SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0001 $01.00/0

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE*
OSCAR H. IBARRAT AND BRIAN S. LEININGER*

Abstract. Let C be the set of all straight-line programs with one input variable, x, using the following
instruction set: y <0, y« 1, yey+w, yey—w, yey*w,and y« |y/w]. We show that two programs iy
C are equivalent over integer inputs if and only if they are equivalent on all inputs x such that |x| =2
(A is a fixed positive constant and r is the maximum of the lengths of the programs). In contrast, we prove
that the zero-equivalence problem (deciding whether a program outputs 0 for all inputs) is undecidable
for programs with two input variables. An interesting corollary is the following: Let N be the set of natural
numbers and f be any total one-to-one function from N onto NXN (f is called a pair generator. Such
functions are useful in recursive function theory and computability theory.) Then f cannot be computed
by any program in C.

Key words. straight-line program, equivalence, zero-equivalence, decidable, undecidable, Hilbert’s
tenth problem, pair generator

1. Introduction. In this paper, we study the problem of deciding the equivalence
of straight-line programs over integer inputs using the operations +, —, *, and /,
where division is |x/y] =the greatest integer =x/y (e.g., |5/4] =1, |-4/3] =-2,
etc.)." Two programs are equivalent if they are defined at the same points and equal
wherever they are defined. Our main result is that equivalence is decidable for
straight-line programs with one input variable. (There is no restriction on the number
of auxiliary and output variables.) More precisely, we show that two programs with
one input variable over the instructionset{y « 0, y« 1, yey+w,yecy—w, yey*w,
y « |y/w]} are equivalent if and only if they are equivalent on all inputs x such that

lx(§22“2, where A is a fixed positive constant and r is the maximum of the lengths
of the programs. (The length of a program is the number of instructions in it.) The
double exponential bound cannot be reduced substantially since we can show that for
infinitely many r’s there are nonequivalent programs with at most r instructions that
are equivalent on all inputs x such that |x|=2>"" (A’ is a fixed positive constant). In
contrast, we can show that the zero-equivalence problem (deciding whether a program
outputs O for all inputs) is undecidable for programs with two input variables. An
interesting corollary is that no pair generator can be computed by a program using
the instruction set above. A pair generator is any one-to-one function from N (set of
natural numbers) onto NXN. Such functions are useful in recursive function theory
and computability theory. The undecidability of the zero-equivalence problem for
programs with two input variables should be contrasted with a recent result in [6]. It
was shown in [6] that the zero-equivalence problem for {y <0, y«1, yey+w,
y < Ly/w]}-programs” with ten input variables is undecidable. This result does not
use the operations — and *.

There are other types of division: [x/y] and (x/y). [x/y] is the least integer
=x/y(e.g. [5/4] =2, [-4/3] =—1,etc.),{x/y)is the integral partof x/y (e.g.(5/4) =1,
(—=4/3)=—1, etc.). Clearly, |x/y| and (x/y) are identical when xy =0, but may differ
when xy <0. The following propositions whose proofs are given in the Appendix
show that [x/y], [x/y], and (x/y) are not independent operations.

* Received by the editors November 28, 1979, and in final form March 31, 1981. This research was
supported by the National Science Foundation under grant MCS78-01736.

+ Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

' We assume that division by 0 is undefined. If an instruction attempts to divide by 0, the program
goes into an infinite loop, and its output is undefined.

i, i }-programs denotes the class of programs using the instruction set {ij, < -, i, }.

1

2 OSCAR H. IBARRA AND BRIAN S. LEININGER

ProPOSITION 1. The instruction. x < (x/y) can be computed by a fixed program
using only instructions of the formy « 0,y « 1,y «y+w,ycy—w,yey*w,y« |y/w].

PROPOSITION 2. The instructions x < |x/y] and x < [x/y]| can be computed by
fixed programs using only instructions of the form y« 0, y«1, yey+w, yey—w,
yey*w,y<(y/w).

For notational convenience, most of the results in the paper are stated using only
the division |x/y]. However, it is obvious from Propositions 1 and 2 that the results
remain valid when all types of division are used.

Remark. We could include the construct y « ¢ (¢ is any positive integer) in our
instruction set. However, it is clear that y < ¢ can be computed by a {y <0, y <1,
y « y+ w}-program with at most O(log c) instructions. Thus, inclusion of the construct
y « ¢ in the instruction set is not necessary.

