasible sequence should be partitionable into levels such that the number of
nodes on a particular level is equal to the sum of the number of sons of nodes at the
next higher level, and the highest level has exactly one node. In fact, in the sequence
lol l, 11 is the number of internal nodes at the lowest level, 12 is the total number
of internal nodes at the lowest two levels and 13 is the total number of internal nodes
at the lowest three levels and so on (Fig. 2). It should be easy to see that there is a
one-to-one correspondence between the class of 2-3 trees with n keys and the class
of n-feasible sequences. This follows from the fact that for a given feasible sequence
axa2" ak., there is a unique choice of lo, l,..., Ir which we shall henceforth call the
l-sequence of the given feasible sequence. For a given n-feasible sequence ala2 ak
we can compute the corresponding/-sequence as follows:

lo O, 11 is such that EO<i_</1 ai--n + 1 and for all j, 2 <_-j < r, I. is such that
Eli_l<i.<li ai li-1- l]-2, where r is such that Ir-1 k, lr k.

Note also that if a la2" ak is a feasible sequence with the/-sequence lOll lr then
the suffix a1+lla2+ll ak is also a feasible sequence and its/-sequence is 1’o/1’ Ir-l’
where l[li/l- li for 0, 1, , r- 1. The new sequence a1+sa2+5 a represents
the 2-3 tree obtained by removing the lowest level of the original 2-3 tree.

Now we need to define an order on the set of n-feasible sequences. We could
have chosen to order these sequences lexicographically, but we do not know of efficient
algorithms for generation, ranking and unranking, given such an ordering. Instead we
define our ordering < recursively as follows"

Given two n-feasible sequences

ala2" ak and a’xa, a’k,,

with their corresponding/-sequences

loll"’" l,. and 1’o1’ l’r’,

584 tJ. GUPTA, D. T. LEE AND C. K. WONG

ala2"

or

or

a,<aa ak,, if and only if

1) 11<1’1;

2) 11 1 and ala2" all <L a’la’2 al;
where <L denotes lexicographic ordering;

3) 11 l and ala2 at-- a’la2’ all’
and al+ll a2+11’ a, <al+lla2+l ak,.

Figure 2 shows 3 trees with 17 keys. By the above definition, T1 < T2 < T3.

FEASIBLE SEQUENCE

.- SEQUENCE 0 12

FEASIBLE SEQUENCE

.- SEQUENCE O 8 12 14 15

T5

FIO. 2

FEASIBLE SEQUENCE 3

.-SEQUENCE O 9 12 13

2.2. The search graph. To rank or unrank 2-3 trees with n keys, we first construct
a search graph with the help of which we can then rank and unrank in O(n) time.
This idea is often used in the ranking and unranking of combinatorial objects [11],
[12], [14]. The search graph stores, among other things, the number of different 2-3
trees with k keys for various "useful" values of k -< n.

The search graph is a weighted directed acyclic graph with nodes identified by
labels: n + 1 (the number of leaves) and all useful partition sizes (a subset of
{1, 2, 3,. , [(n + 1)/2J }). We start with the node labeled n + 1 and repeat the follow-
ing process of creating new nodes until label 1 is assigned. Given a node labeled p,
we construct nodes labeled nl, n2," nk (k [p/2] [p/3] + 1) such that there exist
partitions of p of sizes n l, n2,"" ", n. We then repeat the process for other nodes.
For two nodes p and q, p > q, there is a directed edge from p to q if and only if there
is a partition of size q for p. The weight of this edge is the number of distinct
permutations of the q-sized partition. The graph is constructed in two passes, the
forward pass and the backward pass. At the end of the forward pass we have the
graph with all its nodes and edges and weights on the edges.

We illustrate the construction and use of the search graph by an example used
through the rest of the paper. Let us suppose we are interested in 2-3 trees that have
19 keys, and therefore 20 leaves (or failure nodes). We consider all the ways in which
20 can be partitioned with just 2’s and 3’s in the partition. For each partition we
compute the number of distinct permutations possible. Table 1 lists the 4 possible
partitions and the respective number of permutations.

RANKING AND UNRANKING OF 2-3 TREES 585

TABLE

Partition Size of partition Number of permutations

10
2,2,2,2,2,2,2,2,2,2 10 =1

10
9!

2,2,2,2,2,2,2,3,3 9 -36
2!7!
8!

2,2,2,2,3,3,3,3 8 -70
,4!4!

7!
2,3,3,3,3,3,3, 7 --=7

6

The graph obtained at the end of the forward pass is shown in Fig. 3. Note that
there is no node corresponding to 6, since this is not a "useful" partition size. The
number of nodes in the graph is bounded by 1 + [(n + 1)/2], i.e., O(n), and the number
of edges is O(n2). The outdegree of node p is [p/2] [p/3] + 1. The edge (p, q) with
weight w(p, q) denotes that every 2-3 tree with q leaves and height h can be "extended"
to w(p, q) distinct 2-3 trees with p leaves and height (h + 1). If we have a table of
the factorial functions for arguments {1, 2,. ., [(n + 1)/2]} then clearly the forward
pass can be done in O(n :z) time. The backward pass starts at node 1 and successively
attaches weights to the nodes of the graph. The weight of node p is the total number
of distinct 2-3 trees with p leaves. Let W(p) denote the weight of node p then we have

7O

FIG. 3

(2) W(1) 1, W(p) Y, W(q) w(p, q).
(p,q) is edge

The final search graph for our example is shown in Fig. 4. Weights of nodes are shown
in parentheses. Again, the backward pass involves looking at each edge once and can
be done in O(n’2) time. Therefore, the entire graph can be constructed in O(n :z) time
and needs O(n 2) storage space.

We now state the preceding discussion as an algorithm. In order to keep the
description simple, we have considered all of 1, 2, 3,. ., [(n + 1)/21, n + 1 as nodes
of the search graph, even though some of these partition sizes may not be "useful."

586 V. GUPTA, D. T. LEE AND C. K. WONG

FG. 4

ALGORITHM SEARCH GRAPH
Input: n, the number of keys.
Output: The search graph with W(p), the weight of node p and w(p, q), the

weight of edge (p, q).
Method: The nodes of the graph are 1, 2, 3,. ., [(n + 1)/2/, and n + 1.
begin
(Comment: Forward Pass.)
for p n + 1, [(n +1)/2/, [(n + 1)/2] -1,..., 3, 2 do

begin
s p 2 * p/2 r [p/2J s
while r _-> 1 do

begin
q<--r+s;
w(p, q)<- q!/(r! s!);
r<--r-3;s<-s+2

end
end

(Comment: Backward Pass.)
W(1) 1;
forp =2, 3,..., [(n +1)/2], n +1 do

begin
sums- 0;
for all q such that (p, q) is an edge, i.e.,

w(p, q) was set in the forward pass do
sum sum + w(p, q) W(q);

W(p) sum
end

end

2.3. Ranking, unranking and generation. Once the search graph has been con-
structed, ranking and unranking can be done in O(n) time. Let us look at our running
example of 2-3 trees with 19 keys. Given an n-feasible sequence, say 323322323233,
we wish to find its position in the previously defined ordering of all 2-3 trees with 19
keys. The first step is to find the corresponding/-sequence. This is easily done and
for our sequence we have the /-sequence 0, 8, 11, 12. This means that the lowest
level of internal nodes has 8 nodes in it. Our search tells us that there are
w(20, 7) W(7), i.e. 7 3 21 trees that have 7 nodes in the lowest level of internal

RANKING AND UNRANKING OF 2-3 TREES 587

nodes and these precede our given tree. Next we determine the rank (in a lexicographic
ordering) of the permutation 32332232 among all permutations of 4 2’s and 4 3’s.
This turns out to be 53, which means that there are another 52 W(8), i.e., 208 trees
that precede our given tree. We have thus determined, looking at the lowest internal
level alone, that there are 21 + 208 229 trees that precede our tree. The process is
then continued for each successive higher level until the root is reached. Finally we
have,

Number of trees that precede our tree equals

(21 + 208)+(0+ 1)= 230.

Thus the rank of the tree is 231.

ALGORITHM RANI,:

(Comment: This algorithm computes the rank of a given 2-3 tree represented as
an n-feasible sequence. It computes the rank in a level-by-level manner. Initially,
we have p n + 1 leaves and q 11-10 internal nodes at the lowest level. In the
next iteration we have p =q leaves and q 12-11 internal nodes. The process
repeats as if we were removing the leaves and treating the lowest level of internal
nodes of the previous tree as leaves of a new tree. In each iteration we have a
2-3 tree with p leaves and q internal nodes. The number of trees preceding the
tree in the defined ordering is q’--rp/31 w(p, q’). W(q’) plus the number of the
same kind of trees (i.e., trees with p leaves and q internal nodes at the lowest
level) whose permutation of the numbers of sons of the q internal nodes precede
the corresponding permutation of the given tree. (See steps (3) and (4) below.)
The variable sum will hold the value of the rank when the algorithm terminates.)
Input: An n-feasible sequence aa2’’’ak and the corresponding /-sequence

Io, I, Is.
Output; The rank of this sequence in the defined ordering of all n-feasible

sequences.
Method:

begin
(1) p.,...n + 1; sums- 1;

for u 1 until s- 1 do
begin

(2) ql,-l,_;
for q’ [p/3] until q- 1 do

(3) sum sum + w(p, q’) W(q’);
(4) sumsum+(RANKPERM(a+l,_la2+l,_l"" al,)- 1) W(q);
(5) p-q

end;
return (sum)

end

The algorithm RANKPERM takes a permutation ala2"’" ak that has r 2’s and
(k-r) 3’s and outputs in O(k) time the rank of the given permutation in a lexico-
graphical ordering of all permutations of r 2’s and (k- r) 3’s, e.g., (2)r(3)k-r has rank
1 and (3)k-r(2) has rank (k).2 The problem is similar to the lexicographical ranking
of r-sized subsets of k distinct objects (see, for example, [6], [7]) and the algorithm
is omitted here. See [3] for details.

(a)r denotes a sequence of a’s.

588 U. GUPTA, D. T. LEE AND C. K. WONG

Let us now look at the complexity of the algorithm RANK. Given an n-feasible
sequence a a2" a, whose/-sequence is lolll2" lr, clearly k is O(n) and r is O(log n).
Statement (3) is executed at most (n + 1)/6 times for the first execution of the outer
for loop, at most (n + 1)/12 times for the second execution of the outer for loop and
so on, i.e., it is executed a maximum of (n + 1)/6+(n + 1)/12+... times, i.e., O(n)
times. Statement (4) takes O(n) time. We can see then that the entire ranking algorithm
runs in linear time.

The unranking process is essentially the reverse of the ranking process. Let us
suppose we wish to determine the 231st tree with 19 keys. We shall first determine
the number of nodes at the lowest internal level. Since,

231 > w(20, 7) W(7)= 7 x 3 21
and

23 -< w(20, 7) w(7)+ w(20, 8) w(8)= 2 + 280= 30

that number must be 8. Also, since,

w(0,

we know that this level corresponds to the 53rd permutation of 4 2’s and 4 3’s. This
happens to be 32332232. We now have a prefix of the 19-feasible sequence that we
are looking for, and we continue the search by working for the 231-21-208 2nd
7-feasible sequence.

We now present the algorithm UNRANK.

ALGORITHM UNRANK
(Comment: This algorithm computes .an n-feasible sequence given the rank of
the n-feasible sequence. It computes the number q of internal nodes at the lowest
level and then the permutation of the number of sons of these q internal nodes.
The process repeats in a level-by-level manner. Initially we have p n + 1 leaves.
The number q of internal nodes is obtained by Y’= p/3 w(p, q’) W(q’)=<rank.
After q has been determined it computes the number r of 2’s and the rank u of
the permutation of the number of sons of these q internal nodes. With the values
q, r and u it invokes the function UNRANKPERM (q, r, u) to obtain the permuta-
tion of r 2’s and (q- r) 3’s whose rank is u. It then updates the rank (whose value
is stored in variable sum) and the number p of leaves which is set to be equal to
q. The process repeats until the root of tree is reached; i.e., p 1.)
Input" (n, rank) where rank is the given rank of an n-feasible sequence.
Output: The corresponding n-feasible sequence ala2"" ak.
Method:

begin

(2)

(3)
(4)

sum rank; p n + 1; s 1;
while p > 1 do

begin
q - [p/3] - w(p, q) W(q);
while sum > t do

begin
sums- sum- t; q -q + 1;
t - w(p, q) * W(q)

end;
r 3 q-p; u - [sum/W(q)]

RANKING AND UNRANKING OF 2-3 TREES 589

(6)
(7)
(8)

end

(as, as+l, , as+q-1) UNRANKPERM(q, r, u);
sumsum- (u 1) W(q);
pq;s,,--s+q

end

UNRANKPERM(q, r, u) runs in O(q) time. For details the reader is referred to
[3]. The outer while loop in UNRANK is executed O(log n) times and by a reasoning
similar to the one used for algorithm RANK, statements (3) and (4) in the inner while
loop are executed at most O(n) times. Also, statement (6) which is executed O(log n)
times takes a total of O(n) time. Thus the time complexity of algorithm UNRANK
is O(n).

Since the unranking algorithm takes time that is proportional to the length of
the generated n-feasible sequence, it can be used to generate all n-feasible sequences
in time that is proportional to the size of the output.

begin
for <- 1 until W(n + 1) do

print (UNRANK(n, i))
end

3. Concluding remarks. We have shown that for 2-3 trees with n keys, ranking
and unranking can be done in O(n) time after a preprocessing step that takes O(n2)
time and space. Also, all n-feasible sequences can be generated in time proportional
to the size of the output.

It may be worthwhile to point out that in our ranking and unranking algorithms,
the search graph is never explicitly used. All that we need are the quantities w(p, q)
and W(p), and these could have been obtained recursively from (2). But the search
graph helps give clarity to the presentation. Also, it could be used to generate all the
n-feasible sequences more effectively than the simple generation algorithm given in
2. Traversal of the search graph allows us to generate the next n-feasible sequence

with an expected time of less than O(n) per generated sequence exclusive of the
output time. It remains to be seen whether the next n-feasible sequence can be
generated in constant expected time as in the case of some other combinatorial objects
[2], [8], [9], [12], [13]. Similar ranking and unranking algorithms for B-trees are
discussed in [4].

Acknowledgment. The authors are grateful to the referees for their valuable
suggestions on improving the presentation of this paper.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison Wesley, Reading, MA, 1976.

[2] T. BEYER AND S. M. HEDETNIEMI, Constant time generation of rooted trees, this Journal, 9 (1980),
pp. 706-712.

[3] U. GUPTA, D. T. LEE AND C. K. WONG, On generating 2-3 trees, Tech. Rep. #80-06-DBM-03,
Dept. of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL,
1980.

[4],Ranking and unranking ofB-trees, Tech. Rep. # 81-02-DBM-01, Dept. of Electrical Engineer-
ing and Computer Science, Northwestern University, Evanston, IL, 1981.

[5] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison Wesley,
Reading, MA, 1973.

590 t.r. GUPTA, D. T. LEE AND C. K. WONG

[6] D. H. LEHMER, The machine tools of combinatorics, in Applied Combinatorial Mathernatics, E. F.
Bechenbach, ed., John Wiley, New York, 1964, pp. 5-31.

[7] E. M. REINGOLD, J. NIEVERGELT AND N. DEO, Combinatorial Algorithms--Theory and Practice,
Prentice-Hall, Englewood Cliffs, NJ, 1977.

[8] F. RUSKEY, Generating t-ary trees lexicographically, this Journal, 7 (1978), pp. 424-439.
[9] F. RUSKEY AND Z. C. Hu, Generating binary trees lexicographically, this Journal, 6 (1977),

pp. 745-758.
[10] A. E. TROJANOWSKI, Ranking and listing algorithms]:or k-ary trees, this Journal, 7 (1978),

pp. 492-509.
11] H. S. WILE, A unified setting for sequencing, ranking and selection algorithms for combinatorial objects,

Advances in Math., 24 (1977), pp. 281-291.
[12] S: G. WILLIAMSON, On the ordering, ranking, and random generation of basic combinatorial sets, in

Lecture Notes in Mathematics, 579, Springer-Verlag, Berlin, 1976.
[13] S. ZAKS, Lexicographic generation of ordered trees, Theoretical Computer Science, 10 (1980),

pp. 63-82.
[14] S. ZAKS AND D. RICHARDS, Generating trees and other combinatorial objects lexicographically, this

Journal, 8 (1979), pp. 73-81.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0019 $01.00/0

ON SOME DETERMINISTIC SPACE COMPLEXITY PROBLEMS*

JIA-WEI HONGt

Abstract. In this paper we give a complete problem in DSPACE(n). The problem is whether there
exists a cycle in the connected component containing (0, 0,..’, 0) in the graph Go of the zeros of a
polynomial P over GF(2) under a suitable natural coding. Hence the deterministic space complexity of
this problem is O(n) but not o(n). We give as well several problems for which we can obtain very close
upper and lower deterministic space bounds. For example, the deterministic space complexity to determine
whether there exists a cycle in the graph of the set of assignments satisfying a Boolean formula is O(n/log n)
but not o(n/log n).

Key words, space complexity, deterministic space complete problem, lower bounds, cycle-free problem,
set of assignments, Boolean expression, polynomial over GF(2)

1. A typical theorem. The purpose of this paper is to find some "natural prob-
lems" which are complete in DSPACE (n), or at least for which we can obtain very
close upper and lower bounds of deterministic space complexity. It is well known that
there exists a hardest language in NSPACE (n) [1], but we do not know any complete
language in DSPACE (n), except the universal one. In this paper, we will give a
"natural problem" which is complete in DSPACE (n). People have obtained several
results about lower space bounds, but the bounds apply not only to deterministic
Turing machines but also to nondeterministic Turing machines (see [2]-[4]). So the
upper bounds are the squares of the lower bounds. In order to obtain close upper
and lower space complexity bounds, we have to use some methods that can only be
used in a deterministic situation.

Consider the following problem: Let F be a Boolean formula constructed from
tn variables X1, X2,’’’,Xm. The distance of two assignments Y =(y,..., y,) and
Z (Zl,. ’, Zm) (two m-tuples of zeros and ones) is defined as

d(r, Z) E lYi z,I,
i=1

that is, the number of indices at which they differ. Set

VF {(Xl, Xm)[V(Xl, Xm)= l},

Ev={(Y,Z)[Y,Z Vv, d(Y,Z)= l}.

Given a Boolean formula F, there is a graph GF {VF, EF}. We want to determine
whether there exists a cycle in GF, and to determine the space complexity of solving
this problem. A typical result is the following.

THEOREM 1. The deterministic space complexity to determine whether there exists
a cycle in graph GF is O(n/log n) but not o(n/log2 n), where n is the length of the
binary expression of F.

2. Proof of the theorem. The theorem depends on the following
LEMMA. For every Turing machine M, there exists a Turing machine R, whose

input is a binary string W wlw2""Wl, whose output is a binary coding F* of a

* Received by the editors April 30, 1980, and in final form July 15, 1981. Significant portions of this
paper are reprinted with permission from "On Some Deterministic Space Complexity Problems" by Hong
Jia-wei published in Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing,
Copyright 1980, Association for Computing Machinery, Inc.

t Peking Municipal Computing Centre, Peking, China, and Department of Computer Science, Univer-
sity of Toronto, Toronto, Ontario, Canada.

591

592 JIA-WEI HONG

Boolean formula F in variables, such that
1) The length o[the work tape ofR is o(1).
2) M accepts W in space iff there is a cycle in
3) The length ofF* is O(l log2 1).
Using this lemma, we can prove the theorem as follows. Suppose that g is a

space-constructable function such that g(n log2 n)= o(n). Suppose that there were a
Turing machine T which can determine whether there exists a cycle in graph GF in
space g(n). Let M be an arbitrary space linear bounded Turing machine. We construct
a Turing machine S as follows"

1) The input of $ is W WlW2 Wl, placed on a read-only tape.
2) Using W as input, simulate R on the work tape; calculating the coding F*

of the formula F, the work space is o(l).
3) Simulate T, using F* as input, determining whether there exists a cycle in

graph Gv.
The work space is g(n), where n is the length of F*. Therefore, g(n)<-_

g(cl log2 l)<= g(cl logz (cl))= o(1)= o(1) for some constant c. Although the length of
F* is cl log2 l, we do not store F* in step 2), but calculate every digit of F* from the
very beginning. Hence the work space is o(l).

Now, S would accept in space o(l) a language that is accepted by M in space l.
This is impossible because M is an arbitrary space linear bounded Turing machine
(see [5]).

If we take g(n)= o(n/log n), then g(n) log n/n -0 (n c). Hence, substituting
n logZn for n, we obtain

g(n log n) log2 (n logz n)
0 (n).

n log n

Because of log2 (n logz n)->_log2 n, we must have g(n log n)/n -0 (n c); that is,
g(n log n) o(n). This completes the proof of the lower bound.

Suppose G is a graph and the number of vertices of G is not more than 2, so
every vertex in G has a coding whose length is not more than r. If vertex Y has k
neighbors, we can define which one is its first neighbor, which is the second and which
is the last, according to the coding’s order. We define a Cycle-Search-Procedure as
follows: When we come to a vertex Y, if the vertex Ya we just come from is the ith
neighbor of Y, then we go to the (i + 1)th neighbor of Y; if YI is Y’s last neighbor,
then we go to the first neighbor of Y. Using two pebbles, we can do a Cycle-Search
on an undirected graph. We start from vertex Y, and go to its first neighbor YI. Then,
if Y is Y’s ith neighbor, we go to Yx’s (i+l)th neighbor, and so forth. Now, if the
connected area containing Y is a tree, then 1) we must eventually come back to Y
from its last neighbor and begin another period, and 2) in one period, from every
vertex we visit, we go to its every neighbor exactly once according to a cyclic order.
And, it is not difficult to prove that these two conditions are sufficient to guarantee
that the connected area is a tree.

The algorithm is from a Chinese story. There are three Chinese, the father, the
son and the grandfather, in a large maze. They have only a clock, but want to determine
whether there is a cycle in the maze. Standing at a point, the father lets his son do
the Cycle-Search. If his son always comes back to the point from the direction the
son goes, the father knows that there is no problem with this point. Then he will go
one step ahead according to the Cycle-Search and let his son do the whole Cycle-Search
again. Therefore the son is very busy. The grandfather is too old to move. He just

ON SOME DETERMINISTIC SPACE COMPLEXITY PROBLEMS 593

watches the clock. If his son and grandson have spent too much time, he knows there
must be a cycle. To simulate these three Chinese, logarithmic space is enough.

In the following program, P1 and P2 are pairs of pebbles; CSP(P) means to put
the pair P of pebbles a step ahead according to Cycle-Search-Procedure. This program
can determine whether there exists a cycle in graph G.

for every X in G do {every time change X according to the order of its coding}
begin put P1 at X; {use P to check condition 2) at different places}

while P1 has not come back to X from its last neighbor do
begin put P2 at X;

0-,j;
while P2 has not come back to X from its last neighbor do

begin/" + 1 /’;
if/" > 2 then go to Cyc; {there must be a cycle}

if P2 coincides with P, then check condition 2) if is not satisfied then
go to Cyc; {use another pebble to do so}

CSP(P2)
end
CSP(Pa)

end
end stop; (no cycle)

Cyc: stop (cycle);

For the first line, one pebble is enough. In order to check condition 2), another
pebble will do. Therefore, we need 6 pebbles altogether, and each pebble uses space
log 2r= r. For counting, we need space r. Hence the total work space is O(r). As to
our problem, the length of the binary expression of the formula is n, so we have
r log r<-n, r log n/n (r log r/n)(log n/log r) O(1). Therefore r O(n/log n); this
is the upper space bound.

3. The construction of the adrnissable set. Without loss of generality, we can
suppose that the input of the linear bounded Turing machine M is W wl...w,
that the head will never move to the outside, that the head moves either right or left
in every step and that there is only one acceptable instantaneous description L. Suppose
8 is the transition function ofM and I aa2 qa al is an instaneous description
(I.D.) saying that machine M is in the state q, scanning the ith square. If 8(q, a)=
(q’, a,’ -1), we should substitute q’a_a for a_qa in I; if g(q, ai)=(q ’, a, 1), we
should substitute a_aq’ for a-lqai.

In the following, if the number of l’s in a coding is even, we say the coding is
even; otherwise the coding is odd. Suppose that the number of different states and
the number of different letters in the alphabet are all less than or equal to 2s-4, SO

we can use an s-digit binary number to express the states and letters such that the
last three digits of the letter’s coding are 000 and the last three digits of the state’s
coding are 111, and every coding is even. These three last digits are called character
codings, and the first s- 3 digits are called information codings. To obtain the coding
of the I.D./, for every letter and state in/, we substitute its coding, and then add d
zeros at the end (called complement coding), where d is the number of different
substitutions in M. The length of the coding I* of I is (l / 1)s + d.

For example, suppose there is a substitution aqb- q’ab’, and the codings of a,
b, b’, q’, q are 011000, 000000, 110000, 100111, 010111 respectively. Then the

594 JIA-WEI HONG

substitution becomes

011000 010111 000000[
100111 011000 1100001"

In GF, this substitution is realized by the "path" in Table 1.

TABLE

L#I 011000 010111 000000 0 0 0
Lq2 011000 010111 000000 0 0
Lq3 111000 010111 000000 0 0
L,4 101000 010111 000000 1 0 0

Lii5 100000 010111 000000 1 0 0
Lq6 100000 011111 000000 0 0

L7 100000 011111 100000 0 0

Ls 100000 011111 110000 0 0

Lii9 100001 011111 110000 0 0

Llo 100011 011111 110000 0 0
Lq11 100111 011111 110000 0 0

L12 100111 011110 110000 0 0

Liil3 100111 011110 110000 0 0 0
Lql4 100111 011100 110000 0 0 0

In this table, two successive lines are different from each other only in one digit.
It realizes the substitution by the following steps:

1) There are d digits (sl, s2, , Sd) corresponding to the substitutions in machine
M. Suppose this is the]th substitution; thn we change the value of s. from 0 to 1,
so that we can separate this path from the paths corresponding to other substitutions.
In this example we have supposed that d 3 and] 1.

2) From left to right, change the digits one by one. Leave the character codings
unchanged. In this example it takes 6 lines to accomplish this procedure.

3) Change the character codings of q’ from 000 to 001 to 011 to 111, and then
change the original character coding of q from 111 to 110.

4) Abolish the 1 at the position
5) Change the character coding of q from 110 to 100, so the last line can be

connected with the first line of the next substitution. Notice the position changed is xis-1.
According to this procedure, the string is changed from an even coding to an

odd coding, then to an even coding again,. and so forth. Generally speaking, there
are k lines in the table, k is even and is a function of]. To simplify the discussion
below, we suppose k is a constant.

There are (l + 1)s / d digits in the coding of an instantaneous description. We
use variables xl, x2, X(l+)s and sl, , sa to express their values. Suppose the head
is scanning the ith square. Then the columns of the table correspond to

x(i-E)s+l,’", x(i+l)s, $1,’’’, Sd. Hence for every position and every substitution
there is a table. For every line Liju, we construct a conjunction Ciu as follows" it is
a conjunction of 3s + d variables x(i-2)+, , x(i+), s,..., Sd (later we call them
the group i); but if the value of the variable in that line Lu is 0, we should put a
negation sign on it. In this example, we have C’31 "--.7XsX9lO11.12laX14
15X16X17XlS19EOElE2E3E4SlSES3 We define Cij (i_2)s_2,(i_2)s_l(i_2)s
Ci$(i+2->(g/2-1(;+2s. These 6 variables correspond to the (i-2) and (i + 2)th

ON SOME DETERMINISTIC SPACE COMPLEXITY PROBLEMS 595

character codings. Set

D,= xl@" "@X(l+l)sSl@’" "@Sd
X ((X + (S (Sd (1

if u is odd,
if u is even,

where @ means exclusive or. Du 1 means the coding is even, iff u is even. Set

Diju CijuDu,

2A’u 2lu
The binary length of formula D is O(l log l).

Remark. Here we use three operations v, , to construct the formula. We
cannot express D, in length O(l log l) if we only use the usual operations , v, .
Anyway, it is easy to see that in this procedure at most one coding of a group is odd

(t+)sand all the others are even. Hence when i= xi is even, we can use

E N --i Xis+h
i=l h=l-s

((/+l)sinstead of it. The length of E is 0(l log I). When i=1 xi is odd, we can use

E’=U Xis/h N Xs+
h=l-s h=l-s

ig

instead. Its binary length is 0(I2 log I). Here s is a constant. Using "divide and
conquer" (see [4, Chapt. 2]), after collecting common factors, its length can be reduced
to 0(I log l).

In order to get rid of meaningless binary ’strings, we define an admissible set A.
A binary string Y belongs to A iff

1) There is at most one complement coding digit which equals 1, and
2) Y Diju for some u 1, 2,..., k-6 and there is only one character coding

which equals 111 (all the others equal 000); or Y Di]k-5 Y Diik-4, Y Diik-3,
Y s Diik-2 Dij-l, Y s Dii respectively) and there is only one pair of successive
character codings which equal 001 and 111, (011 and 111, 111 and 111, 111 and
110, 111 and 100, respectively), and the others are equal to 000.

We can express set A with a Boolean formula whose binary length is O(l log2 l).
For example, the sentence, "There is only one character coding which equals 111, all
the others equal 000", can be expressed with a formula of binary length O(l2 log l).
Using "divide and conquer", after collecting common factors, its length can be reduced
to O(l log2 l).

4. The proof of the lemma. Because M is deterministic, for every admissible
I.D. (i.e., whose coding is in A) 11, we can use at most one substitution of M such
that 11--> I2, and this defines a directed path in set A. All these paths make set A a
directed graph A.

More precisely, we say a -->/3 iff 1) there exists Diiu such that a Diju, Diju+l,
a and/3 are adjacent in A; or 2) there exists Dijk such that a Diik O A, and/3 is
obtained by changing the value of the position Xis-2 of a from 1 to 0.

This directed graph A satisfies
1) For every point in A, the fan-out number is at most one. This is because M is

deterministic and all the paths realizing these substitutions are separated by the design
of the set A.

596 JIA-WEI HONG

We are going to prove this statement. (We suggest the reader ignore this paragraph
at the first reading.) Suppose a -/1, a /32, then there exist Diiu and Dabc satisfying
the above condition. If u e {2, 3, , k 2}, then] b. Hence a and u c. In this
case, Diiu+l is different from Dii, in one position, and ill,/32 are different from a at
one position, so fll and/32 are different from a at the same position; therefore fiX [2,
If u 1, then a. In this case, because the Turing machine is deterministic, there
is only one substitution we can use. Hence 1 "-2. If u -k- 1, then a. 1 and/32
are different from a at position xis-x, therefore/31 f12. If u k, then a, c u k.
There exists Diik such that a A f’l Diik and fix,/32 are obtained by changing the value
of the position xs-2 from 1 to 0; hence fll -/2.

2) An I.D. Ix leads to an I.D. I_ if[there is a path from the coding of I1 to the
coding of 12 in A.

Now, if a, A and there is an arrow from a to fl, then we write a /3 or fl a.
In the same time, A is a set of codings. Two codings are adjacent if they are different
in only one digit. Hence A is a undirected graph. What is the relation between A
and A? We have

PROPOSITION 1. a and are adjacent in A iff a or a in A.
Proof. In fact, we are going to prove the following stronger proposition" If a A,

fl D, d(a, fl) 1, then/3 A and a /3 or fl a in ft.. Hence A is an isolated part
of graph D. (We suggest the reader ignore this proof at the first reading.)

Suppose a A, fl D, d(a,) 1, a Diu, fl Dabc. If li a[_-> 2, then d(a, fl) _-> 2.
Therefore, we need only consider the following two cases.

Case 1. i=a. Because one of a and fl is even and the other is odd, u c.
Therefore, they are different at just one position in the group i.

If/’ b, then d(a,) >-_ min{[u c[, 2} by the structure of the table. Hence lu cl 1
and a /3 or/3 a, fl A.

Now suppose/" b. If u and c both bek;ng to {2, 3,..., k- 2}, then a and fl are
different at position s. and Sb. This is impossible, so we can assume u 1, k- 1, k. (If
c 1, k- 1, k, we can treat it the same way.)

If c e{2, 3,..., k-2}, a and/3 are different at Sh (h 1, 2,’", d), so they are
the same at other positions. Hence u k. Therefore u- k- 1 or 1. If u- k- 1, we
must have c k- 2 and fl a, fl A. If u 1, then because a and fl are the same
at all other positions,/ Db2. Because of a Dil Db1, a and/ A.

Now suppose both u and c belong to {1, k-1, k}. In this case, we must have
u=k, c=k-1, or c=k, u=k-1. Hence cefl or flc./3A.

Case 2.]i a I= 1. Suppose a + 1.
Subcase 1. u, c {2, 3,..., k- 2}.. We must have b =/’. That means the corres-

ponding substitutions are the same; especially, the heads move in the same direction
(say left). Then at the positions of the ith character coding, a has 2 l’s at least, but
/3 has none. This is impossible.

Subcase 2. u {1, k-l, k}, c {2, 3,..., k-2}. Then a and fl should be the
same at the position x’s. Compare the pairs of two successive character codings (the
ith and the ath) of a and/3. They cannot be the same.

Subcase 3. u{2,3,...,k-2}, c{1, k-l,k}. This subcase is similar to
subcase 2.

Subcase 4. u, c {1, k- 1, k}. Compare the pairs of two successive character
codings (the ith and ath) of a and ft. They have at most one position different. We
must have u, c k-1. Hence u k, c 1, a /3 or c k, u 1,/3a, fleA.

PROPOSITION 2. Suppose G is an undirected graph. I] we can define a direction
on every edge of G such that the fan-out number of any point of the directed graph

ON SOME DETERMINISTIC SPACE COMPLEXITY PROBLEMS 597

is at most one, and if is a terminal point of G, a G, then a is connected with in G
iff there is a directed path from to in G. Furthermore, there is a cycle in G iff there
is a cycle in G.

Proof. If a is connected with/3, then there is an undirected chain from a to/3;
a al, a z, , an =/3. Because/3 is a terminal point, we must have an-1 an. If there
were a ai such that ai-1 ai, then we can suppose is the maximum number such
that Oi- <’-Oi. Now we would have both a,.-1 oi and ai-- Oi+ 1. The fan-out number
of ai is 2 at least. The second part can be proved in the same way.

For every linear bounded Turing machine M, we can construct another linear
bounded Turing machine MI, which simulates _Mr on the one hand and counts the
number of steps simultaneously on the other hand. If the number of steps exceeds
the number of states that M and its tape can express, then M1 refuses the input and
stops. With a little skill, the reader can construct M such that no matter which
admissible instantaneous description it starts from (this I.D. may never be reached,
if MI starts from Io qowl Wl), M1 will stop eventually. Therefore, we can assume
that M itself has this property.

PROPOSITION 3. There is no cycle in graph A.
Proof. If there is a cycle in A, then there is a cycle in the directed graph A by

Proposition 2. Hence there is a cycle in the computation of M, which is impossible.
Without loss of generality, we can suppose there is a unique accepting I.D. L,

and Io qowl Wl is the initial I.D. Let Io* and It* be the codings of I0 and L. From
the discussion above, we obtain

PROPOSITION 4. The linear bounded Turing machine M accepts input W
W Wl iffI is connected with I*t in the graph A.

Now, we should construct a path connecting Io* and I,*. Instead, we construct a
path connecting Io* with (1, 1,..., 1) an.d another path connecting I,* with
(1, 1,..., 1). We use Ca =XlX2"’’XI+I)sSl"’’Sd to express point (1, 1,’’’, 1). In
the same way, suppose the conjunctions to express Io* and I,* are C(I) and C(I*t),
respectively.

First, we design a path G1 connecting Io* and (1, 1,..., 1) satisfying that there
is no cycle in G1 and that the number of total variables in G1 is linear in I.

We use the following logical symbol _> to express "not less than"’ x-> y means
"not x is false and y is true".

x_>y-- l(lx)y.

Assume yl, y2, ’, Ye are the variables in {Xl," x(l+l)s, $1," Sd} which have
a negation sign in C(I*o); Zx, z2,’", zf are those without a negation sign in C(I*o).
Then e-1

G1 Z1Z2 Zf ’ (yi--> Y/+I).
i=1

In the set G1, every point has the property that yl -> y2 > Y3 :>" > Ye. So there is no
cycle in G1. The binary length of G1 is O(l log l). Notice that the yi’S are xi’s whose
value is 0 in I0", and nearly every character coding in I0" is 000. Hence the distance
between the positions of y; and yi+l in the list {x, x2,’’’, x(+l)s} is not more than a
constant. We will use this property later.

Using the same technique we can design another path G2 connecting I* with
(1, 1,..., 1). Set

F= At1 z 3 4 C I)tl ’9 3 ’4 I,.J G1t112 3 ’4
C(tltt34 J ttt3t4 ’ltt3t4) J G’I ’2t3t4 C([*t)tit2 t3t4.

598 JIA=WEI HONG

We have
PROPOSITION 5. M accepts W w wt, iff them is a cycle in the graph GF.
It is easy to construct the coding F* of F in space o(1). This completes the proof

of the lemma.

5. The main results. In this section, we want to improve the result. The key is
to reduce the length of F*, which is O(l log2 l) in the lemma. The square on the log
comes from two places.

One of them is that if we use only the logical operations v, A, 7, we cannot
express XlX2’’ "@Xl in a short form. Therefore we have to use the technique
mentioned in the remark. The length becomes 0(! log2 l). But, if we use the formulae

2=lx,

xl vx2v" vx. (xl)(x.l)’ (x.l)l,

we can express F as a polynomial over GF(2). Then the length of D is only O(l log l).
Another trouble comes from the expression of A. But in Proposition I we proved

that A is an isolated part of D. Therefore there is a cycle in the graph F iff there is
a cycle in the connected component containing (1, 1,..., 1) (notice that there are
many cycles in D\A) in the graph

F1 D1234 I,.J C(I)t1234 I,.J Gltlt234
[-J Cl(tt2t34 I,.J tlt2t3t4 lt2t3t4) t_J G2l2t3t4 C(I*t)tatt 3t4,

whose binary length is O(l log l) as a polynomial over GF(2). Therefore, we can
remove the Square of the log from the lower bound. As to the upper bound, we
need only to test whether there is a cycle in the connected component containing
(1, 1, .., 1), so it is even easier. We exchange 0 and 1 in the coding to get the following

THEOREM 2. The deterministic space complexity to determine whether there is a
cycle in the connected component containing (0, 0,..., 0) in the graph Go of the zeros
Of a polynomial P over GF(2) is O(n/log n) but not o(n/log n), where n is the binary
length of the polynomial P.

Because of the definition of D, we have

2Xu 2lu

So the formula/71 consists of nine "main" parts, that is,

D1, D2, ?(] Ci,u), ? (? Ci]u), C(I$o), C(Igt), C1, G1, G2.
2,u 21u

Only C(Ig’ and G1 depend on the context of the input W w Wl; the other parts
only depend on the length l. To output F1, machine R needs only 9 reversals of its
input head. At every reversal, R outputs one part. Machine R need only remember
the subscript of the variable output at that time. Therefore, the work space is O(log l).

Although Theorem 2 is better, we still cannot get a complete problem in
DSPACE(n), because the length of the binary expression of P is O(l log 1). We want
to reduce the length to linear. Notice that the polynomial has to reflect every bit of
the input, so there are variables in P at least, and the length of the coding of every
variable is log at least. What can we do? We have to invent a new kind of coding.

ON SOME DETERMINISTIC SPACE COMPLEXITY PROBLEMS 599

Imagine that there is a list of infinite many variables: L {x l, x2,’’’ }. We use
the following three kinds of words to express a string of variables in L.

A: the first variable X in L. After the use of this symbol, every variable in L
becomes a "new" variable again.

A0: a "new" variable; after the use of it, this variable becomes a "used" one.
An. the same variable as its nth left neighbor.
For example, the coding

A(A0 q) A2)(A2 q) A2)(A03 A0)03 A00) A00) A0O) A2

has the meaning

Xl(X2Xl)(X2(Xl)(Xl (X2)X3(X4(X5(X4.

After assuming L {sl, , Sd, X, , X(l+l)s, tx, t2, t3, t4} and rearranging the
variables in F1 suitably, it is easy to see that, in every part of the expression F1,

1) the leftmost variable is Sl,

2) the distance between two adjacent occurrences of the same variable is not
more than a fixed constant.

Therefore, we have a linear length expression of F1 in this A coding system (use
9 A’s). Furthermore, when we use machine R to output the coding of F1, we need
not remember the subscript used. We only need a finite memory. Now the machine
R can be a finite automaton, its input head does only nine reversals and the whole
time is linear in I. We obtain

THEOREM 3. Under the A coding system, the problem whether there exists a cycle
in the connected component containing (0, 0,..., O) in the graph Go of the zeros of a
polynomial over GF(2) is complete in DSPACE(n) in the sense that

1) This problem is in DSPACE(n).
2) Every problem in DSPACE(n) can be reduced to this problem using an oblivious

Turing machine within a constant space, linear time and nine reversals of the
input head.

Therefore, the deterministic space complexity is O(n) but not o(n).
The A-coding system seems a little bit strange, because we are not used to it. We

have seen that if we use ordinary coding in the above problem, we have to use log n
space and n log n time, and we cannot get a complete problem. That means that the
A coding system is even more "natural" than the ordinary one.

6. Further discussion. If we discuss the connectivity of two points in a graph, we
can get the following lower bounds, but we fail to obtain a close upper bound. The
best known upper bounds are the squares of the lower bounds [7].

THEOREM 4. The deterministic space complexity to determine whether two points
(0, 0,. , O) and (1, 1,. ., 1) are connected in a graph Gp of the zeros of a polynomial
P over GF(2) is not o(n/log n) (in the ordinary coding) and is not o(n) (in the A
coding system).

In the situation of DSPACE(log n), we can use an adjacency matrix to express
an undirected graph. Using the same algorithm, we can show that the cycle-free
problem (CFP) for undirected graphs belongs to DSPACE(log n). The lower bound
is not very interesting, because log n space is needed to determine whether a coding
is legitimate. Regardless, using the same method, under Cook’s definition and forma-
tion [8], we can prove that the CFP is log depth complete for DSPACE(log n). We
know Depth(log n) DSPACE(log n) by a theorem of Borodin [9], but we do not
know whether Depth(log n)= DSPACE(log n). Now it holds iff CFP Depth(log n).

600 JIA-WEI HONG

At the end of this paper, we discuss some higher space complexity problems
briefly. Let f(n)>= n be a space constructable function. We insert several pairs of [,
and (,) into a A coding string. These pairs cannot be nested inside each other, every
pair of [, can only contain one variable A0 and there exists at least one variable
symbol A between every two adjacent pairs of [,]. In this coding system, we only use
the following 11 symbols: A, A, , 0, 1, (,), (,), [,]. Four binary bits are enough
to encode them. Suppose the total number of characters inside all the pairs (,) is l;
the meaning of [, is that the context inside each [, should be repeated f(l) times.
For example, if f(1)= 4, we have

[(R)zXO](R)ZX[AO](R)<ZX> A(R)a0(R)A0(R) A0(R) A0(R)AAOA0ZX0A0(R) A

X1 (.2(.3(.4(. (X1X2X3X4X5 (X1

Because the length of A is 1, f(1)=4, the context inside [, should be repeated 4
times. We call this the A(f) coding system.

Suppose

, {A, ., O, , (,), [,], }*, t, {A, , O, ,), (R)}*.
We call the word O1<1>a2<2>"’ Oln<n the a-/3 problem" whether there exists a
cycle in the connected component containing (0, 0,..., 0) in the graph Gp of the
zeros of P, whose A(f) coding is a1(fll)a2(2)"" a,(fl,).

Notice that if we write any "main" part of F1 in the A coding system, the same
segment will repeat again and again. Therefore, if we use the A(f) coding system,
except for C(I and G1, all the main parts will become fixed words. If f(n) is the
space used, no matter how big f(n) is, or how long the polynomial P is, we can always
get a short coding of P linear in n. With this in mind, we can prove

PROPOSITION 6. Suppose f(n) >- n is a space constructable function, M is a Turing
machine, W w1wz’’" Wn is the input. Then there exist words aa, a2, Og3, [31, 2, [33
such that

1) a 6 {A, , 0, 1, (,), [,], }*, a only depend on M.
2) fli{A, , 0, 1, (,), 0)}*, fli only depend on W, and can be obtained by an

automaton with input W, [flil <- clWI, c is a constant.
3) a(fl)a2(flE)ca(fl3) is a A(/) coding of a polynomial P.
4) M accepts W in DSPACE(f(n)) iff there exists a cycle in the connected com-

ponent containing (0, 0,. , O) in the graph Gp of the zeros of P.
THEOREM 5. Suppose f(rt) is space constructable such thatf(m + n) >-f(m) +f(n).

Then under the A(/) coding system, the ce-fl problem is complete in the following sense"

1) The a-fl problem belongs to DSPACE(f(n)).
2) Every problem in DSPACE(f(n)) can be reduced to an a-fl problem of linear

length by a finite automaton within 3 reversals.
Proof. 1)Suppose the binary length of al(/31)a2(/32)""’ c(/3)is n. l= 1/311+1/321+

..+lflil<-_n. There are at most n+f(1)<-n+f(n)<-2f(n) different variables in the
polynomialP whose A(/) coding is a (/31). ai(i). We can constructf(n) and calculate
the value of P in space O(f(n)). Using the Cycle-Search-Procedure, we can determine
the a-fl problem in space O(f(n)).

2) Suppose machine M accepts a language in DSPACE(f(n)). According to
Proposition 6, there exist a a, a2, a3, /31, /32, /33, satisfying the condition,
IOl<l>O2(flE>a3(f13>l 3c[WI + cx. We can realize this reduction by a finite automaton
within 3 reversals of the input head.

COROLLARY. Under the A(n t) coding system, the deterministic space complexity
of the a-fl problem is O(n) but not o(n).

ON SOME DETERMINISTIC SPACE COMPLEXITY PROBLEMS 601

Acknowledgments. The author thanks Professor Hao Wang for his kind help,
and Professor S. A. Cook for his kind help, his valuable suggestions and careful
examination. He also thanks Professor C. Rackoff for his references and discussion.

REFERENCES

[1] A. R. MEYER, AND L. J. STOCKMEYER, The equivalence problem]or regular expression with squaring
requires exponential space, Proc. 13th IEEE Symposium on Switching and Automata Theory, pp.
125-129.

[2] H. B. HUNT, III, The equivalence problem]’or regular expressions with intersection is not polynomial in
tape, TR73-156, Dept. Computer Science, Cornell University, Ithaca, NY, 1973.

[3] L. J. STOCKMEYER, The complexity o[decision problems in automata theory and logic, Massachusetts
Institute of Technology Project MAC, Cambridge, MA, 1974.

[4] J. FERRANTE AND C. W. RACKOFF, The computational complexity o] logical theories, Lecture Notes
in Mathematics 718, Springer-Verlag, New York, 1979.

[5] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1975.

[6] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-
Wesley, Reading, MA, 1969.

[7] S. A. COOK AND C. W. RACKOFF, Space lower bounds]’or maze threadability on restricted machines,
this Journal, 9 (1980), pp. 636-652.

[8] S. A. COOK, Towards a complexity theory o]’synchronous parallel computation, presented at Internation-
ales Symposium fiber Logik und Algorithmik zu Ehren von Professor Ernst Specker, Zurich,
Switzerland, 1980.

[9] A. B. BORODIN, On relating time and space to size and depth, this Journal, 6 (1977), pp. 733-744.

SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0020 $01.00/0

FINDING AUGMENTED-SET BASES*

VIRGIL GLIGOR" AND DAVID MAIER

Abstract. The problem of finding a minimum-cost, augmented-set basis is NP-complete. In this paper
we show that this problem is not approximable. That is, if P NP, then no constants c and d exist so that
A-< c ASB + d, where A is the cost provided by a polynomial-time approximation algorithm and ASB is
the optimal cost. We also provide a brief characterization of the cost functions for which this result remains
valid. The proof technique used in the augmented-set basis problem is applied directly to other NP-complete
problems, such as several graph augmentation and deletion problems, to show that they are also not
approximable.

Key words, augmentation problems, set basis, deletion problems, computational complexity, poly-
nomial-time approximation algorithms, NP-complete problems

1. Introduction. Augmentation problems arise naturally in graph theory. Using
a framework similar to that proposed in [2], [8], [10] for graph augmentation and
deletion, we suggest the following set-augmentation problem"

Given a family of sets V={V1,..., Vp}, VieS, find an augmented family
V {V1, ., Vp}, where Vi Vi [_J Ai, Ai

_
S, such that"

(i) the family of sets Vi have a set basis of size k, denoted by ASB (V, k),
(ii) the cost of the augmentation Y’. ([IT"i[- vii) is minimum.
The important property that gives rise to this set-augmentation problem, i.e.,

"there exists a set basis of size k," is defined as follows" The family of sets B 1, .., Bk
of S is a set basis of size k for the family V1,. ., Vp of S if each Vi can be expressed
as a union of some Bj’s. Some families of sets do not have set bases of certain sizes
and, when nontrivial set bases exist, they are not necessarily unique.

The need to find a set basis of a given size (or, equivalently, of the minimum
possible size) appears in several important applications of feature extraction, of
compiler design, and of data compression [1], [3], [7]. For example, consider the
transmission of high-resolution images over a narrow-bandwidth channel. Significant
time savings can be achieved if, instead of sending information about each point in
the digitized image which would require wide-transmission bandwidth, we transmit
only sets of features (i.e., subsets of each image) and their membership functions for
various images. A smaller transmission bandwidth would thus be possible. The high-
resolution images are reconstituted at the receiving end by combining the features
according to their membership function. The membership function can be a 0-1 string
of bits that specifies whether a given feature belongs to a given image. The transmission
of digitized speech is another example of an application that requires the compact
representation of a large number of related sets of data.

However, since not all families of sets have set bases of certain sizes (e.g., the
size of the minimum set basis may not be small enough), it may be beneficial to
augment various sets of a family so that the family has a sufficiently small set basis.
For example, the family V1 {a}, V2 {b} and V3 {a, b, c} has a trivial minimum
set basis of size three. If we augment set V2 by adding element c to it, the augmented
sets V1 V1, V2 V2 LI {c} and V3 V3 have a minimum set basis whose size is two,
i.e., B 1 V1 and B2 V2. The cost of augmenting various sets must be minimized in

* Received by the editors March 21, 1980, and in final form December 15, 1981.

" Center for Information Sciences Research, University of Maryland, College Park, Maryland 20742.
Department of Computer Science, State University of New York, Stony Brook, New York 11794.

The work of this author was supported by the National Science Foundation under grant IST 79-18264.

602

FINDING AUGMENTED SET BASES 603

the above sense, otherwise the cost of reconstruction of the original family may become
too high. For example, if augmented-set bases are used for data transmission through
any channel, they must be accompanied by a membership function that also determines
how to reconstruct the original family sets from the augmented-set basis. However,
this would be impractical if a bandwidth-limited channel were used, because the
representation of the membership function can become quite complex whenever the
size of each set and of the entire family is large.

The minimum set basis problem is known to be NP-complete [9]. It is easy to
see that the augmented-set basis problem is also NP-complete and that, as with set
bases, augmented-set bases are not necessarily unique. In 2 of this paper we show
that the problem of finding a minimum-cost, augmented-set basis of size k for a family
of sets is not approximable. That is, if P NP, no constants c and d exist so that
A-<c ASB + d, where A is the cost provided by a polynomial-time approximation
algorithm and ASB is the optimal cost. In 3 we show that this result remains valid
when alternate cost functions are considered. In 4, the proof technique used for the
augmented-set basis problem is applied directly to several NP-complete augmentation
and deletion problems to show that they are not approximable.

In spite of this somewhat surprising result, we expect that in practice it would be
possible to design not only near-optimal approximation algorithms, but also optimal
algorithms for particular classes of augmentation and deletion problems.

2. The complexity of the augmented-set basis problem. In this section we define
the notions of the minimum disjoint set basis and of the k-segmentation of a family
of sets. Then we present an important common property shared by the minimum set
basis (denoted by MSB (V) henceforth), by the k-segmentation, and by the augmented-
set basis of a family of sets. Using that property, we then prove the main result of
this paper.

DEFINITION 1. The minimum disjoint set basis of a family of sets V=
{V1,..., Vp}, Vi

_
S, denoted by MDSB (V), is the coarsest partition B 1,..., Bk

of S such that each Vi is the exact union of some Bj’s, i.e., Vi {UBf[Vi Bf ,
i[1, p],j[1, k]}.

It is easy to see that, unlike the MSB (V), the MDSB (V) is unique. Also, the
MDSB (V) can be computed in O([W[p), where W LI Vi, 1, , p. (For example,
assume that the elements of W are the integers 1, 2,. .,]WI. Then construct a table
with the elements of W as row labels and those of V as column labels. Place a "1"
in the (i,) position of the table if element i W is in Vj; otherwise place a "0" at
(i,). Radix sort the rows of the table in O(]W]p) time. The sets of the MDSB (V)
are those groups of elements of W that label equal rows. Also, note that the worst
case requires]Win time to read the input of the problem. The correctness proof for
this algorithm is left to the reader.)

DEFINITION 2. The k-segmentation of a family of sets V { V1, , Vp}, Vic__ S,
denoted by KSEG (V, k), is an augmented-set basis consisting of k disjoint elements
called segments.

The k-segmentation problem is introduced in [4] in the context of data base
organization. It is also shown in [4] that k-segmentations are not unique and that the
problem of finding a k-segmentation of a family of sets is NP-complete. No bounds
have been found on how nearly optimal polynomial-time approximation algorithms
for this problem can be. However, we have found that typical polynomial-time

For an introduction to the theory of NP-completeness, the reader is referred to [6].

604 VIRGIL GLIGOR AND DAVID MAIER

approximation algorithms, such as "greedy" and "local improvement," have approxi-
mate-to-optimal cost ratios that cannot be bounded by a constant.

In the following three lemmas we show that the minimum set basis, the augmented-
set basis, and the k-segmentation have some optimal solutions MSB (V), ASB (V, k),
and KSEG V, k) respectively, that are refined by the MDSB (V). Hence, both optimal
and approximation algorithms need only combine elements of the MDSB (V) to find
solutions to each of the above problems.

LEMMA 1. For any family of sets V={V1,..., Vp}, Vi_S, there exists a
minimum set basis, MSB (V), such that MDSB (V)= MDSB [MSB (V)].

Proofi First we must prove that for any disjoint set basis of V 1, ., Vp, DSB (V),
there exists a MSB (V) such that DSB (V)= DSB [MSB (V)]. We know that any
disjoint set basis of V refines the minimum disjoint set basis of V. Let us choose
DSB (V) {D 1, D2,. , Dp} and let MSB (V) {B 1, B2, ., Bk}. We can show
that any MSB (V) can be modified so that DSB (V) DSB [MSB (V)]. All we really
need to show is that if Di (3 Bj (, then Di

_
Bj. (It is then quite easy to show that

every B/" is the union of some Di’s.) Assume, on the contrary, that Di (3 Bj , but
Di: Bj. Let B’i Bj U Di and MSB’ (V) MSB (V)-{Bj} {B’j}.

CAIM 1. MSB’ (V) is actually a minimum set basis.
Proof. We need to show only that MSB’ (V) is still a set basis. If MSB’ (V) is

not a set basis, then there must exist a Vq which is not covered exactly by unions of
MSB’ (V) elements. This happens because B’j cannot be used in the cover of Vq even
though B/" was in the Vq cover originally. Therefore, B’j- Vq. However, we know
that Bj c_ Vq and Bj f3 Di ; thus Du (3 Vq . Since Di DSB V),Di c_ Vq.
Therefore, B’j Bj t3 Di c_ Vq, which is a contradiction. Hence MSB’ (V) is a set basis
and a minimum set basis, which gives us Claim 1.

Similarly, we can show that all Di c_ Bj and that every Bi is a union of some Di.
Secondly, we must show that MDSB (V)= MDSB [MSB (V)]. From the first part

of the proof, it follows that MDSB (V) is a disjoint set basis of MSB (V). Suppose
that the MDSB (V) is not a MDSB [MSB (V)], but some other disjoint set basis of
MSB (V), namely DSB [MSB (V)], is minimum and IDSB [MSB (V)]] < IMDSB (V)].
Since MSB (V) is a set of basis of V, its disjoint set basis DSB [MSB (V)] must be a
disjoint set basis for V of size smaller than that of MDSB (V). This is impossible,
and hence MDSB (V) MDSB [MSB (V)]. This completes the proof of Lemma 1. 71

LEMMA 2. Foranyfamily ofsets V {V1,. , Vp}, Vi S, there exists an optimal
k-segmentation KSEG (V, k) such that the MDSB (V) is a refinement of the
KSEG (V, k).

Proof. Start out with an arbitrary segmentation, and show that the segmentation
cost is not increased by rearranging the elements of the segments in a way that makes
the MDSB (V) a refinement of that segmentation [5].

LEMMA 3. For anyfamily ofsets V { V1, , Vp}, Vi

_
S, there exists an optimal

augmented-set basis ABS (V, k) such that the MDSB (V) is a refinement of the
ASB (V, k).

Proof. Let C be the cost of an optimal augmented-set basis of family V, and let
V { V1, , Vp} be the augmented family. An optimal augmented-set basis of family
V is also a minimum set basis of the augmented family V, and vice versa. To complete
the proof, use Lemmas 1 and 2 and the fact that the MDSB (I7") is a IMDSB (Q)I-
segmentation with the same cost C as that of the optimal augmented-set basis of
family V [5]. 71

The following lemma and theorem state the main result of this paper.

FINDING AUGMENTED SET BASES 605

LEMMA 4. If there exists a polynomial-time approximation algorithm for the aug-
mented-set basis problem with cost C <-_ c ASB + d, where ASB is the optimal cost and
c, d are constants, then there exists a polynomial-time approximation algorithm with cost
C’ <-_ c ASB.

Proof. Given the original augmented-set basis problem, let us construct a new
augmented-set basis problem as follows"

(i) Construct a new set S’={e’l,..., en} with twice as many elements as in
the original set S.

(ii) For each Bj MDSB (V) construct a B’j c_ S’= {e’l,. ., en} such that B’j
{(e’i e’+i)]ei Bf, [1, hi}; i.e., for each element ei of.Bj there will be two elements
e’i and e’,+i in B’f. (Please see Fig. 1 for an example.)

(iii) For each Vf construct a V’f such that (Bi Vf): (B’i V’f).
(An example of this construction is shown in Fig. 1. In that example, S
{el, e2, e3},n=3, V={V1, V2, V3}where V1 ={el}, V2 ={e2}, V3={el, e2, e3}.)

By construction B’i MDSB (V’) and IB’i[21Bil. The new problem is isomorphic
to the original one up to the size of each element of the input family (and of the
minimum disjoint set basis). Using Lemma 3 and the fact that the MDSB (V) is
unique, it is easy to show that ASB’= 2ASB, where ASB’ is the optimal cost of the
new problem.

V3

FIG. 1. An example of how to construct family V’ S’ from family V
_

S.

Now let us construct a polynomial-time approximation algorithm for the original
problem as follows. First, we construct the new family V’I, ., V’p from the original
family V1,..., Vp as described above. Then we run the algorithm that has the cost
C _<- c ASB’ + d as stated in the hypothesis. Lastly, we divide the cost of the algorithm
to obtain the cost _C of the original problem. Thus,

_C [C" 21 --< [(c ASB’+ d)" 2/= [(2c ASB + d): 21 c ASB + [d" 2J.

We repeat the construction suggested above flog (d)] + 1 times. Thus, we create a
new family of sets y1,..., _Vp whose _Bi MDSB (_V) have the size I_Bil-2dlBil.
Note that this construction is performed in polynomial time. Then we apply the
algorithm suggested in the hypothesis and divide the cost Ilog (d)l / 1 times to get a
final cost for the original problem C’-< c ASB.

606 VIRGIL GLIGOR AND DAVID MAIER

TI-XEOREM 1. If P NP, there exists no polynomial-time approximation algorithm
for the augmented-set basis problem with cost C <= c ASB, where ASB is the optimal
cost and c is a constant.

Proof. Suppose that such an algorithm does exist and that we use it to test whether
ASB 0. Then c ASB 0:> C 0, which means that we have discovered a polynomial-
time algorithm which finds whether the family of sets V1,..., Vp has a set basis of
size k. But from reference [9] we know that, if P NP, this is impossible. [3

The key element for obtaining the above result is provided in the proof of Lemma
4, i.e., the observation that starting with the original problem we can find a new
problem whose optimal cost is known to be double that of the original problem. (Also,
from the new problem we can always reconstruct the original problem.) In its turn,
this observation is facilitated by Lemma 3.

The proof technique used above can also be used to show that several NP-complete
augmentation and deletion problems are not approximable in the sense of the above
problem. (Several such problems are presented in 4 below.) Two conditions must
be met, however. First, the zero-cost version of the augmentation (deletion) problem
must be NP-complete. Second, the cost function of the augmentation (deletion)
problem must allow relationships between the optimal costs of different instances of
the same problem to be established; these relationships, such as the doubling of the
optimal cost, help eliminate the constant d from the bound of the approximate cost.
Note that the above proof technique cannot be applied directly to the k-segmentation
problem because the first condition mentioned above is not met; i.e., the zero-cost
segmentation of any family V is the MDSB (V).

3. Other cost functions for augmented-set bases. As an example of a cost function
for the augmented-set basis problem for which the main result of this paper remains
valid, consider:

c Z I{ 1 vi n vi 9i rq 7

This cost function merely (double-)counts the disjoint sets that, due to augmentation,
end up with a nonempty intersection after reconstruction. Although this cost function
is of no immediate practical interest, it differs sufficiently from the previous cost
function to illustrate the strength of the above result. In the following theorem we
prove that the augmented set basis with the new cost function is still NP-complete.
As part of the proof of this theorem, we show that the zero-cost version of the new
problem is NP-complete by reducing the k-colorability problem to the new version
of our problem.

THEOREM 2. The augmented-set basis problem with the cost defined by
Vj , Vi f) Vj f}l is NP-complete.

Proof. Let us transform an instance of the coloring problem [(N, E), k as follows
[6]" The elements of set S are the "nonedges" of the graph, i.e., a, b s N and (a, b) E.
Let each set of the family V correspond to a node in N. For each node a, define Va
as the set of all nonedges (a, b) for some b s N. Assume that (a, a)

CLAIM 2. The family V1, VIlli has an augmented-set basis of size k and cost
zero if an only if the graph (N, E) is k-colorable.

However, in the context of the k-segmentation problem, this cost function provides a very useful
measure of the "locking conflicts" that may appear in data bases due to lack of a sufficient number of
small segments [4].

FINDING AUGMENTED SET BASES 607

To prove this claim let us associate each color with an element of the augmented-
set basis, and note that if two nodes of the graph are note adjacent, then their sets
already overlap. Thus there is no added cost if the augmentations of these sets overlap.

Proof o) "ie." Suppose that there exists a k-coloring. Then we generate each
element of the augmented-set basis from nonedges of nodes with the same color. We
note that, although some elements of the augmented-set basis overlap, all nonedges
are in the same element and each augmented set is represented by a single element
of the basis. Thus the cost of the augmentation is zero.

Proof of "only if." Suppose that there exists a zero-cost augmented-set basis.
Assume that each element of the basis is labeled with a distinct color. For each set
Va, assign to node a the color of one of the basis elements that represents Va. We
claim that adjacent nodes have different colors. If adjacent nodes a and b have the
same color, the corresponding augmented sets Va and Vb must have a common element
Bi of the basis in their representation. Since a and b are adjacent nodes, Va (3 Vb (,
but Va fq Vb f because their intersection contains Bi. Hence, the cost of the aug-
mentation cannot be zero.

Now it is easy to see that the new augmented-set basis problem is NP-complete.
THEOREM 3. I P NP, there exists no polynomial-time approximation algorithm

with costC <- c ASB + dl, where ASB is the optimalcostcomputedby
Qi (3 Qf (}l and c 1, dl are constants.

Proof. All we need to show is that, given the original problem instance, we can
construct in polynomial time a new problem instance such that ASB 2 ASB, where
ASB is the optimal cost of the original problem and ASB is the optimal cost of the
new problem instance. The rest of the proof will then proceed as in the proofs of
Lemma 4 and Theorem 1.

Let V1,..., Vp be a family of sets of $ ={el,..., en}. Then let us construct
the sets S’={e’l,...,e’n} and _S $S’t_J’{eill <=i <=f <=p}. Now let us define
V’i= Vit_J{eifll<=f<=p}, Vi ={e’l Vi}t.J{efill <=f <=p}, and let _V=
{1, ., Yp, ’1, ., ’p}. Thus we have made two copies of the family V1, , Vp
with each ’i having a common element eif with each /’.

CtAIM 3. ASB 2 ASB, where ASB is the optimal cost o" augmenting V_
Proof. Let B 1, ., Bk be a cost C augmented-set basis for the original problem

and let Bi=Bit_J{e’[eBi}. Now let us form B’I,...,B’k from B1,...,Bk by
adding each eif to a Bq such that Bq contains an e V’i or an e’ V/’. Thus we have
started with the basis B 1, , Bk and we have put an e’ with every e, and eif’s where
they add no cost. Therefore,

(i) no V’i and V can add any cost, since ’i Vf {ei}, i.e., V’i and V/’ already
overlap.

(ii) if V1 and V2 of the original family do not add any cost when they are
represented with B 1, , Bk, then neither do V’I and ’2 nor V1 and 2 when they
are represented with B’I,. ., B’k..

Therefore, the representations of V’I, ’2 and of V1, 2 increase cost only when
the representations of V1 and V2 increase their cost. Thus, B’I,..., B’k is an
augmented-set basis of _V with cost 2C. Hence, ASB-< 2 ASB.

On the other hand, suppose that there exists an augmented-set basis B’I, ., B’k
for _V with cost C. Let Bi B’i f35, i.e., Bi is B’i with all e’ and eif’s removed, and
Bi B’i (3 S’, i.e., Bi is B’i with all e and eif’s removed.

Both B1,... ,Bk and B1,...,Bk are augmented-set bases for the original
family (i.e., we have removed the primes from the elements e’ in Bi’s). Furthermore,
if V1 and V2 increase cost when they are represented with B1,... ,Bk, then (1)

608 VIRGIL GLIGOR AND DAVID MAIER

V’I and V’2 increase cost when they are represented with B’I,..., B’k, and (2) 1
and V2 increase cost when they are represented with B’I,..., B’k. Therefore the
sum of the costs of {B1,. ., Bk} and of {B1,.. , Bk} is no greater than C. Thus the
cost of one of the two bases is no greater than [C:2J. Therefore ASB=>2ASB,
and thus ASB 2 ASB.

4. Augmentation and deletion problems. In this section we define some graph-
augmentation and deletion problems that are NP-complete. Using the proof technique
of the previous section, we show that these problems are not approximable. Undoubt-
edly, similar proofs can be used to demonstrate that other NP-complete augmentation
and deletion problems are not approximable.

4.1. Graph augmentation. Let G (N, E) be a graph and k, rn be integers. The
problem of finding a clique cover of a minimally-augmented graph is to find a new
graph AG (N, E Eco), where Eco is a subset of the "nonedges" of G, such that:

(i) the graph AG has clique cover of size k, and
(ii) the number of nonedges added to G, IEcol, is a minimum.

Similarly, we define the problem of finding a clique of a minimally-augmented graph
(1) by rephrasing the property (i) above as "the graph AG has a clique size m," and
(2) by denoting the subset of nonedges added to G as Ecq. Both of these problems
are NP-complete and their optimal solutions are not unique.

THEOREM 4. If P # NP, there are no polynomial-time approximation algorithms
for finding:

(1) A clique cover by adding Cco--<c21EcoI + d2 nonedges to G, and
(2) A clique by adding Ccq-< c3lEcql + d3 nonedges to G,

where]Ecol, IEcql are the optimal numbers of added nonedges and cz, c3, dz, d3 are
constants.