2. The main result. Our main theorem is a generalization of the fact that two
nth degree polynomials (outputs of programs using only +, —, *) are identical if they
agree on {0, 1, - - -, n}. Division introduces several complications:

(a) division by 0 is possible (so functions become nontotal);

(b) rational functions can be computed instead of polynomials;

(c) truncation permits selective forward conditional branching, by evaluating

different functions for different residue classes.

Nevertheless, it is possible to associate a rational function R of the input variable
with each program statement, such that R(x)(|R(x)]) will be the value computed by
the statement. We show in this paper that two such expressions are equivalent if they
are identical for some computable initial segment of the integers. This is so because
rational functions behave asymptotically as polynomials; in particular, they are nonzero
for large values of the input, unless they are identically zero. Thus, (a) and (b) can
be handled. Truncation may introduce branching, but the degree of branching is
bounded by the number of residue classes of the greatest value computed by the
program (relative to all possible moduli, i.e., relative to all possible moduli smaller
than this value). Thus the number of cases is finite for each program, and can be
tested. Our task then is to formally prove that the strategy above can be carried out.
For convenience, we introduce the following notation.

Notation. Let ¢ =m/n be a rational number (positive, negative, or zero), where
m and n are integers with ged (m, n)=1. If ¢ =0, take m =0 and n = 1. We use the
following notation: Num (c) = |m| = absolute value of m and Denom (c) =|n|.

Our first lemma concerns polynomial division. It says that, for sufficiently large
values of x, a rational form r(x) behaves like a polynomial. Lemma 1 gives a sufficient
condition on x for a good approximation.

LEMMA 1. Let r(x)=s(x)/z(x)=px)+q(x)/z(x), where s(x), z(x), p(x) and
q(x) are polynomials with rational coefficients such that z(x) #0 (p(x) and q(x) are
the polynomials given by the division algorithm). Let

b =max {2, Num (c), Denom (c)|c is a rational coefficient in s(x) or z(x)},
d = max {degree (s(x)), degree (z(x))},

3
a= b2(d+2) .

Then forall x Za

Lp(x)] if p(x) is not an integer or if
Lr(x)] = [s(x)/z(x)] = sign (q(a)/z (a)) is nonnegative,
lp(x)—1] otherwise.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 3
Moreover, if c is a coefficient of p(x), then Num (c), Denom (¢) = b>“*"”,

Proof. Let h be the least positive integer such that 4 - s(x) and & - z(x) are
polynomials with integer coefficients. Clearly, the absolute values of the coefficients
of h - s(x) and A - z(x) do not exceed the bound 5%¢*2. So without loss of generality
we may assume that the coefficients of s(x) and z(x) are integers and their absolute
values are bounded by 524",

Lets(x)=six“++ +six+sesrand z(x) =z1x' ++ + -+ zix + 24, forsome k, | = 0.
Assume similar notation for the other polynomials in this proof. Also, by multiplying
s(x) and z(x) by —1 if necessary, we can assume z; > 0. For convenience, define z; =0
for j=/+2. Then by the division algorithm

s(x) q(x)

r(x) 20 p(x)+z(x)-

Since we would like to derive the worst possible bound on ¢, we assume the following:
(i) k =1 since, otherwise, p(x) =0 and q(x) = s(x).
(ii) /=1 (i.e., degree (z(x))=1). Note that this implies that degree (q(x))<lI.

One can easily check that these assumptions given rise to a worst-case bound on c.
We can find the coeflicients of p(x) by the division algorithm. We have

k—1
p(x)=pix""+-+pr_ix +pr_i+1, where
S1
(1 p1=—,
21
5= Xi=1PiZis1— _Si—Yjm1 PZivij 21
i j=1DPjZi+1—j _ 8i — Lj=1DPjZi+1-j ,
() pi=——"—""= [P PRl 2 for2s=isk—l+1.
21 21 Z1

Also, by induction on i,
(3) pizi is an integer for 1=i=k—I[+1.

From (1)-(3) and the fact that s, * * +, Sg+1, 21, * * * , Z1+1 are integers with absolute
values bounded by 5°?**, we have

Num (p;)=2"'5%**?" and

Denom (p;)=b%**?" for1=i=k—-I+1.