Proof. The zero-cost versions of these problems are NP-complete [6]. All we
need to show is that, given an original problem instance, we can construct in polynomial
time a new problem instance with twice the cost of the original problem. Given
G (N, E), let G’= (N’, E’) and G" (N", E") be two copies of the graph G.

For the proof of part (1), the new problem instance is to find a minimum-cost
augmentation so that the graph (N’ t_J N", E’t_J E") is 2k-colorable. For the proof of
part (2), the new problem instance is to find a minimum-cost augmentation so that
the graph (N’N",E’t3E"LJ{(n’i, n’7)ln’i N’, n’7 N", i,] [1,]N[]}) has a clique
of size 2m. For each of the new problem instances, it is easy to see that the optimal
cost of the original problem is leo if and only if the optimal cost of the new problem
is 21Eo]. The rest of the proof proceeds in the same way as the proofs of Lemma 4
and Theorem 1.

4.2. Deletion problems. By analogy with the node-deletion problems [8], [10],
we can define a class of edge-deletion problems as follows: Given a graph G, find the
minimum number of edges that need to be deleted so that the remaining subgraph
has a specified property. Let us consider the following examples.

Let k 1 and rn 1 be integers. The problem of coloring a graph by edge deletion is
to find a subgraph DG (N, E- Edc), where Edc is a subset of E, so that:

(i) The subgraph DG has a k 1-coloring, and
(ii) The number of edges deleted from the graph G, IEdc I, is a minimum. Similarly,

we define the problem of finding a node cover of a graph G by edge deletion (1) by
rephrasing property (i) above as "the subgraph DG has a node cover of size rn 1,"

FINDING AUGMENTED SET BASES 609

and (2) by denoting the subset of edges deleted from G as Edn. Both of these problems
are NP-complete and their optimal solutions are not unique.

THEOREM 5. If P NP, there are no polynomial-time approximation algorithms
for finding:

(1) A coloring of G by deleting Cdc<=c4]Edel+ d4 edges, and
(2) A node cover of G by deleting Cdn -<_ cslEdnl + d5 edges,

where IEdcl, [Ednl are the optimal numbers of deleted edges and c4, c5, d4, d5 are
constants.

Proof. In the proof, we use the transformations suggested in [6] for the reductions
between the zero-cost versions of these problems (i.e., clique to node cover and
colorability to clique cover). Then we show the equivalence between the approximation
algorithms for the graph-augmentation problems defined above and the corresponding
ones for the particular instances of the edge-deletion problems provided by the
transformations. (Alternatively, the same proof technique as that used for the previous
problems could also be used.) F1

The same results can be easily obtained for other NP-complete problems. Among
these problems we include (1) other edge-deletion problems (e.g., finding feedback
arc (node) sets by edge deletion), (2) node-deletion problems (e.g., node-deleted
maximal clique [8], [10]), and (3) appropriately defined element-deletion problems for
families of sets.

5. Conlus|on. A large number of combinatorial problems that appear in practice
have been shown to be NP-complete in the past. However, few of these problems
have been known to be unapproximable in the sense defined in this paper. The proof
technique that we have used to show that alternate versions of the augmented-set
basis problem are unapproximable can also be used to obtain similar results for other
NP-complete augmentation problems. EfficienL practical algorithms may still be found
for particular instances of the augmented-set basis problem and for the other non-
approximable problems discussed above.

REFERENCES

[1] H. D. BLOCK, N. J. NILSSON AND R. O. DUDA, Determination and detection offeatures in patterns,
in Computer and Information Sciences, J. T. Tou and R. H. Wilcox, eds., Spartan Books,
Washington DC, 1964, pp. 75-100.

[2] K. P. ESWARAN AND R. E. TARJAN, Augmentation problems, this Journal, 5 (1976), pp. 653-664.
[3] J. F. GIMPEL, The minimization of spatially-multiplexed character sets, Comm. ACM, 17 (1974),

pp. 315-318.
[4] V. D. GLIGOR AND D. MAIER, Representing data bases in segmented name spaces, in Databases:

Improving Usability and Responsiveness, B. Shneiderman, ed., Academic Press, New York, 1978.
[5] , Finding augmented-set bases, Technical Report TR-882, Univ. of Maryland, College Park,

February 1980.
[6] R. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, pp. 85-104.
[7] L. T. Kou AND C. K. WONG, A note on the set basis problem related to the compaction of character

sets, Comm. ACM, 18 (1975), pp. 656-657.
[8] M. S. KRISHNAMOORTHY AND N. DEO, Node NP-complete problems, this Journal, 8 (1979),

pp. 619-625.
[9] L. J. STOCKMEYER, The minimal set basis problem is NP-complete, IBM Research Rep. RC5431,

May 1975.
[10] M. YANNAKAKIS, The effect of a connectivity requirement on the complexity of maximum subgraph

problems, J. ACM., 26 (1979), pp. 619-625.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0001 $01.00/0

PREDICTING THE NUMBER OF DISTINCT
ELEMENTS IN A MULTISET*

KOHEI NOSHITAS"

Abstract. The bounds of the number of comparisons are obtained for the problem of determining
whether the number of distinct elements in a given multiset is no more than a given threshold value. Those
bounds are asymptotically optimal within constant factors. Two models of the algorithm are considered to
derive those bounds.

Key words, multiset, comparison, decision tree, predicting problem, oracle argument, complexity

1. Introduction. The problem of computing the set of distinct elements in a
multiset appears in some practical applications. For instance, in the relational data
base system [2], the projection operation will be implemented by means of the
algorithm for this problem. Stockmeyer and Wong [6] have dealt with some related
problems.

In this paper we shall consider a predicting problem on multisets. More specifically,
the problem is to determine, for a given multiset S of n elements and a given threshold
t, whether the number of distinct elements in S is less than or equal to t. This problem
has been formulated from a rather practical motivation. In a relational data base
system we are often required to know in advance the size of the result of the projection
operation, because it may crucially affect the computation time for data movements
or the amount of the output. Therefore, it is important to devise an efficient algorithm
for predicting whether the size of the result is acceptable to the predetermined
threshold, which runs within less computation time than that needed for actually
obtaining the set of the distinct elements.

We shall show the asymptotic complexity, in terms of the number of comparisons,
for the predicting problem on two different models, i.e., on the equal-unequal model
and on the linear-order model. Both models have been discussed in Stockmeyer and
Wong [6]. Munro and Spira [5] and Dobkin and Munro [3] have also introduced the
linear-order model for certain problems on multisets. Although those models may be
regarded as too mathematically simplified, the bounds of complexity for the predicting
problem will be expected to give some insight into the more practical situations.

2. Basic definitions. Let S {vl, v2," ", vn} be an arbitrarily given multiset of n
elements (n -> 1). The universal set from which each element in $ is extracted will be
implicitly defined in the description of the algorithms below.

DErNITON 1. Let k ($) denote the set of distinct elements in a multiset $.

The problem is to decide, for any multiset $ and integer t, whether Ik(s)l--< or
not. We shall call this problem the "predicting" problem.

Any algorithm to solve the predicting problem will be represented as a decision
tree, for which we shall consider two different types of branching. The first one is
based on the "equal-unequal" model, in which each comparison between any two
elements x and y in S will give the information, either "x y" or "x y". On the
other hand, in the second model, called the "linear-order" model, the corresponding

* Received by the editors November 18, 1980. This research was supported by the Scientific Research
Council of the United Kingdom under grant GR/A/9418.8.

t Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.
Now at Department of Computer Science, Denkitusin University, Chofu, Tokyo 182, Japan.

611

612 KOHEI NOSHITA

information is to be either "x < y" or "x y" or "x > y"; namely, the universal set
is linearly ordered.

The reader will be assumed to be familiar with the notion of the decision trees
of those types, and with the worst case complexity defined on the decision trees [3],
[5], [6]. For the general terminology on multisets as well as decision trees, see also
Knuth’s book [4].

DEFINITION 2. Let TE(n, t) and Tt.(n, t) denote the number of comparisons
required to solve the predicting problem in the worst case on the equal-unequal model
and on the linear-order model, respectively.

In the following sections, when the model being considered is clearly understood
from the context, the abbreviated notation T(n, t) will also be used in place of TE(n, t)
or TL(n, t).

Clearly, Tz(n, n)= TL(n, n)= 0. Furthermore, it is easy to see that Tz(n, 1)=
TL(n, 1) n 1. Hence, from now on we shall assume that 1 < < n and n _-> 3. The
purpose of this paper is to investigate the asymptotic behavior of Tz(n, t) and TL(n, t)
as n becomes sufficiently large.

3. Bounds on the equal-unequal model. In this section we shall show the bounds
of the number of comparisons to solve the predicting problem on the equal-unequal
model.

PROPOSITION 1.

t+l)T(n, t) <- tn
2

Proof. The following straightforward algorithm gives an upper bound for T(n, t).

begin
V-{v};
for <--2 step 1 until n flo

begin for each vj in V do
if vi vj then goto L;

V<-- VU{vi};
if IV[--> + 1 then return "[k (S)I > t";

L’ end;
return "lk (S)I-<- t"

end.

It is easy to see that the worst case occurs in the following situation. The first
elements V, {Vl, v2,’’’, vt} that are picked up in the outer loop are all distinct, and
each of the remaining (n- t) elements turns out to be equal to the tth element of Vt
after (t-1) comparisons of inequality, except the final comparison of the last n th
element. The final comparison decides whether Ik(S)l or Ik(S)l- t+ X, Hence the
upper bound for T(n, t) is derived as follows:

T(n, t) < + t(n t) tn
2 2

for any n -> 3 and 1 < < n.

THEOREM 2.

TE(n, t) >-Wtn/2--(t + 1) if <7n/2-, and
Tz(n, t)>-nZ/2-(n -t)z-(t-n/2) if >-Vn/2.

PREDICTING CARDINALITY OF A MULTISET 613

Proof. The lower bound for T(n, t) will be derived by means of the oracle
(adversary) argument [4]. First we shall describe the construction of the oracle B,
which replies to each question of any algorithm A in such a way that B forces A to
perform as many comparisons as possible. Next we shall count the number of com-
parisons which must be performed by any algorithm A.

During the execution of an algorithm A, the oracle B represents the result of
each comparison as a system F_, (G, h), where G is an undirected graph (V, E) and
h is a mapping from V to {0, 1, 2, , 1}. The system Y_, always satisfies the following
conditions. The set of nodes V of G is a subset of the "set" S in the sense that each
element vi in the "multiset" S is regarded as the element of the set $ distinguished
by its own index i. Thus, for example, the notation X U Y will be used to denote the
union of two "sets" X and Y in this sense. Furthermore, it always holds that, for any
(x, y) in E, h (x) h (y), i.e., h is a t’-coloring of V for some ’<- [1]. The existence
of an edge (x, y) in E implies that, in the multiset S, two elements x and y have been
determined to be distinct by A. In general, G consists of m mutually disjoint connected
components, G1, G2, , G,,, where Gi (V, Ei) is a connected component (Vi ,
l<-i<=m,m>=l).

The basic idea for constructing B is that E always satisfies the condition that G
has t-coloring as long as VI >- + 1. While this condition is satisfied, A cannot decide
whether Ik(S)l <= or not. However, there seems to be no useful characterization of
graphs having t-coloring (t => 3) [1], which facilitates calculating the number of edges
in those graphs. Therefore, we shall content ourselves with a relatively simple pro-
cedure which preserves the t-coloring property of G.

Before A starts, B will initialize E as follows"

begin V - S; E
h (x) - 0 for each x in V

end.

The initialized system E consists of n connected components, each of which is a
singleton node.

For each comparison of A between x and y (x, y in V, x y), the answer of B
and the corresponding new E will be determined by the following rules, Cases I and
II, up until the number of nodes in V becomes equal to + 1. The period during
which these rules are applied will be called the "intermediate" stage.

Case I. If deg (x)<t-1 or deg (y)<t-ll. The answer of B is "x y". E is
modified as follows. Without loss of generality, assume that deg (x)< t- 1.

Case IA1. If both x and y are in V/for some (1 <- -<_ m), and h (x) h (y), then
change the color of x from h (x) to another color h’ (0 <- h’ =< 1) such that h’ h (y)
and h’ h (z) for all (z, x) in E, and assign E E (_J {(x, y)}. Note that this change of
color is always possible, because at least one color has not yet been used in
{zl(z,x) in E}U {y}.

Case IA2. If both x and y are in V for some (1 <_- <= m), and h (x) h (y), then
assign E E 1.3 {(x, y)}.

Case IB 1. If x is in Vi and y is in V. for f (1 <- i,/’ =< m), and h (x) h (y), then
change the color of z from h (z) to h (z)+ 1 (mod t) for each z in Vi.

Case IB2. Consider the case in which x is in V and y is in V. for /" (1 <_- i,/" <= m),
and h(x) h(y).

In both Cases IB1 and IB2, assign

V V 1.3 V and E E Ej {(x, y)}.

As usual, deg (x) denotes the number of edges incident to node x.

614 KOHEI NOSHITA

Thus, the number of connected components is reduced by one (m <-- m 1). Renumber
all the connected components from 1 to m.

Case II. If deg (x) _-> 1 and deg (y) => 1.
Case IIA1. If both x and y are in Vi for some (1 <= <= m), and h (x) h (y),

then the answer is x y. Contract two nodes x and y into one new node. Let

X {(z, y) in El(z, x) is not in E}, and

Y {(z, y)in El(z, x)is in E}.

The set of edges incident to the new node becomes

{(z, x) in E}t3X.

The new node is given the name x again. The contracted node y will be called an
"absorbed" node. In this sense the old node x is an "absorbing" node. Furthermore,
any edge in Y will be called an "absorbed" edge. For convenience, any comparison
which induces the absorption will be called a "contracted" edge, which never actually
exists in G.

The following three cases will be dealt with in just the same way as Cases IA2
and IB 1 and 2, respectively. In any case, the answer is x # y.

Case IIA2. If both x and y are in V for some (1 _-< _-< m), and h (x) # h (y), and
Case IIB 1 and 2. If x is in Vi and y is in V for #/’ (1 <_- i,/’ <- m).
At the time when the number of elements in V is reduced to exactly + 1, B

changes the rules described above. The period from this point of time to the termination
of the execution of A will be called the "final" stage. It should be noticed that, until
the beginning of the final stage, as long as B maintains X by those rules described
above, A cannot decide whether]k (S)I <= or not.

The rule of B during the final stage is very simple. For any comparison between
nodes x and y, the answer of B is x # y and edge (x, y) is added to G in , changing
the color of either of the nodes whenever necessary, except when the addition of edge
(x, y) makes G to be a complete graph of (t + 1) elements. This rule may be always
applied, because there exists t-coloring of G of (t + 1) nodes unless G is a complete
graph. By the last exceptional comparison between x and y, A can finally decide
whether [k (S)I <- or not.

We shall introduce several notations to be used in the counting argument. For
any fixed $ and t, let C, Cx and CF denote the number of comparisons performed by
A, respectively throughout the execution, during the intermediate stage and during
the final stage. Obviously,

c=G+cv.

Let XF (GF, hv) denote the representing system of B at the time when the final
stage begins. The notation Gv (Vv, Ev) will be naturally understood. Without loss
of generality, assume that VF {Vl, vz,’", vt+l}. Let Vv V1U V2, where

V1 {x Ix has absorbed at least one node during the intermediate stage}

and V2 VF V1. For brevity, let s IVy[. Furthermore, let Ev Ex LI E2 LJ E3, where

Ex {ele -(x, y) and x, y in V1},

E2 {e]e (x, y) and x, y in V2}, and

E3 {e [e (x, y) and x in Vx and y in

PREDICTING CARDINALITY OF A MULTISET 615

Two different counting arguments will be employed to derive the lower bounds
for C. The first argument is based on the fact that any node v in ($- Vv) V1 must
have at least (t- 1) incident edges when v is absorbed by or absorbs some other node
for the first time in Case IIA1. Hence, we have the following inequality.

2C >_- (t- 1)(n t- 1 + s)+ (n t- 1)+ 21E=I + lEvi.
On the right-hand side, the second term represents the necessary number of

contracted edges. On the other hand, we have

2 2 -IE I-IE=I-IE I.
Combining those two inequalities, we find that the following inequality holds.

2(Cz + C) t(n 1) + (t 1)s + t(t + 1) 2[E1[- E3.
Obviously, IEll S(S- 1)/2, and IE l s(t + l-s). Therefore we have C =Ct +C
tn/2-s tn/2-(t+ 1), because st+ 1. Hence we have the first lower bound for
T(n, t), because the right-hand side of the above inequality represents the necessary
number of comparisons for any A; namely,

(1) T(n, t) Ttn/2n-(t + 1).

The second counting argument is based on the fact that Cz must be greater than
or equal to the number of absorbed edges, plus the number of contracted edges and
remaining edges in G. Hence we have

where D denotes the number of edges which have been absorbed. Assume that

is the sequence of absorbed nodes in the reverse order; namely, v is absorbed first,
and v,-1 is absorbed second, etc. When vt/2 is absorbed to some vi in Vv, both
deg (v,/2) and deg (vi) are at least (t-1). Hence, at least

2(t- 1)-t

edges must be absorbed, because at this point of time there remain only other nodes
than v/z and v in V. Similarly, when vr+3 is absorbed, at least

edges must be absorbed.
In general, if 2t < n, at least

2(t- 1)-(t + 1)

,-2 (t- 1)(t-2)
Ei= -1
i=2 2

edges must be absorbed throughout the intermediate stage. On the other hand, if
2t -> n, the corresponding number of absorbed edges is at least

,-t (n 1)(3t n 2)E (t- i)
i=2 2

616 KOHEI NOSHITA

Hence we have another representation for the lower bound for T(n, t).

T(n,t) >
(t- 1)(t-2) t+l)-1+(n-t-i)+

2

(2) =n+t(t-2)-I

if 2t < n, and

T(n,t) >- (n-t-1)(3t-n-2) t+l)+(n-t-I)+
2

(3) (n2) -(n -t)(n -t- l)

if 2t>-n.
Comparing those lower bounds (1), (2) and (3) derived above completes the proof

of Theorem 2
COgOLLaR 3. Tz(n, t) is of order nt within a constant factor.
Note that, if we take the lower term of our lower bounds into consideration, the

lower bound (2) may be marginally superior to the other one (1) when is very near
n/2 in case of < n/2. For certain specific values of t, we can obtain the exact number
of comparisons; namely,

Tz(n, n -1)= n(n -1)/2,

TE(n, n -2) (n + 1)(n -2)/2, and

Tz(n, 2) 2n 3.

The proof is left to the interested reader.

4. Bounds on the linear-order model. The following theorem is the final result
of this section. We shall assume that n is sufficiently large.

THEOgZM 4. Try(n, t) is of order n log within a constant factor.
Proof. The upper bound for T(n, t) may be easily achieved by modifying the

algorithm in the previous section. In the algorithm, V will be maintained as a linearly
ordered set. And, for each element v, the binary search algorithm will be applied for
checking whether v is in V or not.

The worst case analysis of this modified algorithm is also similar to the case of
the equal-unequal model. In the worst case, the first elements are mutually distinct
and each of the remaining (n -t) elements is absorbed after log (t + 1) comparisons
in binary searching. Thus, the total number of comparisons performed in the worst
case is derived as follows.

r(n, t) <_- tTlog (t + 1) + (n -t) 7log (t + 1)-<_n r-log (t + 1)-.
In the linear-order model, two proof techniques to derive lower bounds have

been frequently used in the literature. One is based on the information-theoretic
counting principle. The other employs the oracle argument. In our proof we shall use
the latter argument in order to show not only the final result but also the novel
technique, which may be applicable to certain related problems. The delicate difficulty
in proving the result is that any algorithm solving the predicting problem may correctly
terminate even when the exact number of distinct elements of the given multiset has
not yet been known, in the same sense as on the equal-unequal model. The main
point of our argument is to construct the oracle B which prevents any algorithm A

PREDICTING CARDINALITY OF A MULTISET 617

from correctly guessing whether Ik (s)l or + 1 until A classifies almost all elements
in S into classes with equal values.

We shall describe the construction of the oracle B, which gives the answer to
each comparison of the algorithm A. For simplicity, assume that 2p for some integer
p_->l.

Consider the complete binary tree T with leaves. Here, a complete binary tree
means, as usual, a binary tree of the special shape, which is used to represent a heap
in the Heapsort algorithm [4]. Each leaf of T will be dealt with as containing the
elements with the equal value.

For each subtree (more formally for each subcomplete binary tree) T’ of T, assign
the capacity c (T’) as follows. If T’ is a subtree whose root is at level m for 0 <-m -< p,
then let c(T)=n/2". In particular, c(T)=n, and C(L)=n/t for any leaf L. The
notation c (M) will be used to denote c (T’), where M is the root of T’.

Before A starts, let all n elements in S be contained in the root of T. During
the execution of A, each element in S will visit some nodes in T as it goes down from
the root to some leaf. The oracle B always maintains the distribution of n elements
in the nodes of T, such that the number of elements contained in any subtree T’ must
be less than or equal to its capacity c (T’).

For convenience, the following notations will be used. For two distinct nodes M
and N in T, let M-N denote that N is a proper descendant of M. For two distinct
nodes M and N in T, let M <N denote the relation satisfying the following condition:
There exists some node K such that M is a descendent of the leftson of K and N is
a descendant of the rightson of K. For any node M in T, let @ M denote the number
of elements which are contained in the subtree whose root is M.

We shall describe the rules of B to answer each question x < y, x y, x > y. When
the number of elements contained in the nonleaf nodes is more than two, apply rule
I, II or III. Otherwise, if both x and y are eit.her in some leaf or in some two leaves,
apply III or I, respectively. In all other cases, apply IV.

I. If x is in M and y is in N such that M <N, then the answer is "x < y".
II. If x is in M and y is in N such that M N, determine the node M’ which

x will visit by the following procedure. Let M1, M., , Mk be the sequence of nodes
on the path from M to N, where M M1 and N Mk (k _-> 2).

begin
for <-- 1 step 1 until k 1 do

begin Let M’ be the son of Mi which is not Mi+;
if @ M’ < c (M’)

then begin Let x visit M’;
The answer is either
"x < y" or "x > y" depending
on either M’ <N or M’ >N,
respectively;
return

end
end;

Let x visit N, and apply III
end

III. Let M be the node at which x and y are staying. If M is a leaf, then the
answer is "x y". Otherwise, let ML and MR be the leftson and rightson of M,

618 KOHEI NOSHITA

respectively. If @ Mr‘ =c(Mr‘), let x and y visit MR, and apply III again. If @
MR =C(MR), let x and y visit Mr., and apply III again. Now @. Mr‘ <c(Mr‘) and @.
MR < c (MR). Let x visit Mr‘ and y visit MR, and the answer is "x < y ".

IV. Without loss of generality, assume that x is in a nonleaf node M. If y is in
a nonleaf node N, let y visit the leaf N’ such that N N’ and @. N’< c(N’). If the
prediction of A is "]k(S)l<-t ’’, then assign the new (t + 1)th value to x, and place x
in the entirely new position between two adjacent leaves which is consistent with the
linear order so far given to A; otherwise, let x visit the leaf M’ such that M M’
and @. M’ <c(M’). The answer is naturally decided depending on their relative
positions. Note that at the time when this rule IV is applied, B still has the freedom
to choose one of the two cases Ik (S)l and [k (S)I + 1. It is easy to see that, except
for the last one or two elements, all the elements in the root of T will eventually
be divided into classes, each of which is contained in some leaf as having equal
value.

We shall count the number of comparisons necessary to lead to the stage in which
rule IV is applied. Although one comparison may cause some number of (intermediate)
visits, only the last "visit" will be taken into consideration henceforth.

LEMMA. Let X be an arbitrary nonleaf node at level rn in T. The sons of X will
be denoted by Y and Z. Then, before rule IV is applied, when n/2" elements are going
down from X or its ancestors to the substrees M and N whose roots are Y and Z,
respectively, at least n/2"/1 elements must visit either Y or Z or both.

Proof. In the execution of A, all the comparisons that have been performed among
the elements in M and N may be ignored without affecting the lemma. If none of Y
and Z has been visited by the number of elements equal to those capacities, the
going-down element must visit either Y or Z. Hence, at least one of the nodes Y
and Z will be visited by exactly n/2"+1 elements.

In the following, the word "nearly" will be used to take the last one or two
elements into consideration. In any case, the last one or two elements have no
significant influence on the asymptotic behavior of the number of comparisons. Because
of the property stated in the lemma, n elements in S initially contained in the root
of T will be distributed as follows.

Nearly n/2 elements visit one of the two nodes at level 1. The other nearly n/2
elements go down to the subtree whose root is the other node at level 1 considered
above. By the lemma, nearly half of those elements, namely nearly n/4 elements,
visit one node at level 2. On the other hand, the former nearly n/2 elements go down
to two subtrees whose roots are at level 2. One of the root nodes is visited by nearly
n/4 elements. Repeating this argument shows that at any level m (0 < rn < p), at least
n/2 elements visit the nodes at this level m. Hence, the total number of visits at nodes
in T is at least (n/2)p.

For each comparison, at most two elements leave from the corresponding nodes,
at which those elements are now staying. Therefore, the total number of comparisons
is at least np/4, which gives the desired lower bound.

This proof may be immediately generalized to the case of 2p-1 < =< 2p for some
integer p.

Note that the number of comparisons performed after rule IV is applied will be
negligible and that the number of comparisons performed in leaf nodes will also be
of lower order, unless is extremely small.

This proof may be easily modified to derive the lower bound for the problem of
partitioning n given elements into classes of equal size. In particular, the n log n
lower bound for sorting, n elements is derived within a constant factor.

PREDICTING CARDINALITY OF A MULTISET 619

5. Concluding remarks. In this paper we have introduced the predicting problem
on multisets, and applied the oracle argument to derive the complexity of the problem
in terms of the number of comparisons on two different models. Those bounds obtained
are asymptotically optimal within constant factors with respect to n and t.

The open problem naturally posed is to determine the exact number of com-
parisons required to solve the predicting problem on each model.

Acknowledgments. The author expresses his thanks to Bill McColl for his dis-
cussion and also to the referees for their useful suggestions to refine the paper.

REFERENCES

[1] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[2] E. F. CODD, A relational model of data for large shared data banks, Comm. ACM, 13 (1970),

pp. 377-387.
[3] D. DOBKIN AND J. I. MUNRO, Determining the mode, Theoret. Comput. Sci. 12 (1980), pp. 255-263.
[4] D. E. KNUTH, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-Wesley,

Reading, MA, 1973.
[5] J. I. MUNRO AND P. M. SPIRA, Sorting and searching in multisets, this Journal, 5 (1976), pp. 1-8.
[6] L. J. STOCKMEYER AND C. K. WONG, On the number of comparisons to find the intersection of two

relations, this Journal, 8 (1979), pp. 388-404.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0002 $01.00/0

ON LINEAR CHARACTERIZATIONS OF COMBINATORIAL
OPTIMIZATION PROBLEMS*

RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

Abstract. We show that there can be no computationally tractable description by linear inequalities
of the polyhedron associated with any NP-complete combinatorial optimization problem unless NP=
co-NPma very unlikely event. We also apply the ellipsoid method for linear programming to show that a
combinatorial optimization problem is solvable in polynomial time if and only if it admits a small generator
of violated inequalities.

Key words, combinatorial optimization problem, polyhedral combinatorics, facial description, facets,
NP, co-NP, ellipsoid method, separating

1. Introduction. It is well known that many important combinatorial problems
can be formulated as the maximization of a linear functional over a polytope with
integer vertices. Examples include matching, the knapsack problem [Ba], the traveling-
salesman problem [DFJ], vertex packing and set packing [NT], [Pa], the three-
dimensional matching problem and many others [PSI.

There has been a very large body of literature aimed at the characterization of
such convex polytopes by linear inequalities. The motivation apparently has been that
such a characterization would bring a combinatorial optimization problem within the
scope of linear programming methods, and thus might yield an efficient algorithm for
its solution. This approach has worked in some cases, most notably the matching
problem of Edmonds [Edl].

Unfortunately, many combinatorial optimization problems are NP-complete.
Despite the evidence that such problems are intractable, research on the description
by linear inequalities of the convex polytopes associated with these problems has
continued--besides the above references we mention [Ch], [Gr], [GP1], [GP2], [Ma],
and [PR]. The main motivation has been the development of reasonably efficient
algorithms by application of the simplex method to a heuristically generated subset
of the inequalities describing the polytope. In order for such an algorithm to be
guaranteed to terminate at the optimum, a complete description of the polytope by
inequalities must be available. If only a partial description is used, then certain objective
functions will force the simplex algorithm to terminate at an infeasible point. Unfortu-
nately, so far, despite much intensive research effort, there has been no satisfactory
description by linear inequalities of any convex polytope corresponding to an NP-
complete combinatorial optimization problem. Note that, since an exponential number
of inequalities might be required, such a description would not directly imply P NP
via the recently discovered polynomial-time algorithm for linear programming [Kh].

It is natural to ask whether, in principle, there can be a satisfactory description
by linear inequalities of the set of polytopes associated with an NP-complete com-
binatorial optimization problem. To address this question we must, of course, define
what we mean by the terms "combinatorial optimization problem" and "satisfactory

* Received by the editors March 3, 1980, and in final form January 14, 1982.
t Computer Science Division, Department of Electrical Engineering and Computer Sciences, and

Electronics Research Laboratory, University of California, Berkeley, California 94720. The research of
this author was supported by the National Science Foundation under grant MCS 77-09906.

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, and National Technical University of Athens, Athens, Greece. The research of this author was
supported by the National Science Foundation under grant MCS 77-08965.

620

COMBINATORIAL OPTIMIZATION PROBLEMS 621

description". Loosely, a combinatorial optimization problem is a set of polytopes with
integer vertices. This set of polytopes is indexed by strings in {0, 1}*. The indexing is
computationally efficient in the sense that, given a string z and an integer vector y,
it is decidable in polynomial time whether y is a vertex of the polytope associated
with z. An instance of the problem is specified by a string z, a vector c of profit
coefficients and a threshold k; the instance is accepted if there is a point x in the
polytope determined by z such that c x -> k.

A characterization of this set of polytopes by linear inequalities is a rule associating
with each string z a set of linear inequalities determining the associated polytope.
For a characterization to be satisfactory we only require that it be in NP. In other
words, if a string z and an inequality are presented, there should be a short proof of
the fact that the inequality is part of the description of the polytope associated with
z. Most such descriptions discussed in the literature are in NP; in fact, all but the
comb inequalities of [Ch] and their generalizations given in [GP2] are in P.

Our first main result (Theorem 1) is that no satisfactory description by linear
inequalities of the polytopes corresponding to an NP-complete combinatorial optimiz-
ation problem is possible, unless NP co-NP. The class co-NP consists of those sets
whose complements are in NP. The hypothesis that NP co-NP is weaker than P NP,
but is generally considered almost as improbable. For example, NP co-NP would
imply that there is a "good" characterization of non-Hamiltonian graphs, and that
there is a short proof of every contradiction in the propositional calculus.

The second main concern of this paper is a set of complexity questions motivated
by the now-famous ellipsoid method for solving the linear programming problem.
Our specific motivation is to apply the method to combinatorial optimization problems
for which the defining linear inequalities are not explicitly given, but are determined
by some structural property. Application of the method in such cases requires the
algorithmic generation of violated inequalities. Define a generator for a combinatorial
optimization problem as an algorithm which, given a string z and a point y in
either determines that y lies in the convex polytope associated with z, or else produces
a linear inequality violated by y but satisfied by all points in the polytope. A generator
is called small if it always generates an inequality whose coefficients are bounded in
length by a polynomial in the length of the description of the problem instance. Our
second main theorem is that a combinatorial optimization problem is solvable in
polynomial time if and only if it admits a small generator of violated inequalities.

Similar theorems have been proven independently by Grotschel, Lovasz and
Schrijver [GLS]. Their theorems, however, apply only to combinatorial optimization
problems whose associated polyhedra are full-dimensional. We get around this limita-
tion by introducing the repeated projection procedure, a variant of the ellipsoid method
which applies to all combinatorial optimization problems, whether or not they are
full-dimensional. By analyzing this method we establish, under very general conditions,
that the complexity of a combinatorial optimization problem is polynomially related
to the problem of generating violated inequalities.

2. Combinatorial optimization problems and facial descriptions. A common type
of combinatorial optimization problem is the following’

maximize c .x
(1)

subject to x S

where S _Z" is the set of feasible solutions and c s Z. It is well known that an

We denote the integers by Z, the nonnegative integers by Z+, and the rationals by R.

622 RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

equivalent formulation of (1) is the following:

maximize c .x(2)
subject to x e CH (S)

where CH (V) denotes the convex hull of the point set V.
Taking a view toward algorithmic issues, we shall carefully distinguish between

problems and instances. A problem will generally have an infinite number of instances,
each of which is similar in form to (1).

DEFINITION 1. A combinatorial optimization problem (or, briefly, c.o.p.) C is
specified by:

(i) a set L
_

(0, 1}*;
(ii) a function n from L into Z/;
(iii) for each z eL, a set S(z) c__ (Z+)n(z) such that each of the following three

languages is recognizable in polynomial time"

L, {(z,y)[lyl=n(z)} and {(z,x)lxeS(z)}.

DEFINITION 2. An instance of C is a pair (z, c) where z eL and c eZn(z). The
instance (z, c) corresponds to:

n(z)

max Y’. cx
]=1

subject to x =(xl, x., ,x,(z))eS(z).
Weighted matching, set covering, integer programming, the traveling-salesman

problem and a plethora of other problems can be expressed as combinatorial optimiz-
ation problems. In one formulation of the undirected traveling-salesman problem, for
example, z is the binary representation of a positive integer n, n (z) is (.), the number
of edges in Kn, the complete graph on n vertices, and S(z) is the set of characteristic
vectors of the Hamiltonian circuits of Kn.

Given a c.o.p. C, define D(C), the decision problemfor C, asD(C) {(z, c, k) (z, c)
is an instance of C, k e Z and x e S(z) such that c x >-k}.

If D(C) is NP-complete, then C is an NP-complete combinatorial optimization
problem.

A facial description of a c.o.p. C is a set F(C) such that:
(i) each element of F(C) is of the form (z,f, g) where z eL, feZ(z and g
(ii) for each z eL, and for all x eR "(z, the following are equivalent:

(a) x e CH (S (z)),
(b) for each triple (z, f, g) e F(C), f x <= g.

Thus F(C) gives a description by linear inequalities of CH (S(z)), for each z eL.
The facial description F(C) is called a small facial description if there is a

polynomial p(. such that, for every (x, f, g)eF(C), each component of f, g has
absolute value -<2p(ll/()). The existence of a small facial description implies, in
particular, that, for every z eL, CH (S(z)) is a convex polyhedron (i.e., it is the
intersection of a finite number of half-spaces).

The c.o.p.s that occur in practice invariably have small facial descriptions. We
describe two especially common classes of such problems.

Class 1. Zero-one problems. This is the case where every vector in S(z) is a 0-1
vector.

COMBINATORIAL OPTIMIZATION PROBLEMS 623

Class 2. Problems of integer programming type. In this case the input z is the
binary encoding of an integer m n matrix A and an integer n-vector b, and

S(z) {x lAx <- b, x >= O, x integer}.

LEMMA 1. Every zero-one problem or problem of integer programming type has a
small facial description.

Proof. Any convex polyhedron Q in R can be expressed in terms of a finite set
V of vertices and a finite set W of extreme rays; Q is just the set of vectors of the
form xl+x2, where X is a convex combination of vertices and x2 is a positive
combination of extreme rays. Let S be the unique minimum-dimensional affine
subspace of R containing Q, and let the dimension of S be d. Then, if w s V,
S-wl {x- w llx S} is a linear subspace of dimension d. Let B be a set of n-d
unit vectors, none of which lie in S-w1. Then Q can be described by a finite number
of linear inequalities, each of the form f. x -< g, where f. x g is the equation of a
supporting hyperplane of Q. It follows that f and g are determined by a selection
process of the following type" Select + 1 vertices Vo, vl, , Vl, where 0 <= -< n 1,
and n-1-1 vectors hi, h2, ’, h,-l-t from Wt.JB, such that {/.)l--V0,)2--/)0,

Vl-Vo, hi, "", h,-1-t} is linearly independent. Then f and g are determined, up to
a constant multiple, by:

g=f "vo,

f" (vi-Vo)=O, 1, 2,"’, l,

f hi=O, j= 1, 2,’’’ ,n-l-l.

We first show that, in the two cases of interest, the vertices and extreme rays of
CH (S(z)) are integer vectors whose coefficients are small. In the zero-one case this
is especially simple’ the vertices are zero-one vectors, and there are no extreme rays.
In the case where z is the binary encoding of an integer matrix A and a vector b, and
S(z) ={xlAx <=b, x integer}, then the extreme rays of S(z) coincide with those of the
corresponding linear program (unless, of course, S(z)=). Therefore each extreme
ray of S(z) is a row of A; hence each of its coefficients is of absolute value -<2Izl. As
for the vertices, we can rely on a result which was independently discovered recently
by several authors: [BT], [Co], [GS], [KM], [Pap2]. There is a polynomial q(. such
that every component of every vertex of {x lAx <= b, x integer} is of absolute value
=< 2q(s), where s Zsllog (1 + Itl)]. Here ranges over all entries of A and b thus, s

Now we are ready to show that all coefficients of f and g are suitably small.
Recall that f satisfies H. f 0, where H is an (n- 1)x n matrix of rank n- 1; each
row of H is either of the form vl-vo or of the form hi. Without loss of generality,
assume that the first n 1 columns of H are linearly independent, and write

H C’d, where C is a nonsingular (n- 1)x (n- 1) matrix, and d is a column
vector. Then f is determined by

By Cramer’s rule,

fl
+C-df, =0.

(C-) (-- 1)i+’A]i

624 RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

where Aji is the]-i minor of C. Hence, we can take f to be the following integer
vector (or its negative).

n-1

f= Y (-1)i+hj,d,, i=1,2,...,n-1, f,
/=1

It follows that each component of f or g has absolute value _-<(2nu)", where u is the
largest absolute value of an entry in a vertex or extreme ray. And the result that, for
a suitable polynomial p, each coefficient _-<2 p(Izl+"(z)) now follows from the bounds
derived earlier on the coefficients of vertices and extreme rays.

3. The computational complexity of small facial descriptions. The following
theorem is our first main result.

THZORZM 1. Let C be a c.o.p. If C has a small facial description F(C) NP then
D(C) co-NP.

Proof. (Only if). Assuming as given a nondeterministic polynomial-time
algorithm for recognizing the triples (z, f, g) F(C), we give a nondeterministic poly-
nomial-time algorithm for recognizing the complement of D(C).

ALOmTH A.
Step i. If the input is not of the form (z, c, k), where z L, c s Z") and k s Z,

then accept the input and halt;
Step ii. Generate nondeterministically an n n matrix F (fi) of integers having

absolute value -<2 p<lzl/"(z)) and an n-vector g of integers having absolute value

Step iii. Apply the nondeterministic polynomial-time recognition algorithm for
F(C) to verify that each triple (z, (fil, fi2," fin), gi> is in F(C);

Step iv. Verify that F is nonsingular an.d (in polynomial time) solve the system,
yTF=c;

Step v. Verify that y _-> 0 and y rg < k.
Algorithm A clearly runs in polynomial time. To prove that it accepts the

complement of D(C), we note the equivalence of the following statements:
(i) (z, c, k):D(C);
(ii) the program

max c. x

subject to x CH(S(z))

has optimal value < k;
(iii) the program

(I)
max c .x

subjectto f.x <-g, (z,f, g)F(C)

has optimal value <k;
(iv) the dual of program (I) has optimal value <k;
(v) the dual of program (I) has a basic feasible solution of value <k;
(vi) there exists an n (z) x n (z) matrix F and an n (z)-vector g such that

(z, (fil, f,2,’’’, fin(z)), gi) F(C), 1, 2, ’, n (z)

and the system

yTF=c

COMBINATORIAL OPTIMIZATION PROBLEMS 625

has a unique nonnegative solution y such that

Ty g<k.

Following a suggestion of Andy Yao, we observe that the converse of Theorem
1 is true in the case of 0-1 c.o.p.s (or c.o.p.s with provably small, in terms of z,
vertices). It does not necessarily hold in the general case.

The following corollary constitutes our evidence that computationally tractable
facial descriptions for NP-complete combinatorial optimization problems are unlikely
to exist.

COROLLARY 1. lfF(C) is a small facial description of an NP-complete c.o.p, and
F(C) NP, then NP co-NP.

Proof. The NP-complete language D(C) is in co-NP. Since the complement of
every language in NP is reducible to the complement of D(C), it follows that
co-NP

NP and NP co-(co-NP)

Our approach can also prove a slightly different kind of result. Let F(C) be a
collection of valid inequalities for C, i.e., each element of F(C) is a triple (z, f, g),
such that f. x =< g holds for every x S(z). Suppose that F(C) NP. Call an instance
(z, c) of C bad for F(C) if the optimum solution for the instance is not optimum for

max c x
subject to f.x<=g,(z,f,g)F(C).

Let I be a subset of the set of instances of C such that I P but {(z, c, k)l(z, c) I
and (z, c, k)D(C)} is NP-complete.

COROLLARY 2. Let I and F(C) be as above. If NP co-NP then I contains
infinitely many instances that are bad for F(C).

Example. Let F(TSP) be the ingenious partial characterization of the facets of
the traveling-salesman polytope given in [GP2]. Call an instance of the traveling-
salesman problem Euclidean if the cost vector can be realized as the L2 distances of
a finite set of points in the plane. Then, since the Euclidean restriction of the
traveling-salesman problem (TSP) is NP-complete [Papl] we conclude that, unless
NP co-NP, there exist infinitely many bad Euclidean instances of the TSP. Similarly,
since the Hamiltonian circuit problem is NP-complete, we can claim that, unless
NP co-NP, there exist infinitely many bad instances in which each component of c
is0or 1.

4. The complexity of generators. The famous ellipsoid method [Kh] for finding
a point within a full-dimensional convex body K in R" computes a sequence

((xk, Ek), k 0, 1,. .},

where, for all k,
(i) Ek is an ellipsoid in R and Xk is the center of Ek;
(ii) Ek+I fqK Ek f’)K;
(iii) vol (Ek+l) <---- 2 -1/2"+1 vo1 (Ek).
At each iteration, the ellipsoid method calls on a separating hyperplane subroutine

for K. Such a subroutine, when given a point y R n, either determines that y K, or
else produces a vector f such that

f .y>maxf .x.
xK

626 RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

A version of the ellipsoid method, using finite-precision arithmetic and incorporat-
ing a perturbation technique to deal with polyhedra of less than full dimension, solves
the general linear programming problem in polynomial time. In this application the
separating hyperplane subroutine is trivial, since K is defined by an explicit list of
linear inequalities.

It is also of interest to apply the ellipsoid method in cases where K is not defined
by such an explicit list. Such cases arise in nonlinear programming, where K is a
nonpolyhedral convex set, and in certain combinatorial applications, where K is a
polyhedron with a huge number of facets. In such cases the separating hyperplane
subroutine cannot be based on an explicit list of inequalities; it must be based on an
algorithm.

Given a c.o.p. C, a generator of violated inequalities is an algorithm G(C) which
accepts as input pairs of the form (z, p), where z L and pR(). The output of
G(C) is as follows:

if p CH(S(z)) then "O.K."
else a pair (f, g) such that/"

g Z,]" p > g and, for all x S (z), f x <-_ g.

Associated naturally with any generator G(C) is the following facial description
Fo(C):

F(C) {(z, f, g)l for some p, G(C) has input (z, p) and output (f, g)}.

The generator G(C) is called a small generator if F(C) is a small facial description.
THEOREM 2. Let C be a c.o.p, and let. G(C) be a small generator of violated

inequalities for C. If G(C) runs in polynomial time, then D(C) P.
The remainder of this section is devoted to the proof of Theorem 2.
COROLLARY 3. IfCis NP-complete, then it has no smallpolynomial-time generator

unless P=NP.
The chief technical difficulties in the proof of Theorem 2 arise because the

polyhedra CH (S(z)) associated with a c.o.p. C are not necessarily full-dimensional;
i.e., CH (S(z)) may lie in a (n(z)- 1)-dimensional flat of R(.

To prove Theorem 2 we show that, using a small polynomial-time generator
G(C), one can test in polynomial time whether (z, c, k)D(C). This is equivalent to
testing whether the system

(4) c x<=k, f x <- g, (z, f, g) 6 F(C)

is feasible.
Since the solution set of (4) may be nonempty but of less than full dimension,

we apply a perturbation which converts (4) to a system of strict inequalities. The
solution set of this system will, of course, be full-dimensional whenever it is not empty.
Let p(.) be a polynomial such that, for every (z,f, g)F(C), each component of
f, g has absolute value -<2v(ll+"(z)). For a fixed z, let
(n(z)+ 1). (p[zl+n(z)+ 1)+Zi([log ci] + 1)+([logz k] + 1)); is an upper bound
on the number of binary digits needed to write down any affinely independent
subsystem of the system (4).

COMBINATORIAL OPTIMIZATION PROBLEMS 627

LEMMA 2. The system (4) is feasible if and only if the systems (5) and (5.1) are
both feasible, where

c .x >k-2-t,
(5) f "x>g+ellfl[, (z,f,g)F(C),

--2t<--Xj<=2 t, j 1, 2,...,n(z),

and (5.1) is (5) with the first inequality replaced by c x > k -1/22-’.
Here by Ilfl[we denote the Lz-norm of the vector , and e 2 -2")+2)t. Notice that

fx < g + e Ilf]l is satisfied by those points x that have Euclidean distance less than e from
some point x’ satisfying fx’ <- g.

LEMMA 3. If the system (5) is feasible, then the set T offeasible points has volume
at least e (z).

These lemmas are similar to results given in [AS] and [Kh]; we omit the proofs.
Next we present a procedure which, when presented with a point p, terminates,

after a polynomial-bounded number of calls on the generator G(C), with one of the
following two outcomes:

(a) a point q is found which satisfies (5), or
(b) a hyperplane H is found which separates p from the feasible set for (5.1).

The procedure is designed to circumvent the difficulty that, when an input (y, z) is
presented to G(C), the result may be a pair (f, g) such that g +ellfll>f’ y >g; i.e.,
a hyperplane which separates y from the feasible set for (4), but not from the (larger)
feasible set for (5.1).

REPEATED PROJECTION PROCEDURE
it c" p <_- k -1/22-’ then H := {x Ic" x k 1/22-’}
else
P0:=P; /’:=0;
while neither q nor H has been determined do present (pj, z) to G(C);

if G(C) returns "O.K." then qj := pi;

if G(C) returns (., gi) then
ii f." p >- gi + e Ilfll then H := {x f" x g + e
else

:- {xll x g};
pj+a := the closest point to pi i=o Hi
/’ :=/’+1.

LEMMA 4. The Repeated Profection Procedure has the following properties"
(i) it terminates after at most n(z)+ 1 calls on the generator G(C);

(ii) if it determines a point q, then q satisfies (5);
(iii) if it determines a hyperplane H, thenHseparates pfrom the feasible setfor (5.1).
For the proof of this result we require two preliminary lemmata.
LEMMA 5. Let r be a rational point with denominators bounded by 2 and let H

be a small hyperplane such that r H. Then the distance from r to H is at least 2
Proof. This distance is (fr-g)/llfll, where H {x: fXz? g}. The numerator is a

()< ppositive integer, whereas the denominator is at most
2("(z)+1). [’]

Recall that a set of hyperplanes is called affinely independent if the associated
set of normal vectors is linearly independent. A set of k attinely independent hyper-
planes has a nonempty intersection, which has dimension n -k.

628 RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

COROLLARY 4. Let r be a point in the intersection of affinely independent small
hyperplanes {/-/.}i and let H be a small hyperplane such that H f-I i<_,,tt . Then
the distance from r to H is at least 2-("(+t.

Proof. The flat f’) i_<_,, /-/i has at least one rational point r’ with denominators at
most 2t, and the distances from r and r’ to H are equal. Apply Lemma 5.

LEMMA 6. Let Ho, ,/-/.+ be affinely independent small hyperplanes, let r
i<__iHi, and let the distance from r to H+ be 8. Then the distance from r to ("]i<=i+lHi
is at most (2t-

Proof. Without loss of generality H.+I {x "x =0}, and r (, r2," , r,()). Also
without loss of generality, suppose that the columns 2, 3, ...,/’+ 1 of the matrix
whose rows are fl," ",/ (where Hi {x "fix gi, 1,...,/’}) are independent. The
point r is thus obtained by setting Xk rk for k] + 2,..’, n (z), x ; and solving
for the remaining x’s. Similarly, one point r’ in __<i+Hi is obtained by setting x, rk
for k =/" + 2,. , n (z), x 0 and solving for the remaining x’s. It is easy to see that
IIr-r’[I-<2plzl+"z)) n:Z(z) b, where b is the largest element in absolute value of the
inverse of the nonsingular matrix of the columns 2 through/’ + 1 of the matrix whose
rows are fl, ’, f.. Thus Ilr r’ll--< (2’-). Cl

Proof of Lemma 4. Suppose the repeated projection procedure determines a
sequence of points p0, Pa,"’’, p,/l and a sequence of hyperplanes H0, Ha,’’’, H,.
Let d (p, H) denote the distance from point p to hyperplane H. We shall prove that

(a) d (p, I-I.) <= 2ire, j O, 1,. ., m
(b) the set (/-/., j O, 1,..., m} is affinely independent;
(c) lip p[I--< e (2it 1),] 0, 1, , m + 1.
Let S. be the statement

d (Pi, I-I.) <= 2ire

and

and

{H0, Ha, ’, Hi} is aflinely independent

d(p, pi+a) <-_e(2 <i+l)t- 1).

It will suffice to prove by induction that Si holds for j 0, 1,..., m. This is certainly
true for/" 0. For the induction step, we show that Sj/a follows from Sj"

(a) d(pi, H.)<=d(p, pj)+d(p,H)<=e(2’- 1)+e 2’e.
(b) Suppose {H0, Ha,’",/-/} were not affinely independent. We know from

Corollary 4 that d(pi, Hi) >- 2-*<z)+a)t; this contradicts (a), since
2Jte.

(c) Since d(p, pi+l)<-d(p, pi)+d(pi, p+a) and (by Lemma 5) d(pi, pi+a)<-_
(2- 1)d(p, H) we have

d (p, p+a) <-- e (2it 1) + (2 1)2ire (2 (i+a),_ 1)e.

Now we are ready to verify the three properties that comprise Lemma 4.
Proof of (i). It is not possible to have more than n(z) affinely independent

hyperplanes in R ().
Proof of (ii). We must show that q satisfies (5). Since G(C) on input (q, z) returns

"O.K.", the only thing to be proven is that c.q > k- 2-t. We know that q p for
some/’. Thus Ilq -pll<_- (2’ 1) and c .p >k-1/2.2-’. Hence c .q >k-2-.

Proof of (iii). This is immediate from inspection of the Repeated Projection
Procedure.

COMBINATORIAL OPTIMIZATION PROBLEMS 629

Thus, given the center p of the ellipsoid E(p, A), we can in polynomial time
either determine a feasible point, or isolate a violated inequality of (5). Then using
this violated inequality a new pair p’,A’ is computed. The ellipsoid E(p’,A’) has
smaller volume than E(p, A), but does include those points in E(p, A) which satisfy
the inequality violated at p. Following the proof in [AS], the following convergence
result is obtained.

LEMMA 7. There are a constant c and a polynomial 7r such that, if (5) is feasible,
then a feasible solution will be found within 7r(n, t) iterations. This is true even if
intermediate results are kept to only cnt bits o/" precision.

Our variant of the ellipsoid method tests feasibility of (5), and hence membership
of (z, c, k) in D(C), in polynomial time. This completes the proof of Theorem 2.

5. Optimization versus separation. When the ellipsoid method is applied to the
linear programming problem, the task of finding a hyperplane separating an infeasible
point y from the set of feasible solutions can be carried out easily by examining the
given list of linear inequalities, and identifying one which is violated by y. The central
idea in the previous section was that the ellipsoid method can also be applied when
an efficient generator of violated inequalities, instead of an explicit list, is provided.
The same observation was independently made by Grotschel, Lovasz and Schrijver
[GLS] and Padberg and Rao [PR].

The former paper is concerned with the optimization version of c.o.p. C, which,
in our formalism, can be defined as follows: "Given an instance (z, c) of C, compute
the element x S(z) which maximizes c x." The fact that in our formalism the feasible
solutions are integer vectors is not too important here. Rationals with exponentially
bounded denominators would also support our analysis. Translated into our ter-
minology, the result of [GLS] states that, under certain assumptions, there is a
polynomial-time algorithm for the optimization version of C if and only if there is a
polynomial-time small generator of violated inequalities for C. Several beautiful
algorithmic results are derived using this approach.

All the theorems in [GLS] require the hypothesis that the convex hull of S(z)
be full-dimensional, i.e., not contained in any (n (z -1)- dimensional fiat. However,
the repeated projection subroutine of the previous section can be combined with the
method of [GLS] to prove that for all c.o.p.s C (full-dimensional or not) the optimiz-
ation version is polynomial-time equivalent with the problem of generating small
violated inequalities.

THEOREM 3. Let Cbe a c.o.p, that has a smallfacial description. Then the following
are equivalent"

(a) The optimization problem for C is solvable in polynomial time.
(b C has a small polynomial-time generator.
Proo/. To prove that (b)(a), we use a variant of the method described in [GLS]

for solving the optimization problem associated with a full-dimensional c.o.p. Given
the input (z, c), we first perturb c slightly so that the optimum solution is now unique.
We construct a sequence E0 (P0, A0), E1 (pl, A),... of ellipsoids, starting with
the sphere centered at the origin and having radius defined in the previous section.
In the kth step there will be an ellipsoid Ek, which includes all points s of the convex
hull of S(z) for which c x is at least as large as the best feasible value found so far;
that is, Ek _{x CH(S(z)):c’x >=c’pj, f<=k, pjCH (S(z))}. At each iteration of the
algorithm, we present z, Pk to G(C). If the center Pk of Ek is infeasible, we obtain a
small violated inequality (f, g), and we let 1/2Ek {x Ek" f" x <--_ f" Pk}. On the other
hand, if G(C) returns "O.K.", signaling that Pk is feasible, then we let 1/2Ek

630 RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

{X Ek" C X >= C Pk}. This ha, the effect of cutting away those points in Ek where the
objective function has a sma:ler value than at the feasible point p. Next we define
Ek+l in such a way that Ek/ 1/2Ek, and vol (Ek+)<--2 -/(2"/) vol (Ek). If CH (S(z))
is full-dimensional, then it is not hard to argue that, after a polynomial-bounded
number of such iterations, the center of the ellipsoid is bound to be very close to the
optimal solution, which can then be recovered by "rounding". For details see [GLS].

If we do not assume that CH (S(z)) is full-dimensional, then the last part of the
argument breaks down, and the algorithm does not converge to the optimum. We
can, however, apply the a!.::’ :ithm to the polytope CH (S(z))
{x R"(z)’fx <-_g +ellfll for all (f, ,IF(G)}, for some appropriately small e >0.
Notice that CH (S(z)) is guaranteed to be full-dimensional for nonempty (S (z)). This,
however, creates a familiar problem: F(G) may now return, on input (z, p), an
inequality (f, g) for which

g <f’Pk <----g + ellf[[.
It is at this point that our repeated projection procedure of the previous section is
needed. By applying this procedure either we find a hyperplane separating Pk from
CH (S(z))min which case we continue the ellipsoid algorithmmor we locate a feasible

ntpoint p such that dist (Pk, P)--<2e In the latter case, we replace the ellipsoid
(pk, Eg) by another ellipsoid (p’k,E’) centered at the feasible point p and having
the following properties.

Ek C_E’k, vol (E:) <_- vol (Ek)2 /(2n+1).

From then on we continue the ellipsoid method by defining 1/2E’k {x E’k" c’x >--c’p’k},
and constructing Ek+ SO that it includes 1/2E:, and also satisfies vol(Ek+l) <-
2-/2(2n+)VO1 (Ek)<=2-/(2n+) VO1 (Ek). Hence, we still have a geometric decrease
of the volumes of the EkS.

It remains to describe E:. The positive-definite matrix of E is that of E, only
with all coefficients multiplied by 1 / 8, where 8 is also an appropriately small positive
real, to be fixed later. Now the smallest axis of Ek is shown in [GLS, (proof of
Lemma 2.1)] to be at least 4 t-(k+1). Hence, if we choose 8 and e so that

4t-(k+)8 >--2te >=dist (p, p),

we can guarantee that E’k Ek. Also, if we choose 8 so that

(1 +8)" 21/2(2n+1),
we have that

vol (E:) (1 + 8)" vol (Ek) ----< vol (Ek)2

It is quite easy to see that

and

8 21/2n(2n+1)__ 1

e 8 2 -"t-,
where I is the number of iterations required, are appropriate choices. It follows then
from the argument of [GLS] and that of the previous section that the algorithm
sketched above solves the optimization version of C in polynomial time, assuming
that G(C) operates within polynomial time.

COMBINATORIAL OPTIMIZATION PROBLEMS 631

To conclude the proof we shall prove that (a)- (b). To do so, we show how to
construct a small polynomial-time generator for C, given a polynomial-time algorithm
to solve the optimization problem for C.

Given as input a point y R "(z), such a generator must find an n (z)- vector h
such that h’x <h’y for all x CH (S(z)), or else determine that no such h exists. Let
VERT (S(z)) denote the set of vertices of CH (S(z)). The desired vector h exists if
and only if the following linear program has either an optimal value >1 or an
unbounded objective function.

max h’y
(6)

subject to h’v <= 1, v VERT (S(z)).

To convert (6) to a bounded linear program, we simply intersect its feasible region
with a suitable hypercube. The resulting program is of the form

max h’y
(7) subject to h’v <= 1, v e VERT (S(z))

-A <-hi <-A, i=l,2,...,n(z).

With an appropriate choice of A, it will follow that a separating hyperplane exists if
and only if the optimal value of (7) is greater than 1.

It remains to choose A. Since the c.o.p. C has a small facial description, Cramer’s
rule shows that there is a polynomial such that each component of each v
VERT (S(z)) is an integer of absolute value -<2qlzl/n). By a second application of
Cramer’s rule, there is a polynomial q’ such that each component of each extreme
point of (6) has absolute value _-<2 q’ll+n. Then an appropriate choice of A is
2.2q’(Izl+n(z)).

By the method described in the first half of the present proof, we can solve (7)
in polynomial time, provided a small generator of violated inequalities exists for (7).
Such a generator is easily constructed. Given a trial solution h, check whether the
explicit bounds on the components of h are satisfied. If so, use the optimization
algorithm for the c.o.p. C to find an optimal extreme point w for the problem

max h’z, z CH (S(Z)).

If h’w <-1 then h is feasible for (7). Otherwise, h’w <_-1 is the required violated
inequality. !-!

[AS]

[Ba]
[BT]

[Ch]

[Co)
[DFJ]

[Edl]

[Ed2]
[GS]

REFERENCES

B. ASPVALL AND R. STONE, Khaciyan’s linear programming algorithm, Computer Science
Department Report STAN-CS-776, Stanford Univ., Stanford, CA, November, 1979.

E. gALAS, Facets of the knapsack poIytope, Mathematical Programming 8 (1975), pp. 146-164.
I. BOROSH AND L. B. TREYBIG, Bounds on positive solutions of linear diophantine equations,

Proc. Amer. Math. Soc., 55 (1976), p. 299.
V. CHVATAL, Edmonds polytopes and weakly Hamiltonian graphs, Mathematical Programming,

5 (1973), pp. 29-40.
S. A. COOK, A short proof that the linear diophantine problem is in NP, unpublished, 1976.
G. B. DANTZIG, D. R. FULKERSON AND S. M. JOHNSON, Solutions ofa large-scale traveling-
salesman problem, Oper. Res., 2 (1954), pp. 393-410.

J. EDMONDS, Maximum matching and a polyhedron with O-1 vertices, J. Res. National Bureau
of Standards, B 69 (1965), pp. 125-130.
,Paths, trees and flowers, Canad. J. Math., 17 (1965), pp. 449-467.
J. GATHEN AND M. SIEVEKING, Linear integer inequalities are NP-complete, Manuscript,

1978.

632 RICHARD M. KARP AND CHRISTOS H. PAPADIMITRIOU

[Gr]

[GP1]

[GP2]

[GLS]

[HP]

[KM]

[Kh]

[Ma]

[NT]

[Pal

[PR]
[Pap1]

[Pap2]
[PS]

[Wo]

M. GROTSCHEL, Polyedrische Characterisierunge Kombinatorischer Optimierungsprobleme,
Verlag Anton Hain, Berlin, 1977.

M. GROTSCHEL AND M. W. PADBERG, On the symmetric traveling-salesman problem I:
Inequalities, Math. Programming, 16 (1979), pp. 265-280.
, On the symmetric traveling-salesman problem II: Lifting theorems and facets, Math.
Programming, 16 (1979), pp. 281-302.

M. L. GROTSCHEL, L. LOVASZ AND S. SCHRIJVER, The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica, 1 (1981), pp. 169-198.

S. HONG AND M. PADBERG, On the solution of traveling salesman problems, 9th International
Symposium on Mathematical Programming, Budapest, 1976.

R. KANNAN AND C. L. MONMA, On the computational complexity of integer programming
problems, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, New York,
1978.

L. G. KHACIYAN, A polynomial algorithm for linear programming, Dokl. Akad. Nauk SSSR,
244:5 (1979), pp. 1093-1096 (in Russian).

J. F. MAURRAS, Some results on the convex hull of the Hamiltonian cycles of symmetric complete
graphs in Combinatorial Programming: Methods and Applications, B. Roy, ed., Reidel, Boston,
1975.

G. L. NEMHAUSER AND L. E. TROTTER, Properties of vertex packing and independence systems
polyhedra, Math. Programming, 6 (1974), pp. 48-61.

M. W. PADBERG, On the facial structure of set packing polyhedra, Math. Programming, 5 (1973),
pp. 199-215.

M. W. PADBERG AND M. R. RAO, Minimum cut-sets and B-matchings, to appear.
C. H. PAPADIMITRIOU, The Euclidean traveling salesman problem is NP-complete, Theor.
Comput. Sci., 4 (1977), pp. 237-244.

On the complexity of integer programming, J. Assoc. Comput. Math., to appear.
C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization Algorithms and Com-

plexity, Prentice Hall, Englewood Cliffs, NJ, 1981.
L. A. WOLSEY, Facets of a linear inequality in 0-1 variables, Math. Programming, 8 (1975),

pp. 165-178.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0003 $01.00/0

EVALUATION OF ARITHMETIC EXPRESSIONS WITH
ALGEBRAIC IDENTITIES*

TEOFILO GONZALEZf AND JOSEPH JA’JA’*

Abstract. We consider the problem of evaluating arithmetic expressions under a set of algebraic laws
including the distributive law. An arithmetic expression can be represented by a dag and our problem is
to find an equivalent dag with the fewest number of interior nodes. We attack the case when it is possible
to eliminate common subexpressions and transform the dag into a tree; efficient algorithms to handle
different cases of this problem are developed. These algorithms are based on the following strategy: we
first transform the dag into a tree, assuming that such a transformation is possible, and we later check to
see whether the tree and the given dag are indeed equivalent.

Key words, evaluation of arithmetic expressions, code generation, algorithms, dags

1. Introduction. Several interesting results concerning the problem of code gen-
eration for arithmetic expressions have been established by several authors. Extending
the work of Anderson [A], Nakata IN], and Redziejowski [R], Sethi and Ullman [SU]
have presented an efficient algorithm to generate minimal length codes for a special
type of arithmetic expressions, namely those expressions with no common sub-
expressions. Aho and Johnson [AJ] have found a more general algorithm which allows
general addressing features such as indirect addressing, but again restricting themselves
to the same type of expressions. The case of arbitrary expressions has been proven
to be difficult in a precise sense, i.e., it is NP-complete, even for the class of one-register
machines with no algebraic identities allowed (Bruno and Sethi [BSe]). Aho et al.
[AJU] have shown that the problem remains NP-complete for dags whose shared
nodes are leaves or nodes at level one and have developed heuristic algorithms to
generate good codes.

The effect of algebraic laws on code generation has received little attention in
the literature. Sethi and Ullman [SU] have discussed the case where some of the
operators of an expression tree are associative and commutative, and Breuer [B] used
the distributive law to factor polynomials in a manner similar to that of Homer’s
algorithm. When certain algebraic transformations apply for an arithmetic expression
A, we are not required to generate codes for A, but we may generate codes for any
equivalent expression A’ obtained by successive applications of the algebraic laws.
Since the number of arithmetic operations may then vary, the optimality criterion of
generated codes should depend on the number of arithmetic operations as well as on
the code length. In this paper, we assume that the distributive law holds and consider
the problem of minimizing the number of arithmetic operations for single arithmetic
expressions which involve only addition and multiplication. We also assume that
addition is commutative and associative and that multiplication is associative. This
problem has been shown to be NP-hard [GJ1], [GJ2] even for expressions of degree
2 (degree of the arithmetic expression when viewed as a polynomial) and whose

* Received bythe editors November 15, 1978, and in final revised form December 15, 1981. Preliminary
versions of this paper appear as Technical Reports CS-80-4 and CS-78-13 at Pennsylvania State University.

t Programs in Mathematical Sciences, The University of Texas, Dallas, Texas 75080. The work of this
author was supported in part by the National Science Foundation under grant MCS 77-21092., Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.
The work of this author was supported in part by the National Science Foundation under grants MCS
78-06118 and MCS 78-27600.

633

634 TEOFILO GONZALEZ AND JOSEPH JA’JA’

corresponding graphs are leaf dags. However, in the case when common subexpressions
can be eliminated, and the dag can thus be transformed into a tree, we develop efficient
algorithms for the following types of dags:

a) the dag is a leaf dag (Theorem 5.15),
b) no term in the expression is repeated (Theorem 5.10),
c) the degree of the expression is bounded by some fixed constant (Theorem 5.16),
d) the level of sharing in the dag is bounded by some fixed constant (comment

after Theorem 5.16).

2. Basic definitions. An arithmetic expression can be conveniently represented
by a directed acyclic graph, referred to as a dag, in the same way basic blocks in code
optimization are represented (Aho and Ullman [AU]). A dag has an interior node
for each operation whose operands are the children of the node; the leaves of the
dag represent initial values (variable names). For example, the arithmetic expression
A (a b + a c) + (d b + d c) can be represented by the dag:

FIG. 2.1

The order of the children of an interior node is important; the leftmost child represents
the first operand and the rightmost child represents the last operand.

We will restrict our attention to the following class of objects. Let E be a countable
set of variable names and let 0 {+, ,} be the set of binary operators on E such that
the following laws hold:

(i) + and are associative, i.e.,

(a+b)+c=a+(b+c),

(a ,b),c=a ,(b ,c), foralla, b, csE;

(t) (ii) + is commutative, i.e.,

a+b=b+a, for all a, b E;

(iii) is distributive with respect to +, i.e.,

a ,(b+c)=a ,b+a ,c,

(b+c),a=b ,a+c ,a, for all a, b, c E.

EVALUATION OF ARITHMETIC EXPRESSIONS 635

Strictly speaking, the above laws do not necessarily hold "," actual expressions
because of round-off errors in finite precision arithmetic. However, there is a general
feeling [JMMW] that, for a given computation, the fewer the ar,:hmetic operations,
the less the worst-case round-off errors are, in spite of the fact that there are special
situations where the opposite is true.