4)

Since b=2 andd=k=[=1, (4) becomes

Num (p) 529150424 524D gng

(5) b(2d+2)d <b2(d+1)2

Denom (p;) = forlsi=k—-1+1.

Now q(x)=s(x)—p(x)z(x). Then

-1
@ix T ax @ = (s1x s+ i)

I

k—
—(p1x* "+ prex +pk_,+1)(21x'+- otz 4 zp).

So

ql—r =Sk—r+1— Z (pk—l—,‘+1)(21+j—r+1) f0r r= 0, 1, trty, l_ 1.
ji=0

4 OSCAR H. IBARRA AND BRIAN S. LEININGER

Letting r =/ —i, we have
I—i

(6) qi = Sk—1+i+1 ‘ZO (pk—l—j+1)(zi+j+1) fori=1,2,---,1
i=

From (5) and (6), we easily obtain upper and lower bounds on the absolute values
of the nonzero q/’s:

(7) |q'| §b2d+2+lbz(d+1)2b(2d+2)§b2d+2+db2(d+1)2+(2d+2)§b2(d+2)2,
1 1
(8) lql| = (b2(d+1)2)l = b2(d+1)2d Z b2(d+1)3'

We can write p(x) = u(x)/m, where m is the least positive integer such that u(x)
is a polynomial with integer coefficients. Now choose the least nonnegative integer
such that

qix)| 1
—=|<— forall x=p.
20l <m orallx=p
The bounds for m and B are found as follows:
From (5),
(9) m= (b2(d+1)2)degree (p(x))+1 = b2(d+1)3.

Now, for all x, |q(x)/z(x)|<1/m if and only if |z(x)|—m|q(x)|> 0. Hence from
(7) and (9), for sufficiently large x,

lz(0)|—mlg(x)| = x' = 1>+ mb> %) x' !
Z(X __d(b2d+2+b2(d+1)3b2(d+2)2))xl—1

=(x— d(b2d+2+ b2(d+1)3+2(d+2)2))xl—1 0.

Let B =b%""?’ Then B>d(b>* ™+ p> @ D> 2@+2% and, for all x =B, |q(x)/z(x)|<
1/m.

Let o be the least integer such that @ =8 and sign (q(x)/z(x)) =sign (q(a)/z(a))
for all x = a. We consider two cases:

Case 1. sign (q(a)/z(a)) is nonnegative or p(x) is not an integer. Then clearly
Lr(x)] = Ls(x)/z(x)] = Lp(x)].

Case 2. sign (q(a)/z(a)) is negative and p(x) is an integer. Then |r(x)]=
s(x)/z(x)] = p(x)—1] =p(x)—1.

The bound on « is derived as follows: Let the degree of g(x) be [—i for some
1=i=1[-1. Then from (7) and (8), for sufficiently large x,

I—i
x . .
|q(x)|§W_(l_l)b2(d+z)2xt 1

i\ 7. 2(d+1)3+2(d+2)2
- x—(—i)b 1—i—1
= p2@+? x
3 2 3,
_(x _ gparDi2d+ it (% _ p2d+D) i
= PRICES x > PRiCES x

and

|Z(x)| ;xl _ lb2d+2x1—1 g (x _db2d+2)xl—l > (x —b3(d+1))xl—1.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 5

Let o =max{B, b>“*?”’, p3“@* D} = p2@*2° Then for all x=a, sign(q(x)/z(x))=
sign (q(a)/z(a)). 0

It is well known that every nonzero polynomial has a finite number of zeros. The
next proposition bounds the absolute value of a zero.

PROPOSITION 3. Let p(x) be a nonzero polynomial with rational coefficients. Let
d = degree (p(x)) and b = max {Num (c), Denom (c)|c is a rational coefficient in p(x)}.
Let B =db*+1. Then p(x) #0 for all x = B.

Proof. Clearly, p(x) # 0 for all x such that x%/b—dbx®'>0. O

We will also need the following proposition which is easily verified.

PROPOSITION 4. Let (m1, ny), - * + , (mx, ny) be pairs of integers such that 0 =m; < n;
for 1=i=k. Let |l be a positive integer. If there exists an integer xo such that xo>
I+niny- g and xomod n; = m; for> 1=i=k, then there exists another integer xg
suchthatl=xo=l+n, nrand xo modn;=m; for 1=i=k.