Another remark is concerned with the fact that we have not assumed that is
commutative; the main reason is that the same techniques can be applied to a matrix
expression to reduce the number of arithmetic operations. As an example, the
expression AB+AC+DB+DC, where A, B, C and D are nn matrices, is
equivalent to (A +D) (B + C) whose computation requires considerably fewer arith-
metic operations than the original expression. This might also have some applications
to code generation for parallel computers in which most of the operations are written
in matrix form.

As a final remark, we note that identities such as x + x 2x, x x x 2 or xy + x
x (y + 1) do not exist.

We now define precisely the class of dags we are interested in. A tr-dag is a dag
with a single root (i.e., a node without parents), whose interior nodes are either + or
from 0 and whose leaves are from E. Note that no two leaves will represent the

same element in .E. If D is such a dag and v is a node from D, then the expression
corresponding to v, denoted by exp (v), is defined as follows’

1) if v is a leaf, then exp (v) v,
2) else v corresponds to a c0; let Vl and v2 be the left and right children

respectively, then exp (v)= exp (vl)a exp (v2).
The expression corresponding to the dagD is just exp (r), where r is the root of

D. Define two tr-dags D1 and D2 to be equivalent (D1 --D2) if there exists a sequence
of transformations from () which will transform D1 into D2. Given a tr-dag D, let
C[D] be the class of tr-dags equivalent to D; we are going to investigate the problem
of finding a tr-dag D’ C[D] such that D’ has the smallest possible number of interior
nodes. If we define a tree to be a cr-dag such that none of its nodes has more than
one parent, then we will attempt to design an algorithm which finds a tree T C[D],
whenever such a tree exists. In this case, we call the expression corresponding to T
an expression tree, and we say that D is tree-transformable. If we consider, once again,
the dag of Fig. 2.1, then it is easy to see that this dag is equivalent to the following tree:

whose evaluation requires 2 additions and one multiplication compared to 3 additions
and 4 multiplications necessary to compute the dag of Fig. 2.1.

It is clear that if a tree T belongs to C[D], for a tr-dag D, then T has the minimal
number of interior nodes. Moreover, we can now use the algorithms already available
in literature to generate corresponding minimal length codes.

636 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Before closing this section, we make two more definitions and a comment. A
shared node in a dag is a node with more than one parent; a leaf dag is a dag in
which every shared node is a leaf (Aho et al. [AJU]). Let D be an arbitrary o--dag
with n total nodes, e edges, ni interior nodes and v leaves (from E). It is easy to check
that we always have the following relations"

n >-2v-l, ni >_-v-l,

e 2ni 2(n -v), i.e., e O(n).

3. Motivation of the algorithm. We study, in this section, several properties of
expression trees and examine some problems which are encountered in trying to
develop an algorithm to transform a dag into a tree, whenever this is possible. We
also develop some terminology which will be used in the subsequent sections.

Let A be an arithmetic expression with corresponding dagD; L(A) or L(D) will
denote the set of leaves of D. N(D) and E(D) will represent the sets of nodes and
edges in D respectively. Note that A can be written as A P1 +" + Pk, where each
P is a leaf or can be expressed as a product of arithmetic expressions. We call the
Ps, the product terms of A or D. An arithmetic expression is in normal form (NF) if
it is not possible to expand it using the distributive law. The expression A1
(a, b +a, c)+(d, b +d, c) is in normal form and has a, b as a product term,
while A2 a (b + c) + d (b + c) is not in normal form and has a (b + c) as a product
term. The product terms of an arithmetic expression in normal form are called normal
terms. Nt(D) will denote the set of normal terms in the r-dag D. Transforming a
o--dag into a normal form might correspond to an exponential growth in the
number of nodes of the dag. For example, the expression A
(X1 -"X2) * (X.6 --X4) $" $ (X2n-1 -t-X2n) (up to a fixed order) has a normal form whose
dag has more than 2 edges. We now define two more important terms.

DEFINITION 3.1. Given a r-dag D, the left factors of D consist of the leaves
which are the leftmost children of the normal terms of D.

DEFINITION 3.2. Given a r-dag D with left factors {X}/k= 1, a set of right products
of D consists of a set of dags {p}k= such that D is equivalent to the dag

D’ =x *PI+x2*P2+" "+Xk *Pk.

The expression A (a b + a c) + (d b + d c) has the left factors {a, d] with
coresponding right products {(b + c), (b + c)}.

One could solve our problem by using the following divide-and-conquer approach:
(1) Find all the left factors and the corresponding right products of the given

dag D.
(2) Recursively transform each right product into a tree.
(3) Combine the common right factors.
It may now seem that once we have efficient algorithms to implement steps (1)

and (3), then we have an efficient algorithm to solve our problem. This is not the case
since several of the right products could share several subexpressions, each of which
will be processed several times. It is not hard to exhibit an example where the above
strategy takes exponential time, given that each of steps (1) and (3) could be done in
linear time.

It follows that we should avoid processing any subexpression more than once.
What makes the problem harder is that two right products might be precisely the
same and appear at different stages of the algorithm. On the other hand, it is not

EVALUATION OF ARITHMETIC EXPRESSIONS 637

posssible to transform a shared subexpression into a tree because there are subex-
pressions which are not tree-transformable and yet the expression to which they belong
is tree-transformable. However, if a dag is tree-transformable, then we have the
following characterization.

THEOREM 3.1. Let {Xii=l be the set of left factors of a tr-dagD and let {Pi}I=I be
the corresponding right products. IfD is tree-transformable, then, for each i2, either

(1) L(Pil) f’IL(Pi2) f or
(2) there exist DI, D_ and R such that

Pi =-D R, P:=-D, R, L(Di,) L(D,2) .
Note that we can distinguish between (1) and (2) above quite easily by checking
whether L(Pi)f’)L(P:)= or not.

Let {Pik}--1 be a set of product terms which, we know, should overlap each other.
The above characterization suggests that we solve the problem for just one Pk, say
PI, and use its right subtree to eliminate the overlap with all the other Ps. For example
in the case where we only have two right productsP and Pi, we transform (recursively)
P into a tree and write it as a product, say

P--(... (O Q,_) ,... O), m >_- 1.

Now if L(Q1) f’)L(P2) f (which should be true in this case), we somehow factor
Q1, and write Pi2 as P--R. Q. We continue in this way until we have no more
overlap; then we apply the procedure recursively to the nonoverlapping parts. We
would like to emphasize one more point about this procedure" We assume that Q
will be a factor, and find R. This assumption is justfied if the dag is tree-transformable.
Otherwise the procedure will construct an inequivalent tree; we will use the equivalent
algorithm in 5 to check whether a given o--dag and a given tree are equivalent.

Let us summarize the general strategy of the algorithm. It consists of two parts"
(i) The transformation algorithm which proceeds and transforms the given r-dag

into a tree assuming the dag is tree-transformable;
(ii) The equivalence algorithm which, for a given tr-dag and a given tree, checks

if they are indeed equivalent.

4. The transformation algorithm. The different parts of the transformation
algorithm will be described in this section, together with the proofs of its correctness
and its complexity. We start by discussing the algorithms to find the left factors and
the corresponding right products of a general tr-dag D. IN(D)I will denote the number
of nodes in D.

The procedure to find the left factors is fairly straightforward. It is just a bottom-up
labeling of the dag based on the following observation. Let LF (y) denote the set of
left factors of the subdag rooted at y Then

{y} if y is a leaf,

LF (y)=LF (s)[_J LF (sa) if y is a + node with children s and sa,

LF (s) if y is a node and s is its left child.

In order to have a linear time algorithm, we must avoid visiting nodes more
than once. In order to guarantee this, we mark the nodes visited. We use a function
tc (.) for this purpose; this function will serve another purpose in the next procedure
when initialized properly by the procedure to find the left factors.

638 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Let r be the root of a dag D. Let tc (z)= 0, for every z N(D), and let L .
When LEFT-FACTORS (r) terminates, L will denote the set of left factors of D and
tc (z) will be equal to the size of {wl there is a call to LEFT-FACTORS (w) and (w
is a + node with z as one of its children or w is a node with z as its left child)}.
LC (r) and RC (r) denote respectively the left and right children of r. This notation
will be used consistently throughout the paper.

procedure LEFT-FACTORS (r)
begin
global (tc [.], L)

1. If tc (r) # 0 then [tc (r) tc (r) + 1;
return];

3. case
4. :r is a leaf: [L L [_J {r}];
5. :r is a node: [call LEFT-FACTORS (LC (r))];
6. :r is a + node: [call LEFT-FACTORS (LC (r));
7. call LEFT-FACTORS (RC (r))];
8. endcase
9. tc (r)# 1;

10. return
11. end LEFT-FACTOR

Let r be the root of a o--dag D. The set of left factors of the o--dag with root
y N(D) is denoted by Ly. Consider now any call to LEFT-FACTORS (y); let L’ L
just before the call and let L" L after the procedure LEFT-FACTORS (y) terminates,
where L is the set of left factors computed by the algorithm.

LEMMA 4.1. Let r, y, L’, L" and Ly be as defined above.
a) If tc (y)-> 1 before the call to LEFT-FACTORS (y), then L _L’.
b) If tc (y)= 0 before the call to LEFT-FACTORS (y), then when the procedure

terminates tc (y)= 1 and

L" L’ t3 (Lr -L’).

Proof. The proof for part a) follows from part b) and the one for part b) is by
induction on the height of the tr-dag with root y. 71

LEMMA 4.2. LEFT-FACTORS (r) correctly finds the left factors ofD, i.e., L Lr.
Proof. The proof follows from Lemma 4.1 together with the initial condition

L and tc (y) 0, for every y N(D). 71
The algorithm to find a set of right products of a given tr-dag D is discussed now.

It is easy to design a bottom-up algorithm to do the job, but for efficiency reasons,
our algorithm will process the dag top-down. Before presenting the algorithm, we
introduce some notation, pt (y) will denote a pointer from a node y of D to a dag
written as a right-hand side of an assignment statement; e.g., pt (y) should be
interpreted as a pointer from y to the empty dag. Another convention is that the
assignment

pt (No) pt (Na) 0 pt (N2),

where 0 {+, .}, is understood to mean the assignment of Fig. 4.1. If one of pt (N1)
or pt (N2) happened to be , then the above statement is interpreted as pt (N0)
pt (N2) or pt (No) pt (N1), respectively.

EVALUATION OF ARITHMETIC EXPRESSIONS 639

FIG. 4.1

We are now ready for the procedure. The main idea of the algorithm is a top-down
traversal of the dag which makes nodes point to subdags in such a way that the left
factor nodes will point to the corresponding right products. If we are visiting node y
with sl and s2 as its left and right children, then the following changes are made:

a) y is a + node,

pt (s x) - pt (y) q pt (s x)

pt (s2) pt (y) [pt (s2).

b) y is a node,

pt (s) - pt (s) (s2, pt (y)).

We cannot proceed and visit any of the children unless all of its parents have
been visited. That is why we use the function tc in our procedure below. In order
to make inductive assertions about the algorithm, we use a function w :N(D) <- {0, 1},
which is initialized by w (x)= 0, for all x N(D) unless x is the root r in which case
w (r)= 1. This function serves no other purpose.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

procedure RIGHT-PRDS (r)
begin
global (tc [.], pt [.], w[.]);

tc (r)<-- tc (r)- 1
If tc (r) # 0 then [return];
case

r is a leaf: [return];
:r is a node"

[w (r) <-- 0; w(LC (r)) <-- w(RC (r)) 1;
pt (LC (r))<-- pt (LC (r)) pt (r);
pt (RC (r))<-- pt (RC (r)) pt (r);
call RIGHT-PRDS (LC (r));
call RIGHT-PRDS (RC (r));
return];

:r is a @ node’
[w(r) -O; w(LC (r)) - 1;
pt (LC (r)) pt (LC (r)) (RC (r)] pt (r));

640 TEOFILO GONZALEZ AND JOSEPH JA’JA’

15. call RIGHT-PRDS (LC (r));
16. return];
17. endcase
18. end o| procedure RIGHT-PRDS (r)

To clearly illustrate the usefulness of tc [.], we introduce an example.
Example 4.1. Consider the dag of Fig. 4.2. At the end of LEFT-FACTORS (No),

we have

tc (No) tc (N1) tc (N2) tc (N4) tc (a) 1,

te(N3)=2 and L={a}.

FIG. 4.2

Let us now apply RP (No).

Recursive call Result

RP (No) RP (N1), RP (N2)
RP (N1) pt (N3) e, RP (N3)
RP (N3) tc (N3)<- 1
RP (N2) pt (N3) e + f, RP (N3)
RP (N3) pt (N4)<- N5 * (e + f), RP (N4)
RP (N4) pt (a) b * (N5 (e + f)), RP (a)
RP (a)

Note that the original expression (a b) (c d) e + (a b) * (c d) f is indeed
equivalent to a pt (a) a (b ((c d) (e +f))). We now proceed to prove the
correctness of the above algorithm.

Let D be a tree-transformable o--dag with root r. Just before a call to RIGHT-
PRDS (y), let R ={zlz EN(D) and w(z)= 1} and D ==R Z *pt (Z). After the pro-
cedure RIGHT-PRDS (y) terminates, let R’={zlz EN(D) and w(z)= 1} and D’=
]R’ z * pt (z).

LEMMA 4.3. Let R, R’, D and D’ be as defined above. Assume y R. If there is
a call to RIGHT-PRDS (y), then after the procedure terminates, D =-D’.

Proof. There are two cases depending on the value of tc (y) at the time of the call.
Case 1. tc (y) 1. It is simple to verify that in the procedure none of the values

of w(z) or pt (z), for z N(D), is modified. Hence R’=R and D’=D.

EVALUATION OF ARITHMETIC EXPRESSIONS 641

Case 2. tc (y)= 1. The proof is by induction on the height h >-0 of y. If h 0,
then y must be a leaf. It is simple to verify that in the procedure none of the values
w(z) or pt (z), for z N(D), is modified. Hence R’=R and D’=-D. Suppose now
that the height of y is h +1> 1. As h +1>1, it must be that y is a (R) or a node.
By assumption tc (y)= 1, so step 3 is executed and as y R then

D= Y z,pt(z)+y*pt(y).
zR-{y}

There are two subcases.

Subcase a. r is a (R) node.
a.1. w(LC(y))= 1 before line 3. At this point D can be written as

D E z pt (z) + y pt (y) + LC (y) pt (LC (y)).
R--{y,LC(y)}

By definition, y LC (y) RC (y). Applying the distributive law, we obtain

D Y z pt (z) + LC (y) (pt (LC (y)) + RC (y) pt (y)).
R-{y,LC(y)}

After line 14, D=Yzl_yz ,pt (z). In line 13, w(y) is set to zero. Let R"=
{z Iz N(D) and w (z)= 1} at this point. Clearly R"= R-{y} so D"--D, where D" is
defined using R". Since the height of the tr-dag with root LC (r) is _<-h and LC (r) R",
it then follows by induction that after line 15,

D=-D"=-D’= , z,pt(z).
zR’

The procedure terminates (line 16) with

D=D’= E z,pt(z).
zR’

a.2. w (LC (y))= 0 before line 3. The proof is similar to that for a.1.
Subcase b. r is a node. The proof is similar to that for subcase a and will be

omitted. [3
We collect all the above facts about the procedures LEFT-FACTORS and

RIGHT-PRDS in the following theorems.
THEOREM 4.4. Let D be a tree-transformable cr-dag with root r. Then LEFT-

FACTORS (r) and RIGHT-PRDS (r) will generate an equivalent cr-dag D" of the form

D=-D"= E x*pt(x),
xLr

where L is the set of left factors ofD.
Proof. Using the initial conditions w(y)=0 for every y N(D), w(r)= 1 and

D r together with Lemma 4.3, it then follows that after procedure RIGHT-PRDS (r)
terminates, D’= Y,zR’ Z * pt (Z). Furthermore, D’=-D r. So, D’=-D". To complete
the proof it is required to show that R’= Lr. Both LEFT-FACTORS (r) and RIGHT-
PRDS (r) will make the same recursive calls. So, it must be that for each y N(D),
if there were calls to RIGHT-PRDS (y), then there must have been calls to
LEFT-FACTORS (y). As tc (y) is the total number of calls to LEFT-FACTORS (y)
after LEFT-FACTORS (r) terminates, then tc (y) 0 for all y N(D) after RIGHT-
PRDS (r) terminates. So, after RIGHT-PRDS (r) terminates, all internal nodes y of
D will have w(y)= 0 (see lines 6 and 13) and all leaves visited will have w(.)= 1.
Hence, y R’ if and only if y is a leaf visited from RIGHT-PRDS (r). From Lemma

642 TEOFILO GONZALEZ AND JOSEPH JA’JA’

4.2 we have that L =Lr when LEFT-FACTORS (r) terminates. By inspection of
procedure LEFT-FACTORS, y eL if and only if y is a leaf visited from LEFT-
FACTORS (r). As the same leaves are visited by both procedures, then R’= Lr.

This completes the proof of the theorem. [-1

THEOREM 4.5. The time complexity of LEFT-FACTORS (r) and RIGHT-
PRDS (r) is O(IN(D)[).

Proof. The proof follows from the observations that no edge in D is traversed
more than once.

We will now establish a relationship between the number of nodes in the dag
constructed by LEFT-FACTORS and RIGHT-PRDS and the number of nodes in
the original graph (Theorem 4.7). This result is used in the proof of Theorem 4.9.
Beforehand, we need the following lemma.

LEMMA 4.6. Let p (y) be the number of parents of a node y, y N(D). If, after the
execution of LEFT-FACTORS (r), there exists z N(D) such that 0<tc (z)<p(z),
then D is not tree-trans[ormable.

Proof. Note that since tc (z)<p(z), z must be a right descendant of a (R) node.
On the other hand, tc (z)> 0 implies that the left factors of z are also left factors of
the dag D. These two observations imply that D is not tree transformable.

Our procedure does not compute p (z); however, it is trivial to design a procedure
which computes p (z). Another procedure could also be constructed to verify that, for
each node z N(D), either tc (z) p (z) or tc (z) 0. Both procedures would run in
time O(IN(D)I). In what follows, we assume that these two procedures are actually
executed in between LEFT-FACTORS (r) and RIGHT-PRDS (r) and therefore the
situation of Lemma 4.6 cannot arise.

Let D be a r-dag with root r and let n be the number of nodes in the g product
terms of D. Clearly, IN(D)[na + g- 1. LEFT-FACTORS (r) and RIGHT-PRDS (r)
generate an equivalent o--dag of the form D’ =a xg pt (xg), where the summation
is in some fixed order.

THEOREM 4.7. Let D, n, g, D’ and k be as defined above. Then

IN(D’)I <- IN(D)I + k g.

Proof. Let m’ and p’ be the numbers of @ and nodes respectively whose
tc (.) 0 after procedure LEFT-FACTORS (r) terminates. Clearly k is the number
of leaves with tc (.) 0 (i.e., the left factors). We try now to account for all the new
nodes we create in D’. Each) node with tc (.) 0 may generate two plus nodes in
lines 7 and 8 of the procedure RIGHT-PRDS (r) except in the case where the pointer
of the node is . It is easy to see that the (R) nodes could generate at most 2(p’- (g 1))
new nodes. On the other hand, each (R) node with tc (.) 0 creates at most one
node and one (R) node in line 14 of RIGHT-PRDS (r). However, as before, whenever
the pointer of the (R) node is , no new (R) node will be generated; therefore, the m’
(R) nodes can generate at most 2m’-g new nodes. Since pt (y) is initialized to ,, for
each y N(D), the first time lines 7, 8 and 14 are executed, the corresponding
nodes are not introduced. Therefore, the total number of new nodes in D’ is

2(p’- (g 1)) + 2m’- g ((p’- (g 1)) + (m’- g) + k

=p’+m’-g-k+l.

Constructing the expression x * pt (x 1) +" + xk * pt (xk) requires the introduction of
at most 2k- 1 new nodes. It follows that the total number of new nodes is at most
(p’ + m’-g-k + l)+(2k -1) =p’ + m’ + k -g.

EVALUATION OF ARITHMETIC EXPRESSIONS 643

On the other hand, all interior nodes with tc (.) 0, after procedure LEFT-
FACTORS (r) terminates, will not appear in D’. Therefore

[N(O’)l<=lN(D)l-(m’+p’)+(p’+m’+k-g), i.e.,

I(O’)l IN(D) + k g. I-I

COROLLARY. Let D, n x, D’ and k be as defined above. Then [N(D’)I -<- n + k 1.
Before giving the precise overall transformation algorithm, we outline its general

strategy. Let D be a given cr-dag.

(1) Identify the left factors and the set of right products {Pi}ti=x of D using the
procedures described above.

(2) Split the right products into nonoverlapping sets of dags {Si}/_-x.
(3) Suppose the set Si consists of {ix, i2,’’ ’, it}. Recursively, transform Pil into

atree, say T/; Ti canbewrittenas Ti ((’’" (Qi, , Oi,m-1) *’" ") * (i,1), m 1,
where each Oi,. is a leaf or a tree with a 09 root. Figure out the overlap
between Ti and xi, * Pit, > 1, and the missing factor in xi, * P. Transform the
missing factor in x, P, into a tree.

(4) Combine the subtrees.

Step (2) is very easy to do’ just find the connected components of the graph
induced by the set of right products {Pi}l--x. Step (4) is also quite straightforward. Step
(3) is a bit harder and can be done as follows. For each 1 <-s <-m, obtain a normal
term f, of Oi,s. For each z, let r be the maximum integer such that Oi,1, Oi,2, Oi,r
appear in xi, * Piz, i.e.,

Xiz * Piz Riz * ((’" ((Qi,rz * Oi,r-l) ," ",’) , Oi,2) * Qi,1),

where Ri f’) Qi,j , for all j > rz (such an rz _-> 1 exists by virtue of Theorem 3.1). Let
Nt(Qia) be the set of normal terms of Qia. Then

O,,= E q=f,.+
qNt(Oi,j)

Therefore,

where

qeNt(Oid)

N(F) E
q-Nt(Oi,r Oi,1),
qfr .z... */2 *fl

Assume without loss of generality that yo and y E, i.e., no leaf in the tr-dag contains
the symbols yo or yx. Now, let us substitute in the tr-dag for xiz * Piz, the symbol y
for all the leaves in L(fi ,... *f2*fx) and the symbol yo for all the leaves in
L(Oi,rz *’’" * Oi,2 * Oi.x)-L(fiz *’’" * fx).

The reader should associate the symbol y0 with the value zero and yx with the
value one. The cr-dag obtained by partially evaluating a tr-dag with root y, pe (y); is
defined in terms of the normal terms it contains:

Yl

N(pe (y))

if :lc s Nt(y)such thatL(c)L(yt) and Vc s Nt(y)
either L(c)L(yl) or y0 L(c),
Vc Nt(y), yoL(c),
::ic Nt(y) such that yoeL(c) and L(c) fq ,

644 TEOFILO GONZALEZ AND JOSEPH JA’JA’

where w={hlcNt(y),yoL(c),L(c)71X# and h is c after deleting all the yls}.
From the definition of pe (y) it should be clear that pe (x 15 [E Pi) is Ri.

The computation of pe (y) for all y N(xg [E Piz) is carried out bottom-up in the
obvious way after initializing the leaves in Q,r,"’, Qi,1, as mentioned above. We
actually compute all the pe (y) for all the xi [E Pi simultaneously by first constructing
the dag for rr xi2 [E P2 [-4-] x3 [-+q P3 q xi qP then initializing the leaves in
Q,,,’",Q,I and Zq,..’,zl, where zq[E...zl is one normal term in
Qi,,, * * Q.I; then computing pe (y) for all y N(rr) as outlined above and finally
extracting pe (y)= Riz, where y is the root of xiz [E Pg, for all z.

The formal algorithm is given below. If r is the root of D, TRANSFORM (r) will
generate the tree. D (y) will denote the subdag rooted at y.

procedure TRANSFORM (r)
begin

1. Letxl P1, x2 * Pz,’" ", Xh * Ph be the set ofleft factors and right products ofD(r);
2. Let A (ilP } and B (ilP };

/It will be the root of the tree constructed//
3. <--

//the sum of the left factors with empty right products is constructed//
4. for each A do x endfor;

//Partition the set B in such a way that a and / belong to the same set ill
L (P, CI L(Po # .[[

5. Let R be the equivalence relation defined over the elements of set B in such a
way that aR/3 iff L(P,)CIL(Pt)# . Partition B into the sets of equivalence
classes 81, Sz, , S, under R.

//Clearly Eia xi -+- EiB xi *’Pi
//for each Si, find an equivalent tree (t’)[[

6. for i=l to k do
7. Let Si (il, f2,’ ", im}’
8. no -TRANSFORM (PJl);//construct a tree equivalent to PjI[[

case

10.
11.

12.

13.

14.

:m 1: [t’- xi, no; #lsil- 1//];
:m > 1: [rr ,--x (R)Px[EP qx.. [EP..;
Let Ow, Ow-1,’", 01 be the factors in no, i.e., no
((" (Ow [-+q O,-l) ") [E O) [-+q 01, where each Oo is a leaf or a subtree
with a root.

Compute label (y) for each y N(rr);
//if the root of xg. * eia is labeled s then xi. * Pg. can be written as

Ri, * Os * * 01 and Ri,, does not overlap with Ow, "’, Os+lff
//take a normal term from Qw Qw-1

(zq zo-1 z 1) - NORMAL-TERM (Qw
//Transform each x Pia into R. * Q *" * Q1 where s is the label of the

root of x. P.. This operation is performed by partially evaluating x. Pg.
(actually we partially evaluate all the xg. Pi. s at the same time by partially
evaluating rr)[[
or each y N(rr) do
compute pe (y) after initializing the leaves in
L(z,...zl) to y and the leaves in L(Qw’"Q1)-
L(z 1-+-1’’" [E z l) to Yo.

EVALUATION OF ARITHMETIC EXPRESSIONS 645

endfor
15. RS - for 1, 2, , w;
16. for 2 to m do
17. Let y be the root of xi,] Pi;
18. RSlabel (y) <- RSlabel (y) [’ pe (y);
19. endfor
20. t’ <-- ((. ((TRANSFORM (RSw) fiq xjl) Ow fiq

TRANSFORM (RS-I)) O-1 I-+--I. TRANSFORM (RS2)) q 02
TRANSFORM (RS1)) q O1];

endcase
21. t<--tt’;
22. endfor
23. return (t);

end of procedure TRANSFORM

We now describe the procedure NORMAL-TERM (.) which was used in the
body of the above procedure.

procedure NORMAL-TERM (no)
begin

case
:no is a leaf: [return (no)];
:no is a : [return (NORMAL-TERM (RC (no))];
:else: [return (NORMAL-TERM (LC (no))

NORMAL-TERM (RC (no)))];
endcase

end of procedure NORMAL-TERM

Note that procedure NORMAL-TERM (no) does not mark the nodes of no.
However, when no is the root of a tree, the procedure takes linear time with respect
to the number of nodes in the tree. If the dag we wish to transform is tree-transformable,
then all calls made from procedure TRANSFORM to procedure NORMAL-TERM
will involve trees.

We now consider an example. Let A=((a+b,c),f+b,(c,e+d,f))+
(a + b d), e. In this case, it is easy to see that the left factors are given by x a
and x2 b with corresponding right products pt (a) (f+ e) P1 and pt (b)
[c (f + e) + d (f + e)] P2. Thus P1 and P2 are in the same connected component.
At step 8, we will have no<--if+e) which has one factor Q1 =if+e). At step 12, the
root of b P2 will be labeled 1 at step 13 NORMAL-TERM (Q1) will return e. The
partial evaluation of rr will produce the expression b (c + d). In lines 15-19 RS1 is
set to be b (c + d). Finally, at step 20, we get (TRANSFORM (b (c + d))+ a) (f +
e), i.e., (b (c + d)+ a) (f + e), which is indeed an equivalent tree.

We are now ready to prove the main theorem of this section.
THEOREM 4.8. Let D be a tree-transformable o--dag with root r. Then TRANS-

FORM (r) generates an equivalent tree T with root t.
Before giving the proof, we make the following definition.
DEFINITION 4.3. The degree d of a dag D (or of the corresponding expression)

is the maximum number of variables in any normal term of D.
Proof of Theorem 4.8. The proof is by induction on the degree d of D.
Assume d 1. In line 1 the set of left factors and corresponding right products

of D is obtained using LEFT-FACTORS (r) and RIGHT-PRDS (r). From Theorem

646 TEOFILO GONZALEZ AND JOSEPH JA’JA’

4.4, it follows that D m Yi"--a xi P. Since d 1, D consists of simple variables, i.e.,
Pi , for 1 -< -< h. Therefore A {1, 2,. ., h } and B in line 2; executing line
4 produces a tree t-=-D. All the other parts of the algorithm will be skipped because
B and k =0.

Suppose now d > 1. As before, the execution of line 1 produces an equivalent
h

dagD mYi--a x * Pg. In line 2, the set {1, 2,..., h} is partitioned into two sets A and
B such that D =-AX +YB Xi * Pi. Line 4 sets to EiA xi. Line 5 partitions B
into disjoint sets in such a way that if and/" belong to the same set, then L(P) f3 L(Pj). It follows that D + Y__ U, where U Yjs, xi P, 1 =< -< k. This partition is
justified by Theorem 3.1.

Loop 6-22 transforms each U into a tree t’ which is added to in line 21. To
complete the proof, it is only required to show that, after the execution of lines 7-20,
t’ =-- Ui.

CLAIM. For each 1 <= <-k, the tree t’ generated by lines 7-20 is equivalent to Ui.
Proof of the claim. Since S consists of the elements {/’a,]2,’" ’,],n}, Ui is the

dag xil * Pil +’" + xj,, Pj,, (for some fixed order). It is clear that since the degree of

P is -<_d- 1, it follows by the induction hypothesis that no is a tree equivalent to Pil.
Thus U x no + z’n_-2 Xiz * Pj, after line 8. Note that if m 1, then we are done.
Therefore, let’s assume that m>l. After lines 10 and 11, we obtain Ui
xi ((. (Qw * Qw-1) *" ") * Q2) * Qa + rr, where each Qi is a leaf or a tree with a

root.
Label(y) is computed for each y N(rr) (line 12) in such a way that if the root

of xa * Pia is labeled b then xi * P can be written asR Qb * * Q1 and L(Ria)
L(Qw * * Qb/a) . Inline 13 weextractanormaltermfrom Qw Qw-1 * * Q1.
pe (y) is computed in line 14 in such a way that if y is the root of xa. Pia then
pe (y)=R as defined above. After the execution of lines 15-19 we have:

ui=-x , e + E xo , eo
a=2

=- ((.. ((RSw [-4] x) [-+l Ow q RSw-a) Ow-a [-+q RS2) 02 RSa)

Procedure TRANSFORM is used in step 20 to obtain equivalent trees for
RS,..., RSa. Since the degree of each RSt is <d, it then follows by induction that
t’, as constructed by line 20, is equivalent to Ui. This completes the proof of the claim
and the theorem.

Let D be a tree-transformable o,-dag with root r and of degree d. Let n be the
number of nodes in the g product terms and let v be the number of leaves in D. Let
T(n, d) be the time complexity of procedure TRANSFORM (r).

THEOREM 4.9. Let d, n, v, r, g and D be as defined above. Then T(n, d) <= Cadn,
where Ca is some fixed constant.

Proof. First of all, let us determine the time complexity of steps 1-5. Line 1 takes
<=C(n + g) time since D has exactly n + g 1 nodes and procedures LEFT-FACTORS
and RIGHT-PRDS take time O(IN(D)I) (see Theorem 4.5). Lines 2-4 take time
<=C2h. Line 5 can be implemented by finding the connected components of a graph
for Pi,/" B, (of course, we ignore the direction of the edges) which can be easily
carried out in <-_C2m steps, where m is the number of nodes in the graph for Pj,/" B.
Since the number of nodes in =a x P is =<n / h 1 (see Theorem 4.7), then line
5 takes time <-C2(n + h). Clearly g =< n and h =< n. Hence, lines 1-5 take time <=5C2n.

In what follows, we prove by induction on the degree d _-> 1 of the cr-dag with
root r, that T(n, d)<-Cadn, where Ca 12C2.

EVALUATION OF ARITHMETIC EXPRESSIONS 647

For d 1, we know that B must be empty. Therefore, loop 6-22 is not executed.
By assumption C1 > 5 Ca. Hence, T(n, 1) <- Cn <= Cdn.

Suppose now the degree of D is d > 1. In this case loop 6-22 has to be considered.
Let Ui be the r-dag corresponding to $i (see Theorem 4.8). Let g be the total number
of product terms in U and let n be the number of nodes in the descendants of the
product terms of Ui. Let vi be the number of leaves in Ui and let d be the degree of
Ue. Clearly, d <-d. Since N(U)fqN(U.)= li f (see Theorem 4.8) and since the
number of nodes in -h= xiPi is -<n + h 1 (see Theorem 4.7), it follows that Y n =< n.
Let T"(ni, d) be the time required by loop 6-22 when processing U. Then the overall
time complexity for TRANSFORM (r) is <=5Cn +., T"(ni, d). We now claim the
following"

CLAIM.

5C2n + T"(n, d) <= C(di)ng.

Once we prove this claim it will follow that T(n, d)<= Cldn, which will complete
the proof of the theorem.

Proof of claim. We treat the following two cases separately.
Case 1. m 1. Lines 7 and 9 take constant time, and by the induction hypothesis,

line 8 takes time <=C(d- 1)n. Hence, T"(n, di) <- C(d- 1)n + 2C2. In this case, the
proof of the claim follows from the assumption that 7C2 < C.

Case 2. m > 1. Line 7 takes <=C2g time and by induction, line 8 takes time
" d" "<-C(d")(ni), where is the degree of PJl, ni, v are the number of nodes and leaves

in Pjl respectively. The execution time of lines 10 and 11 can be easily shown to be
C2g and C2v I’, respectively. Hence, the time taken by steps 7-11 is

<=C(d")ng + 2C2(gi-[-Vi).

<C(d")n + 4C2ni < C(di 1)n + 4C2ni.

Lines 12-19 can be easily shown to take time <=C2n. Let g be the number of product
terms in e,.l with n descendants and v leaves. Step 20 can be easily shown to take
time <=C2ni +Y.__ Cx(d- 1)n, since the degree of each RS is <d. Line 21 takes time
<_-C2. Collecting all the above facts we obtain:

T"(n, d) <= C(d 1)n ’ + 4C2n-- c2n+ C:n Y Ca(d, 1)n
l=l

+ C2
Since C1 12Cz, we have that

(lines 7-11)

(lines 12-19)

(line 20)

(line 21).

T"(n,d)+5C2n <=C(di-1)n +Cn+ ., C(di-1)n.
/=1

A straightforward implementation of line 14 can be used to show that n +l= n _-< ni.
Hence, T"(ni, d) + 5C2n <- C(d- 1)n +Cn <- Cdng.

This completes the proof of the claim and the theorem.

648 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Let us finally remark that the above transformation algorithm could output a tree
which is not equivalent to the input dag, as the following example shows.

Example 4.2. Suppose we are given the expression

E (((x *b)*c+(a *b)*c)+x ,(e+d))+a ,(b ,c+d),

whose dag is drawn in Fig. 4.3. In this case, the left factors are the variables x and
a with corresponding right products P1 b c + (e + d) and P2 b c + (b c + d).
Therefore we have one connected component consisting of {P1, P2}. At step 8 of the
procedure TRANSFORM, we have no b c + (e + d) in which case no has one factor
Q. Now NORMAL-TERM (Q1) d and rr a (b c + (b c + d)). The label assig-
ned in line 12 to a P2 is 1 and the partial evaluation of rr produces rr a. Therefore,
the output will be (a + x) (b c + (e + d)), which is not equivalent to E.

FIG. 4.3

5. The equivalence algorithm. As we have seen in the previous section, the
transformation algorithm might generate a tree from a o--dag which is not tree-
transformable. Algorithms to check whether a given tree T and a given r-dagD are
equivalent are developed for several cases in this section. One way to solve this
problem would be to find the normal terms of T and D and compare them; this is
not efficient since the number of normal terms could be an exponential function of
the number of nodes in D. The approach we take here is based upon the following
characterization.

THEOREM 5.1. A cr-dag D is equivalent to a tree T if and only if the following
conditions are satisfied:

(i) Every normal term ofD is a normal term of T.
(ii) The number of normal terms ofD is equal to the number of normal terms of T.

(iii) No two normal terms ofD are equal.
In the rest of this section, we will examine the problem of designing efficient

algorithms to check each of the above properties separately.
To handle (i), we will associate a graph with T, denoted by G(T) in which a

normal term induces a path and every path corresponds to a normal term. Before

EVALUATION OF ARITHMETIC EXPRESSIONS 649

doing so, we label the nodes of the tree by the following procedure. Initially, no
represents the root of T, mark (no) (0, 1), left 0, right 1 and next -2.

procedure LABEL-TREE (no, left, right)
begin
global (next, mark [.]);

case
"o is a leaf return];
no is a (R): [m next;

next - next + 1;
mark (LC (no)) (left, m);
call LABEL-TREE (LC (no), left, m);
mark (RC (no)) (m, right);
call LABEL-TREE (RC (no), m, right);
return];

:no is a (: [mark (LC (no)) - mark (RC (no)) - (left, right);
call LABEL-TREE (LC (no), left, right);
call LABEL-TREE (RC (no), left, right);
return];

endcase
end o| procedure LABEL-TREE

To illustrate the ideas, we consider the expression A
((a+b ,c),.f+b ,(c ,e+d ,f))+(a+b ,d),e.

The tree generated by algorithm TRANSFORM is given in Fig. 5.1. The labels
are as assigned by the above algorithm. With the labels given in Fig. 5.1, we can
associate the following graph"

(0, 1)

(0,

2)2) ((2, I){ (2, I){
f,e

FIG. 5.1

Note that each normal term of the tree can be viewed as representing a path from 0
to 1 and vice versa.

In general, we can construct the graph G(T) associated with a tree T as follows:
suppose all of the leaves of T have been marked by the procedure LABEL-TREE.
Create two nodes 0 and 1. If a leaf v is labeled (a,/), create nodes a and/ (if

650 TEOFILO GONZALEZ AND JOSEPH JA’JA’

necessary) and draw a directed edge from a to/3 with label v; if such an edge already
exists, simply attach the label v to it.

The above graph could be thought of as the transition graph of a finite automaton
with 0 as the initial state and 1 as the accepting state; the alphabet consists of the set
of leaves of T. A word is accepted by this automaton if and only if it represents a
normal term of the tree T.

We are ready to prove the following lemma.
LEMMA 5.2. Let y be a node of the tree T whose descendants form a subtree T1

and such that mark (y)= (or,). Then, every normal term of TI is represented by a path
from a to in G(TI) and, conversely, every path form a to in G(T1) represents a
normal term of T.

Proof. By induction on the height h of T.
If h 0, y is a leaf and the result is obvious from the definition of G(T1).
Suppose now h _-> 1. Two cases might arise"
(1) y is a node with children generating subtrees C and C2, as shown in

Fig. 5.2. Note that every normal term of T1 is a normal term of either C1 or C2.
Moreover, it is easy to see (from the definition of G(T)) that each edge in G(T) is
an edge in either G(C1) or G(C2), and conversely. Furthermore, no two edges of
G(C) and G(Cz) are the same; therefore every path from a to/ i.n G(T1) is a path
in either G(Ca) or G(C.), and conversely. The proof follows now by induction for
this case.

FIG. 5.2

(2) y is a (R) node with subtrees C1 and C (Fig 5.3(a)). Note that G(T1)=
G(C)UG(C) as shown in Fig. 5.3(b) and where the edges of G(C1) are distinct
from those of G(C). Let Nt(T) designate the set of normal terms of a tree T. Assume

N,(C)={pli 1,..., ka} and

Then

N,(C2) {qlf 1,..., k2}.

]Wt(T1) {pi * q]l 1 kl, 1 f /2}.

Note that we are actually constructing a series-parallel graph G(T) from T. Every (causes a parallel
connection and every (R) causes a series connection.

As a sequence of edges.

EVALUATION OF ARITHMETIC EXPRESSIONS 651

G(C G(C 2)

(b)

(a, B)

FIG. 5.3

Therefore each normal term of T1 is of the form pi * qj; by induction, pi is represented
by a path from a to 8 in G(CI) and qj is represented by a path from 8 to/3 in G(C2).
It follows that pi * qi can be represented by a path from a to B in G(Tx).

Conversely, every path from a to/3 in G(T) consists of two paths P1 and P2,
where P is a path from a to in G(C1) and P is a path from 8 to B in G(C2). The
proof follows now by induction. I-1

COROLLARY 5.2.1. Let G(T) be the graph associated with a tree T. Every normal
term of T is represented by a path from 0 to 1 in G(T), and conversely, every such path
represents a normal term of T.

Suppose now we use the label of the leaves of T and assign them to the
corresponding leaves of the dag D. If a node y of D has two children labeled, say,
(a,/) and (a’, B’), this means that the induced paths in G(T) should match so that
each normal term of y will be a consistent part of a normal term in T. It follows that
if y is a 0) node, we must have a a’ and/3 =/3’; else, we must have/3 a’. Moreover,
if every normal term of D is a normal term of T, then the root of the dag should get
the label (0, 1). Formal proofs of these facts will be given after we present the procedure
which implements the above policy.

procedure LABEL-DAG (no)
begin
global mark ([.]);

If no has been labeled then [return];
If no is a leaf then [stop];
call LABEL-DAG (LC (no));
call LABEL-DAG (RC (no));
(LX, L Y) <-- mark (no));
(RX, R Y) <- mark (RC (no));
case

:no is a node: [If RX LX and LY RY
then mark (no) (LX, L Y);
else stop;

return];
:no is a (R) node; [If RX LY then mark (no) - (LX, R Y);

else stop;
return];

endcase
end of procedure LABEL-DAG

652 TEOFILO GONZALEZ AND JOSEPH JA’JA’

LEMMA 5.3. Let G(T) be the graph o] a tree T. Suppose the leaves of a dagD are
initialized with the same labels as those of T. If the dag could be labeled consistently
up to a node p, with mark (p)= (c,/), then each normal term of p corresponds to a
path from a to fl in G(T).

Proof. By induction on the height h of the subdag induced by p. The case h 1
is trivial. Suppose h > 1. We consider again two cases depending on whether p is a
(node or a (R) node. The proof follows the same line as that of Lemma 5.2. FI

COROLLARY 5.3.1. If D could be labeled such that mark (r)= (0, 1), where r is
the root ofD, then each normal term ofD is a normal term of T.

LEMMA 5.4. Suppose that each normal term of D is a normal term of T, then
LABEL-DAG (r) will terminate with mark (r)= (0, 1), where r is the root olD.

Proof. We will only prove that each product term of D will be labeled (0, 1). Let
P be a product term in D. Suppose that w xl * x2 * * Xk (up to a fixed order) is
a normal term in P, x E E, 1 -<_ -< k. It follows that w is a normal term in T and hence
there exists a path from 0 to 1 in G(T) which represents w. Suppose this path is given
by

i.e., mark (Xi)---(Oli--1, (Xi) 1 <i <k, and mark (x)=(O, al), mark (Xk) (ak_, 1).
Since w is a normal term in P, P must be of the following form" P=

(x+D1)*(XE+DE)*’’’*(Xk+Dk) up to a fixed order, where the Ds could be
arbitrary subdags of D. We assume that the order of multiplications is as shown in
Fig. 5.4; the same argument will hold for any other ordering. Now since x is labeled

"(0, l)

..’ .(Ctk_ I)

m2. "" (Ctk_ 1,._1)."
(0, ct2) .

O0, 1)

FIG. 5.4

EVALUATION OF ARITHMETIC EXPRESSIONS 653

(0, a 1), the root of D must have the same label (0, a 1) and thus a will have the label
(0, a 1). Similarly, ai will have the label (ai-1, ai), 1 < < k, where a is the root of the
dagxi +D; ak gets the label (ak-1, 1). Now ml is a multiplication node with children
al and a2; thus it gets the label (0, a2).
Using the argument k- 1 times, we get that ink-1 has the label (0, 1) and thus P has
the label (0, 1). This completes the proof of the lemma. [’1

We now collect the above facts in the following theorem.
THEOREM 5.5. Given a tree T and a tr-dag D, it is possible to check whether each

normal term of D is a normal term of T in 0 (n time, where n is the number of nodes
in D.

We now consider property (ii) of Theorem 5.1, namely checking whether the
number of normal terms of T is the same as that of D. This is fairly easy(?) and the
counting of normal terms in a dag D could be done by the procedure COUNT (r),
where r is the root of D. Initially, all the nodes are not marked.

procedure COUNT (no)
begin
global (C [.]);

If no is marked then [return (C(no))];
else mark no;

case
:no is a leaf: [C(no) 1];
:no is a (R): [C(no) COUNT (LC (no)) * COUNT (RC (no))];
:no is a : [C(no) COUNT (LC (no)) + COUNT (RC (no))];

end case
return (C(o));

end of procedure COUNT

It is easy to prove the following lemma.
LEMMA 5.6. Let D be any r-dag with root r. Then COUNT (r) correctly computes

the number of normal terms in D.
As for the complexity, we have O(n) steps, where n is the number of nodes in

D. However, some steps might involve the multiplication of two large numbers, each
of which might take considerably more than one "unit time." Before finding the
number of bit operations required by the above algorithm, we establish an upper
bound on the magnitude of the numbers used in COUNT.

LEMMA 5.7. Let Tbe a tree with root r and such that3 IL(T)I v. Then C(x)<-_2v/2,
for all nodes x in T.

Proof. By induction on the height h of T. I-1
COROLLARY 5.7.1. Each C(x) requires at most v/2 bits.
Note that if we are considering the dag D and if at any one point we need more

than v/2 bits to store any number, then we halt and declare that the numbers of
normal terms are not equal. Therefore, the above upper bound holds true for D.

We are now ready to establish the complexity of the procedure COUNT.
THEOREM 5.8. Let D be a tr-dag with root r. Then COUNT (r) takes O(nv log-

v log log v) bit operations, where n and v are respectively the numbers of nodes and
leaves in D.

Recall that L(T) represent the set of leaves in T.

654 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Proof. The largest number in COUNT (r) require at most v/2 bits; adding such
numbers could be done in O(v) bit operations. Multiplying two such numbers could
be done in O(v log v log log v) bit operations by using the Sch6nhage-Strassen integer-
multiplication algorithm [SS]. Therefore COUNT (r) requires at most O(nv log v log
log v) bit operations. [-1

Strangely enough, the above (rough) bound cannot be improved (under the
assumption that multiplying two k k bit numbers takes k log k log log k bit oper-
ations), i.e., there exist tree-transformable dags which will require f(nv log v log log v)
bit operations, as the following example shows.

Let

P1 (Zl + Z).) (Z3 + Z4) *’’" * (Z2p-1 -b- Z2p),

P (Y1 + Y2) * (Y3 + Y4) *’’ * (Y2t-i + Y2p), Zi, Yg E.

Construct now the following dag D (Fig. 5.5).

FIG. 5.5

In this case IN(D)] O(p),]L(D)[5p. However, COUNT (r) will have p multiplica-
tions, each of which occurs between two p-bit numbers. Therefore COUNT (r) requires
at least f(nv log v log log v) bit operations in this case.

One might be tempted to say that it is possible to design another algorithm which
does not multiply the same pair of numbers more than once and which will solve our
problem in O(n) time; however we can give another example where the multiplica-
tions involved are all between different numbers and yet the algorithm requires
II(nv log v log log v) bit operations. Let’s remark that the execution time of this
procedure dominates all the other parts of the equivalence algorithm.

EVALUATION OF ARITHMETIC EXPRESSIONS 655

We now consider the performance of COUNT on a special class of dags which
will be considered later in more detail, namely that of leaf dags. COUNT is faster for
this class even if we use the naive integer-multiplication algorithm as the following
theorem shows.

THEOREM 5.9. Let D be a leaf dag with root r. Then the execution time of
COUNT (r) is of O(n2), where n is the number of nodes in D.

Pro@ Let e be the number of edges in D. Since e O(n), it follows that it is
enough to prove that COUNT (r) takes O(e 2) time. The proof is by induction on e,
being trivial for e 1.

Suppose e > 1. Let x and x2 be the left and right children, respectively, of r. x
and x2 generate two dags D and D2 whose edges don’t overlap. Let el and e2 be the
numbers of edges in Dx and D2, respectively. Then e -el +e2 + 2. Thus the execution
time T(e) of the algorithm satisfies

T(e)<= T(e)+ T(e)+O(ee2),

if we use the naive algorithm to multiply the number of normal times in x by the
ones in x2. It follows that T(e)= O(e2).

To terminate the equivalence algorithm, the problem of whether a given tr-dag
has two identical normal terms will be investigated now. This is the hardest part of
the equivalence algorithm and its complexity seems to depend crucially on two
parameters: the degree of the expression and the type of sharing in the dag. If we
restrict either one of these parameters, the problem becomes relatively easy and
corresponding efficient algorithms can be developed. However, in the general case,
the problem looks difficult and we feel that the general problem might be NP-complete.
Therefore, we will attack this problem for two special cases: (i) the degree of the
corresponding expression is bounded by a constant d and (ii) the given tr-dag is a leaf
dag.

Before proceeding, we state the main result which has been obtained so far.
THEOREM 5.10. LetD be an arbitrary tr-dag with no identical normal terms. Then

checking whether D is tree transformable and obtaining an equivalent tree, whenever
possible, could be done in O(nv log v log log v) time, where n and v are respectively the
number of nodes and leaves in D.

Proof. Immediate from Theorems 4.8, 4.9, 5.5 and 5.8.
We now discuss the problem of identifying identical normal terms for leaf dags.

We first transform the dagD into an equivalent dagD’ which is left-justified, i.e.,
every (R) node of D’ has a leaf as its left child. Figure 5.6 shows an example of a dagD
with an equivalent dag D’ which is left-justified.

656 TEOFILO GONZALEZ AND JOSEPH JA’JA’

FIG. 5.6

We remark that in the above transformation no node will be modified unless
it is a left child of a @ node. That is why the above transformation will increase the
number of edges by, at most, a factor of 2, as we will later prove. The procedure to
implement the above transformation is given below; pt has the same meaning as
in 4 and it is initialized to the empty dag, for all nodes of D. OP (.) denotes the
operator of a node. The assignment no GETNODE means that a new node no is
created and PUTNODE (no) means that the node no has been destroyed.

procedure LEFT-JUST (r)
begin//Left justify the leaf dag with root r which is multiplied by the left justified
dag pointed at by pt (r)[[

If r leaf then [return]
loop
n2-LC (r);
n3-RC (r);

case
r is a: [If n2 leaf then [If pt (r) then [no - GETNODE;OP (no) -’*’"

LC (no) - n2;

RC (no) pt (r);
LC (r) no]]

else [pt (n2) pt (r);
call LEFT-JUST (n2)]

I[n3 leaf then [If pt (r) then [no - GETNODE;OP (no) - ’*’;
LC (no) n3;

RC (no) pt (r);
RC (r) no;
return]

else return]]

EVALUATION OF ARITHMETIC EXPRESSIONS 657

else [pt (rt3) pt (r);
call LEFT-JUST (n 3);
return]

];
:r is a (R): [I| (n2 and n3 are leaves) then

[If pt (r) then [return];
no GETNODE;
OP (no) ’*’;
LC (no) - n3;

RC (no) - pt (r);
RC (r)no;
return]

I| (n is a leaf) then
[pt (/,/3)<---pt (r);
call LEFT-JUST (n 3);
return]

If (n 3 is a leaf) then
[OP (r) OP (n2);
LC (r)- LC (n2);
RC (r)- RC (n2);
If pt (r)= then

[PUTNODE (n2);
pt (r) n3]

else
[OP (n2)-’*’;
LC n2) - n3;

RC (n2)- pt (r);
RC (n2) pt (r);
pt (r) n2]

else
[pt (n 3) pt (r);
call LEFT-JUST (n3);
OP (r) OP (n2);
LC (r)- LC (n2);
RC (r)- RC (n2);
pt (r),-- n3;
PUTNODE (n2)]];

endcase
forever

end of procedure LEFT-JUST

The next lemma essentially establishes the correctness of the above procedure.

LEMMA 5.11. Let D be a leaf dag and let y be any node ofD such that pt (y) a
is left-justified. Then LEFT-JUST (y) will return a left-fustified dag equivalent to the
dag whose root is a (R) node with y and a as the left and right children, respectively.

658 TEOFILO GONZALEZ AND JOSEPH JA’JA’

Proof. By induction on the depth of the recursive call. The proof involves eight
different cases; we will only consider two typical cases, since all the others are similar
to one or the other of the two.

1) y is a 03 node such that none of its children is a leaf. Two subcases have to
be discussed separately.
1.a) a , then LEFT-JUST (y) returns by calling LEFT-JUST (n2) and

LEFT-JUST (n3). By induction, the dags induced by n2 and n3 will be
transformed into equivalent left-justified dags. It is easy to see that the
dag with root y will then be left-justified.

1.b) a , then LEFT-JUST (y) makes the assignments pt (n2)-pt (//3) <-" O

and calls LEFT-JUST (rt2) and LEFT-JUST (n3). By the induction
hypothesis, we will have two left-justified dags equivalent to (n. (R) a)
and (rt3 ()a). Using the distributive law, it is easy to see that LEFT-
JUST (y) will return a left-justified dag equivalent to (y (R) a).

2) y is a (R) node such that none of its children is a leaf. Again, we will discuss
two subcases separately. Note that the dag which is being transformed into
an equivalent left-justified dag is given by (n 2 (R) n 3) (R) a.
2.a) a , similar to 1.a) and 2.b).
2.b) c , LEFT-JUST (y) will first make the assignment pt (n3)ce and

call LEFT-JUST (n3). By the induction hypothesis, LEFT-JUST (n3)
returns a left-justified dag which is equivalent to (n3 ()ce). LEFT-
JUST (y) will then make n2 as the new node y with pt (y) n3 and the
infinite loop behaves as if it were really a recursive call to n2 with
pt (n2) n3 (the "new" n3 after it was modified by LEFT-JUST (n3)). By
the induction hypothesis, this should return a left-justified dag equivalent
to/’2 () //3.

COROLLARY. Let D be a leaf dag with root r such that pt (r) is initialized to the
empty dag. Then LEFT-JUST (r) returns a left-fustified dagD’ which is equivalent
toD.

The following theorem establishes the possible growth in the number of edges
as well as the complexity of the procedure LEFT-JUST.

EVALUATION OF ARITHMETIC EXPRESSIONS 659

THEOREM 5.12. Let D be a leaf dag with root r such that pt (r) is initialized to
the empty dag. Then LEFT-JUST (r) returns a left-fustified dag D’ such that IE(D’)I <-
21E(D)I. Moreover, the execution time of this procedure is linear in the number of nodes
in D.

Proof. The proof is straightforward and will be left to the reader.
Once we transform the given dag into an equivalent left-justified dag, the problem

of checking the existence of two identical normal terms becomes easy. The main
procedure, REPEATED-TERM, which, at each node, calls another procedure
EQUAL to check whether this node has two identical normal terms, is given below.

procedure REPEATED-TERM (no)
begin
global (rmark [.])

case
:no has been rmarked: [return (rmark (no))];
:no is a leaf: [rmark (no) -false];
:else: [rmark (no)- REPEATED-TERM (LC (no))

or REPEATED-TERM (RC (no));
I rmark (no) false and no is a

then rmark (no) - EQUAL (LC (no), RC (no))];
endcase
return (rmark (no));

end of procedure REPEATED-TERM

This procedure is fairly straightforward; it rmarks false all the leaves and proceeds
from the bottom up, marking all nodes false until it meets a node. It then calls the
procedure EQUAL to check whether this 0) node has two identical normal terms in
which case rmark (no) will be set true and this truth assignment will propagate to the
root of the dag. Otherwise, everything will be set false and REPEATED-TERM
returns false. We describe precisely the procedure EQUAL below.

procedure EQUAL (x, y)
begin
global (equal [.,.]);

If x y then [return (true)]
If (x, y)has been previously checked

then [return (equal (x, y))]
case

:x and y are leaves: [equal (x, y) false];
:x is a @ or y is a 0)"

[Let w be one of the nodes and let z the other node;
equal (x, y)- EQUAL (LC (w), z) or EQUAL (RC (w), z)];

:x and y are (R):
[If LC (x) LC (y) then equal (x, y) - false;

else equal (x, y)- EQUAL (RC (x), RC (y))];
:else: [equal (x, y)-false];

endcase
return (equal (x, y));

end of procedure EQUAL

Before proving the correctness of the above procedure, we discuss the example
mentioned at the end of 4. The original expression E=(((x ,b),c+

660 TEOFILO GONZALEZ AND JOSEPH JA’JA’

(a b) c) +x (e + d)) + a (b c + d) has been transformed into the tree T
(a + x) (b c + (e + d)). Moreover, E could be transformed into an equivalent dag E’
which is left-justified (Fig. 5.7). Note that no and n are the nodes created by the
procedure LEFT-JUST.

FIG. 5.7

Let us apply the algorithm EQUAL to the nodes u and v indicated in Fig. 5.7.
Note that EQUAL (u, v) will be called at some point when REPEATED-TERM is
applied to the above dag.

Recursive call Result

EQUAL (u, v) EQUAL (n), vx)
EQUAL (n, vl) EQUAL (n, Vz) OR EQUAL (n), d)
EQUAL (n),/)2) EQUAL (c, c)
EQUAL (c, c) true

equal (n’o, vl)- true
equal (u, v true

Therefore, EQUAL (u, v) returns true and REPEATED-TERM will also return
true. Indeed, E does contain two duplicates of the normal term a b c.

The correctness of the above procedures is established in the next theorem.
THEOREM 5.13. Let r be the root of the left-justified tr-dag D. Then REPEATED-

TERM (r) returns true if, and only if, D has two identical normal terms.

Proof. Suppose REPEATED-TERM (r) returns true, then it is easy to see by
inspection that there exist two (R) nodes x and y such that EQUAL (X, Y) is true and

EVALUATION OF ARITHMETIC EXPRESSIONS 661

mark (X) mark (Y).4 The proof is now by induction on hx + hy, where hx and hy are
the heights of x and y, respectively.

If h, + hy 2, the proof follows easily.
Suppose h, + hy > 2. Then x and y must have the same left child, say a, and,

moreover, EQUAL (x’, y’) must be true, where x’ and y’ are the right children of x
and y, respectively. It is easy to check (since EQUAL (x, y) is true) that either the
descendants of both x’ and y’ contain a (R) node or none of the descendants of x’ or
y’ is a (R) node. In the latter case, it is easy to check that the algorithm is correct.
Thus, suppose the descendants of x’ and y’ contain (R) nodes, there exist two (R) nodes
u and v such that EQUAL (u, v) is true and hu and hv are maximal among the (R)
nodes which are descendants of x’ and y’, respectively. The rest of the proof follows
by the induction hypothesis.

Suppose now that D has two identical normal terms. The proof is similar to that
of Lemma 5.4, taking into consideration the fact that D is left-justified. 13

THEOREM 5.14. If D is a lefi-fustified dag with root r such that n is the total
number of nodes in D, then the execution time of REPEATED-TERM (r) is of O(n2).

Proof. Note that if x and y are two nodes of D such that x has n descendants
and y has n2 descendants, then EQUAL (x, y) takes at most O(nln2) time. Moreover,
for each pair of nodes x and y, EQUAL (x, y) is called at most once. The proof of
the theorem follows from these observations.

We collect all the facts we have established about leaf dags in the following
theorem.

THEOREM 5.15. Let D be a leaf dag with n nodes. Then it is possible to checx
whetherD is tree-transformable or not, and to find an equivalent tree, whenever possible,
in O(n) time.

This settles the case of leaf dags. Consider the case where the degree of the dag
is bounded by a constant d. Then there are at most v d normal term, where v IL(D)I.
Thus checking whether D has two identical normal terms could be done in O(v d)
time. Note that, in this case, all the previous procedures run in linear time. Therefore,
we have the following.

THEOREM 5.16. LetD be an arbitrary cr-dag whose degree is bounded by a constant
d. Then transforming D into an equivalent tree, whenever possible, could be done in
O(max (IN(D)I, IV(D)Ia)) time.

Let us remark that if the level of sharing is a fixed constant then it is possible to
transform the dag into a leaf dag in polynomial time. Therefore the corresponding
problem can be solved efficiently in this case too.

Acknowledgment. We would like to thank the referees for their careful reading
of the manuscript and for their constructive comments.

4 REPEATED-TERM (r) returns also true if a node has a leaf v as its left and right child. This
case will be ruled out by the preceding algorithms.

Including x’ and y’.

662 TEOFILO GONZALEZ AND JOSEPH JA’JA’

[AHU]

[AJ]

[AJU]

[AU]

[A]
[a]

[BSe]

[DS]

[GJ1]

[GJ2]

[JMMW]

[K]

EN]

[R]
[SS]

[SU]

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

A. V. AnD AND S. C. JOHNSON, Optimal code generation of expression trees, J. Assoc.
Comput. Mach., 23 (1976), pp. 488-501.

A. V. AHO, S. C. JOHNSON AND J. D. ULLMAN, Code generation for expressions with
common subexpressions, J. Asssoc. Comput. Mach., 24 (1977), pp. 146-160.

A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling. Vol.
II: Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1973.

J. P. ANDERSON,A note on somecompilingalgorithms, Comm. ACM, 7 (1964), pp. 149-150.
M. A. BREUER, Generation of optimal codes for expression via factorization, Comm. ACM,

12 (1969), pp. 333-340.
J. L. BRUNO AND R. SETHI, Code generation for a one-register machine, J. Assoc. Comput.

Mach., 23 (1976), pp. 502-510.
P. J. DOWNEYAND R. SETHI, Variations on the common subexpression problem, unpublished

manuscript, 1977.
T. GONZALEZ AND J. JA’JA’, On the complexity of computing bilinear forms with {0, 1}

constants, J. Comput. Systems Sci., 20 (1980), pp. 77-95.
Computing arithmetic expressions with algebraic identities is hard, in Proc. 1979

Conference on Information Sciences and Systems, March 1979, pp. 167-173.
D. B. JOHNSON, W. MILLER, B. MINNIHAN AND C. WRATHALL, Reducibility among

floating-point graphs, J. Assoc. Comput. Mach., 26 (1979), pp. 739-760.
R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer

Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972,
pp. 85-104.

I. NAKATA, On compiling algorithms for arithmetic expressions, Comm. ACM, 10 (1967),
492--494.

R. R. REDZIEJOWSKI, On arithmetic expressions andpress, Comm.ACM, 12 (1969), 81-84.
m. SCHONHAGE AND V. STRASSEN, $chnelle Multiplikation grosser Tiihlen, Computing,

7 (1971), pp. 281-292.
T. SETHI AND J. D. ULLMAN, The generation of optimal code for ,arithmetic expressions, J.

Assoc. Comput. Mach., 17 (1970), pp. 715-728.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1004-0004 $01.00/0

AN APPROXIMATION ALGORITHM FOR THE MAXIMUM
INDEPENDENT SET PROBLEM ON PLANAR GRAPHS*

NORISHIGE CHIBA,? TAKAO NISHIZEKI? AND NOBUJI SAITO?

Abstract. In this paper we consider the maximum independent set problem in which one would like
to find a maximum set of independent (i.e., pairwise nonadjacent) vertices in a given graph. The problem
is NP-complete, and still remains so even if we restrict ourselves to the class of planar graphs. It has been
conjectured that there exist no polynomial-time exact algorithms for any NP-complete problems. We
present a polynomial-time approximation algorithm for the maximum independent set problem on planar
graphs. For a given planar graph having any number n of vertices, our algorithm finds, in O(n log n) time,
an independent set that is necessarily larger in size than half a maximum independent set. Thus the absolute
worst case ratio of our algorithm is greater than 1/2.

Key words, approximation algorithm, maximum independent set problem, bounded worst case ratio,
time-complexity, planar graph, vertex-identification

1. Introduction. We consider the maximum independent set problem in which
one would like to find a maximum set of independent vertices in a given graph. It is
an NP-complete problem, and still remains NP-complete even if we restrict ourselves
to the class of planar graphs. There is no good hope for being able to design
polynomial-time algorithms for exactly solving any NP-complete problem. Therefore
we have to look for a polynomial-time approximation algorithm for the problem,
which does not always find a maximum independent set, but does find a large
independent set. An approximation algorithm is often evaluated by the worst case
ratio: the smallest ratio of the size of an approximation solution to the size of a
maximum solution, where the ratio is taken ov,er all problem instances. It is known
that if there would exist a polynomial-time algorithm with a constant worst case ratio
>0 for the maximum independent set problem on general graphs, then one could
design a polynomial-time algorithm with any constant worst case ratio <1 [6]. This
fact does not imply that there exist no polynomial-time approximation algorithms
with the constant worst case ratio >0 for the problem on a special class of graphs,
such as planar graphs of our interest. In fact, Lipton and Tarjan [7-1 have given an
O(n log n) time approximation algorithm with worst case ratio 1-O(1/x/ioglogn),
asymptotically tending to 1 as n o, for the problem on a planar graph with n vertices.
Such a ratio is called an "asymptotic worst case ratio." On the other hand, some
approximation algorithms have an "absolute worst case ratio," which does not depend
on the size n of a graph. For example, one may design a polynomial-time approximation
algorithm with absolute worst case ratio 1/4 with the aid of the four color theorem of
Appel and Haken [2]: color a given planar graph with four colors; and simply find
the largest color class, that is, the largest set of vertices of the same color. Meanwhile,
the five-color algorithm of ours [3] or Matula, Siloach and Tarjan [8] provides a linear
time approximation algorithm with absolute worst case ratio- for our problem.

In this paper we present an O(n log n) time approximation algorithm with absolute
worst case ratio 1/2 for the maximum independent set problem on planar graphs. That
is, for a given planar graph of any number n of vertices, our algorithm finds, in

* Received by the editors March 27, 1981. This work was partly supported by the Grant in Aid for
Scientific Research of the Ministry of Education, Science and Culture of Japan under grants: Cooperative
Research (A) 435013 (1979) and YSE (A) 475235 (1979).

Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai,
Japan 980.

663

664 NORISHIGE CHIBA, TAKAO NISHIZEKI AND NOBUJI SAITO

O(n log n) time, an independent vertex set that is necessarily larger in size than half
a maximum independent set. The algorithm is based on the following ideas:

(i) We can reduce the problem on a general planar graph to one on a planar
graph having no vertices of degree 4 or less; such a graph cannot have a large
independent set (see Lemma 2); and

(ii) We can design an O(n log n) time "on-line" algorithm to execute any
sequence of vertex-identifications and edge-deletions of a given planar graph. (See
[1] for the definition of an on-line algorithm.)

It should be noted that, although the algorithm of Lipton and Tarjan can also
guarantee the worst case ratio 1/2, the number n of vertices must be quite huge, say
224, so the algorithm is not practical.

2. The approximation algorithm. In this section, we present our approximation
algorithm. We will show in 3 that the algorithm correctly finds an independent set
with worst case ratio >1/2, and show in 4 that the time complexity of the algorithm
is O(n log n).

We begin by defining some terms. Let G (V, E) be a graph with vertex set V
and edge set E. We consider only a simple graph G, that is, a graph with no multiple
edges or loops. A graph G is planar if it is embeddable in the plane. The neighborhood
N(v) of a vertex v is the set of all vertices which are adjacent to v. The degree of a
vertex v of G is denoted by d(G, v) or simply d(v). Let 6(G) denote the minimum
degree of vertices in G. A set I(G) of vertices in G is independent if no two of them
are adjacent. A maximum independent set I*(G) of G is an independent set of
maximum cardinality. For a subset S of V, G-S denotes a graph obtained from G
by deleting all vertices in S and all edges adjacent to a vertex in S, that is, G-S is
a subgraph of G induced by vertex set V- S.

We denote by n4, H and H the graphs shown in Fig. l(a), (b) and (c),
respectively, which have labelled vertices v, vl, v2, v3 and v4. These graphs will be
referred in the algorithm. We have the following lemma about them.

v
2 v v

,v3

(a) H4
v1v v4v

v
3

(b) H4 (c) H4"
FIG. 1. Graphs H4, H’4 and H.