Proof. Let xo=xo—rny - - - ng, where r is the largest positive integer such that
xo—rnl--~nk-_>—l. D

LetPbea{y<0,y«l,ycy+w,yecy—w,yecys*w,y<« |y/w|}-program with
one input variable x. The next lemma shows that the value of any variable y at the
end of r instructions can be described by a finite nonempty set S(r, y) of congruence
classes of the input. Each congruence class is a pair (p(x), T), where p(x) is a
polynomial in x with rational coefficients and T is a finite nonempty set of pairs of
integers. (p(x), T) in S(7, y) means that the value of y on large enough input x, at
the end of r instructions (if defined) is equal to p(x,) if and only if xo mod n = m for
each (m, n) in T.

LEMMA 2. Let P be a {y<0, y«l, yey+w, yey—w, yey*w, ye
Ly/w|}-program with one input variable x (but with an arbitrary number of auxiliary
and output variables). Assume without loss of generality that x does not appear on the
left-hand side (LHS) of any instruction in P. Let y be any variable in P (possibly x),
and r =z 1. Then there is a finite nonempty set S(r, y) with elements of the form (p(x), T),
where p(x) is a polynomial in x with rational coefficients and T is a finite nhonempty
set of pairs of integers. S(r, y) has the following properties:

(1) Let xo be an input such that xo=22>"_ If the value of y is defined at the end
of rinstructions then there is a unique element (p(x), T) in S(r, y) such thatxo mod n = m
for all (m, n) in T, and the value of y on input x, (at then end of r instructions) is given
by p(xo) (We say in this cgse that (p(x), T) uniquely defines y on input xo.) Moreover,
if xb is such that xy, =2%" and x, modn=m for all (m,n) in T, then (p(x), T) also
uniquely defines y on input xo.

(2) Let xo=2%". Suppose y on input xo is uniquely defined by (p(x), T) in S(r, y)
(at the end of r instructions). If p(x) is not the zero polynomial, then the value of
y=p(x0)#0.

(3) |S(r,)| = cardinality of S(r, y) =22°"*",

4) If (p(x), T) is in S(r, y), then degree (p(x))=2".

(5) If c is a rational coefficient in p(x), then Num (¢), Denom (¢) = 223'

(6) If (m,n) isin T, then 0=m <n=22"

(7) |T|==2".

Proof. The proof is an induction on r. At the start, all variables except x have
the value 0. Let y be the variable on the LHS of the first instruction. By assumption,

3 For integers u and v with v >0, let r = remainder of |u|/v. Then

r ifr=00ruz=0,

do=]
umodv v—r ifr>0andu<0.

6 OSCAR H. IBARRA AND BRIAN S. LEININGER

y # x. Then
S(1, x) ={(x,{(0, 1)})} and
S(1, w)={0,{(0, D))} forallw#x,w#y.

There are four cases to consider for S(1, y):
(i) If the first instruction is y « c(c =0 or 1), then let S(1, y) ={(c, {(0, 1)}}.
(ii) If the first instructionis y« y+w or y<y—w and w # x, then let S(1, y) =
{(0,{(0, DY}

(iii) If the first instruction is y « y+x or y « y —x, then let S(1, y) ={(x, {(0, 1)})}

or S(1, y) ={(—x, {(0, 1)})}, respectively.

(iv) If the first instruction is y«<y*w (w can be x) or y<« |y/x] then let

S(1,y)={0,{(0, HH}.

Clearly, properties (1)—(7) hold. Assume now that the lemma holds for sequences
of r=1 instructions. We show that it also holds for sequences of r+1 instructions.
Let y be the variable on the LHS of the (r+ 1)st instruction (note that y#x). Then,
for each variable w # y, define S(r+ 1, w) = S(r, w). Obviously, properties (1)-(7) hold
for S(r+1, w). If w =y, we consider 3 cases.

Case 1. The (r+1)st instruction is y«<c, where ¢ =0 or 1. Then let S(r+1, y) =
{(c, {(0, D})}. Clearly, properties (1)-(7) hold.

Case 2. The (r+1)st mstruct10n is y«y op w, where op is +, — or *. Let xo be
an input such that xo=22""""", Suppose that on input xo, y and w are defined at the
end of r instructions and their values are uniquely defined by (s(x), T}) in S(r, y) and
(z(x), T>) in S(r, w), respectively. Then (s(x) op z(x), T1 U T>) uniquely defines y on
input x, at the end of r+1 instructions, and (s(x) op z(x), T; U T,) should be in the
set S(r+1, y). It is straightforward to verify that properties (1) and (4)-(7) hold for
(s(x) op z(x), T:U T). That property (2) is satisfied follows from Proposition 3. The
elements of S(r+1, y) are obtained by varying the value of x02223('+" Now |72"1
T,|=2"+27=2""", and if (m, n) is in T\UT,, then 0=m <n =22 =22 1t
follows from Proposition 4 that there are at most 22r values of xo giving rise to
distinct elements of S(r+1, y). Hence, |S(r+1, y)|=2 , showing property (3).

Case 3. The (r+1)st instruction is y<|y/w]. Let xo be an input such that
Xo= 223('“) Suppose that on input xo, y and w are defined at the end of r instructions
and their values are uniquely defined by (s(x), T1) in S(r, y) and (z(x), T») in S(r, w),
respectively. If z(x) is not the zero polynomial, then the value of y at the end of r+1
instructions is given by |s(xo)/z(xo)]. Note that by induction hypothesis, z (xo) # 0.

We show how to construct an element (u(x), T) in S(r+1, y) uniquely defining

y on input x,. Now,
25 le+ 25

where p(x) and q(x) are obtained from s(x) and z(x) by the division algorithm. By
the induction hypothesis, degree (s(x)), degree (z(x))<2’ d. Moreover, if ¢ is a
coefficient in s(x) or z(x) then Num (c), Denom (¢) = 27" = b, Let

25(r+1)

p(x)=cix*+- - -+cix +cer1, wherek =d.

For 1 =i =k, let ¢c; = v;/n;, where v; and n; are integers such that n; >0 and ged (v;, #;) =
1. (If ¢; =0, take v; =0 and n; = 1). Then, for 1 =i =k,

. . li

c,-x’é i+1 — Lcixlé z+1J +____’

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 7

where I; = (vix§ ') mod n;. Then
5(xo) _ q(xo)
lz(xo)J =[PEO* G)J

x kI, kK
= C1x’(;+ +ckx0+ck+1+q(O) Z —"+ Z J
- (0) i=1H; i=1h;

) s 200, 5)

l
= (C1x§—n—1)+' <o+ (crxo—

1 N (x0)
k l,‘ X k l,'
=cix6+: - Hoxo— ¥ _+lck+1+Q(O)+) "‘J
i=1h; z(xo) i=1my
r+ 2
Now, ¢1x§ + * *+cxg— Y11 li/n; is an integer. Then by Lemma 1, since x,=2>"""" =
23" 2(2r+2)3 _ 2(d+2)3
27) = b)
ko if cee1+ Y+, Ii/n; is not an integer or
Cr+1t Z - i=1
=1y if sign (q(a)/z(a)) is nonnegative,
(x)
[ck+1+q 0 Z J =
(x0) =1my

ko]
lckﬂ +(Y L) - lJ otherwise.

i=1Hh

Let u(x)=cix“++ - +cux +chs1, where

ko kol if Crs1 +Zf=1 l;//n; is not an integer or if
, El n + lc"“ + El niJ sign (q(«)/z(a)) is nonnegative,
C - k l’, k li
-y ——+lck+1+(Y —)—IJ otherwise.
i=1HR; i=1NR;

The bounds on the coefficients can be obtained using Lemma 1: For 1=i=k +1,
Num (c;), Denom (¢;) = b2+ < (22722102 < 920,
It follows that for 1=i=k, 0=/, <n; =b>“""’, Hence,

2(d+1)2\k 2(d+1)3 230+1?
Denom (ch1) = (b2) =p2@ 1’ <

and

Num (C;(+1)§ kb2(d+1)2k +b2(d+1)2k(b2(d+1)2+k + 1)

2 2 3 3¢r+1)2
édb2(d+1) d+b2(d+1) d(b2(d+1)2+d+1)§b2(d+2) §22 + .