MAXIMUM INDEPENDENT SET PROBLEM 665

LEMMA 1. Let a planar graph G (V, E) contain a vertex v of degree 4 with
N(v)={vl, v2, v3, v4}, and let H be a subgraph of G induced by {v}t_JN(v). Then,
renaming vertices in N(v) if necessary, we can assume that either

(i) H is isomorphic with Ha; or
(ii) H contains H’4 or IT as a subgraph, and moreover (vl, v3) E.
Proof. Suppose that H is not isomorphic with H4. Then there exists at least one

edge of both ends in N(v), say (v2, v4). If (vx, v3) E, then (ii) holds with respect to
H. If (Vl, v3)E, then, renaming vertices in N(v), we may assume that H contains
H’ as a subgraph. Since G is planar, (vx, v3) E or (v2, v4) E. Thus, renaming vertices
if necessary, we have (ii) with respect to H. Q.E.D.

Our algorithm uses a simple recursion. The outline is as follows: from an original
planar graph G we construct a planar graph G’ smaller than G by deleting a vertex
v of minimum degree together with some of its neighbors and adding some edges;
find an independent set I(G’) of G’ larger than half a maximum independent set
I*(G’) of G’ by recursively applying the algorithm; and form an independent set I(G)
of G by adding one or two of the deleted vertices to I(G’) so that I(G) is larger in
size than half a maximum independent set I*(G) of G. The method used to construct
G’ from G varies with d (v) and the structure of a subgraph of G induced by {v } UN(v).
Since G is planar, the minimum degree d (v) is necessarily less than or equal to five.
We illustrate all pairs of G and G’ in Figs. 2-5. Throughout the description of the
algorithm we omit a begin-end statement nested in an if-then-else statement. In the
algorithm, G (V, E) denotes a graph currently processed and G’= (V’, E’) a graph
reduced from G. The algorithm is as follows.

procedure ISET;
begin

procedure INDPT (G, I(G));
comment Replace the dummy instructions DEGREE3, DEGREE4

and DEGREE5 by the succeeding block with the same label;
begin

then
let v be a vertex of minimum degree;
if d(v)-<2

then
G’ := G-({v}t..JN(v));
INDPT(G’,I(G’));
t(G) := Z(G’) +{v}

else
if d(v)= 3

then DEGREE3
else

if d(v) =4
then DEGREE4
else comment d (v) 5;
DEGREE5

else I(G) := ;
end;

embed a given planar graph G in the plane;
INDPT (G, I(G))

end

666 NORISHIGE CHIBA, TAKAO NISHIZEKI AND NOBUJI SAITO

DEGREE3:
begin

let N(v)= {Vl, v2, v3};
if (Vl, V2), (/32, V3), (/33, /31)I E

then
comment See Fig. 2;
let G’ be the graph obtained from G-{v, v2, v3} by joining vl to all
the vertices which were adjacent to v2 or v3 in G;
INDPT (G’, I(G’));
if vl I(G’)

then I(G) := I(G’)+{v2, v3}
else I(G) := I(G’)+{v}

else
G’ := G-({v}t.JN(v));
INDPT (G’, I(G’));
(G) := (G’) +{v}

end

FIG. 2. G and G’ where 6(G)= 3 and (vl, /)2), (/)2, /)3), (/)3, /)1)1 E.

DEGREE4:
begin

let H be a subgraph of G induced by {v}UN(v);
if H is isomorphic with H4

then
comment See Fig. 3;
let vertices in N(v)={v, vz, v3, v4} be arranged cyclically counter-
clockwise about v in the plane embedding of G;
let G’ be the graph obtained from G-{v, v2, v4} by joining va to all
vertices which were adjacent to v2 and joining v3 to all vertices which
were adjacent to v4 in G;
INDPT (G’, I(G’));

MAXIMUM INDEPENDENT SET PROBLEM 667

end

if U1, I)3 I(G’)
then I(G) := I(G’)+{v};

it vl e I(G’)
then I(G) := I(G’)+{v2};

if vl I(G’) and v3 e I(G’)
then I(G) := I(G’)+{1)4}

else comment H contains eitherH orH as a subgraph. (See Fig. 4.)
label vertices in N(v)= {v, v2, v3, v4} so that H orH is a subgraph
of the labeled graph H, and (v, v3) H;
let G’ be the graph obtained from G-{v, v2, v3, v4} by joining v to
all vertices which were adjacent to v3 in G;
INDPT (G’, I(G’));
if v I(G’) thenI(G) := I(G’)+{v3}

else I(G) := I(G’) +{v}

G G’

FIG. 3. G and G’ where t;(G) 4 and the subgraph HofG induced by {v}t, N(v) is isomorphic with Ha.

G G’

FIG. 4. G and G’ where 8(G) 4 and H contains H’4 or H’,I as a subgraph.

668 NORISHIGE CHIBA, TAKAO NISHIZEKI AND NOBUJI SAITO

DEGREE5:
begin
comment See Fig. 5;
let vertices in N(v)={vl, v2, v3,/34, V5} be arranged cyclically counter-
clockwise about v in the plane embedding of G;
wig assume (vl, v3) E;
let G’ be the graph obtained from G-{v, v2, v3, v4, Vs} by joining Vl to
all vertices which were adjacent to v3;

INDPT(G’,I(G’));
if veI(G’) thenI(G) := I(G’)+{v3}

else I(G) := I(G’)+{v}
end

I \

\

G G’

FIG. 5. G and G’ where (G)= 5.

3. Correctness of the algorithm. In this section we establish the following
theorem.

THEOREM 1. For any planar graph G V, E), our algorithm finds an independent
set of G with worst case ratio >1/2.

We first present the following result before establishing Theorem 1.
THEOREM 2. For any planar graph G V, E) with n vertices, our algorithm finds

an independent set of at least n/5 vertices.

Proof. We proceed by induction on the number n of vertices of G. One can easily
see that for any planar graph having n-<4 vertices, our algorithm always finds an
independent vertex set of at least one vertex. Hence our claim is true for such a graph.

As the inductive hypothesis we assume that the claim holds for all planar graphs
having less than n vertices.

Let G (V, E) be a planar graph having Ivl--n (>_-5) vertices. Let v be a vertex
of minimum degree in G. Since G is planar, the degree of v is 5 or less [4]. Our
algorithm constructs from G a new planar graph G’= (V’, E’) of fewer vertices than
G, and recursively finds an independent set I(G’) of G’. We have II(G’)[>= Iv’l/5 by
the inductive hypothesis. Although the construction of G’ varies with the degree of
v, our algorithm always adds at least one vertex to I(G’) to form an independent set

MAXIMUM INDEPENDENT SET PROBLEM 669

I(G) of G, so that IZ(G)[_>-IZ(G’)I+ 1. Clearly Ivllv’l+5, Combining these three
inequalities, we have II(G)I>-_IvI/5. Q.E.D.

We next establish an upper bound on the size of a maximum independent set
I*(G) of a planar graph G with degree 6(G)= 5.

LEMMA 2. If G=(V,E) is a planar graph with 6(G)= 5, then It*(G)l<21Wl/5.
Proof. Let I*(G) be a maximum independent set of G, and let B (V, EB) be a

spanning subgraph of G obtained from G by deleting all the edges of both ends in
V-I*(G). Since B is a planar bipartite graph of at least three vertices, we have
IEI_<-21VI-4 [4]. Since 6(G)= 5, B is a bipartite graph with partite sets I*(G) and
V-I*(G), and each vertex in I*(G) has the same degree in B as it had in G, we have

levi Y. d(G, V) >= 5lI*(a)l.
vI*(G)

Combining the two inequalities above, we have IZ*(G)I < 21vi/5, (2,E,D.
We are now ready to prove Theorem 1.
Proofof Theorem 1. Since the set I(G) found by the algorithm is clearly indepen-

dent in G, it is sufficient to prove that II(G)I/II*(G)I> 1/2. We proceed by induction
on the number n of vertices of G. For any planar graph G with n _-< 4 vertices, we
can easily verify that IX(G)I/IX*(G)I > 1/2.

As the inductive hypothesis, we assume that our claim is true for all planar graphs
having less than n vertices.

Now suppose that G is a planar graph with n vertices, n _-> 5. Since G is planar,
8(G)<_-5. If 8(G)=5, we have [I(a)l>-n/5 by Theorem 2, and [I*(a)l<2n/5 by
Lemma 2. Therefore II(G)I/]I*(G)]>1/2, as desired. Thus we can assume 8(G)-<_4.
Let G’ be the graph constructed from G by our algorithm; the construction method
varies with 8(G). Since G’ has fewer vertices than G, we have [I(G’)[/II*(G’)[>1/2 by
the inductive hypothesis. Our algorithm always’ adds at least one vertex to I(G’) to
form I(G), so that [I(G)I--> [I(G’)[+ 1. Hence, we shall show that [I*(G)[-<_ II*(G’)[+ 2
which, together with the two inequalities above, leads to the desired result
IX(G)I/IX*(G)I > 1/2.

Let v, vl, v2, v3 and V4 be vertices of G defined in the algorithm, that is, v is a
vertex of minimum degree and N(v)={vl,..., vi} where d(v)= i. Let I*(G) be a
maximum independent set of graph G. We consider three cases depending on 8(G).

Case 1. Either (G)<= 2 or (G)= 3 and G has at least one of the edges (v, v2),
(v2, v3) and (v3, v).
In this case G’=G-{v}UN(v). Since I*(G)-{v}UN(v) is independent in G’, and
I({v}UN(v))fqI*(a)l<-_2, we have II*(G’)I>-_II*(G)-{v}UN(v)I>-I[*(G)I-2, as
desired.

Case 2. 8(G)= 3 and (v, vz), (v., v3), (v3, v)C:E. (See Fig,. 2.)
In this case G’ is the graph obtained from G-S, S {v, vz, v3}, by joining v to all
the vertices which were adjacent to vz or v3 in G. Clearly II*(G) fq SI <-- 2. We consider
two subcases depending on]I*(G) S] as follows.

Subcase 2.1.]I*(G) f’l S] 0 or 1. Clearly I*(G)-{vl} U S is independent in G’.
Therefore]I*(G’)] _-> IZ*(G)I- 2.

$ubcase 2.2. II*(G) $1 2. Since vertex v of G’ is joined to vertices in N(v)
N(/93) by edges which might not exist in G, [*(G)-$ is not necessarily independent
in G’. However, in this case, [*(G) $ {v, v3}, and hence (N(v2) kJ N(v3)) I*(G). Therefore I*(G)-S is independent in G’. Thus

Case 3. 8(G) =4. Let H be the subgraph of G induced by {v}UN(v). Then by
Lemma 1, we can assume, without loss of generality, that either H is isomorphic with

670 NORISHIGE CHIBA, TAKAO NISHIZEKI AND NOBUJI SAITO

graph n4, or H contains a subgraph isomorphic with graph H or Hg (H4, H and
H are depicted in Fig. 1).

First assume that H is isomorphic with Ha. Let G’ be the graph obtained from
G-S in the manner described in the algorithm, where S {v, v2, v4}. (Refer to G
and G’ in Fig. 3.) Since clearly [I*(G)f’l S] =< 2, we consider three subcases.

Subcase 3.1. II*(G)SI=O. Since I*(G)-{vl, v3} is independent in G’,
lir*(G’)l >= Iz*(a)l- 2.

Subcase 3.2. [I*(G)f’l$] 1. Suppose first that I*(G)f’l$ ={v}. Then Vl,

v3C_I*(G), and hence I*(G)-{v} is independent in G’. Thus]I*(G’)I>-II*(G)-I.
Suppose next that I*(G)f-I $ {v2} or {v4}. We can assume without loss of generality
that I*(G) CI S {v2}. Since N(v) f3 I*(G) , I*(G) -{v, v3} is independent in G’,
and hence It*(G’)l _-> It*(G)l- 2.

Subcase 3.3. [I*(G) f’l $1 2. In this case I*(G) f’l $ must be {v, v4}. Since N(v)
I*(G)= and N(v4)f-lI*(G)=, I*(G)-{v2, v4} is independent in G’, so
IX*(G’)I >_-II*(G)I- 2.

Next assume that H contains H or H as a subgraph. Let G’ be the graph
obtained from G -S in the manner described in the algorithm, where S {v, v, v3, v4}.
(Refer to G and G’ in Fig. 4.) Since]I*(G) f’l $[-<_ 2, we consider two further subcases.

Subcase 3.4.]I*(G) f’l $1 0 or 1. Since I*(G)-{vl} (.J $ is independent in G’,
II*(G’)I--> Iz*(G)I- 2.

Subcase 3.5. II*(G)SI 2. Suppose first that H contains H as a subgraph,
then [*(G)$ must be either {v2, v3} or {v3, v4}. Since N(v3)[*(G)= in either
case, [*(G)-S is independent in G’, so II*(G’)] -> II*(G)I-2. Suppose next that H
contains H as a subgraph, then [*(G)$ must be either {v2, v3} or {v2, v4}. Since
vl I*(G) in either case, I*(G)- S is independent in G’, so II*(G’)I->-I/*(G)I- 2.

Thus the proof is completed. Q.E.D.
The bound on the worst case ratio given in Theorem 1 is sharp in the sense that

there exist infinitely many graphs for which our algorithm possibly realizes the bound.
We illustrate an example of these graphs G in Fig. 6. For the graph G our algorithm
finds, in the worst case, the set of all black vertices as an independent set I(G). Clearly
IZ(G)I- (IZ*(G)I / 1)/2.

FIG. 6. An illustrating graph.

MAXIMUM INDEPENDENT SET PROBLEM 671

4. Time-complexity. In this section we establish the following theorem.
THEOREM 3. Our algorithm requires at most 0 (I V[log]VI) time on a planar graph

G=(V,E).
We first define some terms. Let u and v be two vertices of a graph G (V, E).

A vertex-identification (u, v) is an operation on G which identifies u and v, that is,
removes u and v and adds a new vertex w adjacent to those vertices to which u or
v was adjacent. Our algorithm frequently uses this operation to construct G’ from
G. Consider a sequence cr of vertex-identifications on G:

O"--(b/l, I) 1)(U2, /)2)""" (Urn, Vm),

where re-<n-1 and n =IVI. Let G=(V,E), i=1,2,...,m+1, be the graph
obtained from G by the first i- 1 vertex-identifications, where G G. The process
of vertex-identifications can be represented by a vertex-identification forest F(G, r),
which is a collection of binary trees, recursively defined as follows:

1. If cr , i.e., an empty sequence, then F(G, or) is a forest with]VI isolated
nodes, each corresponding to a vertex of G; and

2. If o- or’. (u, v), and in place of vertices u and v a new vertex w is added to
the graph resulted from G by the sequence r’, then F(G, or) is a forest formed by
adding to F(G, r’) a new node w together with arcs (w, u) and (w, v).

Thus each leaf of F(G, or) represents a single vertex of G, and each internal node
w represents a vertex of a graph appeared on some stage of the execution of or; w
corresponds to the set of all the vertices of G represented by leaves of F(G, or) that
are descendants of w; all these vertices are identified into the single vertex w at the
stage. Figure 7 illustrates an example of F(G, or).

We recursively define the "level" l(w) and "degree" deg (w) of a node w of
F(G, tr) as follows:

w6

FIwo. 7. A sequence of vertex-identifications r (vl, v2)(v,, vs)(Wx, v3)(VT, vs)(wz, v6)(w4, w5), (a)
graph G, and (b) F(G, r), where the first number associated with a node is the level of the node, and the
second is the degree.

672 NORISHIGE CHIBA, TAKAO NISHIZEKI AND NOBUJI SAITO

1. For each leaf node w of F(G,

l(w)=O and deg(w)=d(G,w),

and
2. if an internal node w of F(G, tr) has two sons u and v, then

l(v)+l
(w)=

if l(u)= l(v),
if l(u) < l(v),

deg (w) deg (u) + deg (v).

We furthermore call a node w of F a highest node of level l(w) if w has no ancestors
of level l(w).

As a data structure to represent a graph G, we use an adjacency matrix A together
with adjacency lists L. Each adjacency list is doubly linked, and the list for vertex
u e V is denoted by L(u). The u-v element A(u, v) of A is 1 if and only if vertex
v is adjacent to vertex u. A(u, v) has also a pointer to the element ’v" in L(u) if
(u, v)eE. Note that one can initialize the matrix A in O(IEI) time. (See [1, Ex. 2.12].)
In addition to A and L, we use two arrays D and DP together with six lists DLIST (i),
0-< <-5, so that one can find a vertex of minimum degree in a constant time. An
element D(v) of array D contains the value of the degree d(v), v V. DLIST (i)
contains all the vertices of degree i, 0 =< <= 5. DP(v) has a pointer to an element "v"
in DLIST (d(v)) if d(v)-< 5. Figure 8 illustrates an example of such a data structure.

LEMMA 3. Let G (V, E) be a graph, and let tr be any sequence of edge-deletions
on G. There exists an on-line algorithm to execute o" in O(IEI) time.

D(.) DP(.) A(.,.) L(.)
U V

FIG. 8. Illustration o]’ the dam structure]:or our algorithm.

Pro@ In order to delete an edge, say (u, v), of G, we substitute 0 for elements
A(u, v) and A(v, u), and delete elements u from list L(v) and v from L(u). One can
directly access these elements in the lists via the pointers in the corresponding elements
in A, and one can delete an element in the list in a constant time since it is doubly
linked. Thus the execution of each edge-deletion requires a constant time. Of course,
o- contains at most IE’I edge-deletions. Hence the total amount of time required to
execute tr is at most O(IEI). Q.E.D.

MAXIMUM INDEPENDENT SET PROBLEM 673

LEMMA 4. Let G=(V,E) be a graph, and let cr be any sequence of
vertex-identifications on G. There exists an on-line algorithm to execute tr in at most
O([E[log]VI) time.

Proof. Let tr (ul, vl)(u2, v2)’ (u,, v,), where m _-<n 1 and n IV[. Let Gi,
i=1,2,...,m+1, be the graph obtained from G by the first i-1 vertex-
identifications.

In order to update the data structure for Gi+ from that of Gi, we shall modify
some adjacency lists and entries of A. Assume d(G, u)<-d(Gi, vg). Scanning all the
elements x of list L(ui) (i.e., all the vertices x adjacent to ui), we delete element ui
from L(x), and add element x to L(v) if x # vg and x is not in L(vg). Note that we
consider only a simple graph, which has neither multiple edges nor loops. In our data
structure, element x in L(vg) can be directly accessed via the pointer in A(vi, x) to x.
We also modify some entries of A appropriately according to the above modification
of lists. Then we remove the list L(u), and regard the updated list L(vi) as a list L(wi)
for a vertex w added to Gi in place of u and v. Hence the time required to execute
the vertex-identification (u, v) is proportional to d(G, ui). Therefore the total amount
of time T(tr) required for tr satisfies

<- O(Y’. MIN (d(Gi, u), d(G, vi))’).(1) T(r)
\ /

We shall show that the summation in (1) is at most a constant times IEI log IV].
Let a node u of F(G, o’) correspond to a subset U of V, then U is the set of all

leaves of F(G, o-) that are descendants of u. It follows from the definition that deg (u)
is equal to the total number of edges of G with an end in U, each edge with both
ends in U being counted twice. Since all the vertices in U are identified as a single
vertex u in G, we have

(2) d (Gi, u) -< deg (u,)

and

(3) d(G, vi)-<_ deg (v)

for 1, 2,..., m. Note that G is a simple graph. Let/-// denote the set of all the
highest nodes of level/" in F, that is, the nodes of level/" having no ancestors of level
/’. Then we claim that

(4) Y. MIN (d(G, u,), d(G,, v)) <= E E deg (x),
--i--m O]_h xeH

where h is the highest level of nodes in F.
Proof of the claim. It follows from the definition of "level" that every leaf of F

is a highest node of level 0, and that every internal node has at least one son which
is highest of some level. For each term (u, v) of r, F has an internal node having
sons u and v. Thus at least one of u and v appears in the summations of the right-hand
side of (4), that is, for each 1, 2,. ., rn

(5) ui or vi - (.J H.
ON]Nh

Combining (2), (3) and (5), we have (4).
In order to complete the proof, we shall show that the right-hand side of (4) is

at most O(IEI log VI). For f 0, 1,..., h, every node in is not a descendant of
any other node in Hi, so that all the subsets of V corresponding to nodes in Hj are

674 NORISHIGE CHIBA, TAKAO NISHIZEKI AND NOBUJI SAITO

pairwise disjoint in G. Therefore we have

2 deg (x) <_- 211,
xHj

because each edge of G is counted at most twice in the summation. By the definition
of level, each internal node of level has at least two descendants of level f-1.
Therefore h is at most log2 IV[. Hence we have

2 2 deg (x) _-< 21El log vI,
O<--_]<=h xHi

completing the proof. Q.E.D.
THEOREM 4. For any sequence tr of vertex-identifications and edge-deletions of a

graph G V, E), there exists an on-line algorithm to execute r in at most o(IEI log [VI)
time.

Proof. By Lemma 3, the time required to execute all the edge-deletions in tr is
O([E[). Hence we shall show that the time T’ required to execute all the remaining
vertex-identifications is at most O([E[log VI). Consider a subsequence tr’ of tr consist-
ing of all vertex-identifications. Let Gi be the graph resulted from G after the first
terms of tr, including/’ vertex-identifications. Let G be the graph resulted from G
after the first/" vertex-identifications of r’. Since Gi is a subgraph of G;, d(G, v)<-
d(G, v) for every vertex v of G. Noting this fact together with (1), we have T’ -<_ T(tr’).
Therefore by Lemma 4 T’-< O([E[log IV[), which establishes our claim. Q.E.D.

We are now ready to prove Theorem 3.
Proof of Theorem 3. One can embed a planar graph G in the plane in O([V[)

time, using the algorithm of Hopcroft and .Tarjan [5].
In our algorithm, the problem of finding an independent set of G is reduced to

that of finding a smaller graph G’, which we can obtain from G by deleting a vertex
of minimum degree together with some other modifications. Since we always keep all
the vertices of degree i, i- 0, 1,..., 5, in list DLIST (i) (see Fig. 8), we can find a
vertex v of minimum degree (necessarily at most 5) in a constant time. Note that we
can delete an element from the doubly linked list DLIST, or insert an element into
it, in a constant time, since we can directly access an element v of DLIST via the
pointer DP (v). Although the method to form I(G) from I(G’) varies with the type
of a subgraph of G induced by {v} U N(v), one can recognize the type in a constant
time. Therefore, given I(G’) obtained by recursively applying the algorithm, we can
form I(G) in a constant time. Since the graph G’ reduced from G has fewer vertices
than G, such a reduction occurs at most [VI times. Therefore the total amount of time
required to these operations is at most O(IV[). All the remaining operations, which
are used to construct G’ from G, are regarded as a sequence of three kinds of
operations: vertex-identification, edge-deletion, and deletion of an isolated vertex.
For example, G’ of Fig. 3 can be constructed from G by a sequence of four edge-
deletions, two vertex-identifications, and one deletion of an isolated vertex. Theorem
4 implies that any sequence of the first two kinds of operations can be executed within
the desired time, while one can easily see that any sequence of deletions of an isolated
vertex is executed in O([V[) time. Thus the proof is completed. Q.E.D.

Acknowledgment. We wish to thank Dr. T. Asano and Dr. K. Takamizawa for
their valuable suggestions and discussions on the subjects.

MAXIMUM INDEPENDENT SET PROBLEM 675

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] K. APPLE AND W. HAKEN, Every planar map is four colourable, Part I: discharging, Illinois J. Math.,
21 (1977), pp. 429-490.

[3] N. CHIBA, T. NISHIZEKI AND N. SAITO, A linear 5-coloring algorithm ofplanar graphs, J. Algorithms,
2 (1981), pp. 317-327.

[4] F. HARARY, Graph Theory, rev. ed., Addison-Wesley, Reading, MA, 1972.
[5] J. E. HOPCROFT AND R. E. TARJAN, Efficient planarity testing, J. Assoc. Comput. Mach., 21 (1974),

pp. 549-568.
[6] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, MA, 1979.
[7] R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, Proc. 18th Annual

Symposium on Foundations of Computer Science, IEEE Computer Society, Long Beach, CA,
1977, pp. 162-170.

[8] O. W. MATULA, Y. SHILOACH AND R. E. TARJAN, Two linear-time algorithms for five-coloring a
planar graph, SIAM J. Alg. Disc. Meth., submitted.

SlAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0005 $01.00/0

HAMILTON PATHS IN GRID GRAPHS*

ALON ITAI’, CHRISTOS H. PAPADIMITRIOU AND JAYME LUIZ SZWARCFITER

Abstract. A grid graph is a node-induced finite subgraph of the infinite grid. It is rectangular if its set
of nodes is the product of two intervals. Given a rectangular grid graph and two of its nodes, we give
necessary and sufficient conditions for the graph to have a Hamilton path between these two nodes. In
contrast, the Hamilton path (and circuit) problem for general grid graphs is shown to be NP-complete.
This provides a new, relatively simple, proof of the result that the Euclidean traveling salesman problem
is NP-complete.

Key words. Hamilton circuit, Hamilton path, grid graphs, rectangular grid graphs, NP-complete
problem, Euclidean traveling salesman problem

1. Introduction. Let G be the infinite graph whose vertex set consists of all
points of the plane with integer coordinates and in which two vertices are connected
if and only if the (Euclidean) distance between them is equal to 1. A grid graph is a
finite, node-induced subgraph of G. Thus, a grid graph is completely specified by
its vertex set. Let vx and vy be the coordinates of the vertex v. We say that vertex v
is even if vx + vy --0 (mod 2); otherwise, v is odd. It is immediate that all grid graphs
are bipartite, with the edges connecting even and odd vertices.

Let R(m,n) be the grid graph whose vertex set is V(R(m,n))={v: l<=v<=m
and 1 <-vy <=n}. A rectangular graph is a grid graph which, for some m and n, is
isomorphic to R (m, n). Thus m and n, the dimensions, specify a rectangular graph
up to isomorphism.

Let s and be distinct vertices of a graph G. We say that the Hamilton path
problem (G, s, t) has a solution if there exis{s a Hamilton path from s to in G. In
this paper we examine the Hamilton path problem for grid graphs; rectangular grid
graphs were examined first in [LM]. In 2 we show that the Hamilton path and
Hamilton circuit problems for general grid graphs are NP-complete. Consider now a
bipartite graph B=(VU V1),E). If Ivl-lvll/x, then all Hamilton paths of B
must start and end at vertices of V. If (R (m, n), s, t), with m x n Odd, has a solution,
then the number of even vertices is greater by one than that of the odd vertices.
Hence, a necessary condition for the solvability of (R (m, n), s, t) is that both s and
be even. In 3 it is shown that this condition is also sufficient for nontrivial (i.e.,
m, n > 1) odd rectangular graphs. If m x n is even, then a solution is possible only if
s and have different parity. However, this condition is not sufficient. There are three
families of configurations for which even though s and have different parity
(R(m, n),s, t) has no solution. In 3 we give the precise necessary and sufficient
conditions for a Hamilton path problem to have a solution. Partial results in this
direction were first proved in [LM].

* Received by the editors September 22, 1980, and in final form August 25, 1981.

" Department of Computer Science, Technion, Haifa, Israel. Part of this work was conducted while
this author was visiting the Electrical Engineering and Computer Science Department, University of
California at Berkeley, and the Laboratory for Computer Science, Massachusetts Institute of Technology.

$ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, and National Technical University of Athens, Greece. The work of this author was supported by
the National Science Foundation under grant MCS 76-01193.

Universidade Federal do Rio de Janeiro, Brasil. Present address: Computer Science Division,
University of California, Berkeley, California 94720. The work of this author was supported by the Conselho
Nacional de Desenvolvimento Cientifico e Technologico (CNPq), Brasil, processo 574/78.

676

HAMILTON PATHS IN GRID GRAPHS 677

2. NP-completeness. Before showing that finding Hamilton paths and circuits in
grid graphs is NP-complete, we first show several lemmas"

LEMMA 2.1. The Hamilton circuit problem for planar bipartite graphs with
maximum degree 3 is NP-complete.

Proof. The Hamilton circuit problem is NP-complete for planar digraphs such
that for all vertices v"

indegree (v) + outdegree (v) 3 (see [GJ], [P]).

To prove the lemma, we conduct for all vertices v the appropriate transformation as
illustrated in Fig. 2.1. The resulting graph is planar (the digraph was), bipartite and
has maximum degree less than or equal to 3. 1-1

FIG. 2.1

Let B (VU V1, E) be a bipartite graph, G1 a rectangular grid graph and let
emb be a one-to-one function from VLI V to the vertices of G1 and from E to
paths in G1. We say that emb is a parity-preserving embedding of B into G1 if:

1. The vertices V are mapped to even vertices of G1. (If v V, then emb (v)
is even.)

2. The vertices of V are mapped to odd vertices of G1. (If v V1, emb (v) is odd.)
3. The edges of B are mapped to vertex-disjoint (except perhaps for endpoints)

paths of G1 (i.e., if vu E(B), then emb (vu) is a path P from emb (v) to emb (u),
and the intermediate vertices of P do not belong to any other path).

See Fig. 2.2 for an example of a parity-preserving embedding.
LEMMA 2.2. If B is a bipartite planar graph with n vertices and maximum degree

3, then we can construct in polynomial time a parity preserving embedding of B into a
rectangular graph R (kn, kn (for some constant k).

Proof. It is a quite well-known and straightforward result (see, for example, [S],
[V]) that all cubic planar graphs with n nodes can be embedded in R (n, n). Our extra
requirement, preserving parity, can be accommodated by multiplying the scale by 3
and moving the vertices "locally" as in Fig. 2.3. lq

Xl Yl

x2 Y2

x3

emb

Yl x3

Y5
FIG. 2.2

678 ALON ITAI, CHRISTOS H. PAPADIMITRIOU AND JAYME LUIZ SZWARCFITER

v
o

o o

FIG. 2.3

P4, e4-, P3
e3

FIG. 2.4

a b
[--1

o c b2= c ild111 !!111 ,, 11
b d

(a)

FIG. 2.5

c4=b 5
%!!i ill

(b)

ds= d2

Cl.._
c3 d3:d4

To show NP-completeness of the Hamilton circuit problem for grid graphs, we
shall transform an arbitrary planar, bipartite, cubic graph B into a grid graph. Each
vertex of B will correspond to a 9-cluster, the nine vertices of a square of size 2
(Fig. 2.4).

LEMMA 2.3. Let C9 be a 9-cluster, as in Fig. 2.4. Then for all 1 <-_i !" <--4, there
exists a Hamilton path from pi to p which contains all four edges (e , e2, e3, e4}.

Proof. By inspection.
A strip is a rectangular graph with minimum dimension 2 (Fig. 2.5a). The strip

with corners a, b, c, d (a is adjacent to b and c is adjacent to d) is denoted S(a, b; c, d).
A tentacle T is a grid graph which is a union of a series of strips,

T: S(a, b; c, d) t.JS(a, b; c, d) . S(a, b c, d),

such that both

ci, di V(S(ai+l, bi+l; c+, d+)), 1,.. , k 1

HAMILTON PATHS IN GRID GRAPHS 679

and one of

ai+l, bi+l V(S(ai, bg; c, dg)), 1,. ., k 1;

there is no other intersection between the vertex sets of the strips; and each edge of
T belongs to one of the S’s.

From the definition the overlap must be in the corners of the strips as in Fig. 2.5a.
The vertices a 1, b 1, ck, dk are the corners of T.
LEMMA 2.4. Let s and be corners of a tentacle T. There is a HP from s to in

T if and only if s and have different parity.
Proof. By an easy induction on the number of strips.
THEOREM 2.1. The Hamilton circuit problem for grid graphs is NP-complete.
Proof. Given a planar, degree <-3, bipartite graph B, we shall construct a grid

graph G9 such that G9 has a Hamilton circuit if and only if there exists a Hamilton
circuit in B.

First we embed B in a grid graph G1, as in Lemma 2.2. The graph G9 will be
an induced subgraph of the grid resulting by multiplying the scale of G1 by 9. Each
image of a vertex w (wx, wy) of B corresponds to the following 9-cluster of G9:

{z [wx <- Zx <= w + 2, wy <= z <- w + 2}.

The edges of B are simulated by tentacles. Suppose vu is an edge leading from
v V(B) to u VI(B). Consider the path in G1 corresponding to vu. G9 will include
the blown up image of this path and another layer to obtain a tentacle. Some care
must be taken as to how the tentacle is connected to the 9-clusters corresponding to
v and u. By the construction the corners of the 9-cluster corresponding to v are all
even. If in G1 vu leaves v from below, then the corresponding tentacle is connected
as in Fig. 2.6a (recall that v is even). The other cases are symmetric (just rotate the
figure 90, 180 or 270). Since u is odd the connection is completed as in Fig. 2.6b.
This concludes the description of G9. An example is shown in Fig. 2.8.

V

G

o @ o

@ o @ / @ 0

0 @ 0
0

V ’ o V** o U ""
o o

o U o o

0

(9 GI G9

(a) (b)

FIG. 2.6

By Lemma 2.4 a tentacle Tuv can be covered by two Hamilton paths" the cross
path from v* to u* (Fig. 2.7a) and the return path from v* to v** (Fig. 2.7b).

The following two claims complete the proof of the theorem.
CLAIM 1. Let HCB be a Hamilton circuit in B. Then there exists a Hamilton circuit

nc9 in G9.
Proof. HC9 is constructed as follows: If vu HCB, the tentacle Tuv is covered in

HC9 by a cross path; otherwise, it is covered by a return path. The clusters themselves

680 ALON ITAI, CHRISTOS H. PAPADIMITRIOU AND JAYME LUIZ SZWARCFITER

o o o o

o o

o o o

0 0

,retu rn path cross path

FIG. 2.7

X

X3

FIG. 2.8

Y3

HAMILTON PATHS IN GRID GRAPHS 681

are covered as in Lemma 2.3. The partial paths can be connected to constitute a
Hamilton circuit. (Some edges of type ei in Fig. 2.4 must be deleted.)

CLAIM 2. If HC9 is a Hamilton circuit in G9, then there exists a Hamilton circuit
HCB in B.

Proof. By construction each tentacle Tvu is covered either by a cross path or by
a return path (connected to v). CB consists of all edges corresponding to tentacles
covered by cross paths. This is a Hamilton circuit because each 9-cluster cannot be
covered by HC unless it is incident upon exactly two cross paths.

COROLLARY 1. The Hamilton path problem for grid graphs is NP-complete.
Proof. Reduction from the Hamilton circuit problem for grid graphs. Let G be

a grid graph without degree-1 nodes. Since it is finite, it must have a vertex s of
degree 2. Let be any of the neighbors of s. Then (G, s, t) has a solution if and only
if G has a Hamilton circuit, fi

By adding two nodes of degree 1 to G, we may also conclude that the Hamilton
path problem without specified endpoints is NP-complete.

A rectangular subgrid graph is a subgraph (not necessarily induced) of G that
has V(R (m, n)) as its vertices for some m, n > 0.

COROLLARY 2. The Hamilton circuit and path problems for rectangular subgrid
graphs are NP-complete.

Sketch of proof. The grid graph constructed in the proof of the theorem may be
considered as a rectangular one minus certain "holes". We can now "fill" these holes
with long paths so as to transform the graph into a rectangular subgrid one. 71

The Euclidean version of the traveling salesman problem was proved NP-complete
in [Pa]. It is interesting, however, to notice that the Hamilton circuit problem for grid
graphs is a special case of the Euclidean traveling salesman problem, with cities the
nodes of the grid graph and with length of the tour equal to the number of nodes.
We therefore have:

COROLLARY 3. The Euclidean traveling salesman problem is NP-complete.
We notice that this proof is much simpler than that in [Pa]. It also avoids an

annoying complication having to do with the precision in which the distances are
calculated (see [Pa]).

3. Hamilton path problems in rectangular graphs.
3.1. Necessary conditions. Let B (Vk3 V1, E) be a bipartite graph with [V[_->

IV1[. We will think of the vertices of B as colored by two colors, black and white.
All the vertices of V will be colored by one color, the ma/ority color, and the vertices
V by the minority color.

The Hamilton path problem (B, s, t) is color compatible if
(1) B is even (Ivl- Ivl[) and s and have different color or
(2) is odd (ivl- Iw l/ 1) and s and are colored by the majority color (i.e.,

s, V).
Since the vertices of any Hamilton path alternate between the two colors, color

compatibility is a necessary condition for the existence of a Hamilton path. Another
source of necessary conditions arises from the connectivity of the graph. If s or is
a separating vertex (i.e., G-{s} or G-{t} is not connected), then there exists no s,
Hamilton path in G. For rectangular graphs this implies the following conditions for
the graph to have no s, Hamilton path.

(F1) G is a 1-rectangle, and either s or is not a corner (Fig. 3.1a).
Also, no s, Hamilton path exists if {s, t} is a separating pair, i.e., G-{s, t} is not

connected. For rectangular graphs this implies

682 ALON ITAI, CHRISTOS H. PAPADIMITRIOU AND JAYME LUIZ SZWARCFITER

o o o o @ o o

@ 0 0
(a)

(b)

0 0 @ 0

o o o

0 0 0
$

0 0 0

s
0 0 0

0 0 0

(d)

FIG. 3.1

(F2) G is a 2-rectangle, and st is a nonboundary edge (i.e., st is an edge, and it
is not on the outermost face, see Fig. 3.1b).

Consider Fig. 3.1c or 3.1d. The vertices s and are color compatible, the
connectivity is greater than two, but still there is no s, Hamilton path. These cases
can be generalized to yield the following condition:

(F3) (G, s, t) is isomorphic to (G’, s’, t’) which satisfies:
1. G’= R (m, n) with n 3 and m even.
2. s’ is colored differently from t’ and the left corners of G’.
3. Sx’ < t’ 1 (Fig. 3. lc) or s 2 and s < tx (Fig. 3. ld).
A Hamilton path problem (G, s, t) is forbidden if it satisfies one of the conditions

(F1), (F2) and (F3).
LEMMA 3.1. If (G, s, t) is forbidden, then there exists no Hamilton path from s to

rinG.
The proof is a straightforward case analysis.]
We summarize this section with the following definition and theorem:
A Hamilton path problem (G, s, t) is acceptable if it is color compatible and not

forbidden.
THEOREM 3.1. If there exists an s, tHamilton path in G, then (G, s, t) is acceptable.

3.2. Sufficient conditions. In this section it is shown that all acceptable HP
problems have solutions (i.e., acceptability is sufficient). The method of proof is to
break large acceptable HP problems into disjoint acceptable subproblems, the HPs
of which can be used to construct an HP for the original problem. The two methods,
stripping and splitting, are discussed in the following subsection. We will be done if
we show that for prime problems (those which cannot be stripped or split) acceptability
implies solvability. However, since the size of these problems is small, their number
is finite and can be handled by a case analysis (3.2.2).

3.2.1. Stripping and splitting. A separation of a rectangle R is a partition of R
into two subrectangles, i.e., V(R) is a disjoint union of V(R) and V(R2).

A strip S strips a Hamilton path problem (R, s, t) if
1. S, R -S is a separation of R,
2. s,tR-S,
3. (R -S, s, t) is acceptable.
LEMMA 3.2.1. Let (R, s, t) be an acceptable Hamilton path problem and S strips

R. If (R -S, s, t) has a solution, then (R, s, t) also has a solution.
Proof. Let P be a Hamilton path of R -S. Then there exists an edge pq P such

that pq is on the boundary of R-S facing S. A Hamilton path for (R, s, t) can be
obtained by the construction illustrated in Fig. 3.2.

HAMILTON PATHS IN GRID GRAPHS 683

q

R-S
q

s R-S

(a) (b)

FIG. 3.2

Let R (m, n) be a rectangle with m >= n. v, w V(R (m, n)) are called antipodes if
Vx<-2 and Wx>=m-1.

LEMMA 3.2.2. Let (R (m, n), s, t) be an acceptable Hamilton path problem which
cannot be stripped (by any strip S) and 2 <-n <-re(n, m) (4, 5), (4, 4). Then s and
are antipodes.

Proof. Without loss of generality, let sx <- tx. Let S be the leftmost strip of R (i.e.,
V(S) {v V(R): vx -< 2}). It suffices to show that s e S. Assume to the contrary that
s S. Let Hs, be the rectangle resulting from deleting S from R. A contradiction will
be obtained if (ns.t, s, t) is acceptable. Note that (Hs, t, s, t) is color compatible. Now
we must show that it is not forbidden.

Case 1. n x m is odd. Hs.t is also odd, so it cannot be forbidden.
Case 2. m > 5, n > 3. Both the dimensions of Hs.t are greater than 3, so it cannot

be forbidden.
Case 3. n 3, m > 5. If (Hs.,, s, t) is forbidden, it must be F3, but then so is (R, s, t).
Case 4. n 2. Since (R, s, t) is not forbidden, neither is (Hs.t, s, t). Note that if

m 5, (Hs.t, s, t) may be F3, but in this case (R, s, t) is F2.
Case 5. m 4, n 3. The only possibility for (H,t, s, t) to be forbidden is depicted

in Fig. 3.3b. However, then (R, s, t) satisfies F3.]
Let (R, s, t) be an acceptable Hamilton path problem and pq an edge. pq splits

(R, s, t) if there exists a separation of R to Rp and Rq such that:
1. s, p Rp and (R, s, p) is acceptable, and
2. q, Rq and (Rq, q, t) is acceptable.
The following lemma follows immediately from the definition of splitting.
LEMMA 3.2.3. Let pq be an edge which splits (R,s, t). If both (Rp, s, p) and

(Rq, q, t) have a solution, then so does (R, s, t).

3.2.2. Prime problems. A Hamilton path problem (R, s, t) is prime if it cannot
be stripped or split. The following lemma allows us to confine the discussion to a
finite number of cases.

LMMA 3.2.4. Let (R (m, n), s, t) be an acceptable prime Hamilton path problem,
then (n, rn) (4, 5) or n, m <- 3.

0 0

0 I0 0

0 0 e
s

0 o

0 0

FIG. 3.3

684 ALON ITAI, CHRISTOS H. PAPADIMITRIOU AND JAYME LUIZ SZWARCFITER

Rp Rq

FIG. 3.4

Proof. Assume first that (n, m) {(4, 4), (4, 5)}. Then s and are antipodes. Let S
be the leftmost strip, then s e S. We show that there exists a split such that Rp S.

Case 1. m > 5, n > 4. There are at least two vertices, v i, with v ix 2, 1, 2 and
colored differently than s. Let p be a v not connected to s by a nonboundary edge
of S and q be the adjacent vertex in R -S. The edge pq splits R" Rp S, and (Rp, s, p)
is acceptable by the construction. As for (Rq, q, t), q # t, since tx >= m 1 > 3 q, since
s and q have the same color, (Rq, q, t) is color compatible; Rq has dimensions
(m 2, n) > 3; hence, (Rq, q, t) is not forbidden and, therefore, is acceptable.

Case 2. m > 5, n 3 (Fig. 3.5a). Without loss of generality, the left corners of
R are white. Let p (2, 1) and q (3, 1). We show that edge pq splits (R, s, t). Note
that p is black and q is white. If m is even, then s is white and black; otherwise
(R, s, t) is not acceptable. Therefore p # s and q t. Consequently (Rp, s, p) and
(Rq, q, t) are color compatible. If m is odd, then both s, are white. Therefore p # s,
and because qx 3 < tx, also q t. Again, (Rp, s, p) and (Rq, q, t) are color compatible.
In both cases p is a corner of Rp and q a corner of Rq. Hence, the subproblems are
not forbidden.

Rp

Rp

SO 0 0 0’|0 0

o!o 0 so O,O 0 .O
P0q

O 0 0
Iq

(a) (b)

0 O O0

0 0 I SO

oo Rq o

soe ot Rp Rq

;0 0

(c) (d)

0 OI 0

SO

(e)

0

OI 0

SO

FIG. 3.5

f)

olo

po oqo

0 0

H st

R-Hst

(h)

HAMILTON PATHS IN GRID GRAPHS 685

Case 3. n 3 (Fig. 3.5b). Without loss of generality s is white. The edge pq
(2, 1)(3, 1) splits (R, s, t) q since q is white and is black.

Case 4. m 5, n 5 (Fig. 3.5c). Let p be a black vertex not connected to s such
that px 2, q (px + 1, p). Since Rq is odd, pq splits (R, s, t).

Case 5. m 5, n 3 (Fig. 3.5d). Similar to Case 4.
Case 6. m =4, n =4. If s and are antipodes, then either (2, 1)(3, 1) or

(2, 4)(3, 4) splits (R, s, t) (Fig. 3.5e). If s and are not antipodes, we may assume
that SxSy, tx, tr =<2. Therefore, either the rightmost or the uppermost strip may be
stripped off (R, s, t) (Fig. 3.50.

Case 7. m =4, n =3.
If s is white, then pq (2, 1)(3, 1) splits (R, s, t) (Fig. 3.5g). Otherwise, s is black

and sx 2, t 3. Therefore, (2, 2)(3, 2) splits (R, s, t) (Fig. 3.5h). I-1
LEMMA 3.2.5. Any (R (5, 4), s, t) acceptable Hamilton path problem is solvable.
Proof. It suffices to prove the lemma for prime problems. First, s and cannot

be antipodes. If they were, either edge, (2, 1)(3, 1) or (2, 4)(3, 4), splits (R, s, t). We
can then assume that both s, do not belong, say, to the rightmost strip. Now, if one
of s, belongs to the lowermost strip and the other to the uppermost, then either edge
(4, 2)(4, 3) or (5, 2)(5, 3) splits (R, s, t). Therefore without loss of generality we can
restrict to the case sx, tx <-3 and s, tr-< 2. Then the rightmost strip can be stripped
off, except when (R, s, t) is isomorphic to the problem of Fig. 3.6. That is a prime
problem, solvable as indicated in the figure.

FIG. 3.6

LEMMA 3.2.6. If (R, s, t) is an acceptable prime Hamilton path problem, then it
is solvable.

Proof. From Lemmas 3.2.4 and 3.2.5, we may assume that n, m -< 3. For all values
of m and n, all nonisomorphic problems and their corresponding paths are illustrated
in Fig. 3.6.

Case 1. re=n=3.

Case 2. n =2, m =3.

Case 3. n =2, m =2.

686 ALON ITAI, CHRISTOS H. PAPADIMITRIOU AND JAYME LUIZ SZWARCFITER

Following the discussion at the beginning of this section, the preceding lemmas
yield the following:

THEOREM 3.2. There exists a Hamilton path from s to in R if and only if (R, s, t)
is acceptable.

3.3. An algorithm. The proof of Theorem 3.2 is constructive. To decide whether
a Hamilton path problem (R(n, m),s, t) has a solution, we check whether it is
acceptable. This requires time linear with the representation of n, m, s and t. To find
the path itself, we first try to strip off the strips, constructing partial paths, and try to
split the problem. This process is repeated until we are left with prime problems, for
which a path can be found in constant time. The partial paths are pasted together as
in Lemmas 3.2.1, 3.2.3. The entire process takes time linear in the length of the path,
O(nm). We note here that the results of this and the previous section leave open the
question whether the Hamilton circuit problem is polynomial for grid graphs that are
not rectangular, but neither have "holes", i.e., both G and G-G are connected.

REFERENCES

[AHU] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA., 1974.

[GJ] M.R. GAREY AND O. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, 1979.

[GJT] M.R. GAREY, D. S. JOHNSON AND R. E. TARJAN, The planar Hamilton circuit problem is
NP-complete, this Journal, 5 (1976), pp. 704-714.

[K1] R.M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[K2] M.S. KRISHNAMOORTHY, An NP-hard problem in bipartite graphs, SIGACT News, 7 (1975), 1,
26.

[LM] F. LuccIo AND C. MUGNAI, Hamiltonian paths on a rectangular chessboard, 16th Annual Allerton
Conference, 1978, pp. 73-78.

[Pa] C.H. PAPADIMITRIOU, The Euclidean traveling salesman problem is NP-complete, Theoret. Comp.
Sci., 4 (1977), pp. 237-244.

[P] J. PLESNIK, The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree
two, IPL, to appear.

[S] Y. SHILOACH, Linear and planar arrangements of graphs, Ph.D. dissertation, Appl. Math. Dept.,
Weizmann Institute of Science, Rehovot, Israel, 1976.

IV] L.G. VALIANT, unpublished manuscript, 1979.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics
0097-5397/82/1104-0006 $01.00/0

ALGORITHMS FOR THE SOLUTION OF SYSTEMS OF
LINEAR DIOPHANTINE EQUATIONS*

TSU-WU J. CHOU" AND GEORGE E. COLLINS

Abstract. Two algorithms for the solution of linear Diophantine systems, which well restrain inter-
mediate expression swell, are presented. One is an extension and improvement of Kannan and Bachem’s
algorithm for the Smith and the Hermite normal forms of a nonsingular square integral matrix. The
complexity of this algorithm is investigated and a polynomial time bound is derived. Also a much better
coefficient bound is obtained compared to Kannan and Bachem’s analysis. The other is based on ideas of
Rosser, which were originally used in finding a general solution with smaller coefficients to a linear
Diophantine equation and in computing the exact inverse of a nonsingular square integral matrix. These
algorithms are implemented by using the infinite precision integer arithmetic capabilities of the SAC-2
system. Their performances are compared. Finally future studies are mentioned.

Key words. Linear Diophantine system, Hermite normal form, solution module basis, Rosser-type
algorithm, Kannan-Bachem algorithm

1. Introduction. Solving the linear Diophantine systems Ax b means finding
an integral vector y and a set of integral vectors N {N1,’’’, Np}, where p is the
dimension of the null space of the system Ax b, such that the sum of y and any
integral linear combination of Ni’s is an integral solution of Ax b, and vice versa.
The vector y is called a particular solution. The pair (y, N) is called a general solution.

Algorithms for solving a system of linear Diophantine equations can be found in
[1], [2!, [7] and [10]. Some other related work can be found in [9], [14] and [15].

The main difficulty in solving systems of linear Diophantine equations is the very
rapid growth of the intermediate results. This effect is called intermediate expression
swell [13]. Frumkin [7] has observed that the o,rder of intermediate expression swell
in the algorithm by Bradley [2] can be exponential in the number of equations. Such
an algorithm will be impractical even for large computers.

In 2 and 4 we will present two algorithms, LDSMKB and LDSSBR respectively,
which control intermediate expression swell very well. The basic ideas for the algorithm
LDSMKB come from Kannan and Bachem [9]. They used these ideas in computing
the Smith and the Hermite normal forms of a nonsingular square integral matrix A
and showed that the lengths of the coefficients of A during the computation of the
Hermite normal form of A can be bounded by a polynomial function of order
n4L(nla[), where n is the common row and column dimension of A, Ial is the largest,
in absolute value, element of A and L is the length function defined by equation (1)
in3.

Without modifying their algorithm, one can derive a better bound of order
n2L(n[A[) on the sizes of the coefficients during the computation. With a slight
modification, one can obtain an even better bound of order nL(n]AI). More detailed
discussion is given in 2.

In the algorithm LDSMKB, we extend Kannan and Bachem’s ideas with
modification to the problem of solving a system of linear Diophantine equations.
Analyses of the algorithm LDSMKB are developed in 3.

* Received by the editors August 7, 1980, and in revised form January 7, 1982. This research was
partially supported by the National Science Foundation under grants MCS74-13278 Aol and MCS78-01731.

5" Bell Laboratories, Holmdel, New Jersey 07733.
: Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706.

687

688 TSU-WU J. CHOU AND GEORGE E. COLLINS

The ideas employed in the algorithm LDSSBR to control coefficient growth come
from J. B. Rosser. He used the ideas in finding a general solution with much smaller
coefficients to a linear Diophantine equation (see [14]) and computing the exact inverse
of a nonsingular square integral matrix to minimize computing time (see [15]).

The algorithm LDSSBR restrains coefficient growth very well in the early stage
of the algorithm. Although the growth becomes fast in the final stage of the algorithm,
it is still quite moderate compared to that in some other algorithms. As our empirical
results (see 5) will show, the length of the largest coefficients while solving the
Diophantine system Ax b is typically bounded by nL(nlAI), where n is the number
of variables in the system.

2. Improvement of the Kannan-Bachem algorithm. Usual methods for comput-
ing the Hermite normal form of A transform successively the submatrix consisting of
the first rows of A into its Hermite normal form for i-1,..., n. So elements
common to rows 1,. , and columns + 1,. , n of A are zero after transforming
the first rows of A into a Hermite normal matrix.

Kannan and Bachem’s method successively transforms the principal minor
of A into its Hermite normal form for 1,..., n. So columns i+l,..., n of A
remain unchanged before transforming the (i + 1) (i + 1) principal minor of A. Pre-
conditioning is required to ensure that all the principal minors of A are nonsingular.
During the ith execution of the major loop in Kannan and Bachem’s algorithm, which
transforms the (i + 1)(i + 1) principal minor into its Hermite normal form, two
processes are involved, namely, elimination and normalization. Elimination refers to
the process of forcing Aj,i+l, the element in row] and column + 1 of A, to zero for
/" 1,..., by a sequence of unimodular column transformations on A, that is,
postmultiplication of A by a sequence of unimodular matrices. Note that any uni-
modular transformation is equivalent to a sequence of elementary column operations,
since every unimodular matrix is equal to a product of some sequence of elementary
matrices. Normalization refers to the process of making elements to the left of the
diagonal nonnegative and less than the diagonal elements to their right. The normaliz-
ation order is from top to bottom and from left to right. The normalization order in
the third execution of the major loop is illustrated by the following figure"

* 0 0 0
1 * 0 0

2 3 * 0
4 5 6 *

Each * represents a diagonal element. Each positive number denotes the order of the
corresponding element in the normalization process.

Let A’ be the matrix obtained from A whose x principal minor A is the
Hermite normal form of the x principal minor Ai of A. Then A’=AU for some
unimodular matrix U. Since A’ is obtained from A by a sequence of unimodular
transformations on the first columns of A,

where Ui is an unimodular matrix, and hence, A AiU. Since A is nonsingular,
’=adj (A)A’/det (Ai). Let and a’Ui ASAi Uik ik be the elements in the/th rows and

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 689

kth columns of Ui andAl respectiyely. Then [Uikl <--Y’=x]a] ladj (Ai)l/ldet (Ai)l. Since
ai is a Hermite matrix, E=[al,[=Et=a,<=a’+(a’z-l)+...+(a,-1)<-
det (a). Furthermore, det (al)= Idet (au,)l [det (a) Idet (U)I Idet (a,)l, and
hence, [uik[--< ladj (a)l. Therefore, [U[_-< [adj (A,)I. Since every element of the adjoint
ofA is an (i 1) (i 1) minor of A whose magnitude is bounded by (i
(see Theorem 3 in 3), IUl<=(i-1)-)/[ali-<-(i[al)-. Since A’=AU, Ia’l <
n lal IU, <- (n [al)’. Therefore, the length of the norm of a’ is bounded by iL(n[al).

Using this bound for the lengths of the elements of A’ at the end of the ith
iteration, Kannan and Bachem derive a bound of order n4L(nlAI) on the sizes of the
coefficients during the (i + 1)th iteration. Without modifying their algorithm, one can
derive a better bound of order nZL(n[AI) on the sizes of the coefficients during the
(i + 1)th iteration by employing once again the fact that A’ is the Hermite normal
form of A, so that the product of all the diagonal elements of A’, being the magnitude
of the determinant of A, is bounded by (i]A[) i.

One can obtain an even better bound, of order nL(nlAI), by changing the
normalization order of Kannan and Bachem’s algorithm. The new normalization order
is from right to left and from top to bottom. A typical normalization order for the
third execution of the major loop of this modified Kannan and Bachem’s algorithm
is illustrated by the following figure"

* 0 0 0
4 * 0 0
5 2 * 0
6 3 1 *

This modification enables us to derive a better bound, because column/’ is normalized
by using only the already normalized columns/’ + 1, , + 1 to its right during the
ith iteration of the major loop of the modified Kannan and Bachem’s algorithm. The
derivation of this new bound is very similar to the one given in 3 for the algorithm
LDSMKB.

In the algorithm LDSMKB we extend Kannan and Bachem’s ideas with the
modification described in the previous paragraph to the problem of solving a .vstem
of linear Diophantine equations Ax b for any A Z(m, n), the set of all m x n
matrices over the ring of integers Z, of rank r and b Z". In order to employ Kannan
and Bachem’s ideas for a square nonsingular preconditioned matrix, the n n identity
matrix is adjoined to the bottom of A, and we call the new matrix A. Since A is of
rank n, there exists a nonsingular submatrixA* ofA consisting of r linearly independent
rows of A and n r rows of the n x n identity matrix. The major work for the algorithm
LDSMKB is to transform A* into a pseudo-Hermite matrix by applying a sequence
of unimodular transformations to A. A square nonsingular matrix is a pseudo-Hermite
matrix, or in pseudo-Hermite form, if it is lower triangular and the absolute value of
any off-diagonal element is less than the absolute value of the diagonal element to
its right. The transformation of A* into a pseudo-Hermite matrix enables us to derive
a very good bound, of order n + rL(rlAI), on the lengths of the coefficients pertaining
to A.

Some helpful notations are introduced here before we present and analyze the
algorithm LDSMKB. Let V be a vector. The ith component of V is denoted by Vi.
Let A be an m n matrix. The fth column of A is denoted by Aj. The element in
the ith row and/’th column of A is denoted by A... Let ix,’", is and fl,’", ft be
sequences of integers such that 1-< i <= m and 1-< f, <= n. Then the matrix consisting

690 TSU-WU J. CHOU AND GEORGE E. COLLINS

of the elements of A in rows il, , is and columns/’1, ,]t in that order is denoted
by

17 ft

If s t, its determinant is denoted by

Given an m n matrix A, let fi be the (m + n) x n matrix [’], where I is the n n
identity matrix. Define inductively the row sequence of A, R (il, ", in), as follows.
For n 1, R (i) where is the smallest positive integer such that fi() 0. For n > 1,
let (il, i,-1) be the row sequence of A[l’’’’’n

1, .,-1 and let be the smallest positive
integer such that

z(il, ’’’, in-l, i)o.17 7 n

Then R =(il,"" ,ik, i, ik/l,"’’ ,i,-1) where, with i0=0, k is the largest integer,
0 <-k <= n- 1, such that i < i. The submatrix A* discussed above will be the matrix

il,...,iA[1....,,"] where (il," , i,) is the row sequence of A.
The algorithm has two inputs and two outputs. The inputs are the coefficient

matrix A, an integral m n matrix, and the right-hand side b, an integral m-vector,
of the linear Diophantine system to be solved. The outputs are a particular solution
x* of the Diophantine system Ax b and a basis N of the solution module of the
homogeneous Diophantine system Ax =0" if the Diophantine system Ax =b is
consistent. Otherwise, the null list is returned for x* and N.

The algorithm begins by constructing the (m + n) n matrix C whose initial value
is fi [], where ! is the n n identity matrix, and the (m + n)-vector B whose initial
value is/ [-b], where 0 is the zero n-vector.

Let Ra (il,’", ih) be the row sequence of the submatrix A h con.sisting of the
first h columns of A. Let D h denote the square nonsingular matrix ..LI....., J. Let ra
be the rank of A h. Then the algorithm computes R (il), where is the row index
of the leading nonzero element of A 1, that is, the smallest positive integer such that
A (1) 0. If il > m, which implies that A is a zero vector, then rl 0; otherwise, rl 1.
We claim that if R (/1,’’ ", fn) is the row sequence of an m n matrix of rank r,
then/’1 </’2 <" </’, and/’, > m for r < h -< n. This is obviously true for R 1. Note that
C[il is obviously a pseudo-Hermite matrix.

Now the algorithm enters a loop which computes r+l and R+I and transforms
D+1 into a pseudo-He.rmit.e matrix for k 1, , n 1 inductively. At the beginning

t’F 1"’"’!of the kth iteration, ,,l,...,k, is in pseudo-Hermite form where R (il, i) is the
row sequence o[A. To transform D+1 into a pseudo-Hermite matrix, one can first
eliminate C,k+1 by applying a unimodular transformation to columns C and C+1 for

1,...., k, in that order, and then normalizing elements to the left of the diagonal
..lof C[i[..., from right to left and from top to bottom.

However, a slight modification can be made to improve the efficiency. The
algorithm LDSMKB first finds the row index of the leading nonzero element of
C+1. If f is in {il,. , i}, say/" ih, then the algorithm eliminates Cs,k +1 by applying
a unimodular transformation to Ch and C+1 and repeats the above process. Eventually,

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 691

/" will be different from any index in {il,’" ’, ik}, since the/"s found in the above
process are increasing and Ck/l is linearly independent of C1 through Ck. Let * be
the last f found. Then/’* is the smallest positive integer such that

If/’*> ik, then R/I is obviously the sequence (il,""", i, f*). If, with io 0, h is the
largest integer, 0<=h <=k 1, such that ih <f* <ih+l, then R+I
(il,""", ih, f*, ih+l,’’’, ik). Such an h exists by the hypothesis that il <iz <... <ik.
Obviously, R/I is also an increasing sequence. If /’* <=m, then A/I is linearly
independent of A1,’’’ ,A, and hence r/l rk + 1. Otherwise, r/l r. Thus if
R/l=(i’,’’’,i’k+l) then i’h>m for h>r+l. For the case that ih<j*<ia+l, the
algorithm rotates columns h + 1,. , k + 1 so that column k + 1 becomes the (h + 1)th
column, and then the matrix

is lower triangular. Since now columns h + 2,..., k + 1 of C were columns h + 1,.. , k
of C at the beginning of the kth iteration, whose elements were not changed during
the elimination, the normalization can proceed from column h + 1, rather than from
column k, to column 1.

Let A’ be the final value of C after finishing the loop n- 1 times, and let
Rn (il, , in). Then a particular solution can be obtained, if the system is consistent,
by adding an integral multiple of A to B such that IBial < IA ih, hl for h 1,..., rn in
that order. Let (b,... b’,/n) be the final value of B. If b 0 for 1,..., m, then
the Diophantine system Ax =b is consistent and the algorithm returns
(b’,,/1, b,/n) and fi’f’n+l"’""+n] for x* and N respectively Otherwise, theLrn/l, ,n

Diophantine system is inconsistent and the algorithm returns the null list for x* and
N.

The algorithm LDSMKB is described as a SAC-2 [6] algorithm in ALDES [12].
The SAC-2 system is a computer-independent system for symbolic algebraic computa-
tion. Its predecessor is the SAC-1 system. ALDES is an ALgorithm DEScription
language whose syntax is very self-explanatory.

By SAC-2 convention an algorithm having one output variable is written as a
function subprogram; otherwise it is written as a subroutine subprogram. For example,
if F is an algorithm having one input variable x and one output variable y, and G is
an algorithm having one input variable x and two output variables y and z, then the
declarations for F and G are "y F(x)" and "G (x y, z)" respectively.

SAC-2 algorithms referenced by LDSMKB can be divided into four categories"
list processing algorithms, integer arithmetic algorithms, integral vector algorithms
and integral matrix algorithms.

Let S be an arbitrary set called an atom set. Elements in S are called atoms. A
list over S is recursively defined to be a finite sequence (al,.. ", an), n -> 0, such that
each ai is an obfect, namely either an atom in S or a list over S. For SAC-2, S is the
set of all the/3-integers, i.e., integers whose absolute values are less than the integer
/. By convention, fl 25 where sr is three less than the number of bits of a single-
precision word in implementation.

692 TSU-WU J. CHOU AND GEORGE E. COLLINS

Following are specifications of the list processing algorithms.
a - FIRST (L)

[First. L is the nonnull list (al,.’ ’, am), tn ->_ 1. a is the first element of L,
namely a 1.]

L’-RED (L)
[Reductum. L is the nonnull list (al,’’’, am), tn >-1. L’ is the reductum of
L, namely the list (a2,’’’, am).]

SFIRST (L, a)
[Set first. L is a nonnull list. a is an object. The first element of L is changed
to a.]

ADV (L; a, L’)
[Advance. L is a nonnull list. a is the first element of L. L’ is the reductum
of L.]

M COMP (a, L)
[Composition. a is an object. L is the list (a 1," , am). M is the composition
of a and L, namely the list (a, al,. ", am).]

n LENGTH (L)
[Length. L is the list (al,. ", am). n is the length of L, namely m.]

B REDUCT (A, i)
[Reductum. A is a list. is a nonnegative fl-integer not greater than the
length of A. B A if --0. Otherwise, B is the ith reductum of A.]

M LEROT (L, i,/’)
[List element rotation. L is a list (a 1,’", a,) of objects, n >0. and/’,
l<-i<-<=n, are /3-integers. If i=/’, then M=L. Otherwise M=
(ax, ai-1, ai, ai, ", a-l, ai+l, ", a,). L is modified.]

L LEINST (A, i, a)
[List element insertion. A is the list (al,. ", a,) of objects, is a B-integer,
0<_-i<-n. a is an object. If =0, then L =(a, a 1,’", a,). If i=n, then
L=(ax,...,a,,a). Otherwise, L (al, ai, a, ai/l, a,). A is
modified.]

Let a be an integer. For la l<, a is represented as a/J-integer. For]a I>_-/, let
n--1 aiiEi=O be the fl-radix representation of a, that is, ao," , a,-1 are B-integers such

that ai >= 0 for 0, .., n 2 and a,-1 > 0 if a is positive, or ai <= 0 for 0, ’, n 2
and a,_ < 0 if a is negative. Then a is represented by the list (a0, al,. ", a,).

Following is the algorithm specification of the algorithm IDEGCD.
IDEGCD (a, b; c, Ul, vl, U2, /22)

[Integer doubly extended greatest common divisor algorithm, a and b are
integers, c god(a, b). aul +by1 =c and au:+bv2 =0. If a : 0 andb 0 then
Ul <-Ib[/2c, Vl <-]a]/2c, u2=-b/c and v2=a/c. Otherwise Ul v2 sign (a),

sign (b) and u2 -sign (b).]
Let V be a vector in Z". Then V is represented by the list (vl," ", Vn), where

each v is the integer representation of the ith component of V.
Following are algorithm specifications of integral vector algorithms.
B VIAZ (A, n)

[Vector of integers, adjoin zeros. A is the vector (al,.. ", am). n is a non-
negative /3-integer. B is the vector (a 1,’", am, 0,’", 0) of m +n com-
ponents. A is modified.]

W- VIERED (U, V, i)
[Vector of integers, element reduction. U (u 1, , u,) and V (vl, ’, v,)
are integral n-vectors. 1 <-i <-n. vi 0. W- U-qV, where q =[ui/vi].]

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 693

B VINEG (A)
[Vector of integers negation. A is an integral vector. B =-A.]

VIUT (U, V, i; U’, V’)
[Vector of integers, unimodular transformation. U (ul,..., u,) and V
(v 1," ’, vn) are vectors in Z with ui # 0. [U’, V’] [U, V]K where K is a
unimodular matrix, depending on ui and v, whose elements are obtained
from IDEGCD.]

Let A be an integral matrix in Z(m, n). Then A is represented by the list
(A 1, ’, An), where each Ai is the list representation of the ith column (as an m-vector)
of A.

Following is algorithm specification of the algorithm MIAIM.
B -MIAIM (A)

[Matrix of integers, adjoin identity matrix. A is an m n matrix of integers.
B is the matrix obtained by adjoining an n n identity matrix to the bottom
of A. A is modified.]

Following is the formal algorithm description of LDSMKB. Note that the safe
declaration is mainly for run-time efficiency. Without the safe declaration, the validity
of the algorithm remains unchanged. The validity proof follows the algorithm
description.

LDSMKB (A, b; x*, N)
[Linear Diophantine system solution, modified Kannan and Bachem
algorithm. A is an m n integral matrix, b is an integral m-vector. If the
Diophantine system Ax b is consistent, then x* is a particular solution and
N is a list of basis vectors of the solution module of Ax 0. Otherwise, x*
and N are null lists. A and b are modified.]

safe c, C1, C’, C’, C*, h, i, j, k, m,N, n, r,.R’, x*.

(1)

(2)

(3)

(4)

()

(6)

(7)

[Adjoin identity matrix to A and zero vector to -b.] n LENGTH (A); C
MIAIM (A); B - VIAZ (VINEG (b), n).
[Initialize.] m LENGTH (b); CIFIRST (C); /’0; repeat {/’-j+l;
ADV(C1;c, C1)} until c0; R COMP (j,)); if f<=m then rl else r0;
k 1; if n 1 then go to 5.
[Eliminate column k + 1 and augment row sequence.] C*-REDUCT (C, k);
C*-FIRST(C*); C’C; R’R; for h=l,...,k+l do {if h=<k then
ADV(R’;i,R’) else i-m+n+l; CC*; f0; repeat {j-j+l;
ADV(C;c,C)} until c0; if j>=i then {if f=i then {CIFIRST(C’);
VIUT (C, C*, i; C, C*); SFIRST (C’, C)}; C’- RED (C’)} else
{SFIRST (C*, C*); C - LEROT (C, h, k + 1); R LEINST (R, h 1, j); if/’ _-< m
then r r + 1; go to 4}}.
[Normalize off-diagonal elements.] for f=h, h-l,..., 1 do {C*-
REDUCT (C, j- 1); ADV (C*; T, C’); R’ REDUCT (R,/’); while R’ do
{ADV (C’; C, C’); ADV (R’; i,R’); T VIERED (T, C, i)}; SFIRST (C*, T)};
kk +1; if k <n then go to 3.
[Check consistency of the system.] for j=l,...,r do {ADV(C; T,C);
ADV(R;i,R); B VIERED (B, T, i)};/’-0; repeat {f-j+ 1; ADV(B;c,B)}
until/" m v c 0.
[System consistent.] if c 0 then {C’ C; while C’ do {C -FIRST (C’);
CREDUCT(C,m); SFIRST(C’,C); C’-RED(C’)}; x*B; NC;
return}.
[System inconsistent.] x*); N); return.

694 TSU-WU J. CHOU AND GEORGE E. COLLINS

THEOREM 1. The algorithm LDSMKB is valid.
Proof. Let C be the (m + n)x n matrix which is initially [] and let B be the

(m + n)-vector which is initially [-b]. Let C’ denote the matrix consisting of rows
1,..., m of C, let C" denote the matrix consisting of rows m +1,..., m +n of C,
let B’ denote the vector consisting of the first m components of B and let B" denote
the vector consisting of the last n components of B. Performing unimodular transforma-
tions on C will preserve (1) the unimodularity of C", (2) the validity of the relation
C’ =AC" and (3) the consistency of C’x-B’. Suppose C is obtained from C by
performing a unimodular transformation on C. Then C CE for some unimodular
matrix E. Let C’ and C" be the submatrices of C corresponding to C’ and C" of C.
Then C’ C’E and C" C"E. Since det (C") det (C") det (E) +/-det (C"), C" is uni-
modular if and only if C" is unimodular. Since C’-AC"= C’E-AC"E (C’-AC")E
and det (E) 0, C’-AC" 0 if and only if C’-AC" 0, i.e., C’= AC" if and only if
C’-AC". Since C’ C’E and E is unimodular, C’x -B’ is consistent if and only if
C’x B’ is consistent. Obviously, C" is unimodular and C’= AC" when C is construc-
ted in Step 2. So we can conclude that C" is unimodular and C’-AC" at any point
of the algorithm LDSMKB. Let ’ and t" be the final values of C’ and C" respectivel,y.
Obviously, C" is unimodular and C’-AC" when C is constructed in Step 1. So C"
is unimodular, C’ AC" and C’x b is consistent if and only if Ax -b is consistent.
Note that ’ has the form [, "’.., C, 0,..., 0] where r =rank (A) We claim that
{C’"+,. ., ’,’} is a basis of the solution module of Ax 0. If x =+ zC’;, then
Ax =A i=+ zi" i=+ziA’=i=,+ zii =0. If x is an integral solution such
that Ax 0, then Ax A’"(")-lx ’ ix(C")- 0. Let z (zl,.. ’, z,)T (,,)-lX.
Then 0 ’z Yi=lzi’ Yi=I "ziCi, Since ,’’’, t are linearly independent,
zg 0 for 1,. r. Note that x C"z Y"= z’; Y" z"[an integral lineari=r+l

combination of "" , "" C’"r+l, ",’ areC +1, C,, and C linearly independent. This proves
that "" ’,’}{C +1, ", is a basis of the solution module of Ax -O.

Adding an integral multiple of a column of C to B will preserve (i) the validity
of the relation B’ AB"- b and (ii) the consistency of C’x B’. Suppose B is obtained
from B by adding kC, where

is the ith column of C, to B. Then B B + kCi. Let B’ and B" be the vectors consisting
of the first m elements and the last n elements of/ respectively. Then :’= B’ + kC
and :"= B"+ kC’[. Note that CI AC’[by the fact that C’ AC". Since/’-A/"
(B + kC A(B" + kC’[) (B + kAC’[) (AB" + kAC’[) B’ AB", B AB" b if
and only if B’ AB"-b. If x (xl, , xn)r is a solution of the system C’x B’, then
y=(xl,’",xi+k,’",xn)T is a solution of the system C’y-/’, since C’y-
C’{x+(O,...,k,...,O)r}=C’x+kC=B +kC =/’. Similarly, if y (yl, ,y,)T
is a solution of the system C’y -/’, then x (yl, , y-k,..., yn)T is a solution of
the system C’x B’. This implies C’x =B’ is consistent if and only if C’x-B’ is
consistent. Obviously, B’=AB"-b when B is constructed in Step 2. So we can
conclude that B’-AB"-b and that C’x-B’ is consistent if and only if Ax-b is
consistent at any point in the algorithm LDSMKB.

Let/’ and/}" be the final values of B’ and B". If/’= 0 then A/" b. Therefore,
/" is a particular solution of the system Ax b. If Ax b is consistent, then ’x -/’
is consistent. Let x* (xl," , Xn)T be a solution of ’x =/’. Then /’ t’x*
[, .,6" 0 0](x, x,) -,

Yi= xCi. We claim x Xr O. Let 1 --<_

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 695

h < r and assume xl xh-1 0. Then/’ -, , in) be thej=h xjC
row sequence of A and let k ih. Then/, =h xCkd. But Ck.j 0 for /" > h so

’ =Xh’h. Since I/.1 < I’k.hl by virtue of Step 5, Xh 0. By induction on h, therefore,
x x 0 and B’ 0. This completes the proof.

3. Computing time analyses. The computing time of the algorithm LDSMKB
will be analyzed by employing the concepts of dominance and codominance introduced
by Collins [4].

Let f and g be real-valued functions defined on a common domain $. We say
that f is dominated by g, and write f_-< g, in case there is a positive real number c such
that f(x)<= c. g(x) for all x in S. Note that f and g are not restricted to functions of
one variable, since the elements of S may be n-tuples. If f <= g and g <-f, then we say
that f and g are codominant, and write f g. Codominance is clearly an equivalence
relation. If f <_-g but not g _-< f, then we say that f is strictly dominated by g, and write

Dominance and codominance have the following fundamental properties.
THEOREM 2. Let f, fl, f2, g, g and g2 be nonnegative real-valued functions on S,

and let c be a positive real number. Then

(a) f- cf;
(b) iffl <-- gl and f2 g2, then fl +f2 gl + g2 and flf2 glg2;
(C) iffl <= g and f2 <= g, then fl +f2 <-- g;
(d) max (f, g) f + g;
(e) if 1<=land l <=g, then f +g <=fg;
(f) if 1 <= f, then f f + c
(g) if S 81 LJ $2, then f g on $1 and f <- g on $2 implies f <- g on S.

Proof. See [5] for a proof.
In SAC-2 an integer is represented in radix form with radix . It is natural to

define the length of an integer a to be the number of B-digits in its B-radix representa-
tion and denote it by Lo(a), or just L(a) if/3 is fixed in the context. Lo(a) can be
expressed by the formula

1 ira =0,
(1) L(a) [logo ([a[)J + 1 if a # O,

where Ix is the floor function of the real number x, that is, the largest integer n such
that n <-x. Also,

(2) L(a) / 1 if a 0,
[log(lal+l)] ifaO,

where Ix is the ceiling function of the real number x, that is, the smallest integer n
such that n => x.

The length function has the following properties:

(3) L(a +/- b <=L(a +L(b),

(4) L(a +b)-L(a)+L(b) for ab >=0,

(5) L(ab).L(a)+L(b) if ab

(6) L ai <= E L(a,),

(7) L a L(ai) if la, > 1 for l_-<i_-<n.
i=1

696 TSU-WU J. CHOU AND GEORGE E. COLLINS

Properties (6) and (7) hold with n variable, not just for each fixed n.
In this section we will first derive bounds on the coefficients for the algorithm

LDSMKB, then use these bounds to derive a bound on the computing time.
The norm of a vector V (Vx,’’’, v,) Z", denoted by IV[, is defined to be the

nonnegative integer maxx<=i_<. Ivil. The norm of a matrix A (aii) Z (m, n), denoted
by [A], is defined to be the nonnegative integer maxx__<i.i__<n [aiil.

THEOREM 3. Let A be an n x n matrix, and let di be the norm of the ith row of
A, i.e., di maxx_<_i__<, IA,I. Then

Idet (A)I <- n/ fl di.
i=1

Proof. This is known as Hadamard’s bound. See [8] for a proof.
Steps 3 to 4 form the major loop of t.he algorithm LDSMKB. Let CO be the

initial value of the matrix C. Let Ck, 1 <=k-<n- 1, be the value of C at the end of
the kth iteration of Step 4. Theorem 4 gives bounds on the coefficients of C k for
k=l,...,n-1.

THEOREM 4. Let rk/l and (ix,’’’, ik+l) be the rank and the row sequence of
.,k+x] respectively with A 0. Then

k 0(1) Ci,]--Ci,]for l<=i<-m+nandk+2<-j<-n,
k(2) Cih,] --0 for 1 <=h <] <-k + 1,

(3) IcL, [<lc i,.h[fOr l <-] <h <-k + l,

ll-k +1(4) ,.=1 ICi.,h <- rrt/lAI +’,
(5) Ic",41<-(k + 1)r_I/]AI "+l+x for

l<=/-<k+l.
1 <-_i <-m +n and i:{ix," ", i+1} and

Proof. Let k’ k + 1. During the first k iterations of the major loop, no operations
have been performed on columns f>k’, so (1) is true. Let D’ and D denote the
submatrices consisting of the first k’ columns of Ck and CO respectively. Then D’ DK
for some k’x k’ unimodular matrix K, since only unimodular transformations have
been applied on the first k’ columns of C. Let

H’=D’[ix’ ’’’, i,]1, 00o, k:’
By virtue of the algorithm, H’ is a pseudo-Hermite matrix. So (2) and (3) are true. Let

H=D[ix’ ’’’, i,]
H’= HK. Since H’ is a triangular matrix, det (H)= h’= Di,h ’ C,h. Also,
det (n’)= det (HK)= det (U) det (K)= det (n). Therefore, ’=]]= [det (H)].
Note that the hth row of H is the ihth row of D, which consists of the first k’ elements
of row ih of C Since ih <m for 1 < h < r, and ih > m for r, < h < k’ the norm of the
hth row of H is bounded by [A[for 1 h r, and 1 for r, < h k’. By Theorem 3,
[det(n)lr#[A] r’. Thus, (4)is true. Since H is nonsingular, n- exists. So K=
H-H’= adj (H)H’/det (H). Let Ki and Hi be the elements in the ith rows and]th
columns of K and n respectively. Ten]Kiwi’]H,[ladj (U)[/[det (U)]. Since H’

k
is a s o r < + 1+ eud-Hemite matrix,

l I,I laet laet herefore, Sin e e ery element of

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 697

adj (H) is the determinant of some k’x k’ minor of H and at most rk, rows of H come
from the coefficient matrix A and the rest come from the identity matrix/, ladj (H)I <-

rZ’/la[’. Therefore, [gl<-r’/[al’. Now D’-DK, hence IDI<-_k’IDIIKI <-

k’lAl(r;’/lal’)<-k’r;’/lal r’/. So (5)is true. [3
Let (il,’", ik) be the row sequence of

During the kth iteration of the major loop, Step 3 eliminates elements in column
k + 1 of C by a sequence of unimodular transformations. The/’th iteration of the
for-loop in Step 3 will change only columns/" and k + 1 of C. Let t‘’ be the value of
C after the fth iteration of the for-loop during the kth iteration of the major loop.
The following theorem gives bounds on the coefficients of ’ and t‘’k+l.

ck-1 1,...,mTIEOrE 5. Let d , Ifor h 1,..., k. If the rank of A[1,...,t,] is rt‘ and
A #0, then

()

(2)

le’/I -’’ IAIdh I-I=Ci,k+ll <- (2d,) .for ih {ii+1, it‘},

Ifft‘’il,i,i [+,11 <= kla[r[,/2[alr,+l I-I=l (2d,) for iE {il, it,}.

Proof by induction on f. Let k’= k + 1, and let do kr;k/21AI rk+l. The theorem is
obviously true for k 1 if VIUT is not applied in the first iteration of the for-loop in
Step 3. If VIUT is applied in the first iteration of the for-loop in Step 3, then
-kl k-1 k-1 t‘,l k-1Ci, =ulCi,1 +vlCi,t‘, and ’i,k, uC, +vC,,, where Ul, v, u and v are

k-1 k-1 k-1integers obtained by applying IDEGCD to C, and C,,. If C,, 0, then lull
k-1 0lc,,,,l I<[al and Ivl[<l -a -a -aC,,k, C,.x d. Therefore, [Ci, [<= Ia[[C,, I+dla[<

k-121almax{lf,yl,d}. If C,,,=0, then :lul=lsign(C,q)l= and
sign (Ck-a -k k-1,,k’)l 0 Again, IC l<2la max{ICk-aC,5 ,x ,,1],d}.Ifi=ih{i2,’’’,i},
then [Ck-a k-a -,, <IC [=dh. Hence,]Csl<21almax{dh, d}<[aldh(2d). Ifih,h

i{i, i}, then C[i. <d0. Hence,’, IN IA ldo(2da). So the theorem is true for
C,x With a similar argument, the theorem is also true for ’Now assume the induction hypothesis is true for] N 1. The theorem is obviously
true for k] + 1 if VIUT is not applied in the (] + 1)th iteration of the for-loop in
Step 3. If VIUT is applied in the (]+l)th iteration of the for-loop in Step 3, then

k-1 k,] k,]+ k-1 k,i
.+ uaCi.i+x +VlCi,, and ., uzC.i+l +vzC,,, where u, v, ua and vz are

integers obtained by applying IDEGCD to a C- and a ’ii+,i+ i+.’. Let d=
Iald+ H’= (2d,). If az # O, then lu x[N In21 d by induction hypothesis, and Ivl
di+. If a2=0, then lual=[sign(a)l=l and]vl=lsign(az)[=0. For either case,
,,+[al [+d,+l If i=ih{ii+2, i}, then IC- C-aCi,]+l i,k’ i,]+ I<1 ih,h dh

-k,] -k]+land [Ci,, [[A]dh fl{=l (2dt) by induction hypothess. Thus, [Ci,)+a
2lAIdad+x ff,=x (2d): IAId fl (2d) If i {/1,’ -t}, then [Ci,i+ d0 by Theorem

IA[0 a+ ,+ ,+1
t=a (2dr). So the theorem is true for .i+ Similarly for i.’
CorollAry. During the kth iteration of Step 3 of the algorithm LDSMKB, if

A 0 then the norm of C is bounded by 2krA[+.
Proof. The hth column of C, 1 h k, is changed only once during the kth

iteration of Step 3, and ’ is the new value of the hth column of C. By Theorem 5
and the fact that [’ -a ,h-1 < Ic-I k/2 Irk+2

during the kth iteration of Step 3. Since _a (2d)= 2 ,,,=,ci,., I2rU2IAI by
Theorem 4(4), [CI N2kr;lA[Z+.

698 TSU-WU J. CHOU AND GEORGE E. COLLINS

Let Rk+l=(il,’’’,ik+l) be the row sequence of A[1 ..k+X]. Let
,i, ", ,-+,,i) be the jth column of C after the ipth element, j <p < k + 1, of the

jth column of C is normalized during the kth iteration of the major loop. The following
theorem gives bounds on Ci,.

THEOREM 6. Let dh IC ki,,h[for h 1,. ., k +1. IrA 0, then

p

(1) , [< (k + 1)r [AI 1-I (2d,)
=j+2

if ih E {it+l, it+l},

p

(2) [, k+1

_
1/2 3(rk+ +,,]2 (k +i)2r IA[a) H (2dr)

=i+2

if i_ {il, ik+x}.

Proof by induction on p. Let (’kx,j,’", ,,+n,i) be the jth column of C
before the normalization of the fth column begins. Let d 2(k + 1)r,+t IA[
Then [C,l2kr d by Corollary 5.1. Let s=ii+x. Then ,i

i,i--qCid+l, where q [g g " "ks,]/Csd+l]. Since < [Cs,i[<C,i d and [ql < d,
d+dl ig+}, then [CCi,i+x[. If i=ih{ii+2, i.]+[<]Ci.hl=dh. Hence,

k,]+l kd(l+dh)<2ddh. If i{i, .,&+x}, then by Theorem 4(5)[,,i
2d(k + 1)rt/ZlA[++ 2d’, where d’= 2(k + 1) r+ Therefore, the
theorem is true for p f + 1.

Now assume inductively that the theorem is true for p N] + 1. Let s ip+. Then
Ci,i -[C,i/C,+]Ci,p+a and hence

k,p+l k
Ci,j I<l ’fl/l ,,, lie ,i l+2ddo+ H (2d,) a.

=j+2

If ih {i,+2, ", ik+l}, then

p

[C,,i [<=2ddh H (2d,)
=i+2

and Ic+l<lc I-[t=+2 (2dr)
r+’

,1 d. Hence, ,,i

2ddt=i+z(2dt) If i{i, ’,&+t}, then Ht=i+z (2dr) by induction
k /2 +a+land < + 1 rhypothesis [Cgo+xl=(k +t lal by Theorem 4(5). Hence, l’’o+a+ r

Cid
2d’(l+dp+x) t=i+z (2dt)2d t=i+ (2dr). The efore, the theorem s true for
p+l.
Coohv 6.1. During the kth iteration of Step 4 of the algorithm LDSMKB,

gA 0, then ICl2Z(k + 1) r+ where r+ is the rank ofA[.,+1].
Proof. Setting p k + 1 in Theorem 6, and using Theorem 4(4), we find

2d’ k+l d’ k+l ,,2 2r+a Jal4(r+x+l),=i+z (2d,)2 ,= dtZd’rt[al’+l+x=ZZ(k
Since kn-1, rr+arank(A)=r and na<2"+x for n>0, we have the

following theorem immediately from the corollaries of Theorems 5 and 6.
THEOREM 7. At any point of the algorithm LDSMKB, if A O, then IC[<

23"(r[al)4(+), where r =rank (a).
The next theorem gives bounds on elements of the vector B.
THEOREM 8. Let (i a," ", i,) be the row sequence of A. Let C* be the final value

of C. Let eh [C*,[for h 1,..., n. Let B be the value of B right after the kth
applica6on of the algorithm VIERED in Step 6. Then, ifA O,

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 699

(1) [Bl<e if i=ih {ia, ,ik},
(2) IB[-< 2lb[e if ih {&+l,""", i,}, and
(3) [Bk [<=Zlbln(r[a[)r+ if i{il, i,}.
Proof by induction on k. Let B be the initial value of B, i.e., B []. For k 1,

let t=il. Since BX=B [B/C*]C,B =B-[B/C* *t,1 t,x]C,x. Ifi{ix},thenB
B-[B,/ * * *t,]Ct,, and hence, IBI < IC,,a e. Therefore, (1) is true for k 1 Note
that IBll<lBl+lBllc* Ibl+i, ll IbllCia[, If i=ih{i2, ,i.}, then ICixl<lCihl=
eh. Therefore, [Bi Ilbl+lble, 21b[eh. That is, (2)is true for k 1. If i{ix,... ,i,}
then by Theorem 4(5), IB?l21bllC, l2[bln(rlal)+x so (3)is true for k 1.

Now assume the theorem is true for k=pl. Let t=ip+. Since B+=
B-[B/C*t,p+]Cp+x,Bi* + B -[B,/Ct,p+]Ci.p+x.* * {i,..., ip}, thensince
Co+x 0, IBm+l I= IB <e by induction hypothesis. If iv+ t, then
IB -[B/C+]Co+ [< ICo+ [= e+. Therefore, (1) is true for k p + 1. If
{i+, i.}, then by the induction hypothesis lIB * *,/c,,o+,]l<lBrl/Ic t,p +

(2lble,+)/eo+=Z’lb I. Thus, IB+’I<IB[+Z’ib[[C.o+] 2Plbleh +2P[bllCih[
2lble. +2"lble. 2"+lbleh. Therefore, (2)is true for k =p + 1. If i{ix,..., i,}, then
InY[2O[b[n(rlAI)r+ by the induction hypothesis (3), and Ifi.%+aln(rlA[)+ by
Theorem 4(5). As shown in the proof for (2) fIB * 2,/c,,o+x]1 < Ibl Therefore,
2lbln(rla[)r+ + 2Olbln(r[AI)r+ 2"+[b[n(rlal)+. This completes the proof.

COROLLARY. At any point of the algorithm LDSMKB, g A O, then
2="[bl(rlal)r+.

Proof. By Theorem 4(4), eh (r[A[) for h 1,..., n. Therefore by Theorem 8,
at any point of the algorithm LDSMKB, IBl2lb[n(rla[)+:2nlb[(rlal)+<
2Z"lbl(rlAI)r+.

Before we analyze the computing time of LDSMKB, we list theorems for the
computing times of those SAC-2 algorithms referenced by LDSMKB. Proofs of these
theorems are given in [3].

THEOREM 9. The computing times ofthe algorithms FIRST, RED, SFIRST, ADV,
COMP are all codominant with 1.

THEOREM 10. Let L be the list (a , a,). Then tLENGTH(L)n+I,
tREDOCT (L, i) + 1, tLEOT (L, i, j) j and tLENST (L, i, a) + 1.

THEOREM 11. Let U Z and V Z. Then tvIAz(V,n)m+n,
tw(W)mt(Iwl), twu(U, W, i)mt(IuI)t(Iwl) and tVIERED(U, V,i)
mZ(iUI)t([wl).

THEOREM 12. Let A be an m x n integral matrix. Then tMAIM(A) n(m +n).
Finally, Theorem 13 gives a bound on the computing time of the algorithm

LDSMKB.
THEOREM 13. Let A Z(m, n), with A # O, and &t b Z". Then

tLDSM (A, b n3(m +n){n + rL(rlA[)}2 + r(m + n)L([bl){n + rL(rlA])}.
Proof. Let ti be the computing time of Step i. Obviously, tl n (m + n)+ mL(lbl)

and t2m by Theorems 10, 11, and 12. Let t,, 3 i4 and 1kn- 1, be the
computing time of Step in the kth iteration of the major loop. The computing time
for VIUT is the most significant one in Step 3. VIUT is called at most k times during
the kth iteration. Therefore, by Theorems 7 and 11, t3,k k(m +n){L(d*)}2, where
d*= 23"(rlA[)4(r+x). The computing time for VIERED is the most significant one in
Step 4. VIERED is called no more than k z times during the kth iteration. So
t4, k2(m +n){L(d*)}2 by Theorems 7 and 11. Thus,

n-1 n--1

t3+t4 E (t3,k +t4,k) Y’. {k(m +n)+k2(m +n)}{L(d*)}2n3(m +n){L(d*)}2.
k=l k=l

700 TSU-WU J. CHOU AND GEORGE E. COLLINS

t5 is codominant with the computing time for the for-loop and the repeat-loop in
Step 5. By Theorems 7 and 11 and the corollary of Theorem 8, t5 _-< r(m / n)L(d*)
L(e*)+(m+n), where e*=22nlb[(r[AI)r+l. Obviously, t6.m(n-r)+l and t71.
Therefore, tLDSMKB (A, b) <=n3(m + n){L(d*)}2 + r(m + n)L(d*)L(e*). Since

L(d*)’n +rL(rlAI) and L(e*).-.n +L(IbI)+rL(rlAl)L(d*)+L(lbl),
tLDSMKB (A, b)n3(rn + n){L(d*)}2 + r(m + n){L(d*)}2 + r(m + n)L(d*)L(Ib[)

---n3(rn +n){n +rL(rlA[)}2+r(m +n)L([bl){n +rL(rlAI)}.
4. A Rosser-type algorithm. Consider the following linear Diophantine equation:

(8) aixi + a2x2 +" + anxn b.

Without loss of generality, let us assume at a2 ->’’’ _->an->_0 and at >0, since if
ai < 0 we can replace xi by -xi, if a < aj for some <] we can interchange x and xj

and if a 0 the equation becomes trivial. Rosser’s algorithm begins with the following
matrix:

al a2 an
0 0

1 0

0 1

Let c,i be the element in the ith row and/’th column of C, and let C/be the/’th column
of C. Then the algorithm consists of the following steps"
(1) while cl,2 #0 do {C1 -C1-[c1,1/cl,2JC2; sort C1," ’’, Cn in descending order

according to their leading elements}.
(2) At this point the matrix C has the forrh

c 0 0]U U U,

where U. e Z and c gcd (a 1, , an). If c b then (8) has no solution; otherwise,
X=qUI+y2U2+...+ynUn, where X=(xl,...,xn)T, q=b/c and y2,...,yn

are arbitrary integers, is a general solution of (8).
One may easily verify that the matrix U [U1,. ", Un] is unimodular. Since c1,1 and
cl,2 are the largest and the second largest elements in the first row of C, the integer
[c 1,1/c 1.21 computed in Step 1 is usually small. So Rosser’s algorithm usually will find
a U with evenly small elements, especially when n is large, while other methods
usually will find a U with some large elements and the rest quite small, including
many zeros and ones.

In solving the linear Diophantine system Ax b, one would like to compute a
unimodular matrix U such that A’=AU is a column echelon matrix, i.e., if A’e
Z(m, n), r rank (A’) and k, 1 <-] <_- r, is the row index of the leading nonzero element
of column] of A’, then 1 < kl <" < kr and columns r + 1, n of A’ are zero. In
the algorithm LDSSBR, U is obtained by executing statements similar to those in
Step 1 of Rosser’s algorithm r (the rank of A) times. In fact, U is the product of r
unimodular matrices U1,’", Ur associated with executions of Step 1 of Rosser’s
algorithm. The sizes of the elements in the U’s will directly affect the rate of coefficient
growth in solving a linear Diophantine system. Since, in general, Rosser’s algorithm
computes Ui’s with evenly small elements, the algorithm controls the coefficient growth
very well.

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 701

Three additional SAC-2 algorithms are referenced by LDSSBR.
B MINNCT (A)

[Matrix of integers, nonnegative column transformation. A (asj) is an m n
integral matrix. B (bij) is the m n integral matrix with bsj aij if a 1 => 0
and bi -a if a1 < 0. A is modified.]

B MICS (A)
[Matrix of integers column sort. A is an integral matrix with nonnegative
elements in the first row. B is an integral matrix obtained by sorting columns
ofA such that elements of the first row are in descending order. A is modified.]

B MICINS (A, V)
[Matrix of integers column insertion. A is an m n integral matrix represen-
ted bythe list (A 1, A, , A,), whereAs is the list (a 1, , a,,s) representing
column ofA and a 11 ->- a >-.. ->_ a ,. V (v 1, ’, v,,) is an integral vector
with vitals. Let be the largest integer such that alg>-vl. Then B is the
matrix represented by the list (A 1, , As, V, As+ 1, , A,). A is modified.]

Following is the formal algorithm description of LDSSBR.
LDSSBR (A, b; x*, N)

[Linear Diophantine system solution, based on Rosser’s ideas. A is an m n
integral matrix, b is an integral m-vector. If the Diophantine system Ax -b
is consistent, then x* is a particular solution and N is a list of basis vectors
of the solution module of Ax -0. Otherwise, x* and N are null lists. A and
b are modified.]

safe b C’, C2, m, N, n, s, x *.

(1) [Initialize.] n LENGTH (A); m -LENGTH (b).
(2) [Adjoin identity matrix to A and zero vector to -b.] C MIA’IM (A); B -VIAZ (VINEG (b), n).
(3) [Sort columns of C.] C MINNCT (C); C MICS (C).
(4) [Pivot row zero.] C1 - FIRST (C); if FIRST (C1) 0 then go to 6.
(5) [Eliminate pivot row.] repeat {B - VIERED (B, C1, 1); C - RED (C); if C

then s0 else {C2-FIRST(C); s-FIRST(C2); if s0 then {CI-
VIERED (C, C2, 1); C - MICINS (C, C1); C1 - C2}}} until s 0; n n 1.

(6) [System inconsistent?] ADV (B; bl, B); if bl S0 then {x*(); N(); return}.
(7) [Remove pivot row.] C’ C; while C’ do {C1 - FIRST (C’); C1 - RED (C);

SFIRST (C’, C1); C’ <--- RED (C’)}; m - m 1.
(8) [Finished?] if m > 0 then {if n > 0 then go to 3 else go to 6}; x* -B ;N - C; return.

Step 1 computes the number of variables n and the number of equations m in
the system. Step 2 constructs the matrix C [], where I is the identity matrix in
Z (n, n), and the vector B [-b], where 0 is the zero vector in Z ". Steps 3 to 8 form
a loop, which computes a unimodular matrix U, such that AU is a column echelon
matrix, by repeatedly executing a step similar to Step 1 in Rosser’s algorithm (described
in this section), checks the consistency of the system and computes a particular solution
if there exists one. Step 3 makes the elements in the first row nonnegative and sorts
them in descending order by performing two kinds of elementary column operations:
multiplying a column by -1 and interchanging two columns. This is a preparatory
step for Step 5 which employs Rosser’s ideas. Step 4 checks whether the first row is
zero and, if so, skips the execution of Step 5. Step 5 basically does two things’ (1)
reduces the size of the first element of B by repeatedly subtracting multiples of the
first column of C from B, and (2) performs Step 1 of Rosser’s algorithm. Note that
two kinds of elementary column operations are involved in this step, i.e., subtracting

702 TSU-WU J. CHOU AND GEORGE E. COLLINS

a multiple of a column from another column and interchanging two columns Also
note that, because the first column of C is no longer useful in later computations after
leaving the repeat-loop, it is deleted from C through the algorithm RED before
leaving the repeat-loop. Step 6 checks the consistency of the system. If it is inconsistent,
then Step 6 returns the null list for x* and N. Step 7 removes the first row of C,
whose elements are zero. The deletions of these unnecessary columns and rows make
this algorithm more efficient.

5. Empirical observations. We observed that the first k diagonal elements of C
after the kth iteration are small integers (a typical example is given in the Appendix).
An explanation is given below.

THEOREM 14 (Cauchy-Binet theorem). Let H and K be k n and n k matrices
respectively. If G HK, then

det (G)= Y, H K(
1<-i1<...<i<-, \il, "", ik \1, "",

Proof. See [11, p. 37] or [8, p. 9] for a proof.
Let Qk,n, with 1 _-< k <_-n, be the set of all k-tuples (il," ", ik) of integers such that

1<-i1< <ik <--n. Let S eZ(k,n) with k <-n. If

1, ..., k)= 0S
il, "’’, ik

for all (il, , ik) Qk,,, then let dk(S) 0; otherwise, letdk(S) be the greatest common
divisor of all S(i,..,i) such that (il," ", ik) Q,,. dk(S) is called the kth determinantal
divisor of S.

THEOREM 15. Let S Z (k, n). If S’ SU and U is a unimodular matrix, then
d (S’)= d (S).

Proof. Sinced (S) 0 if and only if rank (S) < k and rank (S’) rank (S), d (S’) 0
if and only if &(S)= O. Let us assume d(S)# O. For any (,..., f)e O,., let

Then, by Theorem 14,

Since

for

dk(S)IS’(I’ ..., k for any(]l,’’’,]k)eQk..,
]

and hence, dk(S) ldk(S’). Similarly, dk(S’)ldk(S), since S=S’U-1 and U-1 is uni-
modular. Since dk (S) and dk (S’) are positive, dk (S) dk (S’).

Suppose S’ is lower triangular and of full row rank. Then S’[1,.. ,k is the only
k k minor of S’ with nonzero determinant. Let s 1," ", s be the diagonal elements
of S’. Then

i-- 1, ..., k

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 703

by Theorem 15. If k < n, then d (S) is the greatest common divisor of the determinants
of all the k x k minors of S. Suppose S is a random matrix. Then

1, ..., k-l, h
forh =k, k +1,.. , n

are random integers whose greatest common divisor, say d,(S), in general will be
small (see [10, p. 301]). Since dk (S) <- d ’k (S), the si’s in general are small.

To the algorithm LDSSBR, let $ be the matrix

c0[il,
for the kth iteration, where Co= [] and ih is the hth element of the row sequence of
A. To the algorithm LDSMKB, let S be the matrix

co[i, ’’’, ik][1, "", k+l

Then our observation follows from the above argument.
Finally, we will present several tables of empirical results (Tables 1-5) which

indicate some aspects of the performances of the algorithms LDSSBR and LDSMKB.
Symbols in these tables have the following meanings"
n--number of variables in the system,
m--number of equations in the system,
r--rank of the coefficient matrix,

d0--1ength, in bits, of the norm of the coefficient matrix,
eo--length, in bits, of the norm of the right-hand side,
d--length, in bits, of the longest integer occurring in the matrix C during the

computation,
e--length, in bits, of the longest integer occurring in the vector B during the

computation,
d--length, in bits, of the longest integer in the basis obtained,
--length, in bits, of the longest integer in the particular solution obtained,
t--VAX execution time, in seconds,
---ratio of LDSSBR time to LDSMKB time.

These tables are obtained by applying LDSSBR and LDSMKB to sets of randomly
generated systems; that is, coefficients in these systems are randomly chosen from
prespecified intervals. For any given n, m, do and eo in these tables, random systems
were generated until a consistent one was found. About 40 per cent of the random
systems generated were inconsistent.

TABLE

5
7
9

11
13
15

LDSSBR

d e g d

41 35 35 .73 87
60 59 59 2.45 128
82 82 82 6.02 170
100 97 97 12.24 204
122 119 119 21.82 248
149 149 149 38.69 306

LDSMKB

e g d

50 49 .86 41
71 71 2.87 6O
92 91 6.64 82
110 110 13.45 100
132 132 24.69 122
160 160 45.54 149

.85

.85

.91

.91

.88

.85

Notes" rn n 1 and do eo 10.

704 TSU-WU J. CHOU AND GEORGE E. COLLINS

By examining the tables, we find that the ratio of the computing time of LDSSBR
to that of LDSMKB ranged from 0.85 to 3.47. In all cases LDSSBR found smaller
solutions than LDSMKB did; that is, the norms of the particular solutions obtained
by LDSSBR were smaller than the norms of those obtained by LDSMKB. In all cases
where n-r > 1, LDSSBR also obtained smaller solution module bases in the same
sense.

TABLE 2

5
7
9

11
13
15

LDSSBR

d e

77 76 76 1.97
119 118 118 7.56
161 159 159 19.61
202 201 200 38.26
247 246 246 69.39
288 285 285 119.13

LDSMKB

d e d

164 96 96 1.35 77
260 138 137 4.69 119
329 180 178 12.14 161
416 222 222 25.01 202
512 268 267 52.95 247
590 308 305 96.30 288

1.46
1.61
1.62
1.53
1.31
1.24

Notes" m n 1 and do eo 20.

TABLE 3

5
7
9

11
13
15

LDSSBR

d e

161 160 160
239 238 238
320 317 317
403 403 403
485 484 484
567 566 566

7.89
25.74
58.64

120.43
206.63
359.11

LDSMKB

d e g d

343 201 201 2.60 161
514 278 278 10.46 239
670 360 355 26.84 320
832 443 441 65.24 403
999 525 524 136.48 485

1,169 607 605 261.65 567

3.03
2.46
2.18
1.85
1.51
1.37

Notes" m n and do eo 40.

TABLE 4

5
7
9

11
13
15

LDSSBR

d e

239 238 238
358 356 356
483 480 480
601 599 599
723 722 722
849 847 847

15.89
49.15
118.03
229.39
411.54
761.56

LDSMKB

d e d

531 299 298 4.58 239
771 418 418 17.60 358

1,023 542 541 50.10 483
1,260 661 661 120.78 601
1,491 783 783 258.27 723
1,752 908 908 519.64 849

3.47
2.79
2.36
1.90
1.59
1.47

Notes" m n 1 and do eo 60.

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 705

TABLE 5

m

2
3
4
5
6
7
8
9
10

LDSSBR

d e a

60 60 13 12 3.78
72 70 30 25 11.76
85 85 41 38 17.81
99 96 64 64 30.24

125 122 87 86 49.29
152 151 124 123 72.99
171 168 151 150 97.23
225 223 225 223 129.15
321 320 321 320 171.23
602 602 602 601 255.71

LDSMKB

d e d

178 116 57 116
298 174 115 174
414 235 177 235
533 294 235 293
659 358 298 358
780 414 355 413
902 476 416 476

1,022 539 479 537
1,138 602 541 602
1,257 661 602 657

4.40
9.26

16.17
27.97
40.76
55.74
72.82
93.01
110.43
126.30

Notes" n 11, m and do eo 60.

6. Conclusions. The algorithm LDSSBR is very simple. However, analysis of
this algorithm is not so simple as one might suppose. Analysis of LDSSBR was
attempted by Chou [3], but he was unable to get polynomial space and time bounds
for the algorithm LDSSBR.

The algorithm LDSSBR mainly depends on Rosser’s algorithm for solving the
linear Diophantine equation alxl +’" / anxn- c as described in 4. The extended
Euclidean algorithm is a special case of Rosser’s algorithm with n-2 and c-
gcd(al,..., an). Detailed analyses of the Euclidean algorithm are found in [5] and
[10]. No analyses of the general case with n > 2,have been found. Studies should be
done on the general case in order to provide a better understanding of the complexity
of the algorithm LDSSBR.

As observed in 4, LDSSBR in general obtained particular solutions with smaller
norms than LDSMKB did. Given a basis and a particular solution, an optimal particular
solution with respect to a definition of the norm of a vector can be obtained by adding
an integral linear combination of the basis vectors to the particular solution. When
the basis consists of only one vector, the problem is simple, since there is only one
multiplier to be determined. However, when the basis consists of more than one basis
vector, the problem becomes much more difficult. Algorithms for computing an optimal
particular solution, as well as the complexities of such algorithms, can be investigated.
If no polynomial time bounded algorithms can be found, algorithms for computing
nearly optimal particular solutions could be sought.

Appendix. Consider

A=
-20 -11 7 29 -5

and b=

54 19 -27 -17 21 21814 16 -11 -18

as a randomly generated 4 5 matrix and 4-vector whose entries are five bits or less
in length.

706 TSU-WU J. CHOU AND GEORGE E. COLLINS

The matrix C and the vector B at the end of the kth iteration of the major loop
of LDSSBR are shown below. The first five columns are the matrix C. The last column
is the vector B.

k=0: -7 -18 -1 -8 4 24
-20 -11 7 29 -5 6
-15 19 -27 -17 21 -21
-4 14 16 -11 -18 -8
1 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1 0

k=l: 0 0 0 0 0
-44 83 42 -19 14 -69
47 -107 25 -25 -20 30
58 -4 -23 47 -98 60
-1 0 -1 0 2 0

-1 0 0 -1 2
0 2 -1 0 0 0

-2 2 -1 2 -2
-1 0 0 -2 -3 -1

k=2: 0 0 0 0 0
-44 1 0 0 0 0
47 72 -653 2 83 -57
58 -313 239 -293 564 154
-1 5 7 6 -13 -2

1 -2 -4 -3 6 2
0 -3 15 -4 3 2

-2 5 -1 5 -10 -2
-1 9 -4 6 -15 -4

k=3:
-44
47
58
-1

0
-2
-1

0 0 0 0 0
0 0 0 0

72 1 0 0 0
-313 38,030 139,981 -108,167 23,616

5 -775 -2,852 2,204 -481
-2 352 1,293 -1,000 219
-3 317 1,154 -896 193
5 -648 -2,385 1,843 -402
9 -989 -3,654 2,819 -618

k=4: 0
-44
47 72
58 -313
-1 5
1 -2
0 -3

-2 5
-1 9

0 0 0 0
0 0 0 0
1 0 0 0

38,030 1 0 0
-775 -8,612 25,840 -6,129
352 40,350 -121,069 28,718
317 199,388 -598,258 141,903

-648 -2,229 6,688 -1,586
-989 211,893 -635,779 150,803

{(25,840, -121,069, -598,258, 6,688, -635,779)r} is the basis of the solution
module of Ax =0. (-6,129, 28,718, 141,903, --1,586, 150,803)r is the particular
solution of Ax b.

SOLUTION OF LINEAR DIOPHANTINE SYSTEMS 707

The matrix C and the vector B at the end of the kth iteration of the major loop
of LDSMKB are shown below.

k=O: -7 -18 -1 -8 4 24
-20 -11 7 29 -5 6
-15 19 -27 -17 21 -21
-4 14 16 -11 -18 -8

0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0

0 -1 -8 4 24
-78 -283 7 29 -5 6

-113 -403 -27 -17 21 -21
-48 -170 16 -11 -18 -8

5 18 0 0 0 0
-2 -7 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0

k=2 0 0 -8 4 24
0 1 0 29 -5 6

1,126 157 11,007 -17 21 -21
-310 -42 -3,014 -11 -18 -8
-14 -2 -137 0 0 0

7 69 0 0 0
-29 -4 -283 0 0

0 0 0 1 0 0
0 0 0 0 0

k--3’ 0 0 0 4 24
0 1 0 0 -5 6
0 0 1 0 21 -21

457,006 3,871 -133,660 -635,779 -18 -8
-9,796 -83 2,865 13,628 0 0
6,493 55 -1,899 -9,033 0 0

14,993 127 -4,385 -20,858 0 0
-7,912 -67 2,314 11,007 0 0

0 0 0 0 1 0

k--4" 0 0 0 0 24
0 0 0 0 6
0 0 0 0 -21
0 0 0 1 0 -8

9,636 3,369 -8,415 -8,612 5,840 0
-45,148 -15,785 39,427 40,350 -121,069 0

-223,097 -78,001 194,827 199,388 -598,258 0
2,494 872 -2,178 -2,229 6,688 0

-237,089 -82,893 207,046 211,893 -635,779 0

The basis of the solution module of Ax =0 is {(25,840, -121,069, -598,258,
6,688, -635,779)r}. The particular solution (-497,089, 2,329,029, 11,508,805,
-128,658, 12,230,604)7,

is obtained from eliminating the first four elements of B.

708 TSU-WU J. CHOU AND GEORGE E. COLLINS

REFERENCES

[1] W. A. BLANKINSHIP, Algorithm 288, solution of simultaneous linear Diophantine equations [F4],
Comm. ACM, 9 (1966), pp. 514.

[2] G. H. BRADLEY, Algorithms for Hermite and Smith normal matrices and linear Diophantine equations,
Math. Comp., 25 (1971), pp. 897-907.

[3] T.-W. J. CHOU, Algorithms for the solution of systems of linear Diophantine equations, Ph.D. thesis,
Computer Science Dept., Univ. of Wisconsin, Madison, 1979.

[4] G. E. COLLINS, The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach., 18
(1971), pp. 515-532.

[5] ., The computing time of the Euclidean algorithm, this Journal, 3 (1974), pp. 1-10.
[6] ., The SAC-2 Manual, version 1.
[7] M. A. FRUMKIN, An application of modular arithmetic to the construction of algorithms for solving

systems of linear equations, Soviet Math. Dokl., 17 (1976), pp. 1165-1168.
[8] F. R. GANTMACHER, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
[9] R. KANNAN AND A. BACHEM, Polynomial algorithms for computing the Smith and Hermite normal

forms of an integer matrix, this Journal, 8 (1979), pp. 499-507.
[10] D. E. KNUTH, The Art ofComputerProgramming, Vol. 2: SeminumericalAlgorithms, Addison-Wesley,

Reading, MA, 1969.
[11] ., The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1973.
[12] R. G. K. Loos, The algorithm description language ALDES (report), SIGSAM Bull., 10 (1976),

pp. 14-38.
[13] M. T. MCCLELLAN, The exact solution of systems of linear equations with polynomial coefficients,

J. Assoc. Comput. Mach., 20 (1973), pp. 563-588.
[14] J. B. ROSSER, A note on the linear Diophantine equation, Amer. Math. Monthly, 48 (1941), pp. 662-

666.
[15], A method of computing exact inverses o]: matrices with integer coefficients, J. Res. Nat. Bur.

Standards, 49 (1952), pp. 349-358.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0007 $01.00/0

SCHEDULING THE OPEN SHOP TO MINIMIZE MEAN FLOW TIME*

JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

Abstract. It is shown that the problem of scheduling a two-processor n-job open shop nonpreemptively
in order to minimize mean flow time is NP-complete even if input length is measured by the sum of the
task lengths. The proof is similar in approach to that used by Garey, Johnson and Sethi to show NP-
completeness of the two-processor flow shop mean flow problem. We assume previous results from their
paper where possible and concentrate on those elements of the proof that are distinct from theirs.

In addition, bounds are derived for the mean flow times of arbitrary and shortest processing time
(SPT) first schedules for m-processor n-job systems in terms of the mean flow time of an optimal schedule.

Key words, scheduling, open shop, mean flow time, optimal, NP-complete, approximate solution,
multi-processors

1. Introduction. An open shop consists of m >-1 processors each of which per-
forms a different task, and n -> 1 jobs each consisting of rn tasks. Task j of job is
to be performed on processor/’. Let $’(a) and F(a) be the start and finish (or flow)
times of job (or task) a. Then a schedule for the shop is given by specifying for each
processor, the start S(a) and the finish time F(a) of each task, a, to be processed on
it. It is necessary that no processor be assigned more than one task and no job be
assigned to more than one processor at any time. We shall consider only nonpreemptive
schedules in which a task is not interrupted once its execution has begun. The finish
time of a schedule (or schedule length) is maximum {F(a)] for all tasks, a}, and the
mean flow time is defined as the summation of F(a), over all jobs, a.

The open shop is similar to the processor bound systems studied in [1], [2], [10],
the flow shop [1], [3], [4], [5], [6], [7], [11], [13] and others and the job shop [5], [7],
[11]. The common assumption in each of these is that a processor performs a specific
type of task and hence tasks can only be executed on the specified processors. The
only difference between the open shop and the flow and job shops is that in an open
shop no restrictions are placed on the order in which the tasks of any job are to be
processed.

The problem of finding minimal length schedules for the open shop has been
studied by Gonzalez and Sahni [12] and Gonzalez [9]. In [12], a linear algorithm is
presented for the 2-processor preemptive and nonpreemptive systems, and for rn -> 3
an efficient algorithm is given for preemptive schedules, while the nonpreemptive
problem is shown to be NP-complete. In [9], Gonzalez presents a faster algorithm
for the preemptive case when m => 3.

In [8], Gonzalez shows the minimal mean flow time problem for an m-processor
flow shop, arbitrary m, to be NP-complete. When rn 1 the problem reduces to that
of scheduling n independent tasks on one processor to minimize mean flow time. A
well-known solution to this problem reported by Smith [14] is to schedule the tasks
in order of nondecreasing execution time. We will show in 2 that the problem is
NP-complete even for only two processors. Thus, our result is not covered by [8]
which assumes an arbitrary number of processors. Our approach is similar to that

* Received by the editors September 4, 1979, and in final revised form November 25, 1981.
f Department of Mathematical and Computer Sciences, Michigan Technological University, Houghton,

Michigan 49931.
Department of Computing Science, The University of Alberta, Edmonton, Alberta, CanadaT6G 2H1.

709

710 JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

applied in [7] to show NP-completeness of the 2-processor flow shop mean flow
problem but there are considerable differences (see 2). The reduction is from
3-PARTITION.

3-PARTITION. Given positive integers n, B, and a setA of integers {al, ,
3nwith i--1 (ai)= nB and B/4 <ai <B/2, 1 <-i < 3n, does there exist a partition of A

into 3-element sets such that the sum of the three elements of each partition is B ?
3-PARTITION is known [7] to be NP-complete even when the input length is

measured by the sum of the ai. Given an instance of 3-PARTITION it will be sufficient
for our purposes to construct in time polynomial in nB a 2-processor open shop
problem with a bound D such that there exists a schedule for the open shop with mean
flow time not exceeding D if and only if the 3-PARTITION problem has a solution.

In 3, we derive tight bounds on the mean flow time of an arbitrary schedule
and an SPT schedule as compared to the optimal mean flow time.

2. Complexity of mean flow schedules. We now show that the 2-processor
problem is NP-complete. We must stress that although our method is similar to that
of [7], the similarity is only in approach. The proof in [7] for the flow shop problem
does not apply to the open shop. The fact that tasks composing a job in a flow shop
must be executed in a fixed order simplifies that proof a great deal. Since we do not
have a fixed order of execution for tasks in a particular job, more care is needed in
setting up our task system and our proof is more complex. We will concentrate on
those elements of the proof that are distinct from that of [7].

The open shop to be constructed consists of a large number of jobs but their
number and the sum of their lengths will be polynomial in nB. We use four types of
jobs, the T, U, X and Y-jobs. U-jobs are further divided into V and W-jobs.

For convenience in specifying the different types of jobs, a job will be given as
an ordered pair (a, b) where a is the tim. taken by the job on processor 1 and b is
the time taken on processor 2. Also, following the notation in [7], the ith task of job
J, will be denoted by J[i].

There are n + 1 T-jobs, To (0, g) and Ti (t, g), 1 _-<i <=n, where is a much
larger integer than g. In the system under construction, we will ensure that the best
schedules (with smallest mean flow time) execute the T-task on processor 1 before
the corresponding T-task on processor 2. Thus, in the best schedules, the positioning
of the T-jobs alone will leave n slots of size t-g (see Fig. 1) which will be used to
test if the 3-PARTITION problem has a solution.

,/,1,/,/ x ix I...
gV/AgV//gV/AgV//gI y y l,

FIG. 1. Schedule when A has a 3-partition, n 4. X, Y and Tjobs indicated. Each hatched area takes
u jobs, 3 of type W with total time 3v +B and u- 3 of type V.

The slots to be created by the T-jobs will be filled by the U-jobs consisting of
Vi.j=(O,v), l<=i<=n, 1 <-/’ -< (u 3), and Wi=(O,v+ai), l<=i<=3n. The U-jobs have
no tasks on the first processor. The different parameters of the system will be so
balanced that each slot on the second processor must be occupied by 3 W-tasks and
(u- 3) V-tasks, the ai element in each of the 3 W-tasks thus forming a partition of
the 3-PARTITION solution.

Now in order to produce the slots as indicated, the T-tasks on processor 1 must
be processed in the first nt time units. To ensure that this is indeed the case, we assign

SCHEDULING THE OPEN SHOP TO MINIMIZE MEAN FLOW TIME 711

Xi (x, 0), where x is very large compared to the other task times considered so far.
The effect is that delaying the execution of the X-tasks for even one unit after time
nt will force total flow to exceed the given bound and similarly, for the Y-tasks on
the second processor.

Note that it is necessary to show that for each T-job, the task on the second
processor will be done after that on the first processor and it is not yet clear from the
above that this will be the case. This problem requires very careful balancing of the
task time variables and in order to solve it we had to use different task assignments
from those of [7]. We achieve the required results by having g barely larger than u
(in [7] u >> g 1) and using a tighter lower bound for the flow times of the U-tasks
than that given in [7].

THEORE 1. The 2-processor open shop nonpreemptive mean flow scheduling
problem is NP-complete, even if input length is measured by the sum of the task lengths.

Proof. Given a 3-PARTITION problem with n, B and the set A, consider the
2-processor flow shop specified in Fig. 2.

T-jobs: T0=(0, g), Ti=(t,g), l<=i<=n,

X-jobs: X/= (x, 0), 1 <-

_
h,

Y-jobs: Yi (0, y), 1 <-_ <= h,
U-jobs: Vi.i=(O,v), l<-i<=n, l<-j-<(u-3)

and Wi (O, v + ai), l <- <- 3n,
The bound D is given as D Xe + Ye + Te + U, with

h

Xe (nt+ix),
i=1

Ye Y’. (nt+g+iy),
i=1

T (g + it), and
i=o

n-1

(\ =u fVu 3nB + Y. Y. (g+it+) "where
i=0

u 3nB + 3n + 1, g 3nB + 3n + 6,
v n (B + 1)g, uv + g + B,
x=2(n+h)t, y=x,

s (n + 1)g + 3nB + hUg + n(n 1)u(g + B)/2 and

h=s+l.

FIG. 2. Open shop specifications.

SupposeA has a 3-partition. We use the schedule suggested in Fig. 1. We schedule,
on the first processor, tasks T[1], 1 <-i-<n, followed by Xi[1], 1 <-i <-h, and on the
second processor, tasks Ti[2], 0 -< <- n, followed by Y[2], 1 <- -< h. This yields the
template of Fig. 1. In each of the n hatched areas on the second processor we place
(u 3) V-type tasks followed by the three W-tasks corresponding to the three elements
of one of the 3-element partitions. Clearly, the X, Y and T-jobs contribute Xe, Ye
and Te to the mean flow time. Since there are exactly three W-type tasks with sum
(3, + B) in each hatched area, the contribution of the ith hatched area, 0 <= =< (n 1),
is less than (3B +Y.i=1 (g + it +]v)). (Note that the three W-tasks will be the last to
be executed in each hatched area.) Hence the U-jobs’ contribution to the mean flow

712 JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

time is less than Ue, and the bound D is not exceeded by the mean flow time of the
schedule.

Now, suppose there exists a schedule with mean flow time not exceeding the
bound D. For brevity we shall refer to such a schedule as a good schedule. We
complete the proof of the theorem by showing that the desired partition ofA must exist.

We first show by proving the following claims that if there is a good schedule,
then it can be reduced to a good schedule with the structure of Fig. 1. (Note that
$(a), F(a) are defined in the introduction.)

(XY1) In a good schedule, S(Xi[1])>=nt and S(Yi[2])>-(nt +g), 1 <-i <-h. Hence,
all T[1]-tasks are executed before any X[1]-tasks and all T[2]- and
U[2]-tasks are executed before any Y[2]-task. Without loss of generality,
we may assume that the X[1]-, Y[2]- and T-tasks are executed in
increasing order of their index i.

(XY2) In a good schedule, S(Xl[1])=nt and S(Y[2])=nt+g. In addition,
F(Ti[1]) t/, 0 =< <- n.

(UT1) A good schedule can be reduced in polynomial time to one in which
F(T,[1])<=S(T,[2]), O<=i <=n.

(UT2) A good schedule can be reduced in polynomial time to one in which
S(T,[2])-F(T,[1])<v +B/2, O<=i <-n.

(UT3) In a good schedule satisfying all previous claims, at most (u + 1) and at
least (u 1) U-tasks are executed between T[2] and T/[2], 0 -< < n.

(UT4) In a good schedule satisfying all previous claims, EXACTLY u U-tasks
are executed between T[2] and Ti+[2], 0 =< <n.

(UT5) In a good schedule satisfying all previous claims, S(T[2])=ti, O<=i <=n.
Claims XY1 and XY2 establish the fact that the T[1]-tasks are done in the first

nt time units and are immediately followed by the X[1]-tasks. In addition, the
Y[2]-tasks are the final tasks to be done on processor 2 and they must start precisely
at time (nt + g), thus leaving no idle time on that processor.

Claim UT1 says that the T-jobs are executed first on processor 1 and then on
processor 2.

Claims UT2, UT3 and UT4 correspond roughly to [7, Claim U1]. Essentially,
what we need is to show that task T[2] is preceded by exactly iu U-tasks on the
second processor. However, our choice of task lengths necessitated by Claim UT1
does not allow the straightforward arguments of [7, Claim U1] to work here. For
clarity, we present our proof in three simple stages.

Finally, Claim UT5 ensures that there is no delay between the executions of the
component tasks of each T-job.

Now, a good schedule which satisfies the above claims is similar in structure to
Fig. 1. Given such a schedule, a partition of A into 3-element sets A, 1 <-i-< n, is
obtained by settingA {ak IS (T_[2]) < S Wk[2]) < S(Ti [2])}. By Claim UT4, we know
that there are u U-tasks, U[2], with S(T_[2])<S(U[2])<S(T[2]). Since the V[2]-
type tasks have length v and the W[2]-tasks have length less than (v +B/2) and
greater than (v +B/4) and these u tasks cover an interval of t-g uv +B without
leaving an idle period, the u tasks must contain exactly three W[2]-tasks with total
length 3v +B. Hence, the open shop has a schedule with mean flow time not exceeding
the deadline D if and only if the set A has the required partition.

In proving the claims, their effects are taken to be cumulative. In other words,
when proving any claim it is assumed that we have at hand a good schedule which
satisfies the previously proven claims. Furthermore, bear in mind that for any schedule,
A, there exists a schedule, B, with mean flow time of B not exceeding that of A, in

SCHEDULING THE OPEN’SHOP TO MINIMIZE MEAN FLOW TIME 713

which S(a), F(a) are integers for any task, a. This is obvious since all task times are
integers. Thus, in the following we consider S(a) and F(a) to be integers.

We omit the proofs of Claims XY1, XY2, which are straightforward and similar
to [7, Claims X2, X3]. The key point here is that the variables x, y are sufficiently
large to ensure that the X- and Y-jobs are done last and the start of their execution
cannot be delayed by even one unit beyond a certain point. Complete details of these
proofs are given in [1].

Claim UT1. A good schedule can be reduced in polynomial time to one in which
F(T,[1])<-S(T,[2]), O<-i <-n.

Given a good schedule, we construct another with the stated property in poly-
nomial time. Recall that as a consequence of the XY-Claims we have a good schedule
in which F(T[1]) ti, 0 <- <= n.

We scan the schedule from right to left and perform the following operation, OP,
whenever we encounter a Ti[2] with F(T/[2]) =<S(T/[1]).

(OP) Find a V-task, Vo such that (ti+g)<=F(Vc)<(ti+v+g). Remove T[2]
from the schedule, shift the following tasks up to and including Vc to the
left to take up the interval vacated by T[2], and insert Tg[2] after V. If
among the shifted tasks a T.[2] conflicts with T.[1], exchange the T[2] with
the following task.

We must prove the existence of V and show that OP does not increase mean
flow time. Consider the interval [ti-v -B/2, t(i + 1)). If there is any task of length g
in this interval, it must be a T.[2] task where/" < i. Thus we can exchange it with its
predecessor without generating conflicts or increasing flow time. This may be repeated
until the task executes before time ti-v-B/2. Thus we can ensure that no task of
length g executes in the time interval [ti-v-B/2, t(i + 1)) (see Fig. 3). Now the

T, [1] tme t

+ B/2, some task, V of
length v starts or finses
n ths tme nterval

FIG. 3

interval [ti-v-B/2, t(i + 1)) has length + v +B/2. Even if all the W-tasks were in
this interval, their total length is less than t-3v and hence there is still room for at
least four V-tasks in the interval. Since the V-tasks are smaller than any W-task, they
will be the first to be done in the interval. Thus, we conclude that within [ti-v-
B/2, ti +v +B/2) there are only V-tasks or parts of V-tasks, one of which will be
identified as task V.

Now, consider the first task V.[2] to finish after time ti. By above arguments this
task and the one following it must be V-tasks. V.[2] finishes before (ti +v +B/2)
(which is less than (ti +v +g)). If F(Vi[2])-ti >=g, then choose V V.[2], otherwise
choose the task following it as Vc. Hence, F(V)- ti < v + g. In either case, ti + g <-

F(V)<ti +v +g.

714 JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

We proceed to remove Ti[2] from the schedule, shift the following tasks, say J
in number, up to and including Vc to the left by a distance of g and insert Ti[2] after
Vc. Since F(V)>=ti +g, after performing OP there can be no conflict between Ti[2]
and Till]. However, we may have to resolve some conflicts between some T.[2] and
T[1] where the T.[2] is among the tasks shifted left. We do this by exchanging the
T[2] with the following task. (It is clear that the following task is a V-task by the
same line of argument that was used to determine V; the idea is that following T.[2]
is some interval containing only U-jobs, which is sufficiently large that V-tasks must
be included and they will be the first executed in the interval to reduce mean flow time.)

Now, among the shifted tasks there will be at most one T[2] task for every
sub-interval It(l"-1), tf] of the interval originally covered by the tasks. The same
interval must contain at least u U-tasks as well for the following reason. Recall that
there is no idle time on processor 2 during the first (nt + g) time units. The number
of U-tasks executed in the interval is at least J (t-g)/(v +B/2) since every task
executed before (nt + g) on processor 2 has length not exceeding (v + B/2). Now

v n (B + 1)g > nBg > nBu > uB/2

B>uB/2-v-B/2

uv +B >(u 1)(v +B/2)

or g > (u 1)(v + B/2)

orJ>u-1.

Hence, there are at most [J/u T[2]-tasks among the shifted tasks.
We are now ready to compute the effects of OP on the mean flow time of the

schedule. The flow time of job Ti increases by at most (v + g). The J tasks shifted to
the left lose at least Yg flow time. In addition, the intermediate T[2]-tasks may gain
at most [J/u] v in exchanges to resolve conflicts. Thus, we must show Jg >_- v + g [J/u v,
where J_-> u. (Since the J tasks cover at least the interval [t(i- 1), t/], J must be no
less than u.) Let J ku + d, k _>-1 and 0 <_-d < u.

Jg >=v +g + [J/uJv

, (ku + d)g >-_ v + g + kv

:3nkB + 3nk + k + d >- nkB + nk + nB+ n + 1,

which is easily seen to be true. There are no other changes to the mean flow time.
Hence, a good schedule can be reduced to one satisfying the claim. !-3

Claim UT2. A good schedule can be reduced in polynomial time to one for which
S(T,[2])-F(T,[1])<v +B/2, O<-i <=n.

Consider a good schedule satisfying all previous claims. S(T[2])-F(T[1]) -< t- g.
Furthermore, in the interval (ti, ti + t) there is no task of size g on processor 2 other
than T[2]. If S(T[2])-F(T[1]) > v + B/2, then the task preceding Ti[2], a U[2]-task,
can be exchanged with T[2] with no increase in mean flow time, and no conflict in
the execution of job T since that task must start after ti =F(T[1]). 71

Claim UT3. In a good schedule satisfying all previous claims, at most (u + 1)
and at least (u 1) U-tasks execute between T[2] and T+[2], 0-<_i < n.

By Claim UT2, the interval between T[2] and T+[2] is no smaller than (t g v
B/2) and no larger than (t g + v + B/2).

SCHEDULING THE OPEN SHOP TO MINIMIZE MEAN FLOW TIME 715

Suppose there are fewer than (u- 1) U-tasks in the interval. Their total length
is at most nB + (u- 2)v. Now

v =n(B +l)g>nB-B/2

: uv +B/2 v > nB + uv 2v

=>t-g-v-B/2>nB+(u-2)v (by definition of t).

Thus, there will be idle time on processor 2 and by Claim XY2 the schedule cannot
be a good one.

Similarly, suppose there are more than (u + 1) U-tasks. Their total length is at
least (u + 2)v. But

v>3B/2

::> uv + 2v > uv + v + 3B/2

::> (u + 2)v > g + v +B/2 (by definition of t).

Hence, at most (u + 1) U-tasks can be present in the interval.
Claim UT4. In a good schedule satisfying all previous claims, EXACTLY u

U-tasks are executed between Ti[2] and Ts/l[2], 0-<i -<_n.
To begin with, let us consider in what ways this claim can be violated. If there

are less than iu U-tasks preceding Ts[2] then the total length of tasks preceding Ti[2]
(including T.[2],/’ <i) on processor 2 is at most (ig +(iu- 1)v +riB). This is less than
the time interval ti which it has to cover as

ig +(iu 1)v +nB <it= i(uv +g +B).

Thus, we must have at least iu U-tasks preceding Ti[2].
Now, let ki, 0 <= <= (n 1), be the number of U-tasks in the interval between T/[2]

and Ts/l[2]. Suppose kp u + 1 kq, and k u for p <i <q. Then, there are ((q + 1-
p)u + 2) U-tasks between Tp[2] and Tq/l[2] with total length at least ((q + 1 -p)u + 2)v.
Together with the tasks Ts[2], p =<i -<q, we get total length at least ((q + 1-p)u + 2)v +
(q + 1-p)g which is greater than (q + 1-p)t +v +B/2. Since the latter value expresses
the maximum time interval available for the tasks, as implied by Claim UT2, this is
not possible.

Collecting these facts together, namely, that ks =(u-1), u or (u +1), that
Y!i= (kj) > iu, and that it is not possible to have kp kq (u + 1) and ks u for p < <q,
we can conclude that the (u + 1) and (u 1) values of ki occur alternately starting with
a (u + 1) and finishing with a (u 1), with the u values interspersed.

We now show that the boundD is exceeded if k is not equal to u for 0 -< <_- (n 1).
A new lower bound Uc for the flow of the U-jobs can now be computed as

n-1 k.

i=O

The term E _-> 0 will compensate for the fact that the T[2] cannot start early enough
after a k, u + 1 and before the following kq u 1.

Uc Ue -3nB + (
k’ ’.)

i=0 j=l (g +fV + ti + Ji)--
]-’-1"

(g +jV + ti)

With respect to the sequence ki, outside of those subsequences starting with a (u + 1)
and ending with a (u- 1), the E term is zero and the corresponding summations in

716 JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

the above cancel out. However, we show that if there is at least one subsequence
(u + 1), u,. ., u, (u 1) then Uc + Tc Ue Te > 0, where T is a corresponding bound
for the T-jobs.

Let kp,. , kq be one such subsequence. Task T[2], p < <-q, cannot start until
after

pt +(i-p)g +((i-p)u + 1)v ti +v -(i-p)B.

Thus E, 0 and Ei v -(i-p)B, p <i <-_q.
In the expression for (U Ue) the summations corresponding to the subsequence

are

Y (g +jr +pt)- (g +jr +pt)+ (v -(i-p)B)
]=1]=1 i=p+l

u-1

+ F, (g+qt+fv +v-(q-p)B)- (g+qt+fv).
/=1 /=1

After simplification, this becomes

q-1

-(q -p)(g + uB)- Y (u(i-p)B),
=p+l

where the summation in the second term is zero if q =p + 1. However, on computing
the lower bound T for the T-jobs, again the values to be summed outside the
subsequences are the same as in the summation for Te. For the subsequence above,
we get

q q, (g+ti+v-(i-p)B)- , (g+ti)
=p+l =p+l

q-1

v -(q -p)B + Y. (v -(i-p)B)
=p+l

as the difference in the two summations. Since v-(q-p)B>(q-p)(g+uB)+3nB
and v-(i-p)B >u(i-p)B, p <i <q, the overall bound is strictly greater than D.
Note that we have taken care of the 3nB term in the definition of Ue, while the
bounds for X and Y-tasks remain Xe and Ye.

Thus if there is at least one subsequence of the type described the flow time is
strictly greater than D. Hence, k u for 0-< -< (n 1). [3

Claim UTS. In a good schedule satisfying the previous claims, $(Ti[2])=ti,
O<=i<-n.

Given a good schedule which satisfies the previous claims, assume that S(T[2]) > ti
for some i, 0=< <-n. Then the following lower bounds for the jobs’ flow time are
easily determined; Xe for the X-jobs, Ye for the Y-jobs, (Te + 1) for the T-jobs, and
finally at least (Ue + u- 3nB) for the U-jobs (the u term is introduced by the delay
on the u U-jobs between Ti[2] and T+a[2]). Adding these together gives a bound of
(D + u + 1- 3nB) which is greater than D. Hence, the claim must be true.