Now let m; =xomodn; for 1=i=k. Then [; depends only on m; Define T =
T:U T, U{(my, ny), -, (mu, 1)} Clearly, properties (1), (4), (5) and (6) hold. Also
|T|=|Ty|+|Ta|+ k=27 +27+2"=2""Y”, Hence property (7) is satisfied. The proof
that property (3) holds is similar to that of case 2. Now u(x) has degree at most d=2,
and if c is a coefficient in u(x), Num (c), Denom (c) = 6>“*?”, where b = 2% . Hence,
by Proposmon 3, unless u(x)=0, u(xo)#0 for all x0>223"+“ >2"((2*”)2(2 2)2=
d(b*“*")2. Thus, (2) holds. O

To handle inputs which cause division by 0, we need the next lemma.

LEMMA 3. Let P and r be as in Lemma 2. There is a (possibly empty) set Z(r)
with elements that are finite nonempty sets of pairs of integers. Z(r) has the following

8 OSCAR H. IBARRA AND BRIAN S. LEININGER

properties

ORVAQI=Y

() If Tisin Z(r), then |T|=2".

B) If m,n)isin T, then 0=m<n <223'

(4) A division by 0 on input xo=2>" occurs during the first r instructions if and
only if there is a T in Z(r) such that xomod n =m for all (m,n) in T.

Proof. We describe the construction of Z(r). For convenience, define Z(0) = J.
Now assume that Z(r) has been constructed for r =0 and it satisfies (1)—(4) of the
lemma. If the (r + 1)st instruction is not a division instruction, let Z(r +1) = Z(r). Now
suppose that (r+ 1)st instruction is y< [y/w]. Let xo be an input such that xo =2 .
The instruction y < | y/w| will contribute to a division by zero on input x, if and only
if w is defined and is equal to O at the end of r instructions. By Lemma 2 (property
(2)), the element (p(x), T) in S(r, w) uniquely defining w (at the end of r instructions)
on input xo must have p(x) identically equal to 0. Add T to Z (r+1). Clearly, the
nzlsr(nlzgr of T’s added to Z(r + 1) is at most |S(r, w)|=22"*" and hence, |Z(r +1)|=
2% a

We are now ready to prove our main theorem.

THEOREM 1. Let Py and P> be two {y <0, y« 1, yey+w, yey—w, ycy*w,
y « ly/w|}-programs with one input variable x (but with an aribtrary number of auxiliary
and output variables). Assume that Py and P, have the same number of output variables.
Let r =max {r1, r.}, where r; = number of instructions in P;. Then P, and P, are equivalent
over nonnegative integer inputs if and only if they are equivalent on all inputs 0=xo=
2% * , Where A is some fixed constant.

Proof. By Lemma 2, the value of any variable y of P; on input x0=2% ? at the
end of r; instructions (if defined) is uniquely determined by an element (p(x), T) in
S(r; y) where p(x) is a polynomial of degree at most 2" with rational coefﬁments and
T is a set of integers of the form (m, n), 0=m<n= 223” and |T| =21 Similarly, by
Lemma 3, the values of xo=2%’ g which cause program P; to divide by 0 are determined
by the set Z(r;), where an element of Z(r;) is a nonempty set T of integers (m, n).
(Again, 0<m<n=2% “ and |T|=2".) Now two polynomials of degree at most 2’
are identical if and only if they agree on 2"+ 1 points. It follows from Proposition 4
that P, and P, are equivalent if and only if they are equivalent on all inputs

Xo=(2' + 122 + (22 1=22", n]

The double exponential bound of Theorem 1 cannot substantially be reduced
since we can prove the following proposition.

PROPOSITION 5. There are nonequivalent programs Py and P, with at most r =5
instructions that are equivalent on all inputs =2°*

Proof. Let P; and P, be the following programs (x is the input/output variable):

25(r+1)2

P1Z le
y<l y<l
yey+y yey+y
yey*y yey*y

: r—3 : r—4
yey*y yey*y
x<|x/y] x<|x/y]

Clearly, P; and P, agree on all inputs x =2*°. But P; and P, are not equivalent. 0

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 9

Theorem 1 also holds when the input variable can assume negative values:

COROLLARY 1. Let Py, P,, and rbe as in Theorem 1. Then Py and P, are equivalent
over integer inputs if and only if they are equivalent on all inputs x such that |x|=2*" g
(A is some fixed constant). Moreover, the upper bound cannot be reduced substantially,
since for infinitely many r’s there are nonequzvalent programs with at most r instructions
that are equivalent on all inputs x such that |x|= 22*" (A" is a fixed constant).