This concludes the proof of the theorem. [3

3. Heuristic solutions. We have seen that the 2-processor n-job mean flow time
scheduling problem for the open shop is NP-complete. In this section, we derive tight
bounds on the mean flow time of an arbitrary schedule and of a schedule obtained
using the shortest processing time (SPT) first heuristic as compared to the mean flow

SCHEDULING THE OPEN SHOP TO MINIMIZE MEAN FLOW TIME 717

time of an optimal schedule. Recall that the SPT heuristic is optimal for the 1-processor
case.

Let the n jobs be Ji, 1 -<i -< n. The fth task of the ith job is Ji[f] and has execution
time ti[f]. Let Ti s--1 (t[]) and T Y=I (T). T is the total processing time for the
ith job, while T is the total time for all the n jobs. For any schedule O the mean
flow time of O will be denoted by mft(Q). We continue to use $(a) and F(a) for the
start and finish time of task/job a. (If (2 is subscripted, $ and F may be given the
same subscript to indicate clearly that we are considering start and finish times with
respect to the particular schedule O.)

THEOREM 2. Let Oo be an optimal mean flow schedule]’or an m-processor open
shop with n fobs. Let Q be an arbitrary schedule. Then (mft(Q)/mft(Qo))<-_n.

Proof. Without loss of generality, we may assume that the jobs are completed in
the order Jx, J2,""", J,. In the worst case, no task of job J is started before J_ has
been completed. Hence,

Now

F(Ji) <- E (Tk).
k=l

mft (O) E (F(J)) <- 1i=1 i= k=l

E (n +I-i)T <-nT,
i=1

mft (Oo)= E (Fo(Jg))>- ., (Ti)= T _->mft (Q)/n.
i=1 i=1

The bound given above is asymptotically tight as illustrated by the following example.
Example 1. m 2. The jobs are J, J2," , J,+l, where

t,[1] ti[2] 1, 1 <- <- n;

t,+[1] x, tn+l[2] 1, x>n.

The schedules Q and Qo are given in Fig. 4.

mft (Q) (x + 1)+ Y. (x + i)
i=1

=(n +l)x +n(n +1)/2+1,
n-1

mft (Qo) Y. (i + 1)+n +x +(n + 1)
i=1

n (n + 5)
X -+-o

2

o/, Io/

Io/ o+, VYYA
o .1... o -,F/////Y////////////////YY/YYYYAoo+,

FIG. 4. Schedules for Example 1. Tasks for ith job are indicated by i.

718 JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

Therefore,

mft (Q) (n + 1)x + n (n + 1)/2 + 1
mft (Q0) x + n (n + 5)/2

which approaches n + 1 as x approaches infinity.
We now consider the case for the SPT heuristic, in which jobs are processed in

order of nondecreasing processing time. The rule is normally implemented as follows:
Suppose that the/’th processor is available, and jobs J and Jk have no tasks currently
under execution and their tasks for the/’th processor have not yet been executed, then
Ji[]] is chosen to execute before J[f] if T/<_- Tk.

THEOREM 3. Let Qo be an optimal mean flow time schedule]’or an m-processor
n-fob flow shop. Let Q be a schedule constructed with the SPT heuristic. Then,
(mft (Q)/mft (Qo)) <-- m.

Proof. Assume T _-< T2 <_-" _-< T,.

mft (O) F (F(J)) <- (T)
i=1 i=1

Let (q(1), q(2), , q(n)), a permutation of the first n integers, be the order in which
the jobs are completed in schedule Oo. Then

Therefore,
k =1 k=l

mft (Oo)= , (Fo(jq(i))) >- =>mft (O)
i=1 i=1 k=l m

As for the previous theorem, the boulad is asymptotically tight as illustrated by
Example 2.

Example 2. There are m + 1 jobs, J1,""’, f,,/l for m processors, where

1 for/’=l,
t[]]=

0 for2-<_./-<_m,

J2 forf=l, or]=i,
tiff]

2<_-i_-<,, [0 for2<=/’<=m,fi,

! for /" l (x > 2),
t,,+l[/’] for/’ 2,

for 3 <-] <- m.

The SPT and optimal schedules, Os, Oo, are given in Fig. 5.

mft(Os)=l+(x+3)+ , (x+l+2i)=mx+m2+3.
i=1

m--1

mft(Oo)=l+2m+2+x+ Y 2(i+l)=x+m(m+3)+l.
i=1

Therefore,
mft (Qs) mx+m 2 + 3
mft (Qo) x +m(m +3)+1

which approaches m as x approaches infinity.

SCHEDULING THE OPEN SHOP TO MINIMIZE MEAN FLOW TIME 719

4. Conclusions. We have shown NP-completeness for the 2-processor minimal
mean flow time open shop scheduling problem. We can also conclude that the problem
remains NP-complete when the number of processors m > 2. Thus the relaxation of
the constraint that each job’s tasks be processed in the same processor order in the
flow shop model, yielding an open shop, still leaves us with an intrinsically difficult
problem.

Qs:

m+l 2 31.’olm
;! ///////////////////////////.//m+l /////////////

7,3 /////////////////////

Go:

m

FIG. 5. Schedules for Example 2. Tasks for ith job indicated by i.

We have also derived tight bounds for the mean flow time of an arbitrary schedule
and for an SPT schedule in terms of the optimal mean flow time. Since the number
of jobs is usually much larger than the number of processors, the bounds indicate an
advantage of SPT schedules over arbitrary schedules.

REFERENCES

[1] J. O. ACHUGBUE, The complexity of some deterministic scheduling problems, Ph.D. Thesis, Dept. of
Computing Science, University of Alberta, Edmonton 1980.

[2] J. O. ACHUGBUE AND F. Y. CHIN, On optimal schedules for processor bound systems, Tech. Rep.
79-9, Dept. of Computing Science, University of Alberta, Edmonton, 1979.

[3], Complexity and solutions of some three-stage flow shop scheduling problems, Maths Oper. Res.,
May (1982).

[4] F. Y. CHIN AND L. TSAI, On J-maximal and J-minimalflow shop schedules, J. Assoc. Comput. Mach.,
28 (1981), pp. 462-476.

[5] R. W. CONWAY, W. L. MAXWELL AND L. W. MILLER, Theory of Scheduling, Addison-Wesley,
Reading, MA 1967.

[6] E. G. COFFMAN JR., ed., Computer and Jobshop Scheduling Theory, John Wiley, New York, 1976.
[7] M. R. GAREY, D. S. JOHNSON AND R. SETHI, The complexity offlow shop and jobshop scheduling,

Maths. Oper. Research 1 (1976), pp. 117-129.
[8] T. GONZALEZ, NP-hard shop problems, Tech. Rep. CS-79-35, Computer Science Dept., Pennsylvania

State Univ., University Park, 1979.
[9], A note on open shop preemptive schedules, Tech. Rep. 214, Computer Science Dept., Penn

State Univ., Dec. 1976.
[10] D. K. GOYAL, Scheduling processor bound systems, Proc. Sixth Texas Conference on Computing

Systems, 1977, pp. 7B-21-7B-25.

720 JAMES O. ACHUGBUE AND FRANCIS Y. CHIN

[11] T. GONZALEZ AND S. SAHNI, Flowshop and jobshop schedules: Complexity and approximation,
Operations Research, 26 (1978), pp. 36-52.

[12], Open shop scheduling to minimize finish time, J. ACM, 23 (1976), pp. 665-679.
[13] S. M. JOHNSON, Optimal two- and three-stage production schedules with setup times included, Nav.

Res. Logist. Quart., 1 (1954), pp. 61-68.
[14] W. E. SMITH, Various optimizers]’or single state production, Nav. Res. Logist. Quart., 3 (1956),

pp. 59-66.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0008 $01.00/0

ON CONSTRUCTING MINIMUM SPANNING TREES IN k-DIMENSIONAL
SPACES AND RELATED PROBLEMS*

ANDREW CHI-CHIH YAO"

Abstract. The problem of finding a minimum spanning tree connecting n points in a k-dimensional
space is discussed under three common distance metrics: Euclidean, rectilinear, and L. By employing a
subroutine that solves the post office problem, we show that, for fixed k _-> 3, such a minimum spanning
tree can be found in time O(n2-a<k)(1og n)l-a<k)), where a(k)= 2-+1). The bound can be improved to
O((n log n) 1"8) for points in 3-dimensional Euclidean space. We also obtain o(n 2) algorithms for finding a
farthest pair in a set of n points and for other related problems.

Key words, algorithm, minimum spanning tree, nearest neighbor, post office problem

1. Introduction. Given an undirected graph with a weight assigned to each edge,
a minimum spanning tree (MST) is a spanning tree whose edges have a minimum
total weight among all spanning trees. The classical algorithms for finding MST were
given by Dijkstra [7], Kruskal [13], Prim [14], and Sollin [4, p. 179]. It is well known
(e.g., see Aho, Hopcroft and Ullman [1]) that, for a graph with n vertices, an MST
can be found in O(n a) time. (All time bounds discussed in this paper are for the
worst-case behavior of algorithms.) For a sparse graph with e edges and n vertices,
it was shown by Yao [16] that an MST can be found in time O(e log log n). More
studies of MST algorithms can also be found in Cheriton and Tarjan [6], Kerschenbaum
and Van Slyke [11].

An interesting application of MST occurs in connection with hierarchical clustering
analysis in pattern recognition (see, for exam,pie, Dude and Hart [9, Ch. 6], Zahn
[20]). In this application, n vertices V {t71, tTa,..’, 3n} are given, each a k-tuple of
numbers. The graph is understood to be a complete graph G(V) on these n vertices,
with the weight on each edge {ti, tj} being d(i, j) where d is a certain metric function
computable from the components of /ffi and tT. A simple way to find an MST in this
case is to compute all the weights d(i, i), and then use an O(n a) MST algorithm for
general graphs. However, as there are only kn input parameters, it is interesting to
find out if there are algorithms which take only o(n a) time. Several empirically good
algorithms were proposed in Bentley and Friedman [2], where a list of references to
other applications of finding MST in k-dimensional spaces can also be found. Shamos
and Hoey [16] gave an O(n log n) algorithm for n points in the plane (k 2) with
Euclidean metric. No algorithm, however, is known to have a guaranteed bound of
o(rt 2) when k >_-3.

In this paper, we consider three common metrics in k-dimensional spaces, namely,
the rectilinear (L1), the Euclidean (L2), and the L metric. We use E (p 1, 2,
to denote the space of all k-tuples of real numbers with the Lp-metric, i.e., the distance
between two points and 37 is given by dp(.,)7)--(/k=l IXi--YiI) 1/t)" (It is agreed that
d(, 37)= max Ix- Yil.) We give new algorithms which construct, for a given set V of
n points in Ek, an MST for the associated complete graph G(V). The algorithms
work in time O(n2-’(k)(logn)-’(k)), where a(k)=2-(k+) for any fixed k >-3. Fast
algorithms for related geometric problems are also given using similar techniques.

* Received by the editors November 3, 1980. This research was supported in part by National Science
Foundation under grant MCS 72-03752 A03.

Computer Science Department, Stanford University, Stanford, California 94305.

721

722 ANDREW CHI-CHIH YAO

The main results of this paper are summarized in the following theorem. Sections
2-5 are devoted to a proof of it.

THEOREM 1. Let k >-3 be a fixed integer, a(k)=2-(k/l, and all points to be
considered are in Ep with p {1, 2, ee}. Then each of the following problems can be
solved in time O(n2-a(k(logn)-a(k). For the case when k 3 and p- 2, the bound
can be improved to O((n log n)8).

MST-problem Let V be a set of n points; find a minimum spanning tree on V.
NFN-problem (nearest foreign neighbor). Let Vx, V2, V be disjoint sets of

points, V U V, and [V[n. For each Vi and every Vi, find
a V- V such that dp (2, 17)= min {dp (,)1 V- Vi}.

GN-problem (geographic neighbor). Let V be a set of n points. For any V,
letN() { [v >- xfor all 1 <-_ <- k, , V}. For each V,
find a N() such that dp (, 17) min {dp (,)[N(x)} if
N() .

AFP-probtem (all farthest points) [3]. Let V be a set of n points. For each V,
find a e V such that d(,)7)= max {d (,)1 e Y}.

FP-problem (farthest pair) [3]. Let V be a set of n points; find , V such
that d(,)7)= max {d(t,)I t, e Y}.

In 6, we briefly describe, for the Le and the Lo metric, how to obtain o(kn)
algorithms when k is allowed to vary with n.

A remark on the model of computation" We assume a random access machine
with arithmetic on real numbers, and charge uniform cost for all access and arithmetic
operations [1]. In this paper, we often carry out computations of d(,)7), which
involves an apparent square root operation when p 2. However, since our construc-
tion of MST depends only on the linear ord.ering among the edge weights, we can
replace dp(,) throughout by some monotone function of d(,). In particular,
d(, 37) may be replaced by (d(,)7))= (x-yi) everywhere to produce a valid
algorithm without square root operations. We shall, however, retain the original form
of the algorithm for clarity and for consistency with the cases p 1, c.

2. The post-office problem and its applications. In this section we review solutions
to the post-office problem, and show how it can be used to prove Theorem 1 for the
AFP, FP and NFN problems.

The post-office problem can be stated as follows. Given a set of n points 1,
2,..., , in E, we wish to preprocess them so that any subsequent query of the
following form can be answered quickly"

nearest-point query. Given a point , find a nearest/i to) (i.e., d, (, i) -< d, (, ti)
for all]).

This problem was mentioned in Knuth [12] for the case of points in the Euclidean
plane (k =p 2). For this special case, several solutions were given by Dobkin and
Lipton [8] and Shamos [15]. For example, it is known that with an O(n2)-time
preprocessing, any nearest-point query can be answered in O(log n) time [15]. A
solution for the k-dimensional Euclidean space was given in Dobkin and Lipton [8],
where it was shown that it is possible to preprocess n points such that any subsequent
nearest-point query can be answered in O(2 log n) time. Their technique is quite
general, and applies equally well if we wish to answer "farthest-point" queries--Given, find a farthest/i to instead of nearest-point queries. The preprocessing procedure
was not discussed in great detail in [8]. A detailed study [19] gives the following result.

DEFINITION. We shall use b(k) 2’+ and a(k) b(k)- 2-(’+1)

MINIMUM SPANNING TREES IN k DIMENSIONS 723

LEMMA 2.1. Let k >-3 be a fixed integer, and p {1, 2, oo}. Them is an algorithm
which preprocesses n points in Ek in time O(n ()) such that each subsequent nearest-point
query can be answered in O(log n) time. In the special case k 3, p 2, the preprocessing
time can be improved to O(n log n) with a query response-time O((log n)Z). The
preceding statements remain true if the farthest-point query is used in place of the
nearest-point query.

We shall now demonstrate the use of Lemma 2.1 by applying it to solve the MST
problem in a special case. It also gives us some insight into the connection between
MST and some typical nearest-neighbor problem [3], [16].

Consider the case when V consists of two widely separated clusters A and B.
For definiteness, assume that do (A, B) > n (diam (A) + diam (B))a. In this case any
MST on V consists of the union of an MST for A and an MST for B, plus a shortest
edge between A and B. Thus, to be able to solve the MST problem efficiently, we
have to be able to solve the following problem efficiently"

Problem RMST. Given two well-separated sets A and B in Epk, with IAI]B[n,
find a shortest edge between A and B.

This problem looks very similar to the problem of finding the closest pair in a
set, which has an O(n log n)-time algorithm. However, there does not seem to be
any simple divide-and-conquer o(n 2) solution. We shall presently give an o(n2)-time
algorithm employing the post-office problem as a subroutine.

Consider the following algorithm.

(s1)

($2)
(s3)

(S4)

(S5)

Divide B into r [n/q] sets B1, B2,""" ,Br, each with at most q points
(q to be determined).
For each 1 _-< <_-r, preprocess Bi for nearest-point queries as in Lemma 2.1.
For each A and each 1 -< <_-r, find a point)7(], i) Bi that is nearest to
among all points in Bi.

For each cA, find a Y()B nearest to x by comparing)7(Y, i) for all
l<_i<_r.

Find a shortest such edge (, ()}.

The time taken is dominated by ($2) and ($3), i.e.,

O(r qb(k) _1_ nr log q).

Choosing q log n)(b(k))- gives the time O(n(n log r/)l-(b(k))-a). Thus, we have found
an algorithm that solves RMST in time O(n2-’(’(logn)-’(k). For the case k 3
and p 2, one can choose q (n log n)/5 to obtain an O((n log n) 1"8) algorithm.

We wish to make two observations concerning the above procedure. Firstly, the
AFP- and FP-problems can be solved with the same time bounds by very similar
procedures (employing farthest-point queries and preprocessing, of course). We will
thus consider that Theorem 1 has been proved for these problems. Secondly, the
RMST-problem is a type of nearest-neighbor problem with some restrictions on the
"legal" neighbors. It is reasonable to expect more such problems can be solved with
similar techniques. The NFN- and GN-problems are problems of this type, and we
will see that their efficient solutions enable the MST problem to be solved efficiently.
We shall give a fast algorithm for NFN-problems presently, leaving the more involved
proof of Theorem 1 for MST and GN to the later sections.

1We use the notation dp(A,B)=min{d,(t,6)laeA,eB}, d,(a,S)=min{dp(a,)16eS}, and
diam (S) max {d,(a, 6)l a, t7 e S}.

724 ANDREW CHI-CHIH YAO

We are given disjoint sets V1, V2," ’, Vt with a total of n points in V U Vi.
For a point : V, every point 37 V-V is a foreign neighbor of 7. Let q
[(n logn)ak)]; call a set V small if IVl<q, and large if IVil>=q. We partition V into
r O(n/q) parts B1, B2,’’’, Br, where each part (call it a block) either is the union
of several small Vi or is totally contained in some large Vi. Furthermore, each part
contains at most 2q points, and except possibly for Br, at least q points. The above
partition can be accomplished in O(n) time by breaking each large V into several
blocks and grouping small V into blocks of appropriate sizes. We now preprocess
each block B so that, for any query point , a point nearest to in B can be found
in O(log q) time. According to Lemma 2.1, this preprocessing can be accomplished
in time O(rq bk)) for all blocks B. We are now ready to find, for each point V, a
nearest foreign neighbor 37, i.e., do(, 37)= min {do(, 5) 1]. V- Vi}, when Vio
Assume that ? Vi and ? Bt. Let us find, for each block Bj that is disjoint from V,
a point (,]) nearest to among all points in Bj. Then we find a nearest foreign
neighbor)7 from the points zT(],]) and points in Bt- V by computing and comparing
their distances to ?. The running time for finding)7, for each, is thus O(r log q + (r + q)).
In summary, the total running time of the above procedure for NFN is O(n + rqbk+
nr log q +nq), which is O(n2-ak(log n)l-"k). As before, an O((n log n) 1"8) algorithm
can be obtained for the case k 3 and p 2.

This proves Theorem 1 for the NFN-problem. An interesting connection exists
between MST- and NFN-problems. In fact, in Sollin’s algorithm[4, p. 179], an MST
can be found essentially by solving NFN-problems O(log n) times. Thus, we have
shown that an MST can be found in log n O(n2-ak(logn)l-k)-time. The log n
factor can be avoided by reducing MST to a generalized version of the GN-problem,
which can be solved in time O(nE-ak(logrt)-ak)). The proof requires additional
techniques beyond the simple application of post-office problems to small parts of V.
We shall illustrate the ideas for two dimensions in the next section, and complete the
proof in 4 and 5.

3. An illustration in two dimensions. We illustrate the ideas of our MST-
algorithms with an informal description for 2-dimensional Euclidean space. Let us
first consider a special type of nearest-neighbor problem. Let/ be any point in the
plane. We divide the plane into eight regions relative to/ as shown in Fig. 1. The
regions are formed by four lines passing through/ and having angles of 0, 45, 90,
and 135 respectively, with the x-axis. We number the regions counterclockwise as
shown in Fig. 1, and use Rt) to denote the set of points in the/th region (including
its boundary), for 1 <= <- 8.

LEMMA 3.1. I.f [l and ’ are two points in Rt() .for some l, then d2(4, 4’)<
max {d2, 4), d2, 4’)}.

Proof. Consider the triangle/544’ (see Fig. 1). Since/__4/4’ <= 45 < zr/3, its opposite
side 44’ cannot be the longest side of the triangle. [3

Let V be a set of n distinct points in the plane. For each point V, let Nt()
be those points of V, excluding t7 itself, that are in the/th region relative to . That is,

N(6) V (q Rt() -{t;} for 1 -<_ =< 8.

A point t7 in N() is said to be a nearest neighbor to in the lth region if d2(t, t)-
min {d2(t, ff)l ff e N(tT)}. Note that such a nearest neighbor does not exist if Nt() ,
and may not be unique when it exists. Now, consider the following computational
problem.

MINIMUM SPANNING TREES IN k DIMENSIONS 725

3

6

2

FIG. 1. Regions R() for <- <- 8.

The eight-neighbors problem (ENP). Given a set V of n points in the plane, find
for each t7 V and 1 <_- -<_ 8 a nearest neighbor to t7 in the lth region, if it exists.

We first show that, once the eight-neighbors problem is solved for V, it takes
very little extra effort to find an MST on V. To see this, we form E, the set of edges
defined by:

E {{t;, a}lt; V and t is a nearest neighbor to t7 selected by ENP}.

We assert that the set of edges E contains an MST on V. As E contains at most 8n
edges, we can then construct an MST for the sparse graph (V, E) in O(n log log n)
steps [17], a very small cost.

THEOREM 3.2. The set of edges E contains an MSTon V.
Proof. Let T be a set of edges that form,an MST on V. We will show that, for

any edge {iT, if} that is in T but not in E, we can replace {iT, if} by an edge in E and
still maintain an MST. This would prove the theorem since we can perform this
operation on T repeatedly until all edges in T are from E.

Let {iT, if} be an edge in T-E. Assume ff Rl(). Then N # , and there is a
nearest neighbor to t7 in NI() such that {7, tT}E. Clearly t # and dE(tT,/)
d2(t;, if). Let us delete {t, if} from T. Then T is separated into two disjoint subtrees
with t and ff belonging to different components. Now, t7 and ff must be in the same
component. For if they were not, {t, if} would be a shorter connecting edge for the
two subtrees than {iT, if} by Lemma 3.1, contradicting the fact that T is an MST.
Therefore t7 is in the same subtree as if, and adding the edge {7, t} to T-{t,
results in a spanning tree with total weight no greater than that of T.

We now proceed to solve the eight-neighbors problem. We will find a nearest
neighbor to each point in the first region. The procedure can be simply adapted to
find nearest neighbors in the/th region for other I. As demonstrated earlier, the MST
problem can be thus solved in a total of 8]’(n) + O (n log log n) steps, if the first-region
nearest neighbors can be found in f(n) steps.

To study the first regions, it is convenient to tilt the y-axis by 45 clockwise (see
Fig. 2). That is, transform the coordinates (x 1, x2) of a point v into (x , x), defined by

x 0 4 x"
In the new coordinates, a point t (u , u ;) is in the first region relative to v (v , v)
if and only if (u’ >=v’x)^(u’z >=v’z).

726 ANDREW CHI-CHIH YAO

FIG. 2. New coordinate system.

For simplicity we assume that all the 2n coordinates x , x of points V are
distinct numbers. This restriction shall be removed in the general algorithm in 3.
Let us first sort the points according to their first coordinates x , and divide them into
s (n/q)1/2 consecutive groups each with =qs points (Fig. 3), q to be determined
later. Then for each of these s groups we sort the points in ascending order of
the coordinates x , and divide them into s consecutive groups with =q points each
(Fig. 4).

The set V is thus divided into s 2 "cells". For any t7 V, the cells can be classified
into three classes by their position relative to tT" class 1, cells all of whose points are
in NI(); class 2, cells with no points in Nl(t;); and class 3, the remaining cells. A
useful observation is that the number of cells in class 3 is at most 2 s. This can be
understood as follows: If we draw a horizontal and a vertical line through v, only
those cells that are "hit" can be in class 3, and there are at most 2 x s of them. We
can now try to find a nearest neighbor for t7 in N(t) using the following strategy: we
examine each cell in turn for cells in class 3, and compute d2(, t) for all t in the

FIG. 3. Division of points into s groups according to values of x

MINIMUM SPANNING TREES IN k DIMENSIONS 727

FIG. 4. Completing the division of V into cells.

o

cell; for a cell in class 2, we ignore it; for a cell C in class 1, we compute t7 and
d2(t, tT) defined by d2(tT, iT)= min {d2(tT,)l e C}. A nearest point can now be found
by selecting the point t7 with minimum d2(, t) from the preceding calculations. The
cost is O(2s q + of class 1 cells a) O(2sq + s2a) O(n/s + 2an/q), where a is
the cost of computing d2(vi, C) for a cell C of q points. If we have to compute d2(tT, t)
for each t7 e C, then a O(q), and the total cost would be O(n), and we have not
made any progress. However, we know from the post-office problem that we can
lower a to log q if we are willing to preprocess the set C (in O(q2) time). So let us
do the following: (i) preprocess every cell C to facilitate the computing of d2(7, C)
(cost O((n/q) q2) O(nq)); (ii) for each iT, compute the nearest neighbor in the above
manner in time O(n/s + (n/q) log q). The total cost is then O(nq + n2/s + (n2/q) log q).
Take q =n 1/3 and obtain an algorithm that runs in time O(n 5/3 log n). This gives an
0 (n 2) algorithm for finding an MST in two dimensions. We shall generalize the ideas
to general k.

4. Reduction of MST to a general GN-problem. We shall prove Theorem 1 for
the MST- and GN-problems in this and the next sections. Without loss of generality,
we shall assume that the n given points in V are all distinct.

In this section we reduce the finding of MST in E,k to a version of the geographic-
neighbor problem. We assume that p e {1, 2, c} throughout the rest of the paper.

kWe make Ep a vector space by defining + 37 (xl + y, x2 + y2, , Xk + Yk) and
c] (cx, cx2,’’’, CXk), where c is any real number and xi, y are the components of
and 37. We shall refer to any element of E, as a point or a vector. The]th component

of a vector z7 will be denoted as z without further explanation. The inner product of
two vectors and 37 is . 37 yk=x xy, and the norm of is IIll (]")/. m unit
vector is a vector with IIx ll a. Notice that all these definitions are independent of p.

Vectors/1,/2,""", bj are linearly independent if Y’.=a Ai/ 0 implies all A 0.
kA set of k lnearly independent vectors in Epk is called a basis (of Ep). Let B

{/7,/2,’’’,bk} be a basis of E,k. The convex cone of B is Conv(B)=
k k{Y’.i=x Xb IAi >--0for all i}. For any E,, the region B of. is defined as

(; ;) {ili -; Conv (n)}.

728 ANDREW CHI-CHIH YAO

Let V be a set of n distinct vectors in Ep. Denote by N(B,) the set V
{t7 t R (B; t;)-{t}}, for each g e V. We shall say that ff is a geographic neighbor to

in region B if ff N(B; v) and dr(if, iT)-< dv(t, g) for all t7 N(B;).
The GGN-problem (general geographic neighbor). Given a basis B and a set V

of n distinct vectors in Ek, find, for each t7 V, a geographic neighbor to t7 in region
B, if one exists.

Notice that this reduces to the GN-problem whenB {/71, b’2, ’,/k } with bij
The rest of this section is devoted to showing the following theorem, which states
that, if there is a fast algorithm to solve the GGN-problem, then one can solve the
MST-problem efficiently.

THEOREM 4.1. Let k >-2 be a fixed integer. Suppose there is an algorithm that
solves the GGN-problem for n given points in E in at mostf(n steps. Then a minimum
spanning tree for n points in Ep can be found in O(f(n) + n log log n) steps.

Define the angle between two nonzero vectors and 37 as (R)(,37)=
-1 kcos /ll,zll. I1 11), 0-<_- o(,z, For any basis B of E,, the angular diameter of

B is defined by Ang (B) sup {(R)(,)7)I, 37 e Conv (B)}. It can be shown that Ang (B)
max {(R)(/;i, b)I/;i,/ e B }, although we shall not use that fact.

Let be a finite family of basis ofEk. We call a frame if (-JB Conv (B) Ep.
The angular diameter of a frame is given by Ang (Y3) max {Ang (B)IB }. For
example, let/1 (1, 0),/2 (-1, 1),/3 (0, -1), 4 (---, --1) as shown in Fig. 5, then

b4 b3
FIG. 5. Illustration of "basis" and "frame"

B1 {/1,/2}, B2 {/,/3}, B3 {b’4,/1} are bases of E, and 3 {B1, B, B3} a frame;
O(B1) (R)(Bz) 3zr/4, (R)(B3) 2r/3, and (R)() 37r/4.

Intuitively, the convex cone of a basis B has a "narrow" angular coverage if
Ang (B) is small. The following result asserts that a frame exists in which every basis
is narrow, and such a frame can be constructed.

LEMMA 4.2. For any 0 < < zr, one can construct in finite steps a frame 3 of Ekp
such that Ang () < .

Proof. See Appendix. ll
kWe consider the following MST-algorithm. Let us construct a frame of Ep

such that Ang(B)<sin-1 (1/2k-(1/z+l/P)). Next, for each B, we solve the GGN-
problemmfor each t V, find a geographic neighbor t to 6 in region B if it exists--and
form the set E(B), the collection of all such edges {tT, iT}. Clearly, [BE(B)[-<

n [[- O(n). We now claim that tAnglE(B) contains an MST on V. If this is true,
then we can find an MST in an additional O(n log log n) steps. The total time taken
by the MST algorithm is then O(f(n) + n log log n). It remains to prove the following
result.

LEMMA 4.3. E(B) contains an MST on V.

MINIMUM SPANNING TREES IN k DIMENSIONS 729

Proof. The proof is almost identical to the proof of Theorem 3.2, except that we
need to establish the next lemma. U.

LEMMA 4.4. Let , , . in E satisfy O(-z7,)7-z)<sin-1 (1/2k-(I/2+x/)), then
do(, 37)< max {do (37,), dp(,)}.

Proof. Use a, fl, 3 to denote angles as shown in Fig. 6. By assumption,

(1) sin a < 1/2k -(/2+/).

z w x

FIG. 6. Illustration for the proof ofLemma 4.4.

Without loss of generality, assume that a + fl > rr/2. Let ff be the projection of 37 on
the segment from to . By the triangle inequality satisfied by metric do, we have

do(Y,)+do(,

d(i,)+d(, i)>_-d.(i,)7).

Thus,

(2) d,(i,)+d(,)_->d(i, i)+(d(i,i)-2d(’, i)).

But since is on the segment . to , we have o(Y,-) =do(Y,) +do(Y,). Therefore,
if we can further show that

(3) do(i,)- 2do (5, 7) > 0,

then (2) implies do(Y, zT)> do (2,)7), proving the lemma.
To prove formula (3), we notice that for any positive l, and tT, z7 in E,

(4) k a/t max,
This leads to

(5)

In particular,

kl/Olla-ll>-a.(a,)>-k-/lla-ll.

d. (37, ff)_<-k
(6)

do(;, . >=
Now, clearly by (1),

(7) 1137 fill (sin a)1137
Formula (3) follows from (6) and (7). 71

5. An algorithm tor the general geographic neighbor problem.
5.1. An outline. As shown in the preceding section, the MST-problem can be

reduced to the GGN-problem, and the GN-problem is a special case of the GGN-

730 ANDREW CHI-CHIH YAO

problem. In this section, we shall give an asymptotically fast algorithm for the
GGN-problem, which completes the proof of Theorem 1.

Given a basis B and a set V of n points in E,k, the algorithm works in two phases.
Preprocessing phase. (A) Partition V in O(kn log n) steps into r [n/q] subsets

V1, V.,. ., Vr, each with at most q points (q to be determined later). The division
kwill be such that, for any]eE,, all but a fraction r -1/k of the subsets V have the

property that the entire set V. is either in region B of or outside of region B.
(B) Preprocess each V. in O(q b(k) steps such that, for any new point Ek, a

nearest point a in V. can be found in O(log q) steps.
Finishing phase. (C) For each t V, we find a geographic neighbor in region B

as follows. We examine the r sets V1, V2,’", Vr in turn. For each V., we perform a
test which puts V. into one of the three categories. A category-1 V. has all its points
in region B of t;, a category-2 V has all its points outside of region B. The nature
of a category-3 V is unimportant, except that there are at most r l-k-1 V] in this
category; we consider the V. that contains g itself to be of category 3 independent
of the above division. As we shall see later, the test will be easy to carry out,
in fact in O(k) time per test. For a category-1 V., we find a nearest r? in V. in
O(log q) time. For a category-2 V, nothing need be done. For a category-3 V.,
we find a nearest u3(#tT) V. in region B, if it exists, by finding all the ff e V that
are in region B and computing and comparing dp(, iT) for all such . Call ff a
candidate from V.. After all the V. have been so processed, we compare do(if,
for all the candidates ff obtained (at most r of them), and find a nearest one
7 to tT. This t7 is the geographic neighbor we seek for iT. Return "nonexistent" if no
candidate ff exists from any V..

In the above description, three points need further elaboration" how step (A) is
accomplished, how we check a subset V for its category, and how q is chosen. We
shall deal with the first two points in 5.2, nd the last point in 5.3.

5.2. A set partition theorem. We shall show that step (A) of the preprocessing
phase in 5.1 can be accomplished. The key is the following result in Yao and Yao
[20]. For completeness, a proof is included.

For any finite set F of points in E, let hight (F) max {xt 1? F} and low/(F)
min {xtl F}, for 1 =< -<_ k.

LEMMA 5.1 [20].2 Let q and k be positive integers, and F a set of n points in E.
Then, in O(kn log n) steps, the following can be done.

(i) F is partitioned into r [n/q sets FI, F2, Fr, each with at most q points,
(ii) The 2kr numbers hight (F/), low/(Fi), 1 <= <= r, and 1 <= <= k, are computed,
(iii) The partition satisfies the condition that, for any E, there exist at most

k [rl/k] -1 sets Fi such that there exists an with lowt (Fi)< yt <_-hight (Fi).
Proof. We shall prove Lemma 5.1 for the case k 3; the extension to general k

is obvious. For the moment, let us assume further that n qm 3 for some integer m.
We use the following procedure to partition F.

(a) Sort the points of F in ascending order according to the first components
into a sequence 1, 2,""", n. Divide the sorted sequence into m consecutive parts
of equal size, that is,

G={xll<-_]<-n/m}, G={X,.ln/m+l<-f<-2n/m}, ...,

This lemma was proved in [20] with q n 1/k.

MINIMUM SPANNING TREES IN k DIMENSIONS 731

(b) For each 1 <_-i <_-m, sort the points in Gi according to the 2nd components;
divide the sorted sequence of Gi into m consecutive parts of equal size,
Gix, Gi2," aim.

(c) For each 1 =< i,/" =< m, sort the points in Gij according to their 3rd components;
divide the sorted sequence of Gi into m consecutive parts of equal size,
Gi, G,..., G,.

(d) Rename the m 3 sets Git as F1, F2," , Fr where r n/q m 3.
(e) Compute hight (F), low/(Fg) for 1 <_- -<_ r, 1 <_- <_- 3 according to the definitions.

The above procedure takes O(n log n) steps, and each Fi contains exactly q points.
It remains to show that property (iii) in Lemma 5.1 is satisfied.

Let 37 fie3. We shall prove that, for each 1 _-< <-3, there are at most mz F with
lowt (F) < yt -<- hight (F). The proof is based on the following properties of the partition,
where 1 =< i,/" -< m"

(5.2)

(5.3)

low1 (G)_-< high (G1)_-<low (G2)-< high1

<=... <_-low (G,,)-<_highl (G,,),

low2 (Gil) -< high2 (Gil)

<-...-<_low2 (G,)-< high2 (G,,),

low3 (Giil)

=<" =< low3 (Gijm) <= high3 (Giim).

For 1, according to (5.1), there is at most one/" such that

low1 (Gi)< yl--<_ high1 (Gi).

Thus, only the m 2 Gits 1 <=t,s <=m, can have low (ajts)<Yl -<_ high (Gits). This proves
our assertion for 1. We now prove the case for -2. For each i, by (5.2), there is
at most one/’ such that low2 (Gi)< y2 <_-high2 (Gi). Thus, for each i, only the m Git,
1 =< =< m, may have low2 (Gijt) < Y2 --< high2 (Giit). Therefore, at most m 2 Gjt can have
low2 (Gjt) < y2 -<- high2 (Gjt). A similar proof works for 3, making use of formula
(5.3).

This proves that, when k 3, and n =qr =qm 3 for some integer m, Lemma 5.1
is true. We now drop the restriction on n (still k 3). In this situation, r [n/q]. Let
m rr/k], and use the same procedure. At most 3m 2 Giit will satisfy (iii) by the same
proof. This completes the proof for k 3. U

We now extend the above result. Let B {/, ,2,""",/;k}_bek a, obasis of Ek; for
any e Ek, we shall define a k-tuple (x , x ., ., x k) by Y’.i= x bi. For any finite
set F of points, define for each 1 _<-l <_-k,

hight (B F) max {x[F},

low/(B F) min {x [F}.

THEOREM 5.2. Let q, n, k (q, k <- n) be positive integers, B a basis of Ek, and V
a set of n points in Ek. Then, in O(kn log n + kEn + k 3) steps, we can accomplish the
following"

(i) V is partitioned into r [n/q] sets V, V2, ", Vr, each with at most q points.
(ii) The 2kr numbers hight (B, Vi), lowt (B, Vi), 1 <- <-_ r, 1 <-_ <- k, are computed.

732 ANDREW CHI-CHIH YAO

Furthermore, the partition satisfies the condition"
(iii) For any k-tuple of numbers (yl, y2," , yt‘), them exist at most

such that them exists an that satisfies"
low/(B V/) < Yt -< hight (B V/).

Before proving this theorem, let us check that this partition fulfills the require-
ments of step (i) in the preprocessing phase (see 5.1).

LEMMA 5.3. A point is in the region B to , i.e., R(B;), if and only if
y >--x for all 1 <-_l <-k.

Proof. The lemma follows from the equation 17 Yl (Y
LEMMA 5.4. If 1E t’, B a basis, and F a finite set ofpoints in Et‘, then either

(i) x _-< low/(B F) for all 1 <- <- k, in which case all points in F are in region B
to , or

(ii) =ll, x > high (B F), in which case none of the points in F is in region B to
or

(iii) none of the above there exists an such that low (A; F) <x _-< high (B F).
Proof. This is an immediate consequence of Lemma 5.3.
There are two consequences of Lemma 5.4 of interest to us. Firstly, the lemma

shows that the requirements of step (A) in 5.1 are satisfied. For any , a V. such
that neither all points of V/are in R (B;) nor none are in R (B;) must satisfy the
condition that lOW/(B, V.)<x <_-hight (B; V.) for some l, because of Lemma 5.4. By
Theorem 5.2, there are at most about ra-/t‘ such V.. This proves the claim. Secondly,
Lemma 5.4 gives a simple way to detect most of the V. that satisfy V_R (B;) or

V. f3 R (B;)= . Namely, compare x with hight (B; V) and lOW/ (B; V) for all l,
and determine whether case (i), (ii), or (iii) applies in Lemma 5.4. The test only takes
O(k) for each and/’, can be conveniently used in step (C) in the procedure in 5.1.

We now turn to the proof of Theorem 5.2.
Proof of Theorem 5.2. Let M be the k x k matrix (b/) (recall that //=

(b/i, bi2," b/t‘)), andM-x be its inverse. We use the following procedure to partition
V.

(1) Compute M-a in O(k 3) steps (see, e.g., [1]).
(2) Compute, for each e V, the k-tuple (x , x,. ., x ,) by (x , x ,. ., x ,)

(x, xz, xt‘) M-. This takes O(kZn) steps.
(3) Consider the set F={(x’x,x.,". ,x’)l V}. We now use the procedure in

Lemma 5.1 to divide F into r parts Fx, Fz, , F, Let V be the subset of V obtained
from F/by replacing every (x , ., x ,) by the corresponding .

(4) Set hight (B; V/) high (F/), and low (B; V/)-low (F/).
The procedure clearly takes O(kn log n + k Zn + k 3) steps. The quantities high (B V/)
and low/(B; Vi) are correctly computed by their definitions. Items (i) and (ii) in
Theorem 5.2 are obviously true, and (iii) is true because of the properties of high/(F/),
low (F) stated in Lemma 5.1.

5.3. Finishing the proof. We now analyze the running time of the algorithm for
fixed k and choose q. The preprocessing phase takes time O(n log n +r. qb(t‘). In
the finishing phase, the running time is dominated by the search for candidates if,
which is of order n [(# of category- 1 V.) log q + (# of category-3 V/) q]. The last
expression is bounded by n (r log q + r -t‘-’ q). The total running time of the algorithm
is thus O(n log n + r qb(k) + nr log q + nqrl-k-1). Remembering that b(k) 2t‘+l and
r O(n/q), we optimize the expression by choosing q (n log n)(t‘). This gives a time
O(rt 2-a(k) (log n)-’(k)). The improved time bound for the special case k 3, p =2
can be similarly obtained.

MINIMUM SPANNING TREES IN k DIMENSIONS 733

6. Discussions. We have shown that, for fixed k and p {1, 2, c}, there are
o(nE)-time algorithms for a number of geometric problems in Ep, including the
minimum spanning tree problem. We shall now argue that, when p {2, c}, o(kn 2)
algorithms exist for all k and n. As are typical for results under fixed k assumptions,
the algorithms given in the paper have o(r/2) time bounds when k is allowed to grow
slowly with n. In fact, a close examination shows that, if k <-1/2 log log n, the algorithms
still run in time o(rt2). For k > 1/2 log log n, it can be shown [18] that the computation
of the distances between all points can be done in o(kn 2) time when p {2, }. Since
all problems considered in this paper have O(rt 2) algorithms once all the distances
are known, the previous statement provides algorithms that run in time o(kn2).

The efficiency of our algorithms is dependent on the solution to the post-office
problem (or its farthest-point analogue). For example, suppose the nearest-point query
could be answered in O(logn) time after an O(n)-time preprocessing, /3_->2. A
simple adaptation of the algorithm would give an o(nE--l(log n)l--l)-time solution
to the NFN-problem, which in turn implies an O((n log n)E-’-l)-time solution to the
MST-problem (see the remark at the end of 2). If 1 </3 < 2, the following modification
would also give an O(n2-’-(log n)l-’-)-algorithm for the NFN-problem (and hence
an O((n log n)E--l)-algorithm for finding MST). We first divide V into r
n/(n log n)- blocks B1, BE,’’’ as before. Each block is preprocessed, and for each, a nearest point in every block not containing x is found. Now, for every point

Bi, we need to find for it a nearest "foreign" neighbor in Bi. Instead of using brute
force (computing the distance from each Bi to every other point in Bi) as was done
previously, we divide B into r subblocks, preprocess each subblock, and find for] a
nearest point in every subblock in Bi. To compute a nearest foreign neighbor to in
the subblock containing Y, we shall again break the subblocks. This process continues
until the size of the subblocks is less than n , where 6 1-fl-, at which point we
compute all distances between points in the sarrie subblock. During the above process,
we have located, for each , a set of points containing a nearest foreign neighbor t7
to . It is then simple to locate such a t. This is a brief outline of an
O(n2--l(logn)--l)-algorithm for NFN-problems, 1</ <2. However, it seems
unlikely that a nearest-point query can be answered in O(log n) time with an O(n)-
preprocessing,/ < 2, when k _-> 3.

We conclude this paper with the following open problems.
(1) Improve the bounds obtained in this paper.
(2) Analyze the performance of new or existing fast heuristic algorithms for

MST-problems. For example, can one show that the AMST-algorithm in [2] always
constructs a spanning tree with length at most 5% over the true MST?

(3) Prove bounds on average running time of MST-algorithms for some natural
distributions.

(4) Extend results in this paper to L,-metric for general p.

Appendix. The existence and construction of "narrow" framesmProof of
Lemma 4.2.

LEMMA 4.2. For any 0 < < zr, one can construct in finite steps a frame of Ek
such that Ang () < 6.

As the discussion is independent of p, we shall use E instead of E.
We begin with the concept of a "simplex" familiar in Topology (see, e.g., [10]).

Let/o,/x,""" ,j be f+l, 0_-</’-<_ k, points in Ek, where the vectors/i -i6o, 1--<i--</",
are linearly independent. We shall call the set {Y’.[=oAiPi IAi >-0 for all i, and Y’.iAi 1}
a (geometric) f-simplex in Ek, denoted by (/0, i6x,""", i6j). Informally, it is the convex

734 ANDREW CHI-CHIH YAO

hull formed by vertices/o,/1," , p’ on the minimal linear subspace containing them
(see Fig. A). The diameter of a simplex s is diam (s)= sup (11-111. s).

The following two lemmas give the connection between simplices and bases. Let
be a k-tuple (el, e2,’",ek), where ei{-1, 1} for all i. Denote by H() the

hyperplane {x [i eiXi-" 1} in Ek.

PO" "P2

FIG A. A 2-simplex in E2

LEMMA A1. Let s (/0,/1,’ ",/k-1) be a (k 1)-simplex in E, where i H()
for every i. Then the set B(s)=o,/l,’" ,/k} is a basis. Furthermore, the angle

2Ang (B(s)) sattsfies cos 1 -k(dam (s))
k-1 k-1

Proof.. Suppose Y.i=o hipi 0. We shall show that hi 0 for all i. If i=o h 0,
k --1 k-1 Tthen Y,i= hii-Po) Y,i=o hipi 0. hs mphes hg 0 for all , by the definition of

k-1 k-1
simplex. If Y.=o h A 0, then v Y.=o (hi/A)p =0. But t is easy to check that
v H(), a contradiction.

We have thus shown that B (s) is a basis. To prove the rest of the lemma, let
and 37 be any two nonzero vectors in Cony (B(s)). We shall prove that cos 0(, 37)_->
1- 1/2k (diam (s))2. Without loss of generality, we can assume that , 37 s. Then

(diam (S))2 (3 3)" (3 3) "-llll= / I111=- 21111. IIll cos o(,)
--> 21111.1111(1 cos 0 (,)).

It follows that

(A1) cos 0(, 37) -> 1
(diam (s))2

21111" 113711
As can be easily verified, , 37 H(), which implies

IItl= Y. x > E ,x,

Therefore, I111->- l/x/, and similarly I111 l/x/. Formula (A1) then implies

k
cos O(, 37) _-> 1 (diam (s))2.

This proves Lemma A1. [1

We shall use B (s) to denote the basis corresponding to simplex s.
LEMMA A2. Let s cc.H(g:) be a simplex, 5t’ a finite collection of simplices, and

s (-Js’e s’. Then Conv (B (s))= LJ,,se Conv (B (s’)).
Proof. It is easy to see that Conv (B(s))___ (-J,,e Conv (B(s’)). To prove the con-

verse, let s (fro,/x," ",/-), where each/i ell(g). If a point t7 e Conv (B(s)), then
k-1

u Y.i=o ai/i, where ai => 0. We shall prove that t Conv (B (s’)) for some s’ 6e. It is
trivial if t7 =0. Otherwise, the point (1/Y.i a)t7 es U,,ses’, and hence (1/g,a,)a s’
for some s’ e . This implies t7 e Conv (B (s’)). [3

MINIMUM SPANNING TREES IN k DIMENSIONS 735

The above lemmas suggest that we may try to construct a frame with narrow
bases, by first constructing a family of simplices all with small diameters. We use the
following scheme"

Let denote the unit vector in Ek, whose ith component is 1 and all others
are 0.

For each of the 2k k-tuples g (e 1, eL, ek), where e + 1, do the following.
(a) Let s (elgl, eLY2,’"", eke’). (Clearly s _H(g).)
(b) Construct a finite family S of simplices all contained in H(g) such that

s tA,s’ and diam (s’)< (2(1-cos ,)/k)1/2 for all s’9.
(c) Form B (s’) for all s’ 9.
The collection of all the B (s’) constructed this way is clearly a frame because

of Lemma A2. Using Lemma A1, it is easy to verify that Ang (B(s’))< for all s’.
Thus, such.a construction would give a frame satisfying the conditions in Lemma 4.2.
It remains to show that step (b) above can be carried out.

A procedure in topology ([10, p.209, Thin. 5-20]), known as barycentric sub-
division, guarantees that step (b) can be accomplished in a finite number of steps. For
completeness, we shall give a brief description below.

There is a basis procedure, called first barycentric subdivision (FBS), which, for
a giveni-simplex s, constructs in finite steps a family St of simplices such that s ,s’
and max, (diam (s’)) <- (/’/(] / 1))(diam (s)). If we apply this procedure iteratively,
at each iteration we apply FBS to every simplex present, then all the simplices will
have a diameter less than any prescribed positive number after enough iterations.
This then constitutes a procedure for step (b).

Finally, we describe the FBS procedure. For a proof that it produces simplices
with the desired properties, see [10]. Let s=(/0,/l,’" ,/j), the point t(s)=
(1/(/" + 1)) =0/ is called the centroid of simplex s. For any distinct integers 0_-<il,
i2,""", it <=], let ili2""i,---((ff/l’ /i2,""’, it))" For each tr (i0, il, ij) E, where X
is the set of all permutations of (0, 1,2,... ,]), let s’(tr) denote the simplex
(/,o,/1, ",/,j) with trt io,il," ", it. The FBS of s is defined by, {s’(o’) [o- X}.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. L. BENTLEY AND J. H. FRIEDMAN, Fast algorithms for constructing minimal spanning trees in
coordinate spaces, Rep. STAN-CS-75-529, Stanford Computer Science Department, Stanford,
CA, January 1976.

[3] J. L. BENTLEY AND M. I. SHAMOS, Divide-and-conquer in multidimensional space, in Proc. 8th
Annual ACM Symposium on Theory of Computing, 1976, pp. 220-230.

[4] C. BERGE AND A. GHOUILA-HOURI, Programming, Games, and Transportation Networks, John
Wiley, New York, 1965.

[5] R. C. BUCK, Partition of space, Amer. Math. Monthly, 50 (1943), pp. 541-544.
[6] D. CHERITON AND R. E. TARJAN, Finding minimum spanning trees, this Journal, 5 (1976), pp.

724-742.
[7] E. W. DIJKSTRA, A note on two problems in connection with graphs, Numer. Math., (1959), pp.

269-271.
[8] D. DOBKIN AND R. J. LIPTON, Multidimensional search problems, this Journal, 5 (1976), pp. 181-186.
[9] R. O. DUDE AND P. E. HART, Pattern Classification and Science Analysis, John Wiley, New York,

1973.
[10] J. G. HOCKING AND G. S. YOUNG, Topology, Addison-Wesley, Reading, MA, 1961.
[11] A. KERSCHENBAUM AND R. VAN SLYKE, Computing minimum spanning trees efficiently, in Proc.

25th Annual Conference of the ACM, 1972, pp. 518-527.

736 ANDREW CHI-CHIH YAO

[12] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[13] J. B. KRUSKAL, JR7., On the shortest spanning subtree of a graph and the travelling salesman problem,
Problem. Amer. Math. Soc., 7 (1956), pp. 48-50.

[14] R. C. PRIM, Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957),
pp. 1389-1401.

[15] M. I. SHAMOS, Geometric complexity, Proc. 7th Annual ACM Symposium on Theory of Computing,
1975, pp. 224-233.

[16] M. I..HAMOS AND D. J. HOEY, Closest-point problems, Proc. 16th Annual IEEE Symposium on
Foundations of Computer Science, 1975, pp. 151-162.

[17] A. C. YAO, An O(IEI log log vI) algorithm]:or finding minimum spanning trees, Inform. Process.
Lett., 4 (1975); pp. 21-23.

[18], On computing the distance matrix of n points in k dimensions, IBM San Jose Research Center
Technical Report, to appear.

[19],On the preprocessing cost in multidimensional search, IBM San Jose Research Center Technical
Report, to appear.

[20] A. C. YAO AND F. F. YAO, On computing the rank function for a set of vectors Rep. UIUCDCS-R-75-
699, Computer Science Department, University of Illinois, Illinois, Februrary, 1975.

[21] C. T. ZAHN, Graph-theoretical method for detecting and describing gestalt clusters, IEEE Trans.
Comput., C-20 (1970), pp. 68-86.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0009 $01.00/0

SOME AREA-TIME TRADEOFFS FOR VLSI*

RICHARD P. BRENTt AND LESLIE M. GOLDSCHLAGERt

Abstract. Area-time bounds on VLSI circuits for context-free language recognition, for the evaluation
of propositional calculus formulae and for set equality and disjointness questions, are considered. In all
cases, a lower bound AT2’= f(n 1+’) is proved, where A is the chip area, T the execution time, and
0_-<t_-< 1. Similar results were known for computations with f(n)-bit outputs, but the computations
considered here have only 1-bit outputs. Upper bounds are also discussed.

Key words, area-time tradeoffs, VLSI, formula evaluation, circuit-value problem, context-free
language recognition, set equality, set disjointness, computational complexity, crossing sequences, models
of computation

1. Introduction. Very large scale integrated circuit chips present an economic
method of building general-purpose parallel machines as well as special-purpose chips
which could be used as plug-in modules to conventional computers [9], [15], [17],
18], [21], [22].

The main complexity measures relevant to VLSI technology are the execution
time of the algorithm ("parallel time") and the chip area required for the implementa-
tion. This chip area consists of both the active processing elements (transistors) and
the wires used to interconnect them. If a is the narrowest wire width allowed by the
technology of the day, then chip area can usefully be measured in units of a 2.

Because speed increases obtained through parallelism often require a large volume
of information transfer between the active processing elements, it has frequently been
observed that the resource needs of parallel algorithms are dominated by data com-
munication. For VLSI circuits this phenomenon manifests itself in the chip area
required for interconnections between active processing elements [15], [22], [23].

It is reasonable to expect that, as one increases the degree of parallelism used
to solve a problem in order to decrease the execution time, the required inter-processor
communication will increase. In a VLSI setting, we could therefore expect to find
tradeoffs between time and chip area. Such tradeoffs have been reported for the
discrete Fourier transform, matrix multiplication, Gaussian elimination, transitive
closure, sorting and permutation problems, and for integer addition and multiplication
[1], [5], [6], [20], [21], [22], [24], [25].

This paper gives area-time tradeoffs for context-free language recognition, finding
the truth value of a formula given the values of its variables, determining whether
two se.ts are equal (or disjoint), and determining if all elements of a set have distinct
values. These problems differ from those mentioned above in that they have only a
one-bit output. Aiter our results were announced in [3], we learned that similar results
were obtained independently by Lipton and Sedgewick [14].

Preliminary results and definitions are given in {}2, lower bounds on area-time
products are given in {}3, and upper bounds are considered in {}4. Finally, in {}5, we
mention some open problems.

* Received by the editors January 5, 1981 and in revised form January 15, 1982.

" Department of Computer Science, Australian National University, Canberra, Australia.
Department of Computer Science, University of Queensland, St. Lucia, Australia. Now at Basser

Department of Computer Science, Sydney University, Sydney, Australia.

737

738 R. P. BRENT AND L. M. GOLDSCHLAGER

2. Definitions and basic results.
DEFINITION 2.1. Let G denote a context-free grammar and L(G) the language

generated by G [11]. Then CFMEMBER {(G, s)ls eL(G)}.
DEFINITION 2.2. Let F denote a formula of the propositional calculus in disjunc-

tive normal form (DNF), and let b denote a truth assignment to the variables of F.
Then FVAL {(F, b)lF is true under b }.

DZFINITION 2.3. A circuit a is a sequence (al,. ", an) where each ai is either
a variable x 1, x2," or a gate AND (/’, k), OR (/’, k) or NOT (/’) where/" <- k < i. Let

be a truth assignment to the variables of a, and b’be the natural extension of b
to the gates of a [13]. Then the circuit value problem CVP= {(a, b)[b’ (an)= true}.

Let X (xl,."’, xn) and Y (yl,."", yn) be sequences of integers in the range
0 to n-1 and N={1, 2,. ., n}.

DEFINITION 2.4.

DISTINCT {(X)I for all i, f N, /’:=>xi x},
DISJOINT {(X, Y)I for all i, f N, xi y},

NONDISJOINT {(X, Y)I for some i,/" N, xi y},

EQUAL {(X, Y)la X iff a s Y}.

The VLSI model we use is that of [6]; see also [1], [2], [4], [51, [20], [21], [22],
[23]. Essentially, the model is a collection of processing elements, some of which
receive inputs or produce outputs, and which are connected by wires with finite width.
For completeness we state, the model here. Comments and justification are given
following the statement of each assumption A1-A9. Our lower bound results are
insensitive to minor details of the model.

A1. The computation is performed in a convex planar region R of area A.
Because of heat dissipation, packing, and testing requirements, a two-dimensional

planar model is reasonable. The convexity assumption is not restrictive in the sense
that almost all existing chips or useful modular designs do have convex boundaries
for packaging or modularity reasons.

A2. Wires have minimal width A > 0.
A is assumed constant, but in applications of our results it will of course depend

on the technology. We also assume R has width at least A in every direction.
A3. At most u >= 2 wires can overlap (or intersect) at any point in R.
A chip may consist of u layers. Wire crossings through different layers are allowed.

In fact, transistors are typically formed by crossovers of wires. Since u -> 2, the graph
of wires (edges) and gates (nodes) need not be planar in a graph-theoretic sense.

A4. I/O ports each contain a h x h square and thus have area at least O->2.
An I/O port can be multiplexed to handle more than one input or output
variable.

If R is a complete chip, O will be large compared to A 2. If R is only part of a
chip and I/O is to other regions on the chip, p could be of order h2. We do not
require each input (or output) variable to appear on a distinct input (or output) port,
as required in [21]. I/O ports may be multiplexed as they often are in practice.

A5. A bit requires minimal time ->0 to propagate along a wire or to be
transmitted through an I/O port. The time for one gate computation and
an arbitrary fanout of the result is included in -.

Since dimensions are limited by the minimal wire width and minimal gate area,
a minimal propagation time is reasonable. We do not need to assume that the

SOME AREA-TIME TRADEOFFS FOR VLSI 739

propagation time increases with the length of the wire. With the (small) sizes of chips
we now have or anticipate, the propagation time, which is the time needed to charge
or discharge a wire, is limited by the wire capacitance rather than the velocity of light.
A longer wire will generally have a larger capacitance and thus require a larger driver
to maintain constant propagation time, but the driver area need not exceed a fixed
percentage of the wire area and so can be ignored if h is increased slightly. A thorough
discussion of this point may be found in [2]. Although it would be reasonable to
assume bounded fanout, we do not need this assumption for proving lower bounds.
When proving upper bounds in 4, we do assume bounded fanout.

A6. The times and locations at which input and output bits are available are
fixed and independent of the values of the input bits.

In the terminology of [14], the input-output schedule is "where-oblivious" and
"when-oblivious".

A7. Storage for one bit of information takes area at least/ > 0.
/3 is typically several times larger than h 2.
A8. Each input bit is available only once.
There is no free memory outside R. If the same input bit is required at different

times, it must be stored within R, taking area at least/ (see A7).
A9. Computation is synchronous with clock period at least -.
This assumption, not required in [5], [6], simplifies the definition of "crossing

sequence" given below.
DEFIrqI:ION 2.5. If V is any subset of the processing elements (i.e. gates and

I/O ports), then a bisection of V is a cut of V into disjoint sets B and C such that,
for some chord L perpendicular to a diameter D of the chip, the elements in B lie
(at least in part) on one side of L and those in C lie (at least in part), on the other
side of L.

As in [5], [6], we shall assume that processiiag elements can be shrunk to points
and the chord L perturbed slightly so that L intersects only wires and not processing
elements.

DEFIrqITIOrq 2.6. Given a bisection as above, the (maximal) information transfer
across the cut during a computation of time T is I WT/-, where W is the number
of wires which intersect L.

(Informally, I is the maximum number of bits which can be transferred in either
direction between the processing elements in B and those in C. This definition is
closer to those implicit in [5], [6] than those given in [1], [21], [22].)

DEFIqTIOrq 2.7. The crossing sequence associated with a given bisection and
computation is the sequence of (binary) values on the wires crossing the cut (with
some fixed ordering) at intervals of the clock period during the computation.

THEOREM 2.8. Given a set V of processing elements, if there is a bisection of V
with information transfer L then

AT2 f/(i2).

Proof. Let L be the length of the chord associated with the bisection of V. Then,
by Assumptions A1-A3, with W as in Definition 2.6, A f/(L2) and L >= W/v, so
AT2= I(W2T2)

(The proof is similar to that of Thompson [21], [22] except that, because of our
Assumption A1 and Definition 2.6, we do not need to use the concept of "bisection
width" or to minimize over a class of bisections. Our argument is used in the proof
of [6, Thm. 3.1].)

740 R. P. BRENT AND L. M. GOLDSCHLAGER

Results similar to Theorem 2.8 have been used in the following way [1], [5], [6],
[21], [22]: one considers the bisection of V into two regions B and C with a split of
inputs xl,. ", xn between them and an arbitrary distribution of outputs y 1,..., y,,.
Assuming that]Ycl => YB], the idea is to prove that there must be a sizeable information
transfer I between XB and Yc. If one can show that I is proportional to n, then an
area-time tradeoff of the form AT2= f/(n 2) follows from Theorem 2.8.

X XB C

B C

FIG. 2.1. One-way information flow.

For the problems considered in this paper, there is only one output, whose
Boolean value answers the membership question posed by the instance of the problem
which appears on the inputs. When the circuit produces only one output, the proof
techniques required to bound the information transfer differ from the techniques used
in [2], [5], [6], [20], [21], [22], [23], [24], [25]. In particular, it is necessary to consider
the information transfer in both directions In and Ic (see Fig. 2.2). The total information

x
B x

B

Y

FIG. 2.2. Two-way information flow.

transfer ! =I +Ic. Our technique may be regarded as a hybrid of the "crossing
sequence" argument used to obtain lower bounds for Turing machine computations
[10] and the "information flow" arguments previously used to obtain lower bounds
on AT2 for VLSI computations. All such techniques have the inherent limitation of
yielding lower bounds on AT2 no larger than cn 2, since all the inputs and outputs
can be trivially redistributed with ! proportional to n. This limitation results from
ignoring the processing performed in B and C.

3. Lower bounds.
THEOREM 3.1. For any VLSI circuit of area A which accepts as input a proposi-

tional calculus formula in disfunctive normal form with up to n literals and a set of truth
values of its variables, and has as output the truth value of the formula in (worst-case)
time T,

AT2 fl(n2).

SOME AREA-TIME TRADEOFFS FOR VLSI 741

Proof. Without loss of generality we assume that the formula has exactly n
literals, n/2 variables, and that n is divisible by 8. Let M be the maximum number
of input variables sharing (or multiplexing) one input port. If M >=n/4 the result is
immediate, for T ft(M). Thus, we may assume that M < n/4. It follows that there
is a bisection of the circuit into two parts B and C so that the input ports for between
n/8 and 3n/8 of the variables xi are in B, and those for the remaining variables are
in C. We denote the variables in B by b 1, ",bk, and those in C by c 1, , Ck, ",

where k n/8, and write b= (bl,’’’, bk), .= (ca,’’’, Ck). The 2k variables not in b
or are denoted by d (d1,’", dEk). Assume without loss of generality that the
output port is in B.

Consider the formula

k k 2k

f(b, c)= / (bitfz.i) / (bi&ci) / (ditdi)
i=l i=1 i=l

which is in disjunctive normal form with 8k =n literals and 4k =n/2 variables.
(Intuitively, f(b, e) returns the truth value of b e. By assumption A6, the bisection
into B and C is independent of f.) Let ! be the information transfer between B and
C during a computation of f(b, e). Assume, by way of contradiction, that I < k. There
are at most 2t < 2k crossing sequences (of bits across the cut), but there are 2k possible
values of b, so there exist distinct b<1), b(2) such that the computations of/(b(1), b1))
and f(b1), b<2)) give identical crossing sequences. It follows that the circuit computes
identical values for f(b<1), b1)) and f(b<1), b<a)), contrary to the definition of f. Thus
I => k fl(n), and the result follows from Theorem 2.8.

THEOREM 3.2. With the assumptions of Theorem 3.1, A fl(n).
Proof. Without loss of generality we may assume that there are n/2 variables

and that n is divisible by 8. Suppose that there are P input ports. If P >= n/4 the result
is immediate, for A Iq(P). Thus, we may assume that P <n/4. At most P truth
values can be read in simultaneously, so at some time during the computation, the
truth values of a subset B of variables will have been read in, where n/8 <= IBI <-- 3n/8.
Let C be the complementary set of variables, and suppose B ={bl,..., bk,’" "},
k n/8. Using the same function f as in proof of Theorem 3.1, we see that the output
f(b, c) distinguishes between all 2k possible vectors b (b 1, ", bk) for suitable choice
of c= (ca,’", Ck). Thus, the circuit must have at least 2k internal states, i.e., it must
store at least k fl(n) bits of information. The result now follows from Assumptions
A7 and A8.

THEOREM 3.3. With the assumptions of Theorem 3.1,

AT2 f(n 1+) for all a [0, 1].

Proof. The result follows by combining the bounds of Theorems 3.1 and 3.2 (as
in the proof of [6, Thm. 3.3]).

COROLLARY 3.4. For VLSI circuits which evaluate Boolean formulae in general
(not necessarily disjunctive normal) form,

ATz l)(n 1+) for all a [0, 1].

COROLLARY 3.5. For VLSI computation of the circuit value problem CVP,

aT2 f(n 1+) for all ce [0, 1].

THEOREM 3.6. Any VLSI circuit which computes DISTINCT has AT2=
f(n 1+) for all a [0, 1], where n is the number of elements in the input sequence.

742 R. P. BRENT AND L. M. GOLDSCHLAGER

Proof. Call an element of an input sequence a block, and note that each block
consists of at least [1OgE n bits.

We proceed much as in the proof of Theorem 3.1, taking k n/4, and consider
any bisection of the least significant input bits of each block into two parts B and C,
k =<lBl=<3k. Let b= (bl,"’, bk) denote a subset of the bits in B, and similarly for
c (c 1, , Ck). Now for each i, 1 -<_ <= k, if bi or ci is the least significant bit of block
xi, then assume that the other bits of xi equal the binary representation of i- 1. Let
I be the information transfer between B and C. If ! < k, then there exist distinct b(1),
b(2) such that b= b(1) and c= g(1) results in the same crossing sequence across the cut
as b b(2 and e (2, where is (/1,.. , b-). So the circuit computes the same output
for b b(x and e (1, as for b b(and e- g(2. But this is a contradiction, as in the
former case all blocks are distinct, while in the latter there is at least one pair of
blocks which have identical input values. Hence I _-> k.

The remainder of the proof is similar to the proofs of Theorems 3.1-3.3.
THEOREM 3.7. Any VLSI circuit which computes DISJOINT (or NONDIS-

JOINT) has AT2 fl(n +) for all a [0, 1], where n is the number of elements in the
input sequences.

Proof. As in the proof of Theorem 3.6, taking k n/8, consider any bisection of
the least significant input bits of each block into two parts B and C, 2k <-IB[-<-6k.
At least half of the least significant bits of X must be in one part (say B), and thus
at least half of the least significant bits of Y must be in the other part (C). Let b and
e (respectively) denote k-subsets of these bits, assume that the most significant bits
of their corresponding blocks are as above, and that all remaining blocks in X equal
2k and in Y equal 2k + 1. Choose b() and b(2) as above. Now b =b() and c=
produce the same output as b b(1) and e= (2), but in the former case X and Y are
disjoint, whereas in the latter they have some element in common.

THEOREM 3.8. Any VLSI circuit whlch computes EQUAL has AT2" f(n
for all a [0, 1], where n is the number of elements in the input sequences.

Sketch ofproof. The proof is similar to that of Theorem 3.7, but now b b() and
e b() produces the same crossing sequence as b b(2) and e b(E), and so the circuit
produces the same output for b b() and e= b(1) as for b b(1) and e= b(E).

Remark. The proof of Theorem 3.8 breaks down if we allow probabilistic
algorithms which have a positive (albeit very small) probability of error [M. O. Rabin,
personal communication, August 1981].

THEOREM 3.9. Let m 0(n). There is a context-free grammar G with the follow-
ing property. Any VLSI circuit which, given a string s s lSE s,,, determines whether

(G, s) CFMEMBER,

has ATE" f(n +") for all a [0, 1].
Proof. Let G be the context-free grammar with start symbol $, nonterminal

symbols D, E, F, terminal symbols 0, 1, $, , and productions

S -> EFCE
F -..OFOIIFIICE$E

E EDIe
D -)DOID lie (where e is the empty string).

It is easy to see that G generates the language
RL(G) {Xl"" "XpC,$y’’" Yo [P >0, q >0, xg yi for some <_-p, j -<q}

SOME AREA-TIME TRADEOFFS FOR VLSI 743

where each xi, yj is a (possibly empty) string of binary digits and y is the reverse of
yj. L(G) is just a generalization of NONDISJOINT. Hence, a circuit which can
determine if (G, s) CFMEMBER, i.e., if s L(G), can also determine if (X, Y)
NONDISJOINT provided (X, Y) is encoded as the string x1’’’ Xn$ylR yR.
Hence, the result follows from Theorem 3.7.

4. Upper bounds. The following theorem shows that, for several of the problems
considered in 3, the exponent of n in the lower boundAT2 f(n 2) is the best possible.

THEOREM 4.1. There is a VLSI circuit which solves the problems of Theorem 3.1,
3.6, 3.7 or 3.8 with

and

A O(n 2 log3 n)

T O(log n).

Proof. We shall consider the problem of Theorem 3.1 (evaluating propositional
calculus formulae in disjunctive normal form with up to n literals); the problems of
computing DISTINCT, DISJOINT and EQUALmay be dealt with in a similar fashion.

A literal is a variable or its negation, so any formula with at most n literals has
at most n variables. We shall construct a circuit for which there are n input ports
along the north edge, the th such port giving the Boolean value of the variable xi,

for 1, 2,. , n. A literal is of the form xi or i, so can be encoded by [log2 n + 1
bits. Since the formula is in disjunctive normal form, it can be encoded simply as a
string of literals separated by encoded operators "&" and "V". The encoded formula
will enter the west edge of our circuit through O(n log n) input ports. The overall
layout is illustrated in Fig. 4.1.

To simplify the description we first assume unbounded fan-out. Consider the
evaluation of a single literal p Nix, where Ni may be either the identity or negation
operator. It is easy to construct a circuit, of area O(n log n) and delay O(log n), which
has a grid of n lines running north to south (of which the th is to be selected), and
along the south edge a fan-in tree whose result may be complemented (depending on
N) and fed out along the east edge. This is illustrated in Fig. 4.2.

It remains to specify an evaluation tree which inputs the value of each literal and
the operators, and outputs the value of the formula. This is illustrated in Fig. 4.3,
where the wires between each node transmit six bits xOxyOyzOz, where x, y and z can
be 0 or 1 and 0x, 0y and 0z can be encodings of & or V.

Initially, the th node of the evaluation tree carries the signal 1 & 1 & pO, where
p is the value of the th literal and 0i the operator to its right (irrelevant if n).

Each node of the evaluation tree takes two six-bit signals ’1 and [2 representing
partially evaluated formulae, and evaluates as much as possible of the concatenated
formula ’tf2. It is straightforward to verify by induction that each six-bit signal must
have one of the forms

x Vy Vz&,

l&y VzO,

or

l&l&zO

where x, y, z are 0 or 1 and 0 is & or V.

744 R. P. BRENT AND L. M. GOLDSCHLAGER

literal and
operand encodings

variable values

x x
2

P I literal evaluation

{}2)

literal evaluation

Pn- literal evaluation

Xn_

literal evaluation

x
n

(o) > T
FIG. 4.1. Overall layout.

The root of the evaluation tree evaluates the final six-bit signal to give the values
of the formula.

The circuit constructed above has width O(n), height O(n log n), and delay
O(log n). However, we have neglected the problem of fanout. In order to reduce the
fanout of the input lines entering along the west edge (i.e., the literal encodings) we
must separate each line by a distance O(log n) to accommodate fanout trees of width
O(n) and height O(logn) (see [4]). This makes the height of the complete circuit
O(n log2n). A similar problem arises with the lines (carrying variable’ values) which
enter along the north edge and must be fanned out to the sub-circuits evaluating each
literal. We separate each line by a distance O(log n) to allow space for fanout trees.
Thus, the circuit has been "stretched" by a factor O(log n) in both directions, giving
it a width of O(n log n), height of O(n log2 n), and area O(n 2 log3 n). (m more
detailed analysis might lower the exponent of log n, but we are more interested in
the exponent of n, which is optimal by the results of 3.)

Remark 4.2. The problems of evaluating DISTINCT, DISJOINT and EQUAL
can clearly be solved rather easily if a sorting circuit is available. Hence, upper bounds
on the area and time required for these problems may be obtained from the correspond-
ing upper bounds for sorting networks. In particular, these problems can be solved
with AT2 =O(n 1+" logC n) for some constant c. See, for example, Thompson [23].

SOME AREA-TIME TRADEOFFS FOR VLSI 745

literal encoding
O(log n) bits

variable values

x x
2 Xn_ x

n

Selection
network

Fan-in tree

"negate" result
line > >

FIG. 4.2. Literal evaluation (fan-out restrictions ignored).

In [5], [6] it was shown that the exponent 1 + tx in the lower boundAT2 f/(n 1+)
was sharp (for all c e [0, 1]) for the problem of binary multiplication of n-bit numbers.
Except for the cases covered by Theorem 4.1 and Remark 4.2, and the trivial case
cz 0, we do not know if the same is true for the problems considered in 3. In fact,
this is unlikely for the context-free language recognition problem, as the best known
serial algorithm uses n by n matrix multiplication [11], [16], [20]. Combining ideas
of Preparata and Vuillemin [18] and Ruzzo [19], it may be shown that the context-free
language problem can be solved by a VLSI circuit having T O(log2 n) andA O(n c)
for some constant c. (We believe that c <-8, but have not yet worked out all the
details, c can be reduced by the method of [12], at the expense of increasing T to
O(n).) Recognizing regular expressions appears to be a much easier problem [7], [8].

5. Conclusion. We have given lower bounds AT2 I(n 1+) for several natural
recognition problems. The case a 1/2 is interesting, as the area-time product AT can
be viewed as the "rental cost" for a VLSI chip for the duration of the computation.
On the other hand, for VLSI circuits which allow pipelining, AT overestimates the
cost since portions of the chip can be re-used for subsequent computations before
earlier computations are completed. In these cases the area alone (i.e., the case c 0)
may be a better measure of cost.

Possible areas for future research include:
a) Finding a technique to prove lower bounds better than AT2 f(n 1+).
b) Obtaining sharper upper bounds for problems of practical interest, e.g., the

context-free language recognition problem.

746 R. P. BRENT AND L. M. GOLDSCHLAGER

each line carries 6 bits

result

FIG. 4.3. Final evaluation tree.

c) Extending our results to probabilistic algorithms (see the remark following the
proof of Theorem 3.8).

Acknowledgments. We are grateful to A1 Borodin for suggesting the set equality
and disjointness problems, and for fruitful discussions. We also thank the referees
and Professor W. L. Ruzzo for their comments which helped us to sharpen Theorem
3.9 and to correct the proof of Theorem 4.1.

REFERENCES

H. ABELSON AND P. ANDREAE, Information transfer and area-time tradeoffs for VLSI multiplication,
Comm. ACM, 23 (1980), pp. 20-23.

[2] G. BILARDI, M. PRACCHI AND F. P. PREPARATA, A critique and appraisal of VLSI models of
computation, VLSI Systems and Computations, H. T. Kung et al., eds., Computer Science Press,
Rockville, MD, 1981, pp. 81-88.

[3] R. P. BRENT AND L. M. GOLDSCHLAGER, Some area-time tradeoffs for VLSI, Report 22, Dept.
Computer Science, University of Queensland, Australia, August 1980.

[4] R. P. BRENT AND H. T. KUNG, On the area of binary tree layouts, Inform. Proc. Letters, 11 (1980),
pp. 46-68.

[5] The chip complexity of binary arithmetic, Proc. 12th Annual ACM Symposium on Theory of
Computing, New York, April 1980, pp. 190-200.

SOME AREA-TIME TRADEOFFS FOR VLSI 747

[6] The area-time complexity of binary multiplication, J. Assoc. Comput. Mach., 28 (1981), pp.
521-534.

[7] R. W. FLOYD A15ID J. D. ULLMAN, The compilation of regular expressions into integrated circuits,
Proc. 21st Annual IEEE Symposium on Foundations of Computer Science, New York, 1980, pp.
260-269.

[8] M. J. FOSTER AND H. T. KUNG, Recognize regular languages with programmable building blocks,
VLSI 81, J. P. Gray, ed., Academic Press, New York, 1981, pp. 75-84.

[9] L. J. GUIBAS, H. T. KUNG AND C. D. THOMPSON, Direct VLSI implementation of combinatorial
algorithms, Proc. Conference on VLSI: Architecture, Design, Fabrication, California Inst. of
Technology, Jan. 1979.

[10] F. C. HENNIE, On-line Turing machine computations, IEEE Trans. Electronic Computers, EC-15
(1966), pp. 35-44.

11] J. E. HOPCROFTAND J. O. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[12] S. R. KOSARAJU, Speed of recognition of context-free languages by array automata, this Journal, 4
(1975), pp. 331-340.

[13] R. E. LADNER, The circuit value problem is log space complete for P, SIGACT News, 7, 1, Jan 1975,
pp. 18-20.

[14] R. J. LIPTON AND R. SEDGEWICK, Lower bounds for VLSI, Proc. 13th Annual ACM Symposium
on Theory of Computing, New York, 1981, pp. 300-307.

[15] C. A. MEAD AND L. C. CONWAY, Introduction to VLSI Systems, Addison-Wesley, Reading, MA,
1980.

[16] V. YA. PAN, New fast algorithms for matrix operations, this Journal, 9 (1980), pp. 321-342.
[1.7] F. P. PREPARATA AND J. E. VUILLEMIN, The cube-connected-cycles: a versatile network, Proc. 20th

IEEE Symposium on Foundations of Computer Science, New York, Oct. 1979, pp. 140-147.
[18] Area-time optimal VLSI networks for multiplying matrices, Inform. Proc. Letters, 11 (1980),

pp. 77-80.
[19] W. L. Ruzzo, On uniform circuit complexity, Proc. 20th IEEE Symposium on Foundations of

Computer Science, Oct. 1979, pp. 312-318.
[20] J. E. SAVAGE, Area-time tradeoffs for matrix multiplication and related problems in VLSI models, J.

Comput. System Sci., 22 (1981), pp. 230-242.
[21] C. D. THOMPSON, Area-time complexity for VLSI, Proc. 11th Annual ACM Symposium on Theory

of Computing, New York, April, 1979, pp. 81-88.
[22] A complexity theory for VLSI, Report TR-CS-80-140 (Ph.D. thesis), Dept. Computer Science,

Carnegie-Mellon University, Pittsburgh, August 1980.
[23] The VLSI complexity of sorting, in VLSI Systems and Computations, H. T. Kung et al., eds.,

Computer Science Press, Rockville, MD, 1981, pp. 108-118.
[24] J. E. VUILLEMIN, A combinatorial limit to the computing power of VLSI circuits, Proc. 21st Annual

IEEE Symposium on Foundations of Computer Science, New York, 1980, pp. 294-300.
[25] A. C. YAO, The entropic limits on VLSI computations, Proc. 13th Annual ACM Symposium on the

Theory of Computing, New York, 1981, pp. 308-311.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0010 $01.00/0

A PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES
UNDER RANDOM INSERTIONS AND DELETIONS*

KURT MEHLHORN’

Abstract. We describe a fringe analysis of AVL-trees (and 2-3-trees and HB-trees) under random
insertions and deletions. Previously, only the case of random insertions was dealt with.

Key words. AVL-trees, random insertions and deletions, fringe analysis.

1. Introduction. Balanced tree schemes such as 2-3-trees [1], B-trees [2], AVL-
trees [12] and BB[c]-trees [17] are very popular and useful data structures for
manipulation of ordered lists of keys. Their worst case behavior for a single search,
insertion or deletion is well understood (Knuth [12], Mehlhorn [14]). Recently, there
has been progress in the study of the worst case behavior of sequences of such
operations (Blum and Mehlhorn [3], Brown and Tarjan [6], Mehlhorn [16], Huddleston
and Mehlhorn [9]); in these papers bounds on the total cost of rebalancing operations
required to process a sequence of searches, insertions and deletions are derived. In
contrast, very little is known about the average case behavior of balanced tree schemes,
i.e., about their behavior for random inputs. To analyse the storage utilization in
2-3-trees and B-trees under random insertions, Yao [19] introduced the concept of
fringe analysis. Subsequently, Brown [4] applied this type of analysis to AVL-trees
under random insertions.

In this paper, we will carry out a fringe analysis of AVL-trees and 2-3-trees
under random insertions and deletions. Our model of randomness is the following:
At any instant of time, we are equally likely to perform an insertion or deletion, and
each external node (leaf) is equally likely o be split in the case of an insertion or
removed in the case of a deletion.

AVL-trees can be used to store ordered sets S of keys. In terms of the key space,
our randomness assumption may be formulated as follows: At any instant of time,
we are equally likely to perform an insertion or deletion. In the case of an insertion,
the new key goes into each of the gaps between the keys present which equal
probability. In the case of a deletion, each key present is chosen for deletion with
equal probability. This assumption corresponds to assumption (I0, Dr) in Knuth [13],
and was used before in Flajolet et al. [8]. As shown by Knott’s phenomenon [11],
our assumption is not equivalent to the condition that keys are drawn independently
from a uniform distribution. The latter assumption, called (L, Dr) in [13], leads to an
extremely involved analysis even for very simple algorithms (Jonassen and Knuth 10]).

The fringe of a tree is obtained by deleting all nodes which are not close to the
leaves, e.g., by deleting all nodes of height ->_k or by deleting all nodes which have
at least k leaves below them. Note that only a small percentage of the total number
of nodes will be deleted in this way, and hence fringe analysis can give valuable
insights. The fringe is a system of trees of small height; in particular, it is a system of
trees drawn from a finite collection C of trees. The composition of the fringe can be
described by counting, for each tree of that finite collection, the number of times it
occurs in the fringe. We can now study the effect of random insertions and deletions
on the composition of the fringe.

* Received by the editors December 19, 1979, and in revised form February 12, 1982.

" Fachbereich 10, Angewandte Mathematik und Informatik, Universitit des Saarlandes, 6600 Saar-
briicken, West Germany.

748

PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES 749

If our finite collection C of trees is "closed", i.e., if the effect of an insertion or
deletion on a tree T C is determined by T alone and transforms T into other (maybe
several) trees of C, then the effect of an insertion or deletion on the composition of
the fringe can be studied without reference to the entire tree. Hence the study of
random trees reduces to the study of a relatively simple Markov chain.

If insertion is the only operation under consideration, then closed classes are known
for some balanced tree schemes. The subtrees of height k form a closed class for
2-3-trees and B-trees (Yao [19], Brown [5]). The subtrees with three or fewer leaves
form a closed class for AVL-trees (Brown [4]). No other closed classes are known
for AVL-trees. Even worse, if we use B-trees with the overflow mechanism (Bayer
and McCreight [2]), i.e., if a node is only split if the brother pages are also full, then
no closed classes exist.

If insertions and deletions are the operations under consideration, then the
situation is completely hopeless. Closed classes do not exist for any balanced tree
scheme.

In this paper we show how to do fringe analysis without the burden of finding a
closed class of subtrees, and (partially) analyse AVL-trees under random insertions
and deletions. The same approach can be applied to obtain a higher order analysis
of AVL-trees under insertions only (Mehlhorn 15]), and to B-trees with the overflow
mechanism (Eisenbart and Mehlhorn [7]).

The idea behind our approach is quite simple. Suppose that the fringe consists
of two types of trees, type I and type II, and suppose further that the effect of a
deletion from a type I tree depends on the environment of that tree in the entire tree,
say whether the brother is type II or not. Since the information about the type of the
brother is lost when we pass to the fringe, we introduce an (unknown) probability for
the event that the brother of a type I tree is a type II tree. A key observation is the
fact that this probability, though unknown, cannot assume arbitrary values between
0 and 1 (Lemma 6 below). Recurrence relations describing the effect of a random
insertion or deletion on the composition of the fringe are then derived in the standard
way, i.e., by recurrence relations for the behavior of a Markov chain with unknown
transition probabilities (2). These recurrence relations can be solved very easily
under the (unjustified) assumption that the probability mentioned above does not
depend on the size of the trees. Fortunately, one can show that these solutions are
also valid without that assumption (3). In 4 we use our results to obtain bounds
on the number of balanced nodes in random AVL-trees, and on the total number of
nodes in random 2-3-trees and HB-trees.

2. A partial analysis ot AVL-trees. Let T be an AVL-tree. The fringe of T is
obtained by deleting all nodes which have more than three leaves below them. (See
Fig. 1 for an example.) This definition of fringe is due to Brown [4]. The fringe of an
AVL-tree consists of two types of trees, subtrees with 3 leaves form the first type and

FIG. 1. An AVL-tree and its fringe.

750 KURT MEHLHORN

t_

Type subtrees

FIG. 2. The subtrees in the fringe.

Type II subtree

subtrees with 2 leaves form the second type (see Fig. 2). Note that the brother of the
root of a type II subtree is an internal node and therefore has two sons. Brown calls
type I and type II subtrees M- and N-subtrees respectively.

DEFINITION 1. For an AVL-tree T let al(T) (a2(T)) be the number of type I
(type II) subtrees in the fringe of T.

LEMMA 1. Let T be an AVL-tree with n leaves. Then 3aI(T)+ 2a2(T)= n.
Pro@ A type I subtree has 3 leaves and a type II subtree has 2 leaves, and every

leaf is in a type I subtree or a type II subtree. I-1
Next we need to study the effect of an insertion into (or a deletion from) an

AVL-tree T on the number of type I and type II subtrees. We need some notation
first. The height of a node is the length (= number of edges) of the longest path to a
leaf. The height of a tree is the height of its root. The balance factor b (v) of an internal
node v is the height of the left son of v minus the height of the right son of v. Finally,
we assume that the insertion and deletion algorithms are as described in Knuth [12].

LEMMA 2. Let T be an AVL-tree. SupDose that a new lea]’ is inserted into T and
tree T’ is obtained alter rebalancing.

a) If the insertion is into a type I subtree, then al(T’)=a(T)-I and a(T’)=
a(T)+2.

b) If the insertion is into a type II subtree, then a(T’)=a(T)+ 1 and a(T’)
a(T)- 1.

Pro@ This result is proved in Brown [4].
Deletion is somewhat harder to deal with. We first prove a general lemma on

the effect of a rotation or double rotation on the composition of the fringe.
LEMMA 3. Let T and T. be AVL-trees o]’ height h + 2 and h respectively. Let u

be a new node and consider the tree T consisting o]’ root u, left subtree TI and right
subtree T. Either a rotation or double rotation about u transforms T into an AVL-tree
r" I]h >-1 then a(T’)=a(T) and a(r’)=a(T).

Pro@ Let T and T. be the left and right subtrees of T. At least one of them
has height h + 1; the other one has height h + 1 or h.

Case 1. TI has height h + 1. Then a rotation (see Fig. 3) rebalances the tree.
Since T, T. and T have height at least 1 and hence at least two leaves each, the
composition of the fringe is not changed.

Case 2. TI has height h and T has height h + 1. Let T and T122 be the left
and right subtrees of T. One of them has height h, the other one has height h or
h- 1. A double rotation rebalances the tree (cf. Fig. 4). If h _->2 or both T and
T have height h, then all four trees have at least two leaves each, and hence the
composition of the fringe is not changed. Otherwise, we have h 1 and either T12

PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES 751

Tll T12 T T12 2

FIG. 3. A rotation.

T 2

T121 T122 T T T T11 121 122 2

FIG. 4. A double rotation (DR).

or Tlzz is a single leaf. Figure 5 shows that the composition of the fringe is not changed
in this case. I-1

Upon the deletion of a leaf, the father of that leaf is replaced by the other subtree,
and then the tree is rebalanced along the path back to the root (cf. Knuth [12] for
more detail).

LEMMA 4. Let T be an AVL-tree with at l,east three leaves. Suppose that a leaf is
deleted from T and tree T’ is obtained after rebalancing.

DR

or

DR

FIG. 5. at(T’) at(T) 1, a2(T’) a2(T) 2.

752 KURT MEHLHORN

a) I] the deletion is]rom a type I subtree, then al(T’)=al(T)-I and a2(T’)=
az(T)+l.

b) I] the deletion is]:torn a type II subtree, then
b 1) I] the brother o) that type II subtree is a type I subtree, then a (T’) a (T) 1

and a2(T’)= a2(T)+ 1.
b2) If the brother o] that type II subtree is not a type I subtree, then ax(T’)=

a(T) + 1 and a2(T’) az(T) 2.
Proo]:. a) Deletion of a leaf from a type I subtree transforms that tree into a

subtree with two leaves; call its root u (cf. Fig. 6). Let v be the father of u. We
distinguish cases according to the old balance b (v) of node v. We assume w.l.o.g, that
u is the left son of v.

FIG. 6. Deletion of a leaffrom a type subtree.

Case 1. b (v) 0. Then rebalancing is completed by changing b (v) to 1. Hence
a (T’) a(T) 1 and a2(T’) a2(T) + 1.

Case 2. b (v)= + 1. Then the other son of v has height 1 and hence is a type II
subtree. The new balance of u is 0 and its new height is 2. Also there might be
rebalancing necessary higher up in the tree. By Lemma 3, none of these rebalancing
operations changes the composition of the fringe. Hence a(T’)=a(T)-I and
a2(T’)=a2(T)+l.

Case 3. b (v)=-1. Then the other son of v has height 3, and hence rebalancing
about v is necessary. By Lemma 3 the rebalancing operation about v does not change
the composition of the fringe. After rebalancing v, rebalancing higher up in the tree
might be required. Again, it does not affect the composition of the fringe. Hence
a(T’)=a(T)- 1 and a2(T’)=a2(T)+ 1.

b) Deletion of a leaf from a type II subtree transforms the subtree into a single
leaf. Let v be the father of that leaf. Assume w.l.o.g, that this leaf is the left son.
Before the deletion, the balance parameter b (v) is either 0 or -1. If it were +1 then
v would be the root of a type I subtree.

b l) The other son of v is a type I subtree. Then b(v)=-1 before the deletion
and b (v)=-2 after the deletion. A rotation or double rotation about v will generate

PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES 753

tWO type II subtrees. Subsequent rebalancing operations higher up in the tree will not
change the composition of the fringe. Hence al(T’)= al(T)- 1 and a2(T’)= a2(T)+ 1.

b2) The other son of v is not a type I subtree.
Case 1. b (v) 0. Then the other son of v is a type II subtree. After the deletion,

v is the root of a type I subtree. No rebalancing is required. Hence a (T’) a (T) + 1
and a2(T’) a2(T) 2.

Case 2. b(v)--1. Then the other son of v has height 2, but it is not the root
of a type I subtree. Hence its two sons are type II subtrees. A rotation about v will
be performed. Hence al(T’)=al(T)+ 1 and aE(T’)=aE(T)-2.

In the remainder of this section, we will set up recurrence relations in order to
study the effect of random insertions and deletions on the composition of the fringe
of AVL-trees. We review our randomness assumption.

1) For n ->_ 3, insertion and deletion are equally likely. Only insertions occur for
n=2.

2) In the case of insertion, each one of the n leaves is equally likely to be split.
3) In the case of deletion, each leaf is deleted with equal probability.
Let k. be the number of AVL-trees with n leaves. Let T.,] represent the/’th

AVL-tree with n leaves in some arbitrary ordering of the n-leaf AVL-trees. The
above randomness assumptions define a Markov chain with states T.,i. There is a
transition from T..i to T.+l,k if insertion into T..i and subsequent rebalancing can
generate T,.+l.k, and there is a transition to T.-1,i if deletion from T..] and subsequent
rebalancing yields T.-1.. For each leaf of T.d we have two transitions, one correspond-
ing to splitting that leaf (insertion) and one corresponding to deleting that leaf. Each
transition has probability 1/(2n). Let q..i be the stationary (conditional) probability
of being in tree T.d, under the assumption of being in a tree with n leaves.

DEFINITION 2.

kn k

a l(n) E q,,]a I(T,j), a2(n)
]=1]=1

where al(n) (a2(n)) is the average number of type I (type II) subtrees in a random
AVL-tree with n leaves.

We proceed to derive recurrence relations for az(n).
kn

a2(n) q-d" a2(T.,])

Y’. a.(Tj) q-l, Prob (T.-1,--> T.,])+ Y. qn+l,h Prob (T+l,h --> Tn,])
]=1 h=l

where Prob (T--> T’) denotes the probability of obtaining T’ after a random insertion
into or deletion from T. This probability is always a multiple of 1/(2n), where n is
the number of leaves of T.

kn-1 k., q.-1,i" Prob (T.-1,i Tj). a2(Td)
i=1]=I

kn+l k

+ Y’. q.+l,h Prob (T.+l,h T.d)" a2(T.,]).
h=l]=1

There are n- 1 different ways of inserting a new leaf into T.-I,. Out of these n- 1
different ways, 3al(T.-1,) correspond to insertions into type I subtrees (and then
a2(T.j)=a2(T._l,i)+2 by Lemma 2), and 2al(T.-1,i) correspond to insertions into

754 KURT MEHLHORN

type II subtrees (and then aa(T,,j) a2(Tn-l,i)- 1). Hence

kn_ kn
qn-l,i" 2 Prob (T.-,i--> T.,j), a2(T.a)

i=l

"-’ l[3a(T,,_,i)qn-l,i’- n 1
(az(T,,_.i)+2)+

6a(n 1) 2az(n 1)]_-1 a:z(n-1)+
2 n-1 n-1

2az(Tn-l,i)n l
(az(Tn-,i)- 1)]

There are n + 1 different ways of deleting a leaf from Tn+l,h. Exactly 3al(Tn+l,h) of
these deletions are deletions from type I subtrees, and then a2(Tn,j)= a2(T,/,,)+ 1.
The other 2a2(Tn+x,h) deletions are deletions from type II subtrees.

DEFImTtON 3. Let p(T.a) be the probability that the brother of a type II subtree
is a type I subtree in T.a.

LEMMA 5.

0_-<p(T,,,i)-< min (1, ax(T,,,i)/a2(T,,,i)).

Proof. Since p(T.,j) is a probability, we have O<=p(T,a)-< 1. Furthermore, p(T.,i)
is the fraction of type II subtrees of Tn,i whose brothers are type I subtrees of Tn,i.
Hence a2(T.a) p(T,,i)<=a(T.,i). I

Out of the 2a2(Tn+i,h) deletions from type II subtrees, exactly 2a2(Tn+,h)p(Tn+,h)
are deletions from type II subtrees who;e brothers are type I subtrees. In this case
we have az(Tnd) az(T.+, h) + 1. The remaining 2a2(T,,/,h)" (1 --p(T./x.h)) deletions
give az(T,,i)= a(T.+,h)--2. Hence

where

kn+l kn
Y q,,+,h Prob (T.+x,h -> T.d)" a2(T.d)
h=l j=l

1 [3a(T,,+,h) (az(T.+l,a) + 1)Z qn+l.h’-L n+lh=l

2a(T.+,h)+ (p(Tn+l,h)(a2(Tn+l,h) + 1)
n+l

+ (1 --p(Tn+l,h))(az(Tn+l,h)- 2))]
1[3a(n + l) 2az(n + l)]- az(n + 1) + + (3p(n + 1)- 2)

n+l n+l

p(n + 1) qn+,h a2(Tn+,h)p(Tn+,h) a2(n + 1)

is the probability that the brother of a type II subtree is a type I subtree in a random
AVL-tree with n + 1 leaves.

LEMMA 6.

0_-<p(n)-<_min (1, al(n)/a2(n)).

PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES 755

Proof. 0 <= p (n) -< 1 is obvious. Also

1
p(n Y’, a2(Tn,j)p(Tn,i) qn,ia2(n)

=1 qn,ia(T,,i) (by Lemma 5)

=a(n)/a2(n).

Putting the derivations together, we arrive at our main equation:

6al(n 1) 2a2(n 1)
2a2(n) a2(n 1) +

n-1 n-1
(M)

3a(n + 1) 2a2(n + 1)
/ a2(n + 1)+ + (3p(n + 1)- 2),

n+l n+l

where O<-_p(n + 1)-< min (1, a(n + 1)/a2(n + 1)).
With the use of Lemma 1, we can eliminate a(n- 1), al(n + 1) from equation

(M) and obtain equations (M’) and (M")"

6a:z(n- 1) 6az(n + 1)
(M’) 2az(n)=a2(n-1)- +az(n+l)+ [p(n + 1)- 1]+3

n-1 n+l

or

(M") az(n + 1)[1 +

where

6p(n + 1)-6
1-

n+l

O<-_p(n + 1) <_-min (1, n + 1- 2a2(n + 1)’
3az(n + 1)]

In the next section we will derive bounds on the solutions of equation (M").

3. Solving the equation. In this section we will solve equation (M"); more pre-
cisely, we will show Cl n <- az(n) <-_ c2" n for suitable constants cx and c. We proceed
in two steps. In the first step, we solve the equation under the simplifying, however
unjustified, assumption p(n)=p and a2(n)= a2" n. In the second step, we try to show
that the solutions obtained in the first step suffice to describe the system, even without
the additional assumption.

Suppose p(n)=p and a(n)=a2.n for all n. We want to stress again that this
assumption is completely unjustified. Then equation (M") transforms into

=2a2’ n-a2. (n-l). -3
n

or

3
a2(6p-5)=7a2-3 or a2=12_6p.

The extremal values of p are 0 and min (1, ax(n)/a2(n)). Using Lemma 1 and a2(n)=
a2" n, we obtain 0<-p=<min(1,(1-2a2)/3a2). For p=0 we have az=1/4 and for
p =(1-2az)/3a2 we have a2=. Hence our simplifying assumptions imply n/4<-_
a2(n)<-5n/16.

756 ItR: MEHLI-IORN

In our main theorem, we show that the above inequality is essentially true even
without the simplifying assumption’

THEOREM 1. a) For n >-7, az(n)>-n/4;
b) lim,_,oo sup az(n)/n <=.
Proof. Up to symmetry, there is only one AVL-tree with 7 leaves (Fig. 7). Hence

a2(7) 2.

FIG. 7. The only (up to symmetry) AVL-tree with 7 leaves.

Define a2(n)= b2(n) n. Then equation (M") transforms into (M’"):

(M’") b2(n + 1)In + 6p (n + 1) 5] 2b2(n). n b2(n 1)[n 7] 3.

We will show b2(n) >- 1/4 for n _-> 7, and lim sup b2(n) <= 6.
LEMMA 7. 0 _--< b2(n) <- 1/2 for all n.

Proof. aa(n)>-O and a2(n)-_>0 are obvious. An application of Lemma 1 finishes
the proof.

We will first show b2(n)>- 1/4 for n >- 7. This was already shown for n 7. Lemma
8 below shows that once b2(n) goes below 1/4, it will be monotonically decreasing.
Hence by Lemma 7 the sequence b2(n) converges to some number between 0 and
(exclusive). A contradiction is then derived in Lemma 9.

LEMMA 8. For n>-7, if b2(n)<b2(n-1) and b2(n)<1/4, then b2(n+l) <-
bz(n) + (12bz(n) 3)/(n 5).

Proof. Since p(n + 1)>- 0, equation (M’") implies

or

Thus

(n 5)bz(n + 1) <- 2nbz(n (n 7)bz(n 1) 3

(n 5)(b2(n + 1) b2(n)) <- (n -7)(b2(n)-bz(n 1)) + (12b2(n)- 3).

b2(n + 1)<-b2(n)+(12b2(n)-3)/(n -5).

LEMMA 9. bz(n >= 1/4 for all n >- 7.
Proof. Assume otherwise. Since b2(7) >- 1/4, there is at least no > 7 with bz(no) < 1/4 =<

b2(no-1). Let e 3-12bz(n0)< 0. A simple induction argument based on Lemma 8
shows b2(n + l)<b2(n)-e/(n-5) for all n >-no. Hence b2(n + l)<=bz(no)
e .=,o 1/(i-5) for n >-no. Thus b2(n) must become negative, a contradiction to
Lemma 7.

It remains to prove lira sup bz(n) <- 1; lira sup bz(n) exists, since bz(n) is bounded.
We will first prove the analogue of Lemma 8.

LEMMA 10. For n >--9, if bz(n)>b2(n-1) and bz(n)> -g, then

b2(n + 1)>-b2(n)+(16b2(n)-5)/(n -9).

PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES 757

Proof. Since p(n + 1) =< ((n + 1)-2az(n + 1))/3az(n + 1)=(1-2bz(n + 1))/3b2(n + 1),
equation (M’") implies

(n-5+6. (1-2bz(n + 1))/3bz(n + 1)). bz(n + 1)>-_2nbz(n)-(n-7)bz(n-1)-3

or

(n -9)(bz(n + 1)-bz(n))>-(n -7)(b(n)-bz(n 1)) + (16bz(n)- 5),

and hence bz(n + 1)>-bz(n)+(16bz(n)-5)/(n -9).
LEMMA 11.

lim sup bz(n) =<.
Proof. Assume otherwise; say b lim sup bz(n) >. Then there is either an no _>- 9

such that bz(no) > bz(no 1) and bz(n0) >, or bz(n) > and bz(n) <- bz(n 1) for all
n _-> 9. In either case we will derive a contradiction.

Case 1. There is an no> 9 such that b2(no)> b(no-1) and b2(no)>. Let e
16bz(no) 5. A simple induction argument based on Lemma 10 shows that bz(n + 1) >
bz(n)+e/(n-9) for all n >_-no. Hence bz(n) is unbounded, a contradiction to
Lemma 7.

Case 2. bz(n > and bz(n < bz(n 1) for all n _-> 9. Then bz(n is nonincreasing,
and hence b lim bz(n). Let e b- > 0. Then there is no such that for n _-> no we
have b(n)- bz(n + 1)-<_ e. Hence the next to last inequality in Lemma 10 implies for
n

(n 9)(b2(n + 1) bz(n))

>-_ (n 9)(bz(n b2(n 1)) + 2(bz(n bz(n 1)) + (16bz(n 5)

and thus

>-_ (n 9)(bz(n bz(n 1)) 2e + 16e,

bz(n + 1)-6z(n)>=(bz(n)-bz(n 1))+(14e)/(n -9).

This shows that the difference b2(n / 1)- b2(n) must become unbounded, a contradic-
tion to Lemma 7.

In either case we have derived a contradiction. Hence lim sup bz(n)<=. [-]

This finishes the proof of Theorem 1.

4. Apllieations. In this section we apply our results to derive bounds on the
number of balanced nodes in random AVL-trees, and we indicate how to extend the
results to HB-trees (Ottman and Six [18], Mehlhorn [14]) and 2-3-trees (Aho,
Hopcroft and Ullman [1]).

THEOREM 2. Let B (n denote the average number of balanced nodes (= nodes of
balance O) in a random (in the sense of 1)AVL-tree with n leaves. Then

4n/9 <=B(n) <=7n/8 +o(n).

Proof. Let T be an AVL-tree with a type I subtrees and a2 type II subtrees,
and n leaves. Then 3a + 2a2 n. T contains a + a2 balanced nodes in the fringe and
a + a2-1 nodes which are not in the fringe.

Out of these a + a2-1 nodes, all may be balanced. Hence T contains at most
2al + 2a2-1 2n/3 + 2a2/3 1 balanced nodes. Passing to averages yields B (n) -<
7n + o (n) by Theorem 1.

Next we want to derive a lower bound on the number of balanced nodes. The
brother of a type II subtree is either a type I subtree or a type II subtree or a tree

758 KURT MEHLHORN

consisting of two type II subtrees. Since the former situation arises at most al times,
the latter two situations must occur at least a2-al times. Every three occurrences
lead to at least one balanced node. This yields another (a2-a)/3 balanced nodes.
Passing to averages yields

B (n) ->_ a l(n) + a2(n) + (a2(n)- a(n))/3

>= 2n/9 + 8a2(a)/9 => 4n/9.
Theorem 2 shows that 0.44n -< B (n) -< 0.875n + o (n). Previously AVL-trees were

analyzed under random insertions only. In that case, Brown [4] showed 0.47n =</ (n) <=
0.85n and Mehlhorn [15] showed 0.51n <=B(n)<-O.81n.

In the remainder of this section, we indicate how to extend our results to 2-3-trees
and HB-trees. In a 2-3-tree, all leaves are on the same level, and every interior node
has degree either two or three (Aho, Hopcroft and Ullman [1]). We obtain the fringe
by deleting all nodes of height at least two, i.e., we do a first-order analysis in the
sense of Yao [19]. The fringe consists of two types of trees" nodes with three sons
(type I) and nodes with two sons (type II) (Fig. 8).

Type Type II

FIG. 8. The subtrees in the fringe of a 2-3-tree.

The crucial observation is that Lemma 2 remains true if we replace "AVL-tree"
by "2-3-tree" and that Lemma 4 remains true if we replace "AVL-tree" by "2-3-tree"
and "if the brother" by "if a brother" in b) and "if the brother" by "if the brothers"
in b2). The simple proofs are left to the readers.

Next we need to define p (T) as the probability that one of the brothers of a type
II subtree is a type I subtree. Then Lemma 5 transforms into O<-p(T)<=
min (1, 2. a (T)/a2(T)), since one type I tree can serve as the brother of two type II
trees. Nevertheless, we obtain the same recurrence relation for a2(n) as before;
however, we have the weaker condition 0-<p(n)-<min (1, 2a(n)/a2(n)) on p(n).

Proceeding as above, we obtain a2(n) >= n/4 and a2(n) <= 7n/20 + o(n). The proofs
are almost literally the same; in the proofs of Lemmas 10 and 11, one has to use the
weaker restriction on p(n). These bounds on a2(n) can be used to derive bounds on
the expected number of nodes in a random 2-3-tree and hence on the storage
utilization. (cf. Yao [19]). If the fringe of a 2-3-tree T consists of al(a2) nodes with
3(2) sons, then the number of internal nodes of T lies between (3(a +a2)-1)/2 and
2(a + az) 1. Also 3a + 2a2 is equal to the number of leaves of T. Hence the expected
number of nodes in a random 2-3-tree with n leaves is at least (3(a (n) + a2(n)) 1)/2
(n +a2(n)-l)/2>=(5n-4)/8O.625n, and at most 2(a(n)+a2(n))-I <-

2(n +a2(n))/3-1 -<9/10n +o(n)O.9n. The obvious bounds are (n 1)/2 and n 1.
We summarize the discussion in

THEOREM 3. Let l(n be the expected number of nodes in a random (in the sense

of 1) 2-3-tree with n leaves. Then

(5n-4)/8<-N(n)<-(9/lO)’n +o(n).

For HB-trees (Ottman and Six [18]), one obtains the fringe by deleting all nodes
with at least four leaves below them. Figure 9 shows the trees which appear in the

PARTIAL ANALYSIS OF HEIGHT-BALANCED TREES 759

Type Type II

FIG. 9. The subtrees in the fringe of an HB-tree.

fringe. Lemmas 1-6 stay true with "AVL-tree" replaced by "HB-tree" throughout.
Hence Theorem 1 gives the number of type I and type II subtrees in a random
HB-tree. This leads to

THEOREM 4. Let N(n be the expected number of nodes in a random (in the sense

of 1) HB-tree with n leaves. Then

(9/8). n -o(n)<-N(n) <- 14n/9.

Proof. Let T be an HB-tree with al type I subtrees and a2 type II subtrees and
n leaves. Since T has n leaves, there are exactly n 1 nodes with two sons. It remains
to derive bounds on the number of nodes with one son. Since every type I subtree
contains one node with only one son, there are at least a nodes with only one son.
Passing to averages gives N(n)>-n 1 +al(n)>-(9/8)n-o(n). For the upper bound
on the number of nodes with one son, we use the following correspondence between
AVL-trees and HB-trees. If one deletes all nodes with only one son from an HB-tree
by combining these nodes with their fathers, then one obtains an AVL-tree T’ (cf.
Fig. 10). Furthermore, this correspondence preserves the composition of the fringe;
i.e., type I(II) subtrees in the HB-tree sense are mapped onto type I(II) subtrees in
the AVL-tree sense, and the number of nodes with one son in T is equal to the
number of unbalanced nodes in T’. So T’ is an AVL-tree with n leaves, a type I
subtrees and a2 type II subtrees. In the proof of Theorem 2 we have shown that T’
contains at least a + a2 -I- (a2 a 1)/3 balanced nodes. Thus T contains at most n 1
a l-aE-(aE-al)/3 nodes with only one son. Passing to averages give N(n) <-
2n -2-al(n)-aE(n)-(aE(n)-al(n))/3 <- 14n/9.
The proof of Theorem 4 may seem unnecessarily complicated to some readers.

Why not use the correspondence between AVL-trees and HB-trees directly to lift

FIG. 10. An HB-tree and the corresponding AVL-tree.

760 KURT MEHLHORN

the average case results? This approach does not work because the correspondence
described above is a static one; i.e., it is not compatible with the rebalancing operations.

5. Conclusion. We have shown how to extend "fringe analysis" to the analysis
of balanced tree schemes under insertion and deletion.

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] R. BAYER AND E. MCCREIGHT, Organization and maintenance oflarge ordered indices, Acta Inform.,
1 (1972), pp. 173-189.

[3] N. BLUM AND K. MEHLHORN, On the average number of rebalancing steps in weight-balanced trees,
Theoret. Comput. Sci., 11 (1980), pp. 303-320.

[4] M. R. BROWN, A partial analysis for height-balanced trees, this Journal, 8 (1979), pp. 33-41.
[5] ., Some observations on random 2-3 trees, Inform. Proc. Letters, 9 (1979), pp. 57-59.
[6] M. R. BROWN AND R. E. TARJAN, Design and analysis of a data structure]’or representing sorted

lists, this Journal, 9 (1980), pp. 594-614.
[7] B. EISENBART AND K. MEHLHORN, Allgemeine Fringe-Analyse und ihre Anwendung aufB-Biiume

mit Overflow, Typescript, Oct. 1980.
[8] P. FLAJOLET, J. FRANCON AND J. VUILLEMIN, Sequence of operations analysis for dynamic data

structures, J. Algorithms, (1980), pp. 111-114.
[9] S. HUDDLESTON AND K. MEHLHORN, Robust balancing in B-trees, in 5th GI-Conference in

Theoretical Computer Science 1981, LNCS 104 (1981), pp. 234-244.
[10] A. JONASSEN AND D. E. KNUTH, A trivial algorithm whose analysis isn’t, J. Comput. Systems Sci.,

16 (1978), pp. 301-322.
[11] G. D. KNOTT, Deletion in binary storage trees, Ph.D. thesis, Computer Science Dept., Stanford Univ.,

Stanford, CA, 1975.
[12] D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[13] ., Deletions that preserve randomness, IEEE Trans. Software Engrg., SE 3 (1977), pp. 351-359.
[14] K. MEHLHORN, Effiziente Algorithmen, Studienbficher.Informatik, Teubner-Verlag, Leipzig, 1977.
[15] A partial analysis ofheight-balanced trees, Techn. Bericht A 79/13, FB 10, Univ. d. Saarlandes,

June 1979.
[16], A new representation for linear lists, Techn. Bericht A 22/79, FB 10, Univ. d. Saarlandes,

Dec. 1979.
[17] J. NIEVERGELT AND E. M. REINGOLD, Binary search trees of bounded balance, this Journal, 2

(1973), pp. 33-43.
[18] TH. OTTMAN AND H. W. SIX, Eine neue Klasse yon ausgeglichenen Bdumen, Angewandte Informatik,

Heft, 9 (1976), pp. 395-400.
[19] A. C.-C. YAO, On random 2-3 trees, Acta Inform., 9 (1978), pp. 159-170.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0011 $01.00/0

THE CATEGORY-THEORETIC SOLUTION OF
RECURSIVE DOMAIN EQUATIONS*

M. B. SMYTHt AND G. D. PLOTKIN"

Abstract. Recursive specifications of domains plays a crucial role in denotational semantics as devel-
oped by Scott and Strachey and their followers. The purpose of the present paper is to set up a categorical
framework in which the known techniques for solving these equations find a natural place. The idea is to
follow the well-known analogy between partial orders and categories, generalizing from least fixed-points
of continuous functions over cpos to initial ones of continuous functors over o-categories. To apply these
general ideas we introduce Wand’s O-categories where the morphism-sets have a partial order structure
and which include almost all the categories occurring in semantics. The idea is to find solutions in a derived
category of embeddings and we give order-theoretic conditions which are easy to verify and which imply
the needed categorical ones. The main tool is a very general form of the limit-colimit coincidence remarked
by Scott. In the concluding section we outline how compatibility considerations are to be included in the
framework. A future paper will show how Scott’s universal domain method can be included too.

Key words. Domains, semantics, data-types, category, partial-order, fixed-point, computability

1. Introduction. Recursive specifications of domains play a crucial role in denota-
tional semantics as developed by Scott and Strachey and their followers (Gordon [13],
Milne and Strachey [26], Stoy [39], Tennent [40], [41]). For example, the equation

(1) D -At+(D-D)

is just what is needed for the semantics of an untyped A-calculus for computing over
a domain, At, of atoms. Again, the simultaneous equations

(2) T-AtxF,

(3) FI+(TxF)

specify a domain, T, of all finitarily branching trees and another, F, of forests of such
trees. And recursively specified data types are also very useful [10], [19], [20].

The first tools for solving such equations were provided by Scott using his inverse
limit constructions [33]. Later he showed how the inverse limits could be entirely
avoided by using a universal domain and the ordinary least fixed point construction
[34]. A systematic exposition of the inverse limit method was given by Reynolds [301,
and the categorical aspects (already mentioned by Scott) were emphasized by Wand
[43]. All of these treatments stuck to one category, such as, for example, CL, the
category of countably based continuous lattices and continuous functions, although
the details did not change much in other categories. Then Wand [44], gave an abstract
treatment based on O-categories where the morphism sets are provided with a suitable
order-theoretic structure. The relation between the category-theoretic treatment and
the universal domain method has, until now, remained rather obscure.

The purpose of the present paper is to set up a categorical framework in which
all known techniques for solving domain equations find a natural place. The idea as
set out in 2 is to follow the well-known analogy between partial orders and categories,
and generalize from least fixed points to initial fixed points. These are constructed

* Received by the editors January 2, 1979, and in revised form February 17, 1982. This work was
partially supported by a grant from the Science and Engineering Research Council.

r Department of Computer Science, University of Edinburgh, Edinburgh, Scotland EH9 3JZ.

761

762 M.B. SMYTH AND G. D. PLOTKIN

using the "basic lemma" which plays an organiz.ational role" Most of the solution
methods considered appear as ways of ensuring that the hypotheses of the lemma are
fulfilled. Just as continuous functions over complete partial orders always have least
fixed points, so continuous functors over o)- categories (as defined below) always have
initial fixed points, which can be constructed by using the basic lemma; this seems to
formalize some hints of Lawvere mentioned by Scott in [33]. The same idea appears
in [1], [2].

All this is very general, and we introduce O-categories in 3 in order to apply
the basic lemma to the construction of the domains needed in denotational semantics.
Here we are clearly greatly indebted to Wand [44], [45] who introduced O-categories,
and indeed our work arose partly as an attempt to simplify and clarify his treatment.
The idea is to apply the basic lemma not to a given O-category, K, but rather to a
derived category, KE, of embeddings (equivalently, projections). We then look for
easily verified conditions on K (whether categorical or order-theoretic) which imply
the needed conditions on KE.

Our main tool is Theorem 2, which establishes a very general form of the
limit-colimit coincidence remarked by Scott [33] and also gives an order-theoretic
characterization of the relevant categorical limits. This improves Wand’s work by
removing the need for his troublesome "Condition A" (appearing in [44] rather than
[45] which incorporates some of the ideas of the present paper); more positively we
also introduce a useful notion of duality for O-categories.

With the aid of Theorem 2 (and the easy Theorem 1), one sees that simple
conditions on an O-category, K, (mainly that it has all P-limits) ensure that KE is
an o-category. Again with the aid of (Lemma 4 and) Theorem 3, one sees how to
take any mixed contravariant-covariant functor over K (like the function-space one)
which satisfies an order-continuity property (usually evident), and turn it into a
covariant-continuous one over KE.

Section 4 presents several examples of useful categories which may be handled
by the methods of 2 and 3.

The method of universal domains, in relation to the ideas presented here, is
treated in the sequel to this paper. An indication of our approach may be found in
Plotkin and Smyth [28] (which may also be of help in getting a general overview of
our results).

There is, however, one aspect of Scott’s presentation of the universal domain
approach [34] which must receive some mention here: the question of computability.
The results presented in this paper would lose much of their point if we were forced
to invoke a universal domain to handle computability. In the concluding 5, we
indicate briefly how this topic can in fact be handled at the level of generality of this
paper; for a more detailed treatment we refer to Smyth [38].

We assume the reader possesses a basic knowledge of category theory; any gaps
can be filled by consulting Arbib and Manes [4], Herrlich and Strecker [16], or
MacLane [21].

2. Initial fixed points. In the categorical approach to recursive domain specifica-
tions we try to regard all equations such as (1) or (2) and (3) above as being of the form

(4) X F(X),

where X ranges over the objects of a category K, say, and F:K K is an endofunctor
of that category. For example, in the case of (1) we could take X to range over the
objects of K, At to be a fixed object of K, and + and to be covariant sum and

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 763

function-space functors over K; then F" K K is defined by"

At+ (X X).(5) F(X)def
Let us spell the meaning of (5) out in detail. Recall that if Fi:K Ki (i- 1, r/) are
functors then their tupling F (El, Fn): K- K1 " x K, is defined by putting
for each object, X, of K:

F(X) (FI(X), Fn (X))

and for each morphism f:X Y of K:

F(f (F,(f), F, (f)).

Then the functor F defined by (5) is just

F + (KAt, -- o(idm idI))

where KAt :K- K is the constantly-At functor and idI :K-. K is the identity functor.
Simultaneous equations are handled using product categories. For example, (2)

and (3) can be regarded as having the form:

(6) X Fo(X, Y),

(7) Y F(X, Y),

where X, Y range over a category K (such as CL) and F0 and F are bifunctors over
K being defined by

X o<KAt 7rl>,F
def

F1 +o<K,, X o<’rro, 7’/’1>>
def

where At, 1 are objects of K, and the 7ri" KxK-K (i =0, 1) are the projection
functors. Then (2) and (3) are put into the form (4) by using the product category
K x K and taking F to be (Fo, F). Clearly this idea works for n simultaneous equations
Xi =Fi(X1, ,X,) (i 1, n)whereXi rangesover Ki (i 1, n)andFi :K x... xK,
K; we just take K to be Kx " K, and F to be (Fx, ’, F,).

Let us now decide what a solution to (4) might be and which particular ones we
want. In the case where K is a partial order, F is then just a monotonic function,
solutions are just fixed points of F (that is, elements A of K such that A =F(A)),
and we can look for least solutions. Further, we can define prefixed points as elements
A such that F(A)A, and it turns out that the least prefixed point, if it exists, is
always the least fixed point as well. In the categorical case we need to know the
isomorphism as well as the object:

DEFINITION 1. Let K be a category and F: K- K be an endofunctor. Then a

fixed point of F is a pair (A, c) where A is an object of K and a’FA -A is an
isomorphism of K; a prefixed point is a pair (A, a) where A is an object of K and
a:FA A is a morphism of K.

We also call prefixed points of F, F-algebras (same as F-dynamic of Arbib and
Manes [4]). The F-algebras are the objects of a category:

DEFINITION 2. Let (A, a) and (A’, a’) be F-algebras. A morphism f: (A, a)-
(A’, ’) (F-homomorphism) is just a morphism f’A -A’ in K such that the following
commutes:

764 M.B. SMYTH AND G. D. PLOTKIN

FA A

FA’ A’

It is easily verified that this gives a category: the identity and composition are both
inherited from K. Following on the above remarks on partial orders, we look for
initial F-algebras rather than just initial fixed points of F and this is justified by the
following lemma (which also appears in Arbib [5], and in Barr [8], where it is credited
to Lambek).

LEMMA 1. The initial F-algebra, if it exists, is also the initial fixed point.
Proof. Let (A, a) be the initial F-algebra. We only have to prove that a is an

isomorphism. Now as (A, a) is an F-algebra so is (FA, Fa) and so there is an
F- homomorphism f: (A, a (FA, Fa); one also easily sees that a (FA, Fa - (A, a)
is an F-homomorphism and so a of: (A, a) (A, a) is also one and it must be idA,
the identity on A as (A, a) is initial. Then as f: (A, a)-(FA, Fa) we also have
foa=(Fa)o(Ff)=F(aof)=F(idA)=idFA, which shows that a is an isomorphism
with two-sided inverse fi

Note that we have to do more than specify an object A such that A -F(A) when
looking for the initial fixed point. First we have to specify an isomorphism a"FA -A,
and secondly we must establish the initiality property. Both are vital in applications.
When giving the semantics of programming languages using recursively specified
domains the isomorphism is needed just to be able to make the definitions. Initiality
is closely connnected to structural induction principles and both can be used for
making proofs about elements of the specited domains. When the equations are used
to specify data-type definitions within a language following the approach in Lehmann
and Smyth [19], [20], the isomorphism carries the basic operations, and initiality is
again essential for proofs. (The paper [20] also contains more information on simul-
taneous equations and on equations with parameters; in many ways, it is a companion
to the present paper.)

WhenK is a partial order, the least fixed point can, as is well known, be constructed
as IIKFn(_L), the 1.u.b. of the increasing sequence (F"(_k)),,o where _L is the least
element of K. This works if the least element exists, the 1.u.b. exists and F preserves
the 1.u.b.that is, F(IIKF (+/-)) IlK F(F (+/-)). Our basic lemma merely generalizes
these remarks to the case of a category.

First we give some notation and terminology which are not quite standard. By
an to-chain in a category K we understand a diagram of the form A Do oDa.
(that is, a functor from to to K); for m =< n, we write f,,, :D,, D, for the morphism
f,_ao.., of,,. Dually an toP-chain in a category K is a diagram of the form
A =Do roD r (that is, a functor from tooo to K); for m ->n we have the evident
f,,, :D,, D,. By the mediating morphism between a limiting (colimiting)/x over a
diagram A and any other cone u over A, we must understand the unique morphism
given by universality from (to) the vertex of u to (from) the vertex of

Notation. The initial object of a category K is written as _t_i and the unique arrow
from it to an object A is written as _LA. If A Do oD1 "" is an to-chain in K
and/x: A -A is a cone over A, then A- is the to-chain D1 ’ D2 _f2... and -: A-A
is the cone (/X,+l)n,o; if, further, F:K-L is a functor, then FA is the to-chain
FDo -Fr FD1 _rr, and Ftx FA-FA is the cone

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 765

Now given a functor F" K--> K we can define the to-chain A (F" (+/-i), F" (+/-F_l_))
(if +/- i exists) and try to justify the calculation analogous to that for partial orders"

F lim A lim FA lim A- lim A.

The basic lemma gives conditions for this to work and characterizes lim_. A (with an
appropriate morphism) as the initial F-algebra.

LEMMA 2 (basic lemma). Let Kbe a category with initial obfect +/- and letF" K--> K
be a functor. Define the to-chain A to be (F" (1), F" (+/-F+/-)). Suppose that both Ix" A --> A
and Fix" FA-->FA are colimiting cones. Then the initial F-algebra exists and is (A, a)
where a" FA --> A is the mediating morphism from Fix to ix-.

Proof. Let a"FA’-->A’ be any F-algebra. We show there is a unique F-
homomorphism f: (A, a)-->(A’, a’). First suppose f is such a homomorphism. Define
a cone u’A->A’ by putting vo= +/-A, +/- A’ and v,+l=a’oF(v,). To see v is a cone
we prove by induction on n that the following diagram commutes.

Fn(+/-.+/-)
F"(+/-) Fn+l(+/-)

vn +1

oF"+l(+/-+/-)This is clear for n 0. For n + 1 we have: v,+2

=a’oF(v,+loF"(+/-l.))=a’oF(v,) (by induction assumption) v, +l Now the
uniqueness of f will follow when we show it is the mediating morphism from ix to v;
here we use induction on n to show v, f Ix,. This is clear for n 0. For n + 1 we
have’foix,+l=fOaoF(ix,) (by the definition of a)=a’oF(f)oF(ix,) (f is
a homomorphism) a’ F(f ix,) a’ v, (by induction assumption)

Secondly, to show that f exists, let it be the mediating morphism from ix to v (so
that v, fo ix, for all integers, n) where v is defined as above. We will show that foa
and a’o Ff are both mediating arrows from Fix to v-, thus demonstrating that they
are equal and that f is an F-homomorphism as required.

In the first case, (foa)oFix, =fOixn+ (by definition of a)’--/n+X (by definition
of f). In the second case, (a’oFf)oFix,=a’oF(foix,)=a’oFv, (by definition of
f) v,+ (by definition of v). This concludes the proof.

In the case of partial orders, our method of constructing least fixed-points always
works if K is an w-complete partial order and F" K-->K is o-continuous. Here an
w-complete pointed partial order (cpo) is a partial order which has 1.u.b.s of all increasing
w-sequences and which has a least element; it is termed an "w-complete partial order"
or even just a "complete partial order" elsewhere. Also a function F’K --> L of partial
orders is w-continuous if and only if it is monotonic and preserves 1.u.b.s of increasing
to-sequences, that is, if whenever (x,),,o is an increasing w-sequence such that
exists, then F(I It: x,) IIc F(x,). We make analogous definitions for categories"

DEFINITION 3. A category, K, is an o-complete pointed category (shortened below
to to-category) if and only if it has an initial element, and every co-chain has a colimit.

DEFINITION 4. Let F" K--> L be a functor. It is w-continuous if and only if it
preserves o-colimits; that is, whenever A is an to-chain and g" A-A is a colimiting

766 M.B. SMYTH AND G. D. PLOTKIN

cone, then Fix :FA FA is also a colimiting cone. (The reader is warned that this
definition is dual to the notion of continuity of functors usual in category theory
(MacLane [21]); this is done in order to maintain the analogy with partial orders.)

Clearly, when K is an to-category and F" K K is to-continuous, the conditions
of the basic lemma are satisfied. In 3 we will give the conditions for this to be the
case. In the sequel to this paper (see also Plotkin and Smyth [28]), we will show that,
in the presence of a universal object, the conditions of the basic lemma may be satisfied
without requiring that K be an to-category and that F be to-continuous. Usually, we
can completely avoid direct verification of the conditions of the basic lemma, or of
whether something is an to-category or is to-continuous. Of course sometimes, as in
the case of Set, it is already known that we have an to-category and that such functors
as + and are to-continuous (see Lehmann and Smyth [20]). One case in which there
is, so far, no alternative to direct verification is with Lehmann’s category, Dora of
small to-categories and to-continuous functors [18] (in this case Dora-categories might
provide a good general setting).

Note that it is only necessary to check that the basic categories are to-categories
and the basic functors are to-continuous; one easily proves that any denumerable
product of to-categories is an to-category, that all constant and projection functors
are to-continuous, and that composition and tupling preserve to-continuity. Thus to
solve (1) one only needs to check that + and are to-continuous; for (2) and (3) one
looks at + and .

The original work on models of the pure A-calculus (Scott [34], Wadsworth [42])
did not solve (4) as lim_. (F"(_I_), Fn(IF+/-)), but rather as lim_, (F’(D), F"(’n’)) for an
object D and a morphism "n"D F(D). It turns out that this solution is, essentially,
the initial fixed point of a functor F=, derived from F, over the comma category (D SK)
of "objects over D" (see MacLane [21]). The analogous idea in partial orders is that
of a least fixed point greater than some fixed element, d.

The comma category (D,K) has as objects pairs (A, d) where A is an object of
K and d:D A; the morphisms f:(A,d)(A’, d’) are the morphisms f:A A’ of K
such that the following diagram commutes.

d
D)A

A’

Now the endofunctor F,:(D$N)-(D,I,K) can be obtained by putting F(A,d)=
(FA, (Fd)or) for objects and F,(/) =F(/) for morphisms. Then one can see that
an F,-algebra is a pair ((A, d),) where A is an object of K, and d’DA and
:FA A and the following diagram commutes.

D , F(D). , F(A)

A homomorphism ’: ((A, d),) - ((A’, d’), ’) is a morphism ’: A A’ such that the
following two diagrams commute.

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 767

F(A) A D
a

A

F(A’) A’ A’

Let us assume, for simplicity, that K is an to-category and F is to-continuous.
Then (DSK) is also an to-category. Its initial object is (D, idD). For colimits suppose
A=((An, d),f,) is an t-chain in DSK. Then it is straightforward to check that
/z (A, f)-A is a (colimiting) cone in K if and only if/z:A (A,/xo do) is in (D K)
(and they have the same mediating morphisms). This makes it easy to show that F
is to- continuous.

Now, applying the basic lemma to (DK) and F, we have to find a colimiting
cone Ix" (F (+/-), F (+/-F=(I)))-> (A, d). One sees, by induction on n, that F (+/-(DI)) is
(F"(D),d,) where d =F-l(Tr) .o’:DF(D) and that F(LF(+/-))=Fn(’a’).
So from the above remarks one can take to be a colimiting cone, /x:(F"(D),
F" (zr)) A, also defining A, and put d =/x0od0. Then, by the basic lemma, the initial
F-algebra is ((A, d), a) where a is the mediating morphism from F/x to/x- (which
can be taken in K). Thus we see that A =lim_. (F"(D), F"(r)), together with its
colimiting cone, determines the initial F-algebra. Thus we have characterized the
original inverse limit construction in universal terms.

3. O-categories. In most of the categories used for the denotational semantics
of programming languages, the hom-sets have a natural partial order structure. When
solving recursive domain equations only the projections are considered, and they are
easily defined in terms of the partial order. Wand [44] introduced O-categories to
study such categories at a suitably abstract level. We now present a view of his work
as providing theorems and definitions which facilitate the application of the basic
lemma, as outlined in the introduction.

DEFINITION 5. A category, K, is an O-category if and only if (i) every hom-set
is a partial order in which every ascending to-sequence has a 1.u.b. and (ii) composition
of morphisms is an to-continuous operation with respect to this partial order.

Note that if K is an O-category, so is K, and if L is another so is K L. Here
the orders are inherited, and in the case of Kp we have fop___ gop if and only if f g,
for any morphisms f and g of K (in general we will omit the superscript when writing
morphisms in opposite categories).

As it happens O-categories are a particular case of a general theory of V-categories
where V is any closed category (MacLane [21]); here O is the category whose objects
are those partial orders with 1.u.b.s of all increasing to-sequences and whose morphisms
are the to-continuous functions between the partial orders. We will not use any of
the general theory but just take over the idea of endowing the morphism sets with
extra structuremin this case that of being an object in O.

DEFINITION 6. Let K be an O-category and let A rB gA be arrows such that
g of idA and fog ___idB. Then we say that (f, g) is a projection pair from A to B, that
g is a projection and that f is an embedding.

LEMMA 3. Let (f, g) and (f’, g’) both be profection pairs from A to B, in an
O-category K. Then f

_
f’ if and only if g

_
g’.

Proof. If f_f’ then g_gof’og’_gofog’=g’. Conversely, if g_g’ then f=
fog’of’_fogof’_f’. V!

768 M. B. SMYTH AND G. D. PLOTKIN

So, in particular, it follows that one half of a projection pair determines the other;
if f is an embedding we write fR for the corresponding projection which we call the
right adfoint of ; if g is a projection we write gL for the corresponding embedding
which we call the left ad]oint of g. (Our use of the term "adjoint" is only a matter of
convenience; when the K-objects are posets and the morphisms are monotonic maps,
it agrees with a standard usage.)

Given any O-category K we can now form the subcategory, KE, of the embeddings.
For the identity morphism idA’A-->A is an embedding with ida=idA, and if
A fB-)f’c are embeddings, so is (f’ of) with (f’of)R "--fRf’R. Equally, we can
form KP, the subcategory of the projections. We do not try to take either of these as
O-categories under the induced ordering; indeed they are, in general, not O-categories.

3.1. Duality for O-categories. Our discussion of adjoints shows that we have the
duality KE (KP)p (and so too Kp (KE)P). There is another kind of duality arising
from the fact that an embedding in Kp is just a projection in K. Thus (KP)E KP

(and so (KO)P KZ). Thus an to-chain in (KP)z can be considered as an toP-chain in
KP, and a colimiting cone in (KP)E can be identified with a limiting cone in Ke. We
therefore have the following dualities (for an O-category K): embedding/projection,
to-chain in KZ/0oP-chain in KP, colimiting cone in KZ/limiting cone in KP. A further
example, O-colimit/O-limit, is provided by Definition 7.

These observations will be used in the proof of Theorem 2.
Our first theorem is trivial but does illustrate the idea of transferring properties

from K to KE.
THEOREM 1. Let K be an O-category which has a terminal obfect, z, and in

which every hom (A, B) has a least element, +/-A,U. Suppose too that composition is

left-strict in the sense that for any [:A-B we have +/-.cof +/-A.O Then +/- is the
initial object of K.

Proof. First, if f, f" +/- A are both embeddings, then they have a common right
adjoint, as +/- is terminal in K, and so, by Lemma 3, they are equal. Second, -t-.+/-.A’ +/- A
is an embedding with right adjoint +/-A.+/-. For .J_A,+/-_L+/-,A’_[_ "-)_L must be id+/- the
unique map from _1_ to +/- and +/-_.A +/-A.+/- [A,A (by left-strictness) _idA.

To make the connection with the basic lemma, we need to be able to relate
O-notions (expressed in terms of the ordering of hom-sets) to to-notions (expressed
in terms of toP-limits/to-colimits). This is the main purpose of Theorem 2. Another
way to view this result, exemplified further in the ensuing discussion, is that it is
concerned with the correspondence between local properties (that is, properties local
to particular hom-sets) and global properties of the category. Yet another way to
regard Theorem 2 is to note that it contains the most complete and general formulation
of the limit-colimit coincidence, remarked in Scott [33], that we have been able to
develop.

DEFINITION 7. Let K be an O-category and/x" AA a cone in K, where A is
Rthe to-chain (A,, f,). Then is an O-colimit of A provided that (/x, o/x,), is increasing

with respect to the ordering of hom (A, A) and I1,,/x, o/x, idA. Dually an O-limit
of an toP-chain F in KP is a cone u’ B - F in K such that ou,), is increasing and
II, u u, idB.

RObviously,/x is an O-colimit of A if is an O-limit of AR, where we define A
R Rto be (A,, f,n) and/x to be (tz,

THEOREM 2. Let K be an O-category and A be an to-chain in K. Consider the
six properties

(a) A has a colimit in K,

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 769

(b) AR has a limit in K,

(c) A has an O-colimit,

(d) AR has an O-limit,

(e) A has a colimit in KE,
(f) AR has a limit in KP.

We have" properties (a)-(d) are equivalent (to each other); (a) implies (e); and (e) is
equivalent to (f). Indeed, a cone " A->A (a cone v’A --> AR) is colimiting (limiting) in
K if and only if I (v) is an O-colimit (O-limit); any colimiting (limiting) cone of A(AR)
in K is also a colimiting (limiting) cone of A(AR) in Kz (KP); and A A is colimiting

R KP"in K if and only if is limiting in
Proof. We establish Propositions A-E which are jointly equivalent to the result.

We always suppose that A has the form (A,, f,). Note that (’, o,),R is increasing
Rfor any cones ’AA and "AA’ in K, as we have’ ,o,

PROPOSiTiON A. If " h A is an O-colimit, then is colimiting in both K and
E.

Proof of Proposition (A). Choose a cone " h A in K, and suppose "A A’
is a morphism from to ’ (i.e., for all n, o, ’)., Then is determined by:

R R R0 OoU p,.o. Lj (0 op,.)o,

’o/R since the aboveThis proves uniqueness; for existence we can define 0 as II/,
remark shows that (’ R

/, is increasing, and calculate:

So is colimiting in K. For KE it only remains to show that if ’ is actually a
cone in K then 0 as defined above is an embedding. By the remark above, (/z, o/z ’),,o
is increasing; to show that 0 is an embedding, we prove that it has the right adjoint
OR tRL_l l. lz

On the one hand we have"

vR R vR R R(I I/.o.)o(I I/no/z.)=1 I/.o(/z. o/.t.)o/. =U/zno/z. =idA,

on the other hand we have"

R vR R vR vRU]J, tn l)o([[ia, .t)---[_]]. .t in i].I pl, idA’. I-!

Dually, we have Proposition B:
PROPOSITION B. If v:A -> AR is an O-limit, then v is limiting in both K and KP.
PROPOSITION C. If v" A-> AR is limiting in K, then each v, is a projection and v

is an O-limit of AR.
ProofofProposition (C). For each A, we can define a cone v

(’) :Am --> AR in K by:

.,)={f.. (m<-n),
" (A)’ (m > n).

(m) RTo see that v" is a cone, we first check that if r_->max (m, n) then v
(m)For if m <- n, then f.R f f.R (f f V ;if m > n then fnRr f

770 M.B. SMYTH AND G. D. PLOTKIN

(m)(fmrfnm)R fmr--fnRm ln Now we see that v
(") is a cone, as follows:

Vn+l (f(n+l)rfmr) (by the above with r max (m, n + 1))

(f(n+X)rOfn)R fmr =fnRrfmr
(m)v. (by the above).

Now as v" A - AR is a limiting cone there is, for each m, a mediating morphism
(m) (m)O,. "A,. A from v to v. So we have for all rn and n" v. O.. v.. Putting n equal

to m we find that v. o0,. ida.., which is half the proof that v,. is a projection with
L

Next we connect up the O,.’s by showing that O.. O,./of. which holds since
0,.+1of,. mediates between v

") and v as can be seen from:

(re+l) +1)v.o(O.,+lof.) v, of,., (Om+l mediates between v" and v)

(with r max (m + 1. n))
(m)fnRr fmr Vn

This, in turn, enables us to show that (O,.ov.,),,o is increasing: O.,ovm=
O.,+lof.,ofov,.+l=_O+loV,.+l. Consequently, as K is an O-category, we may
define 0" AA by" 0 =1 I.o, O,.ov. To finish the proof, we show that 0 ida (as

Lthen we also have 0,. v., _0 idA, completing the proof that v,. 0.,). This follows
from the fact that 0 mediates between v and itself as is shown by"

’rnn m_-->n mn

By duality"
PROPOSITION D. If/:A-->A is colimiting in K, then each I, is an embedding,

and Iz is an O-colimit.
PROPOSITION E. A --> A is colimiting in K if and only if i R :A - AR is limiting

in KP.
Proof of Proposition E. Obvious.

This completes the proof of Theorem 2.
Our first main use of Theorem 2 will be to establish the evident corollary that if

K is an O-category which has all oP-limits, then K has all 0o-colimits. The second
main use concerns functors, but first a definition and another corollary prove con-
venient.

DEFINITION 8. An O-category K is said to have locally determined to-colimits of
embeddings provided that, whenever A is an to-chain in K and/:A-A is a cone
in K,/x is colimiting in K if and only if/ is an O-colimit. (Note that, by Theorem
2, only half of the implication can ever be in doubt.)

COROLLARY (to Theorem 2). Suppose that the O-category K has all toP-limits
(i.e., every toP-chain in K has a limit). Then K has locally determined o-colimits of
embeddings.

Proof. Suppose that/" A A is colimiting in K. Let v" A’ AR be a limit with
respect to K for AR. By Theorem 2, v’ is an O-limit for AR. Thus, v’ is an O-colimit
for A, so that by Theorem 2, v’ is colimiting in K. Hence/z is isomorphic with v’
and must itself be an O-colimit (the property of being an O-colimit is trivially invariant
under isomorphism of cones).

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 771

By duality, the conclusion of the corollary also follows from the assumption that
K has all t-colimits, but that is not so useful. At present we lack an example of an
O-category which does not have locally determined t-colimits of embeddings.

As mentioned in the Introduction, a major reason for introducing K is to enable
us to consider contravariant functors on K as covariant ones on K" the remainder
of this section develops the idea. We consider throughout (that is, to the end of the
section) three O-categories K, L, M and a covariant functor T: KPLM. Purely
covariant functors are included by suppressing K (i.e., taking it to be the trivial
one-object category), contravariant ones by suppressing L, and mixed ones by taking
K and L to be product categories as required.

DEFINITION 9. The functor T is locally monotonic if and only if it is monotonic
on the horn-sets; that is, for f,f"A -B in Kp, g, g"CD in L, if f_f’ and g_g’,
then T(f, g)

_
T(f’, g’).

LEMMA 4. If T is locally monotonic, a covariant functor T K L - M can
be defined by putting, for objects A, B’TZ(A,B)=T(A,B) and for morphisms
f, g" TE (f, g)= T((fR)r’, g).

Proof. First if f:A -B in KE and g" C -D in LE, then T(fR, g) is an embedding
with right adjoint T(f, gR) as" T(f, g)Ro T(fR, g)= T(fR of, gRog) T(iaA, iac)
idT.c) and also: T(fR, g)oT(f, gR)=T(fofR, gogR)_T(idmidD) (by local
monotonicity) idrCn.o).

Secondly, TE (idA, idc)= T(id, idc)= T(idA, idc)= idrg.c).
Thirdly if A -rA’-’ A’ in KE and B -gB’ g’B" in LE then

TE(f’, g’) TE (f, g)= T(f’, g’)oT(fn, g)= T(fRof’R, g’ og)

T((f’of)R, g’ og)= T(f of, g’og).

Under some assumptions on K and L, we can transfer a local continuity property
of T to the to-continuity of TE.

DEFINITION 10. The functor T is locally continuous (equivalently, is an O-functor)
if and only if it is to-continuous on the hom-setsthat is, if f," A -B is an increasing
to- sequence in Kp andg" C -D is one in L, then T(, f,, II, g, II, ,o T(f,, g,).

Note that the constant and projection functors are locally continuous, and that
the locally continuous functors are closed under composition, tupling and taking
opposite functors.

THEOREM 3. Suppose T is locally continuous and both K and L have locally
determined to-colimits of embeddings. Then T is to-continuous.

Proof. Let A ((A., B.), (f., g.)) be an to-chain in KE x LE and let/x" A - (A, B)
be colimiting, where tz (try, -.).. Then (r.)" (A., f.)-A is colimiting in K and
(z.)" (B., g.)- B is colimiting in Lz. It follows by the assumptions on K and L that

R R with the right-hand sides increasing.idA II tr. oct, and id II -.
We have to show that TE(/z)" TE(A) TE(A, B) is a colimiting cone in ME, which

we do by showing that it is an O-limit (and then applying Theorem 2). First

(TE(la.,,)oTE(lx,,)R),,., (T(o-.R, -,,)o T(tr.R,

R(T(o’R, r,,) T(o’,,, "r,,)),,

R R(T(cr. oct., r. o.r.

772 M.B. SMYTH AND G. D. PLOTKIN

RR and (z. oz.).,o are and as T is locally monotonic.which is increasing as (r. or.)..,
Next,

R RTz(tz.)o Tz(l..)R II T(o’. oo.., "r. o7..

T O’nO’n, [[Tn’l

(by the above)

(by local continuity)

T(idA, ida) (by the above)

idT(A,a). 1-1

4. Examples. In this section we present several useful O-categories where our
general theory can be applied. In general we only sketch proofs and even omit them
When they are either evident or not directly relevant to the main line of the argument
(but for Example 2, see [22]). The first example is elementary, being little more than
an illustration of the ideas. The second example is the category of cpos where all the
needed domains for denotational semantics can be constructed. This is an approach
where as few axioms as possible are imposed. That makes the axioms very easy to
understand but admits domains of little computational interest. The third example
illustrates various completeness conditions that are weaker than Scott’s original
requirement of complete lattices, which rules out some natural and useful domains.
The fourth example considers axioms of algebraicity and continuity which attempt to
force the domains to be computationally realistic. One use of the completeness axioms
(cf. Example 3) is that when combined with algebraicity (or continuity), function
spaces exist although they need not otherwise do so. Example 5 turns in a different
direction, suggesting a certain category of continuous algebras as an appropriate place
for the semantics of programming languages with nondeterministic constructs.
Example 6 considers a category of relations over cpos where it is possible to construct
a wide variety of recursively specified relations; these are useful when relating different
semantics.

Example 1. Partial functions. We consider the category Pin of sets and the partial
functions between them. The partial order relation between partial functions is just
set inclusion and can also be defined for any f, g:A B by

f=_g---Va A.f(a),f(a)= g(a)

(where f(a)$ means that f(a) is defined). Clearly limits of increasing to-sequences
(f,), exist being just the set-union Uf, so that

(1 f)(a)=
b
undefined

(:in f, (a b),
(qn.f (a) is undefined).

It is easy to see that f: A -B is an embedding if and only if it is total and one-to-one;
in that case fR =f-1. Thus to within isomorphism, embeddings are just inclusions.
Note that the totally undefined function :A B is the least element of hom (A, B)
and that composition is left strict in the sense of Theorem 1. The empty set is the
terminal object, the unique mapping being A and so the conditions of Theorem
1 apply, and we see that is the initial object in Pfnz (and of course that is trivial
anyway).

Turning to to-colimits in Pfn, it is obvious that they exist, as to-chains A (A., f.)
are, to within isomorphism, just increasing sequences Ao

_
A _. , and so A t_JA.

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 773

is the colimiting object with the colimiting cone of inclusions/z,, "A, G A. This also
follows from Theorem 2, since Pfn has toP-limits. These are constructed as in Set:
let A (A,, fn) be an toP-chain; putA {a 1-IA, ltn.a,, =/n (a,+l)} and define v, :A
A, to be the "nth projection" a an. Then A is the limit of A and v is the colimiting
cone.

Turning to functors, we define the Cartesian product on morphisms f:A A’ and
g: B B’ by:

(f x g)(a, b)=
(fa, gb (if f(a) and g(b),),
undefined (otherwise).

This makes the Cartesian product locally continuous and so, by Theorem 3, to-

continuous. Amusingly, the categorical product exists but is different from Cartesian
product and is not even locally monotonic. On the other hand, the categorical sum
exists and is locally continuous. On objects it is disjoint union"

A +B ({0} x A) CI ({ 1} x B)

and for morphisms f:A -A’ and g:B B’,

(O, f(a))
(f + g)(c (1, g (b))

undefined

(]a A.c (0, a) and f(a)),
(]b B.c =(1, b) and g(b)+),
(otherwise).

Finally, there is a natural function-space construction defined by

A B =hom (A, B),
and for f: A’ A and g: B B’

(f --> g)(h go.h of.
This is not even locally monotonic, and so Theorem 3 does not apply. This is as
expected, as the recursive domain equation (1) cannot have solutions in Pin (for
nontrivial At) by evident cardinality considerations. For another example of an
elementary O-category, the reader can consider the category Rei of binary relations
between sets, with the subset ordering on relations.

Example 2. Complete partial orders. We consider the category CPO (essentially
introduced in 2) of complete partial orders and to-continuous functions. It is an
O-category when we define the order between morphisms f, g:A B in the natural
pointwise fashion

fg ----ta A.f(a)_g(a).

Limits of increasing to-sequences of morphisms are defined pointwise. The conditions
of Theorem 1 are satisfied, as the trivial one-point partial order is the terminal object
and any given hom (A, B) has least element a - +/-B and composition is left-strict.

Turning to to-limits (to apply Theorem 3), let A =(A, f,) be an to-chain and
construct u" A A as in the case of Pin taking the partial order on A componentwise
so that for any a, a’ in A.

a=_a’=- tn a, =_a ’n.
This makes A a cpo with least upper bounds of increasing to-sequences,
taken componentwise

la(n=(a.)

774 M.B. SMYTH AND G. D. PLOTKIN

and with least element (I I, =>,, fn,, (_t_a.)). Further v is a cone of continuous functions
and it is limiting, as if v" A’-> A is any other, then if 0 is a mediating morphism we
have, for all n, that O(a’),, v’,, (a’), determining 0 as a continuous function. Thus we
have sketched the proof that CPO has all oP-limits.

Turning to functors, we have categorical product and function space functors.
The product of two cpos A and B is their Cartesian product with the componentwise
ordering; it is easily verified to be the categorical product. Its action on morphisms
f: A --> A’ and g: B --> B’ is also defined as usual:

(f x g)(a, b (fa, gb).

Clearly, product is locally continuous. The function-space functor has the same (formal)
definition as in Pfn; however, this time it is easily seen to be locally monotonic and,
indeed, continuous. The function-space functor is the categorical one and CPO is
Cartesian closed.

Unfortunately, CPO does not have categorical sums. It is therefore better to
consider the category CPO_ of cpos and strict continuous functions (where for any
cpos A and B a function f:A B is strict if f(+/-A)= +/-B). This has a categorical sum
which is defined on cpos A and B by putting

A +B [{0} x (A\{_I_})] U [{1} x (B\{+/-})] LI {+/-},

with the partial order defined by
c=_c’ =-[a, a’ ea.a=_a’ ^ c (0, a) ^ c’= (0, a’)]

v[=lb, b’B.bGb’^c =(1, b) ^c’=(1, b’)]

VC=/

In other words, A +B is the coalesced sum, that is, it is the disjoint union of A and
B, but with least elements identified. The action of sum on morphisms turns out to
be given by putting for f:A A’ and g:B B’

/ (0, f(a)) (:ia A .f(a) # _1_ ^ c (0, a)),
(f +g)(c)=i(l’ (otherwise),(ZlbB’g(b)+/-^c=(l’b))’

and this shows that the sum is a locally continuous functor. Now we know that +
and, for example E are covariant t-continuous bifunctors on CPO and CPOE

respectively. Luckily however these latter categories are the same, as both embeddings
and projections in CPO are strict. (To see this let f:A B be an embedding in CPO.
Then f(L)Gf(fR(L))G+/- and so f(+/-)= 2; also fR(+/-)=fn(f(+/-))= _k.).

In the same vein we can consider the smash product A (R)B in CPO+/- defined as
{(a, b) A xB [a # +/- =- b # +/-} with the componentwise ordering inherited from the
product A xB (which happens also to be the categorical product in CPO+/-). On
morphisms f:A - A’ and f:B - B’ the functor acts as follows:

(f(a), g(b))
(f(R)g)(a, b)=

(_t_, _t_)
(if f(a) +/- and g(b) +/-),
(otherwise).

This definition shows that the smash product is locally continuous. It can be character-
ized categorically. Say that a function f" A x B C of cpos is bistrict if and only if for
any b in B, we have f(+/-, b)= +/- (left-strictness) and also for any a in A we have
f(a, +/-) +/- (right-strictness). Then the evident bistrict function (R): A B A(R)B is the
universal bistrict continuous function from A B in CPO_.

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 775

The strict function-space functor is defined as before (formally) but this time in
CPO+/- and we denote it by-.. It also is easily seen to be locally continuous. From
a categorical point of view (see [21]), smash product makes CPO+/- a symmetric
monoidal category. Further, as we have a natural bijection

hom (A(R)B, C) horn (A, B -. C),

CPO. is even a closed category. This to some extent repairs the fact that it is not
Cartesian closed and explains the appearance of the smash product.

Finally we note a useful functor (.).: CPOCPO. called lifting. For any cpo D,

(D)
_

({0} D) 13 _t_,

with the partial order defined for any d, d’ in (D) by:

dd’=(::lc, c’ D.cTc’ ^d=(O,c) ^d’=(O,c’))vd=_l_.

On morphisms f:D -E we have for any d in (D).

J (0, f(c)) (if d (0, c)),
(f)_(d)

1 (if d= _1_).

From a categorical point of view, lifting is the left adjoint to the forgetful functor
from CPO+/- to CPO. We now have a wide variety of covariant continuous functors
over CPOz= CPO; Lehmann and Smyth discuss many of their uses in [20]. What
is more, all of them arise naturally from a categorical point of view.

It does not appear to be useful to use O itself (a variant of Reynolds’ predomains
[32]) as Oz has no initial object. (To see this, suppose to the contrary that D is initial.
Then there is an embedding f: D - , and we must therefore have D ; but clearly

is not initial, as there is no embedding g: .-X for any nonempty X.) On the
other hand, one often sees an alternative definition of cpo where it is assumed that
all directed sets have 1.u.b.s rather than just increasing to-sequences. (A subset X of
a partial order P is directed if it is nonempty and any two elements of X have an
upper bound in X.) Let us call these partial orders dcpos (directed complete partial
orders). One easily adapts the above discussion to this case. Which definition to take
is not a choice of great significance. On the one hand, the restriction to to-sequences
gives a larger category and is also computationally natural, as they arise when taking
least fixed points; on the other hand the directed sets are natural mathematically. The
following fact shows the difference is essentially one of cardinality.

FACT 1.a. A partial order with a least element is a cpo if and only if it has all
l.u.b.s of countable directed sets.

b. A function f: A B between cpos is to-continuous if and only if it preserves
all l.u.b.s of countable directed sets.

Proof. First note that for any countable directed set X there is an increasing
sequence (x,),,o of elements of X such that any element of X is less than some x,.
Then we have IIX IIx,, and part a easily follows. For part b, suppose f:A-B is
to-continuous and let X

_
A be directed. With (x,),,, as above, we calculate

xX

and this finishes the proof, as the other direction is immediate. [3
Another way to look at these matters was discussed by Markowsky [22], who

noted that a partial order is a dcpo if and only if it has 1.u.b.s of all (well-ordered)

776 M.B. SMYTH AND G. D. PLOTKIN

chains, and a function between dcpos preserves all 1.u.b.s of directed sets if and only
if it preserves all 1.u.b.s of (well-ordered) chains.

Example 3. Completeness. We consider some full subcategories of CPO defined
by imposing various completeness conditions.

DEFINITION 11. Let D be a partial order. A subset, X, of D is K-consistent if
and only if whenever Y

_
X and Y[I < , Y has an upper bound in D.

Any subset, X, of a nonempty partial order is 0-, 1- and 2-consistent; it is
3-consistent if and only if it is pairwise consistent in the sense that any pair of its
elements has an upper bound in D; it is to-consistent if and only if any finite subset
of its elements has an upper bound in D. Clearly if <_-’ then every ’- consistent
subset is also to-consistent; clearly too, any directed subset is to-consistent.

DEFINITION 12. A partial order, D, is -complete if and only if it is nonempty
and every -consistent subset has a least upper bound.

It follows from the above remarks that if <-_ ’, then every -complete partial
order is ’-complete; also every to-complete partial order is a cpo (and even a dcpo).
Clearly for 0_-< n < 3 the n-complete partial orders are the complete lattices and the
3-complete partial orders are the coherent cpos, in the sense of [24], [29] and,
essentially, [11]. We now see that a partial order is to-complete if and only if it is
consistently complete in the sense of [29], [36] and, essentially, [11], [24].

FACT 2. Let D be a partial order. It is to-complete if and only if it is a dcpo with
l.u.b.s of all subsets with upper bounds in D.

Proof. Let D be to-complete. We have already noted that it js a dcpo. Also any
subset with an upper bound in D is to-consistent and so has a least upper bound.

With the converse hypotheses, let X be an to-consistent subset. Then every finite
subset has an upper bound in X and so has a least upper bound. The set of such
1.u.b.s is then directed and so must itself have a 1.u.b. which is also the 1.u.b. of X.

Turning to the properties of the full subcategory of -complete partial orders,
we see that Theorem 1 may be applied, as the one-point cpo is a complete lattice.
To see that toP-limits exist, let A (A,, f,) be an to-chain and define v:A-. A as
before. As this defines a limiting cone in CPO, it only remains to show that A is
-complete. The proof employs an idea of Scott, for the case of complete lattices (we
have already employed it to show that A has a least element).

FACT 3. A is K-complete.
Proof. Suppose X A is K-consistent. Then for every m, so is {x,lx X}, and

then the least upper bound of X is (I l,, __> f,n (I {X,,IX X}))n,o.
So the category of embeddings is a full subcategory of CPOE with the same

colimiting cones of o-chains. It follows that any to-continuous functors over CPOE

which preserve to-completeness cut down to to-continuous functors on the subcategory.
This remark applies to all the functors discussed in Example 2 except the sum functor,
which only preserves K-completeness for K => 3. Sums of lattices can be defined by
adding a new top element or by equating top elements as in [34], [30], and can be
dealt with by local continuity. General completeness concepts have been considered
in [3]; it would be interesting to see how they fit into the present considerations. One
approach to handling nondeterminism and concurrency is to use one of several
available powerdomain functors. These are available over CPO (see [15]), and the
Smyth powerdomain [37] is available over the to-complete cpos. However, the Plotkin
powerdomain [27] does not preserve to-completeness; a very weak notion of complete-
ness was needed, leading to the so-called SFP objects (briefly considered in 5).

Example 4. Continuity and algebraicity. Now we consider the to-continuous and
the to-algebraic cpos. Our main definitions (13 and 15) are formulated entirely in

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 777

"countable" terms, but we pause to show that one could just as well start from
definitions (14 and 16) formulated without any countability restrictions.

DEFINITION 13. Let D be a cpo. The countable way-below (=relative compact-
ness) relation is defined by: x <<y if and only if for every countable directed subset
ZofD, ifym_llZthenxm_zforsomezinZ.

A countable subset, B, of D is an to-basis of D if and only if for every element
x of D the set Bo,(x)=aCf{b Blb<<,ox} is directed with 1.u.b.x.

The cpo D is to-continuous if and only if it has an to-basis.
This definition is not quite the very similar one considered in the case of complete

lattices by Scott in [33] and more generally for dcpos in [36], [23] and several papers
in [7].

DEFINITION 14. LetD be a dcpo. The way-below (= relative compactness) relation
is defined by: x << y if and only if for every directed subset Z of D, if y_llZ then
y_ z for some z in Z.

A subset B of D is a basis of D if and only if for every element x of D the set
B(x) =aef{b Blb << x} is directed with 1.u.b.x.

The dcpo D is continuous if and only if it has a basis.
To relate these two notions, we first note a few useful and easily proved facts.

In a cpo we have that x <<,oy implies x_y and x <<,oy---z implies x <<,oz; analogous
facts with << replacing <<o hold in a dcpo; for any elements x, y of a dcpo, if x << y
then x << o,y.

FACT. 4. A partial order is an w-continuous cpo if and only if it is a continuous
dcpo with a countable basis.

Proof. Let D be an w-continuous cpo with o-basis B. First, we see it is a dcpo.
For if X is any directed set then A xxB(x) is countable and directed (by the
above facts), and so its 1.u.b. exists and is the 1.u.b. of X. Next we show for any
elements x and y of D that x << y if and on13 if x <<,oy. Suppose x <<,oy and y_lIZ
where Z is directed. Then y =_llA as before, and so for some z in Z and a in B,o(z)
we have x =_a <<z, and so x=_z. This establishes x << y. We have already noted the
converse, that x << y implies x << y. Therefore B(x)= B (x) for any x, and so B is a
countable basis. The converse assertionthat any continuous dcpo with a countable
basis is o-continuousis proved along the same lines. !-1

The w-algebraic cpos are a subclass of the w-continuous ones and can also be
presented in two ways.

DEFINITION 15. Let D be a cpo. An element x is o-finite (=w-compact) if and
only if x <<,ox. The cpo is w- algebraic if and only if there is an w- basis of finite elements.

DEFINITION 16. Let D be a dcpo. An element x is finite (=compact) if and only
if x << x. The cpo is algebraic if and only if there is a basis of finite elements.

One then sees that D is an o-algebraic cpo if and only if it is an algebraic dcpo
with a countable basis of finite elements. Also in any (w-) algebraic dcpo (cpo), there
is only one (w-) basis, namely the set of all (o-) finite elements.

Turning to the full subcategory of the w-continuous cpos, we note that it contains
the one-point cpo, so Theorem 1 applies; however, it does not have all to-limits,
and we conjecture it does not have to-colimits. The same remarks apply to the
o-algebraic cpos. Fortunately, however, the embedding subcategories inherit
colimits from CPO+/-. We need a preliminary lemma.
LEMMA 5a. Embeddings (in CPO) preserve the countable relative compactness

relation.
b. Let E be a cpo and B be a countable subset of E. If x is an element of E and

there is a directed subset C of Bo,(x) with l.u.b, x, then B,,(x) is directed, with l.u.b, x.

778 M.B. SMYTH AND G. D. PLOTKIN

c. Let E be a cpo and B and C be subsets of E, with B countable. Suppose that
for every element y of C, B,o (y) is directed with l.u.b, y and suppose too that for every
element x of E there is a countable directed subset, Cx, of C such that x II Cx. Then
B is a basis for E.

Proof. a. Let f:D E be an embedding in CPO and let x, y be elements of D
where x<<o,y. If f(y)_l IZ where Z is a countable directed subset of E, then y
fL(f(y))_l fL(Z). So for some z in Z we have x=_f(z), and so f(x)m__f(f(z))Ez,
showing that f(x) <<,of(y).

b. If u <<,ox and v<<x, then there are u’ v in C such that u_u’, vv’. But as
C is directed, this shows that Bo, (x) is directed too.

c. Take x in E and consider {Bo, (y)[Cx}. This is a directed set, with respect to_, of directed sets as C is directed; its union is therefore directed and is clearly a
subset of B,o (x) with 1.u.b.x. So by part b, B,o (x) is directed with 1.u.b.x. VI

FAC 5. Let A (D, f) be an to-chain in CPO of to-continuous (w-algebraic)
cpos. Suppose tz" A-->D is colimiting. Then D is w-continuous (w-algebraic).

Proof. We use Lemma 5c to show that D is w-continuous when the D, are. Let
def

(n))B (") be an to-basis for D, (n s w); we claim B ,/z, (B is an w-basis for D. Let
C be ,/,(D,). By Theorem 2 applied to CPO, we can take C ={l,(tzn(x))]n, Sto}.
Now (Lemma 5a) for each y in D,, ,(B((y)) is a directed subset of B,o(,(y)) with
1.u.b.y. So by Lemma 5b B,o(/,(y)) is directed with 1.u.b. /,(y). Thus Lemma 5c
applies. In the case where the D, are all to-algebraic, we take B(" to be the w-finite
elements of D, and find a basis of to-finite elements of D. [3

So the full subcategory of CPO of the to-continuous (to-algebraic) cpos is an
to-category that inherits to-colimits, from CPO. It follows that any w-continuous
functor over CPO that preserves to-continuity (w-algebraicity) cuts down to an
to-continuous functor over the subcatego.ry. This enables all the functors discussed
above for CPO to be handled except the function space functors which preserve
neither to-continuity nor to-algebraicity (see [24], [23] for a counterexample). Here
completeness considerations help. The full subcategory of CPO of the u-complete
and w-continuous (to-algebraic) cpos is clearly an to-category that inherits to-colimits
from CPOz (for K -<_ w).

Now all the functors discussed above preserve the property of being both K-

complete and o-continuous (o-algebraic). We have already noted this for all except
the function-space functors. For these, one notes that the proofs in [24], [23] for
o-complete and continuous (algebraic) dcpos adapt easily to o-complete and o-
continuous (algebraic) cpos whether we consider all continuous functions or only the
strict ones. The general case then follows from the facts that K-complete implies
o-complete for K --<_w and that K-completeness is preserved.

Example 5. Nondeterministic domains. The category NDO was found useful for
the semantics of nondeterministic and parallel programs in [15]. Its objects are the
nondeterministic cpos (D, _, LI) where (D,) is a cpo and "DZD is an associative,
commutative absorptive w-continuous binary function (called union); the morphisms
f: D E are those w-continuous functions which preserve union.

The trivial one-point object is terminal in NDO+/- and the conditions of Theorem
1 are satisfied. Further, NDO has oP-limits. Indeed, the forgetful functor U:NDO
CPO creates them. Let A (D,f) be an co-chain in NDO and suppose u’E UA
is universal in CPO, being constructed as shown above. Then if we want a union on
E so that the u, are NDO morphisms, we have for elements x, y, of E"

(X I,.J y)n Un(X [,.J y) Un(X) [,.J un(y) xn [,-J Yn.

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 779

So this determines union, and it is easily seen that with this definition we obtain a
universal cone in NDO. One interesting locally continuous function is ___, where on
objects D, E"

D E {f:D - Elf is to-continuous and preserves _},

(where x
__

y defX J y y), with the pointwise order and union, and defined as usual
on morphisms. Other examples can be found in [15].

Of course, there are many interesting varieties (or pseudovarieties of one kind
or another) subject to similar considerations [9], [25]. However, we have no clear
idea of the possible applications.

Example 6. to-complete relations. This category (or rather a slight variation of it)
has been found to be useful for relating different semantics by Reynolds [31] (see
also [12], [26]). It has as objects structures (D,E,R) where D and E are cpos and
R _D xE is a binary relation which is to-complete in the sense that if (dn), (en) are
increasing sequences in D and E, respectively, such that R (dn, en) holds for all integers
n, then R (I Idn, lie,) holds too; the morphisms are pairs (f, g): (D, E, R) (D’, E’, R’)
where f:D D’, g:E E’ are morphisms in CPO, and for all x in D and y in E if
R (x, y) holds then so does R’(fx, gy).

The terminal object is (+/-, 2, R+/-) where +/- is the one-point cpo and R+/- is the
complete binary relation over +/-; clearly, too, all the other conditions of Theorem 1
apply. Next to-limits exist. To see this, let A ((D,, E,, R,), (f,, g,)) be an to-chain.
Let u’ :D (D,, f,) and u":E(E,,g,) be limiting cones in CPO, constructed as
above. Then u" (D, E, R) A is limiting where u, (u’, U’n’) and R (d, e) holds if and
only if for all n the relation R, (d,, e,) holds.

A useful function space functor is given on objects by putting (D,E,
(D’, E’, R’) __def (D - D’, E E’, R R’) wher.e D D’ and E E’ are the cpos of
all to-continuous functions, and where

(R R’)(f, g)=-Vx D, y,E.R(x, y)=R’(f(x), g(y))

The action of the functor on morphisms is defined analogously to the case of
CPO. Other examples can be found in [31]. This idea can be extended to several
relations and to relations of any denumerable degree. It can also be combined with
the ideas of Example 4 to consider continuous structures of various kinds. However,
we must point out that the scope and usefulness of these mathematical possibilities
is not known. We do not have a nice language for functors which permits a uniform
treatment of the examples in [31], [12], [26]; we do not know why these relations
seem to be needed only when function-spaces arise, for in other cases structural
induction [20] seems to be sufficient; we wonder if the continuous structures should
be accompanied by suitable logics along the lines of LCF 14] but possibly intuitionistic
[35].

5. Computability. The approach to domain equation theory presented above
may be seen as an abstraction from Scott’s "D" method [33]. As we have said, the
"universal domain" method (Scott [34]), and its relation to the above theory, are to
be treated in a separate paper. However, there is an aspect of universal domain theory,
stressed by Scott, which must be mentioned here" computability. Starting from a
suitable universal domain, it is possible to provide a smooth treatment of effective
computability for all the constructs of interest, generalizing the relevant parts of
classical recursion theory (Scott [34]). Lacking anything like this, the theory presented
above has to be considered as seriously defective.

780 M. B. SMYTH AND G. D. PLOTKIN

Fortunately, however, the deficiency can be remedied. Effectiveness can be built
into O-categories in a satisfactory way. Here we will simply indicate some of the main
points; for a fuller and more accurate treatment, see Smyth [38]. We again work by
lifting suitable properties from domains to categories. Algebroidal categories are
introduced as a generalization of algebraic cpos; they are categories with a (countable)
"basis of finite objects". Then we get a handle on computability by requiring that
bases be effectively presented.

Approach A. Algebroidal categories. These are the same as what Smyth previously
called "algebraic categories" [37]. It has been brought to our attention that closely
related notions have been discussed quite extensively in the literature of category
theory, and this is what has prompted the change in nomenclature. Our algebroidal
categories are essentially the "strongly to-algebroidal categories" in (a Slight extension
of) the terminology of Banaschewski and Herrlich [6].

DEFINITION 17. An object A of a category K is finite in K provided that, for
any -chain A (V, f,),o in K with .colimit/z:A- V, the following holds: for any
morphism v:A- V, and for any sufficiently large n, there is a unique morphism
u :A V, such that v ix, u. We say that K is algebroidal provided (i) K has an
initial object and at most countably many finite objects, (ii) every object of K is a
colimit of an o-chain of finite objects, and (iii) every to-chain of finite objects has a
colimit in K.

Notation. If K is algebroidal, we denote by Ko the full subcategory of K with
objects the finite objects of K.

The principal examples of interest to us are SFPz (the category of SFP objects
and embeddings [27]) and various of its subcategories, for example the category of
bounded complete to-algebraic to-cpos and embeddings. The finite objects are in each
case the finite domains.

THEOREM 4. Every algebroidal category has all to-colimits.
Proof. See Smyth [37].
THEOREM 5. Let K be an algebroidal category, and let L be an to-category. Any

functor Fo from K0 into L extends uniquely (up to natural isomorphism of functors) to
an to-functor from K into L.

Outline of proof. For each nonfinite object D of K, choose a particular colimiting
cone D" Ao D, with Ao an to-chain in Ko; and for each -chain A in L choose a
particular colimiting cone/xa" A Da in L. The extension of F0 to all objects of K is
immediate (via the chosen colimiting cones in K, L). To define the extension F of Fo
to morphisms, consider first morphisms v" A V where A is finite and V nonfinite.
Since A is finite, v factorizes as v (lv)nou. Then we put Fv (iXloa,)noFou. Next,
for morphisms h: V- W, where V is nonfinite, define Fh as the mediating morphism
from the colimiting cone F(/xv)(=/ZFoav)) to F(holv). Of course, it has to be checked
that F so defined preserves composition of morphisms, and so is a functor (this is
nontrivial).

Now suppose that F, F’:K L are two to-continuous functors which extend Fo.
For each object V of K we have a canonical isomorphism ’v" FV-, F’V, namely the
mediating morphism from F(/xv) to F’(/x v). Naturality of - means that for h: V - W,
F’ho’v ’w Fh; this is established by showing that ’w Fh mediates between the
colimiting cone F(/z v) and F’h rv oF(Ix v). [-1

Theorem 4 yields at once that SFPz (for example) is an to-category. Theorem 5
can be useful, at least heuristically, in setting up the definitions of appropriate
to-functors. Under these circumstances, the solution of typical domain equations, via
the basic lemma, is unproblematic. More interesting is the question of effectiveness.
The following definition seems natural"

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 781

DEFINITION 18. Let (A,),o,, (fn),o, be enumerations of the objects and morph-
isms, respectively, of K0, where K is an algebroidal category. We say that K is effectively
given, relative to these enumerations, provided that the following predicates are
recursive in the indices"

i) Ai =Aj; fi =f"
ii) dom (]’k) Ai cod (]’k) Ai

iii) /k is an identity
iv)]i o. =/.
This enables us to define an effectively given obfect (of K) as an object that is

given as the colimit of an effective to-chain of finite objects, that is, as the colimit of
a chain of the form

fs(o) fs(1)
A(o) A()

(r, s recursive). One will naturally try to define a computable morphism, similarly, as
the colimit of an effective to-chain of finite morphisms (that is, morphisms of Ko).
Actually, such a characterization would be inadequate. The definitions given so far
are, strictly speaking, appropriate only for categories of the form KE, whereas we are
certainly interested in computability of morphisms other than embeddings. For an
adequate treatment, we have to reformulate the definitions so as to apply to O-
categories; this is done in Smyth [38] where, for example, we find that an "admissible"
O-category K is, roughly speaking, one for which KE is algebroidal. We can then
define a computable functor, roughly, as a continuous functor F for which we can
effectively assign to each finite object (morphism) A(f) an effective to-chain having
F(A) (F(f)) as colimit. A basic result, in terms of these definitions, will be that the
initial fixpoint of a computable functor is computable.

Approach B. Effective domains Kanda [17] proposes that only
computable items should be admitted to the domains and categories which we study--in
contrast to the usual practice of first building all the continuous/countably-based items
and then picking out the computable items from among these. This entails a
modification of the closure properties required of the domains and categories: we
now demand closure of domains with respect to sups only of effective to-chains, and
of categories with respect to effective colimits of effective to-cochains. This approach
works quite smoothly, and indeed yields a theory which is formally very close to
Smyth [36] as far as concerns effective domains. In regard to the theory of effective
categories (as developed by Kanda), perhaps the most striking feature of this theory
is the very simple definition of computable functor (Kanda has "effective functor") in
terms of indexings of hom-sets, which it permits.

Unlike Approach A, however, Kanda’s theory does not pretend to give a general
account of effectiveness in domains. In his theory, the definitions of an effective domain
and of an effective category are quite independent. In order to apply the theory, we
first define a particular category of "effective domains", and then show that this
category satisfies the axioms for an "effective category". The definition is ad hoc, in
the sense that no general or uniform notion of effective domains is proposed" we
cannot, for example, define an effective dcmain to be an object of an "effective
category of domains" (in contrast with our Approach A).

We incline to the view that these problems can best be attacked by means of the
ideas mentioned in Approach A (finite objects in categories, etc.); but that it may be
worthwhile to develop the argument in accordance also with the main ideas of
Approach B, namely, that only computable items should be admitted to the field of
discourse.

782 M.B. SMYTH AND G. D. PLOTKIN

REFERENCES

[1] J. ADEMEK, Free algebras and automata realizations in the language of categories, Comment. Math.
Univ. Carolina., 15 (1974), pp. 589-602.

[2] J. ADEMEK AND V. KOUBEK, Least fixed point of a functor, J. Comput. System Sci., 19 (1979),
pp. 163-178.

[3] ADJ (J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER AND J. B. WRIGHT) A uniform approach
to inductive p.o. sets and inductive closure, Theoret. Comput. Sci., 7 (1978), pp. 57-77.

[4] M. ARBIB AND E. MANES, Structures and Functors" The Categorical Imperative, Academic Press,
New York, 1975.

[5] M. ARBm, Free dynamics and algebraic semantics, in FCT Proceedings, M. Karpinski, ed., Lecture
Notes in Computer Science, 56 (1977), Springer-Verlag, Berlin, pp. 212-227.

[6] B. BANASCHEWSKI AND H. HERRLICH, Subcategories defined by implications, Houston J. Math.,
2 (1976), pp. 149-171.

[7] B. BANASCHEWSKI AND R.-E. HOFFMAN, Continuous lattices in Proceedings, Bremen 1979. Lecture
Notes in Mathematics 871, Springer-Verlag, New York, 1981.

[8] M. BARR Coequalisers and free triples, Math. Z. 116 (1970), pp. 307-322.
[9] S. L. BLOOM, Varieties of ordered algebras, J. Comput. System Sci. 13 (1976), pp. 200-212.

[10] W. H. BURGE, Reccursive Programming Techniques, Addison-Wesley, Reading, MA., 1975.
[11] H. EGLI AND R. CONSTABLE, Computability concepts for programming language semantics, Theoret.

Comput. Sci., 2 (1976), pp. 143-145.
[12] M. GORDON, Towards a semantic theory of dynamic binding, Memo AIM-265, Computer Science

Department, Stanford Univ. Stanford, CA, 1975.
[13] ., The Denotational Description of Programming Languages, Springer-Verlag, New York, 1979.
[14] M. GORDON, R. MILNER AND C. WADSWORTH, Edinburgh LCF, Lecture notes in Computer

Science 78, Springer-Verlag, Berlin, 1979.
15] M. C. B. HENNESSY AND G. D. PLOTKIN, Full abstraction for a simple parallelprogramming language,

in MFCS Proceedings, J. Beaver, ed., Lecture Notes in Computer Science 74, Springer-Verlag,
Berlin, pp. 108-120.

[16] H. HERRLICH AND G. STRECKER, Category Theory, Allyn and Bacon, Boston, 1974.
[17] A. KANDA, Fully effective solutions of recursive domain equations, in MFCS 1979, J. Beaver, ed.,

Lecture Notes in Computer Science, 74, Springer-Verlag, Berlin, 1979.
[18] D. LEHMANN, Categories]’or mathematical semantics, in Proc. 17th IEEE Symposium on Foundations

of Computer Science, 1976.
19] D. LEHMANN AND M. B. SMYTH, Data types, in Proc. 18th Annual IEEE Symposium on Foundations

of Computer Science, 1977.
[20],Algebraic specification of data types: A synthetic approach, Math. Systems Theory, 14 (1981),

pp. 97-139.
[21] S. MACLANE, Categories for the Working Mathematician, Springer-Verlag, Berlin, 1971.
[22] G. MARKOWSKY, Chain-complete posets and directed sets with applications, Algebra Universalis, 6

(1976), pp. 53-68.
[23],A motivation and generalisation of Scott’s notion ofa continuous lattice, in Continuous Lattices,

B. Banaschewski and R.-E. Hoffman, eds., Lecture Notes in Mathematics, 871, Springer-Verlag,
Berlin, 1981, pp. 298-307.

[24] G. MARKOWSKY AND B. ROSEN, Bases for chain-complete posets, IBM J. Res. Develop., 20 (1976),
pp. 138-147.

[25] J. MESEGUER, Varieties of chain-complete algebras, J. Pure Appl. Algebra, 19 (1980), pp. 347-383.
[26] R. MILNE AND C. STRACHEY, A Theory of Programming Language Semantics Chapman and Hall,

London 1976.
[27] G. D. PLOTKIN, A powerdomain construction, this Journal, 5 (1976), pp. 452-487.
[28] G. D. PLOTKIN AND M. B. SMYTH, Category-theoretic solution ofrecursive domain equations (extended

abstract), in Proc. of 18th IEEE Symposium on Foundations of Computer Science, (1977), pp.
13-17.

[29] G. D. PLOTKIN, "[]’ as a universal domain, J. Comput. System. Sci., 16, (1978), pp. 207-236.
[30] J. C. REYNOLDS, Notes on a lattice-theoretic approach to the theory of computation, Systems and

Information Science Dept., Syracuse Univ., Syracuse, NY, 1972.
[31] ., On the relation between direct and continuation semantics, in Proc. 2nd Colloq. on Automata,

Languages and Programming, Saarbrucken, J. Loeckx, ed., Lecture Notes in Computer Science
14, Springer-Verlag, Berlin, 1974, pp. 141-156.

[32] ., Semantics of the domain offlow diagrams, 24 (1977), pp. 484-503.

CATEGORY-THEORETIC SOLUTION, RECURSIVE DOMAIN EQUATIONS 783

[33] D. S. SCOTT, Continuous lattices, toposes, algebraic geometry and logic, in Proc. 1971 Dalhousie
Conference, F. W. Lawvere, ed., Lecture Notes in Mathematics, 274, Springer-Verlag, Berlin,
1972, pp. 97-136.

[34] ., Data types as lattices, this Journal, 5 (1976), pp. 522-587.
[35],Relating theories of the h-calculus, in To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, J. P. Seldin and J. R. Hindley, eds., Academic Press, New York, 1980.
[36] M. B. SMYTH, Effectively given domains, Theoret. Comput. Sci., 5 (1978), pp. 257-274.
[37] ., Powerdomains, J. Comput. System Sci. 16 (1978), pp. 23-26.
[38], Computability in categories, in Proc. 7th ICALP, J. De Bakker and J. van Leeuwen, eds.,

Lecture Notes in Computer Science, 85, Springer-Verlag, Berlin, 1980, pp. 609-620.
[39] J. E. STOY, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,

MIT Press, Cambridge, MA, 1978.
[40] R. D. TENNENT, The denotational semantics of programming languages, Comm. ACM, 19 (1976),

pp. 437-453.
[41], Principles of Programming Languages, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[42] C. P. WADSWORTH, The relation between computational and denotational properties for Scott’s

models of the lambda-calculus, this Journal, 5 (1976), pp. 488-521.
[43] M. WAND, On the recursive specification of data types, in Category Theory Applied to Computation

and Control, E. G. Manes, ed., Lecture Notes in Computer Science 25, Springer-Verlag, Berlin,
1974.

[44], Fixed-point constructions in order-enriched categories, Tech. Report 23, Computer Science
Department, Indiana University, Bloomington, Indiana, 1977.

[45], fixed-point constructions in order-enriched categories, Theoret. Comput. Sci. 8 (1979),
pp. 13-30.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0012 $01.00/0

OPTIMIZATION OF COST AND DELAY IN
CELLULAR PERMUTATION NETWORKS*

C. RONSEt

Abstract. Among all known cellular permutation networks built from 2-cells, the network of Waksman
and Green on n bits, built with n [log2 (n)]-2 rlog2(,)l +1 binary cells, has the lowest cost and delay. We
show here that among a new class of cellular permutation networks it also has the lowest cost and delay.

Key words, cellular permutation networks, cost, delay

1. Introduction. A permutation network (or connector) on n bits is a switching
circuit with n data inputs, n outputs and a certain number of control inputs, such that
under an appropriate setting of the control inputs, any one-to-one connection between
the data inputs and the outputs can be realized.

Generally a permutation network is built from small standard prefabricated
permutation networks called cells. A cell on 2 bits is a binary cell, a cell on 3 bits is
a ternary cell, etc. In VLSI a cell is built from logical gates (in particular, multiplexers).
In telephony a cell is a crossbar (built with one switch between every input and every
output; thus an n-bit crossbar has n2 switches).

A cellular permutation network is a network built from cells. One can speak of
binary, ternary (etc.) cellular networks.

The cost and delay of a network are the mathematical equivalents of the material
size of that network and the maximal time that a signal takes when going from an
input to an output. In VLSI the cost is measured by the chip area taken by the
network; here connections count more than gates. In telephony and other domains
where discrete components are used, connections do not account for the cost; here
the cost is measured as the number of switcles or cells.

The delay is measured as the maximal number of switches (or gates) that a signal
goes through between an input and an output.

Clos showed how to build a permutation network on mn bits with two stages of
m networks on n bits and one (middle) stage of n networks on m bits (see [5]). Using
this construction recursively, Benes constructed a permutation network on 2" bits
using 2m- 1 stages of 2"-1 binary cells, thus using 2".m- 2"-1 binary cells. This
construction was improved by Waksman (2" m -2" + 1 binary cells) [4].

Green [3] generalized Waksman’s network to permutation networks on any
number of bits; Green’s network on n bits is built with n [log2 (n)] -2 flog2(,)1 + 1 bits
(for any a, we write [a] for the smallest integer not smaller than a).

It is easily seen that these three networks all have costs of the form n log2 (n)+
O(n) in terms of 2-cells.

Now similar constructions can be made using k-cells (k>2) instead of binary
cells. A permutation network on n bits can be built by recursion with 2 [1Ogk (n)] --1
stages of [n/k] cells of size k or less. This makes a cost of the form (2n/k)
(log (n)/log (k)) + O(n) in terms of cells of size k or less.

Now if one uses crossbars as cells (a k-crossbar has cost k2), the cost becomes
2kn log (n)/log (k)+O(n) in terms of switches. This is proportional to k/log (k). For
all integers k >-2, it takes its minimum for k 3, followed by k 2 or 4:

3/ln (3)’=2.73..., 2/ln (2)=2.88....

* Received by the editors May 29, 1981, and in revised form February 9, 1982.
t Philips Research Laboratory, Av. Van Becelaere 2-Box 8, B-1170 Brussels, Belgium.

784

CELLULAR PERMUTATION NETWORKS 785

Thus k 3 is often chosen. However, for k 2 the increase in cost is small (about
5%). On the other hand the choice k 2 has two advantages:

1) The network of Waksman and Green has a relatively easy control algorithm,
called "looping" (see [4]), which is not the case for other networks derived from Clos’
network.

2) A 2-cell has two states and can be controlled with one binary control input.
A 3-cell has 3! 6 states and requires 3 binary control inputs (3 [log2 (6)]). Thus
the number of binary control inputs required for a binary and a ternary cellular
permutation network of this type is, respectively, n log2(n)+O(n) and
(2/log2 (3))n log2 (n)+O(n). Thus with ternary cells one needs 26% more control
inputs than with binary cells.

This is why we will consider binary cellular permutation networks only.

2. The problem. Let a, b and k be integers such that a >= 2, b => 2 and 0 <= k-<_

a-1. Let A, D, B and E be permutation networks on a, a-k, b and b-1 bits
respectively. Now take

2 (b 1) copies of A" Ao, Ab-2, Ao, A’b-2
lcopyofD,
a k copies of B" B0, , Ba-k-1,
k copies of E" E,-k," ", E,-I.

Then we can construct a permutation network (A, D, B, E) on ab- k bits in the
following way:

The inputs of (A, D, B, E) are the inputs of Ao, , Ab-2 and D.
The outputs of (A, D, B,E) are the outputs of A, A,-2 and C, where
C is an "empty" network consisting of a- k simple connections.
The output/" of Ai is connected to the input of B. (if f < a- k) or of Ej (if
j>=a-k) (/" =0,... ,a-l; =0,..., b-2).
The output/’ of D is connected to the iriput b 1 of Bj (j 0,.. , a -k 1);
The input j of A’i is connected to the output of Bi (if/" < a- k) or of E. (if
j>=a-k) (1 =0,... ,a-l; =0,..., b-2).
The input/" of C is connected to the output b- 1 of Bi (/" 0,..., a- k- 1).

The construction is illustrated in Fig. 1 for a 4, b 3 and k 2. The proof that

10

FIG. 1. (A, D, B, E).

786 c. RONSE

(A,D, B, E) is a permutation network is elementary and can be found in [2]. It is
based on a truncation of the construction of Goldstein and Leibholz [1].

Now the network G, of Green and Waksman on n bits is defined inductively as
follows [3], [4]:

G1 is a simple connection.
G2 is a binary cell.
For n > 2,

/(G2, G2, Ga, Ga-1)
G. I (G2, G1, Ga, Ga-1)

if n =2a,
if n =2a-1.

This network has the following cost and delay in terms of 2-cells [2], [3], [4]:

(1) Vn E flog2 (f)] =n[log2 (n)] -2rlg2")l + 1,
i=2

if n=l,(2) 6n=
2[log2(n)]-I ifn>l.

(Here [a] designates the smallest integer m such that rn _-> a.)
Now we define a family II of permutation networks by recursion as follows"
G1 and G belong to 11.
If a, b _-> 2 and 0 -< k _-< a 1, if Pa, Pa-k, Pb and Pb-1 are permutation networks
on a, a-k, b and b-1 bits respectively, which all belong to H, then
(Pa, Pa-k, Pb, Pb-) belongs to 11.

Clearly any element of 11 is a cellular permutation network.
We will show that the networks G, are optimal for cost and delay among all

networks of 11.

3. The result. We show the following:
THEOREM. IfP is a permutation network on n bits and ifP belongs to H, then
(i) Either P G, or the cost ofP in terms of binary cells is larger than yn.
(ii) The delay ofP in terms of binary cells is not lower than 6,.
We first prove the following:
LEMMA. Let a, b and k be integers such that b >- 2, a >- 3 and 0 <-_ k <- a !. Then

"Yab-k <2(b 1)’ya +’Ya-k + kTb-1 +(a --k)yb.

Proof. Let (a, b, k) be the right-hand side of this inequality. The proof consists
of 3 steps:

Step 1. For any a => 3, 2ya => a flog2 (a)], and the equality holds only for a 3.
Proof. The result is true for a-<_ 8, as can easily be checked. Now for a-> 9 we

have flog2 (a)] -> 4 and so:

a flog2 (a)] ->4a > 2(2(a 1)- 1)_->2(2 [lg2(a)] 1).(3)

Thus:
2’ya 2(a [log2 (a)] --2 llgz (a)l + 1) by (1))

=a I-log2 (a)] +(a [log2 (a)]-2(2 log2a)a- 1))

> a flog2 (a)] (by 3)).

Step 2. The result is true for b 2.
Proof. &(a, 2, k)= 2ya --’]/a-k +(a -k).

CELLULAR PERMUTATION NETWORKS 787

If a 3, then Y2a-k Y6-k 11 3k, while b (a, 2, k) 23/3 + "Y3-t + 3 k
9-k +y3-, and so 4(a, 2, k)> y2a- since y3- > 2-2k. Thus the result holds for
a 3. Suppose now that a => 4. Then we have

2a-k

"Y2a-k ’/a -]- 2 [log2 (x)] (by (1))
x=a+l

(4) -< ya + (a k) [log2 (2a)]

<_-y +(a- k) [log2 (a)] +(a-k),

since [log2 (2a)] [log2 (a)] + 1. Now

(a- k) [log2 (a)] a [log2 (a)] -k [log2 (a)]

<2y-k [log2 (a)] (by Step 1)

(5) _-< 2y 2 [log2 (x)
=a-k+l

23/a -(y y-) (by (1))

"Y +

Combining (4) and (5) we get

y2a- < W +(Y + y_) + (a -k)= &(a, 2, k).

Step 3. The result is true for any b.
Proof. We use induction on b. The result is true for b 2. Suppose that b > 2

and that the result is true for b- 1. Then we get

ab -k

"Yab-k--’Ya(b-1)-k 2 [log2 (X)] (by (1))
x=ab-a-k +

ab-a ab-k

2 [log2 (x)] + [log2 (X)]
=ab-a-k+l =ab-a+l

_-< k [log2 (ab a)] + (a k) [log2 (ab)]
_-< k ([log2 (a)] + [log2 (b 1)] + (a k)([log2 (a)] + [log2 (b)])

<=a [log2 (a)] +k [/og2 (b- 1)] +(a- k)[log2 (b)]

<-2y+k[logz(b-1)]+(a-k)[logz(b)] (by Step 1)

<-2ya +k(’Yb-l--Tb-Z)+(a--k)(Tb--Tb-1) (by (1))

_<- b (a, b, k) 4 (a, b 1, k) (by definition of b (a, b, k)).

Thus we have

4 (a, b, k)>-rb(a, b 1, k + 3’ab-k "]l a(b-1)-k

>-- "Y,- + (4 (a, b 1, k) 3’ a(b-1)-k

> "Yab-k (by induction hypothesis).

Therefore the result holds for any b.
Proof of the theorem. We use induction on n. The result is obvious for n-< 2.

Suppose that n > 2 and that the result is true for any m < n. Take P. a permutation

788 c. RONSE

network on n bits belonging to II. We can write Pn -(Pa, Pa-k, Pb, Pb-1), where each
Pj (] a, a k, b, b 1) is a permutation network on] bits and belongs to II. It is easy
to see that a, b < n.

For any network N, write y(N) and 6(N) for the cost and delay of N. We have"

T(P,) 2(b 1)v(Pa)+ v(P-k) + ky(Pb-) + (a k)V(Pb)

(6) >_-2(b 1)y, 3-k +kyb- +(a--k)yb (by induction hypothesis)

(7) >= Yab-k "}/n (by the lemma for a => 3, by definition for a 2).

Thus Y(Pn)> Yn, except if the equality holds in both (6) and (7). If it holds in (6),
then we must have P. G for/" a, a k, b, b 1 (by induction hypothesis). If it holds
in (7), then we must have a 2 by the lemma. Thus either y(P,)>y, or P,
(Ga, G,_,, G,, G-I)= G,.

Now we have

6(P,) max {6 (P), 6(Pa_k)} + max {6 (Pb), 6(Pb-)}+6(P,)

_-> max {6, 6-k} + 6b +6 (by induction hypothesis)

>_- 26a + 6b
_--> 4 [log2 (a)] + 2 [log (b)] 3 (by (2))

-> 2([log2 (a)] + [logz (b)]) 1 + 2([log2 (a)] 1)

_-> 2([log2 (ab)])- 1 + 2([log2 (2)] 1)

->_ 2([log2 (ab)]) 1

_-> 2([log2 (ab k)]) 1 6,.

Therefore the result holds. Note that if a > 2, then [log2 (a)] 1 > 0 and so 6 (P,) > 6,.
However, we can have 6 (P,) 6, with P, G,. An example is given in [2].

REFERENCES

[1] L. J. GOLDSTEIN AND S. W. LEIBHOLZ, On the synthesis of signal switching networks with transient
blocking, IEEE Trans. Elec. Comp., C-16 (1967), pp. 637-641.

[2] C. RONSE, Cellular permutation networks: A survey, MBLE Research Lab. Report R415, December
1979.

[3] W. H. KAUTZ, K. N. LEVITT AND A. WAKSMAN, Cellular interconnection arrays, IEEE Trans. Elec.
Comp., C- 17 (1968), pp. 443-451.

[4] A. WAKSMAN, A permutation network, J. Assoc. Comput. Mach., 15 (1968), pp. 159-163.
[5] V. E. BENES, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press,

New York, 1965.

SIAM J. COMPUT.
Vol. 11, No. 4, November 1982

1982 Society for Industrial and Applied Mathematics

0097-5397/82/1104-0013 $01.00/0

ON A PRIMALITY TEST OF SOLOVAY AND STRASSEN*

A. O. L. ATKIN AND R. G. LARSON

Abstract. Solovay and Strassen [SLAM J. Comput., 6 (1977), pp. 84-85] propose a primality test
based on the fact that for primes p > 2 we have (a/p)=-aP-X)/2(mod p), where (alp) is the Jacobi symbol.
We prove here that the strong pseudoprime test is better, in the sense that it never takes more time nor
is less effective, and sometimes is quicker or more effective. We also discuss the probability of error in the
strong pseudoprime test, and show that it is never greater than 1/4.

Key words. Monte-Carlo tests, primality, pseudoprime

1. Description of the tests. We consider testing whether an odd integer > 1 is
prime or composite. In what follows we shall use "(time w)" to mean "this step can
be done by w log2n multiprecise operations," and "compute z modulo n" to mean
the reduction of z modulo n to a residue r in the range 1 =< r <_- n 2. All of the tests
we discuss have the property that they demonstrate a number to be composite under
certain conditions, and assume without proof that the number is prime if the conditions
are not satisfied. We denote by "DECIDE prime" or "DECIDE composite" the
points in the program where the decision is taken. The test given in [1] is the

Solovay-Strassen test (SST).
A. Take a random number a from the interval 1 -< a <_-n 1.
B. Compute (a, n) gcd(a, n). (time 1.5). If (a, n) > 1 DECIDE composite.
C. Compute a("-1)/2 modulo n and the Jacobi symbol (a/n). (time 2.5) and (time

1.5) respectively. If not equal, DECIDE composite.
D. DECIDE prime.

(n-1)/2Our description above follows that in [1]. Note that step B is superfluous if a
modulo n is computed, and thus is only justified if (a, n)> 1 occurs very frequently,
which for a fixed n and random a would imply that n has many small factors. We
suggest that a better version of this test would be

Solovay-Strassen test 2 (SST2).
AA. Take a random number a from the interval 1 < a =< n- 1.
BB. Compute an-1)/2 modulo n. Call this b. If b # + 1, DECIDE composite.
CC. Compute (a/n). If (a/n) b, DECIDE composite.
DD. DECIDE prime.

In this version the steps AA and BB are essentially the regular pseudoprime test,
and the interesting new idea of Solovay and Strassen is to obtain further information
from the Jacobi symbol. Unfortunately, it turns out that the strong pseudoprime test
will always decide correctly when SST2 does, and its time is at most the time of step
BB.

* Received by the editors July 31, 1978.

" Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680. The
research of this author was supported in part by the National Science Foundation under grant MCS75-07478
AO2.

Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680. The
research of this author was supported in part by the National Science Foundation under grant MCS76-06638
AO1.

789

790 A.O.L. ATKIN AND R. G. LARSON

Strong pseudoprime test (SPPT).
E. Take a random number a from the interval 1 < a < n- 1.
F. With n- 1 m2, where rn is odd, compute a" modulo n. Call this b. If

b + 1, DECIDE prime.
G. Set/3 a.
H. If/3 1, DECIDE composite.
I. Decrease/3 by 1, and replace b by b2 modulo n.
J. If b 1, DECIDE composite. If b =-1, DECIDE prime.
K. Go to step H.

It is clear that step F, together with all the repeats of step I, take time at most
the time of step BB of SST2 (we neglect the trivial time needed for testing b +/- 1).
The basis of this test is merely the fact that 1 and -1 are the only square roots of 1
modulo a prime. This test was brought to the attention of one of us by John Selfridge.

2. We now prove our main result.
THEOREM. SPPT is better than SST2.
Proof. It is clear that SPPT is no longer than SST2, and usually shorter. We need

therefore only prove that it is more effective, that is, whenever SST2 decides correctly,
so does SPPT, but not conversely.

First, as in step F above, let us write n 1 2m, with m odd and a >- 1, and let
also n 1--IpP be the canonical factorization of n into prime powers. Both tests are
correct in their decisions that n is composite. Let us assume that SPPT has decided
that n is prime; we shall prove that SST2 necessarily decides that n is prime. Now
SPPT decides prime in two cases, which we consider separately.

Case 1. There exists , with 1 <-_ [3 <-a, such that a m2a-a 1 (mod n). For each
p dividing n, let a have order d 2m modulo p, where 6->_ 0 and m’ is odd. Then
m’2lm2 and m’2+m2- imply that m’lm and fl =6. Also dip-1 implies that
p 1 +xm’2 (here x may be odd or even). Now (a/p)--a -1/2 (modp), and since
both are congruent to +1 we may raise the right-hand side of this congruence to any
odd power, in particular to the power m/m’, obtaining

(a/p) =- a m(p-)/(Em’) (a m2a-)x =_ (_l)X (mod p).

But now the first and last terms are only +1, and p > 2, so that (a/p)=(-1)x, and
hence (a/n)=(-1)s, where s p xtr. On the other hand

n FI(1 + xm’2) =- 1 + 2 y. xm’r --= 1 + 2 Y’. xtr 1 + 2s (mod 2+1).
p p p

Thus (n 1)/2 2-1s (mod 2). Now a n-1)/2 a’-I is congruent to 1 or-1 (mod n)
according as/3 < c or/3 a. But we have just seen that the power of 2 contained in
(n- 1)/2 is exactly/3-1 or ->/3 according as s is odd or even, that is, according as
(a/n) is -1 or 1. Thus we always have (a/n)=-a n-)/2 (mod n), and the step CC in
SST2 will necessarily decide prime.

Case 2. a 1 (mod n). In this case we have also a -= 1 (mod p) for each p, so
that the order of a modulo p is odd and hence (alp)= 1. Thus (a/n)= 1 also, and
clearly a n-)/2 a,,2-1 1 (mod n). Hence again step CC in SST2 will decide prime.

We have therefore shown in both cases that SPPT is no less effective than SST2;
in Case 2 it is no more so (but note that in Case 2 SPPT exits at step F, and so is
certainly shorter). To show that SPPT can be more effective than SST2 one may
analyze Case 1 more closely, or more simply observe that with a 14 and n 65

ON A PRIMALITY TEST OF SOLOVAY AND STRASSEN 791

SPPT proves n composite in one step while SST2 decides that n is prime. This
completes the proof of the theorem.

3. It is of interest to observe that the proof above implies the following
COROLLARY. Let n > 1 be odd, and let a be any integer such that a (-)/ : 1

(mod n). Then the Jacobi symbol (a/n)= -1.
In turn, this implies that one could save time in SST2 by deciding that n is prime

when a ("-)/ -1 (mod n) without computing (a/n).

4. It is fairly easy to show that the probability of an incorrect decision for a single
trial of SPPT is less than 1/4. In the other direction, suppose that p and q are primes
with q 2p 1, p 3 (mod 4). Let n pq. Note that (n 1)/2 (2p + 1)(p 1)/2 is
odd. Now a ("-a)/2= e (mod n), where e +/- 1, if and only if the congruence holds
both modulo p and modulo q. Since

(n 1)/2 (2p + 1)((p 1)/2)= (2p + 1)((q 1)/4),

and 2p + 1 is odd, a ("-)/ e (mod n) if and only if a (p-1)/2
e (mod p) and a (1)/4

__
e (mod q). Therefore SPPT will incorrectly decide that such an n is prime in the cases
where a is a quadratic residue modulo p, and a biquadratic residue modulo q, or where
it is a quadratic nonresidue modulo p and a quadratic residue but a biquadratic
nonresidue modulo q. These cases together comprise (p- 1)(q- 1)/4-1 values of a
(recall that a I is not tried). Thus the probability of failure is (p2_ 2p 1)/(4p2_ 2p
6) 1/4 as p az. Of course, p cannot tend to infinity if the number of such pairs (p, q)
is finite, but this is unlikely to be proved or disproved in the near future.

REFERENCE

R. SOLOVAY AND V. STRASSEN, A fastMonte-Carlo testfor primality, this Journal, 6 (1977), pp. 84-85.

	SMJCAT_V11_i1_p0001
	SMJCAT_V11_i1_p0015
	SMJCAT_V11_i1_p0028
	SMJCAT_V11_i1_p0047
	SMJCAT_V11_i1_p0060
	SMJCAT_V11_i1_p0071
	SMJCAT_V11_i1_p0081
	SMJCAT_V11_i1_p0094
	SMJCAT_V11_i1_p0117
	SMJCAT_V11_i1_p0130
	SMJCAT_V11_i1_p0138
	SMJCAT_V11_i1_p0149
	SMJCAT_V11_i1_p0166
	SMJCAT_V11_i1_p0184
	SMJCAT_V11_i1_p0191
	SMJCAT_V11_i2_p0201
	SMJCAT_V11_i2_p0217
	SMJCAT_V11_i2_p0227
	SMJCAT_V11_i2_p0243
	SMJCAT_V11_i2_p0263
	SMJCAT_V11_i2_p0268
	SMJCAT_V11_i2_p0287
	SMJCAT_V11_i2_p0298
	SMJCAT_V11_i2_p0314
	SMJCAT_V11_i2_p0329
	SMJCAT_V11_i2_p0344
	SMJCAT_V11_i2_p0350
	SMJCAT_V11_i2_p0362
	SMJCAT_V11_i2_p0374
	SMJCAT_V11_i2_p0376
	SMJCAT_V11_i2_p0391
	SMJCAT_V11_i3_p0409
	SMJCAT_V11_i3_p0416
	SMJCAT_V11_i3_p0428
	SMJCAT_V11_i3_p0448
	SMJCAT_V11_i3_p0453
	SMJCAT_V11_i3_p0467
	SMJCAT_V11_i3_p0472
	SMJCAT_V11_i3_p0493
	SMJCAT_V11_i3_p0512
	SMJCAT_V11_i3_p0521
	SMJCAT_V11_i3_p0529
	SMJCAT_V11_i3_p0540
	SMJCAT_V11_i3_p0547
	SMJCAT_V11_i3_p0555
	SMJCAT_V11_i3_p0557
	SMJCAT_V11_i3_p0567
	SMJCAT_V11_i3_p0571
	SMJCAT_V11_i3_p0582
	SMJCAT_V11_i3_p0591
	SMJCAT_V11_i3_p0602
	SMJCAT_V11_i4_p0611
	SMJCAT_V11_i4_p0620
	SMJCAT_V11_i4_p0633
	SMJCAT_V11_i4_p0663
	SMJCAT_V11_i4_p0676
	SMJCAT_V11_i4_p0687
	SMJCAT_V11_i4_p0709
	SMJCAT_V11_i4_p0721
	SMJCAT_V11_i4_p0737
	SMJCAT_V11_i4_p0748
	SMJCAT_V11_i4_p0761
	SMJCAT_V11_i4_p0784
	SMJCAT_V11_i4_p0789