Proof. Let P, and P, be two programs. For i =1, 2, construct program P; by
inserting the following code at the beginning of P; (z is a new variable):

z<«0
zZezZ—Xx
x<0

xex+z.

Then P; and P, are equivalent over (positive, negative, or zero) integer inputs if and
only if P, and P, are equivalent over nonnegative integer inputs and P; and P; are
equivalent over nonnegative integer inputs. The result now follows from Theorem 1
and Proposition 5. 0

Our next result shows that Theorem 1 does not hold for programs with two input
variables.

THEOREM 2. The zero-equivalence problem for {y « 0,y <1,y y+w,y<cy—w,
yey*w, y< |y/wl}-programs with two input variables (over nonnegative integer
inputs) is undecidable. The result holds for programs with no more than 6 program
variables. Moreover, the programs are total in that no division by 0 occurs.

Proof. The proof uses the undecidability of Hilbert’s tenth problem [3]. Let F
be a Diophantine polynomial with r variables. Let

m . .
F=F(xla"'axr)= Z C]'xlll ...er’

i=1

where |¢;|>0 and j, =0 for 1=j=m and 1=k =r. We shall construct a program Pr
with input variables x and y and output variable z such that Pr outputs O for all
nonnegative integer values of x and y if and only if F has no nonnegative integer
solution in x4, * * *, x,. The result would then follow from the fact that it is undecidable
to determine if an arbitrary Diophantine polynomial has a nonnegative integer solution
[3].

Given a nonnegative integer x and a positive integer y, we can think of x as a
number in base y,

x=xo+ X1y +xy%+ 4 xy oy

b

where xo, %1, **,X, and v are nonnegative integers with 0=x; <y. Clearly,
(x1,***,x,) can be made to assume all possible r-tuples by varying x and y. The
program Pr decodes x1, * * * , x, and computes F(x1, - * -, x;). Pr then outputs 0 if and
only if F(xy,- - -, x,)#0. The program Pg is given by the following code, which is

10 OSCAR H. IBARRA AND BRIAN S. LEININGER

easily translated to a program using the instructionset {y « 0,y <1, y«y+w,y<y—
w,y<y*w,y<ly/wlk

z<0

y<2y+1 (makes y nonzero)

@10

@11

A1(r+1)
20

a.zl
A2(r+1)

Xmo

Am1

a;n(r+1)
B
where
(1) For 1=j=m, ajo is the code
wel

(2) For1=j=m and 1=k =, a is the code

ve [x/y]
s< lx/y“ Ty
VeV —S

w e wplk

At the end of a;, w will contain X xle
(3) For 1=j=m, a;,+1) is the code
]

Zez+ew

Clearly, at the end of &,,(+1), z Will contain F(xq, " - -, x,) =Z;"=1 c,-x’i1 cexh
(4) The code for B is

ze |[(z22+1)/22%+1)].

Then z =0 if and only if F(x1, -+, x,)#0. It follows that Pr outputs 0 for all
nonnegative integer values of x and y if and only if F has no solution. 0
Theorem 2 remains valid when the input variables can assume negative values:
COROLLARY 2. Same as Theorem 2, but now the input variables can assume all
integer values.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 11
Proof. Modify Pr by using the following code for B:

x <« |x/(x*+1)]
y<ly/(y*+1)]

Z<--22+x2+y2
ze |(z+1)/(2z +1)].

Call the new program Pr. Then Pr outputs O for all integer values of x and y if and
only if F has no nonnegative integer solution. a

Remark. By a slightly more complicated coding the number of program variables
in Theorem 2 and Corollary 2 can be reduced to 5.

3. An application. Let N be the set of natural numbers. It is well known that
there exist effectively computable total one-to-one functions from N onto Nx N. Such
functions are called pair generators [5]. Pair generators are useful in recursive function
theory and computability theory (see, e.g., [2], [4], [5], [7]). Our next theorem shows
that pair generators are ‘‘not easy’’ to compute.

THEOREM 3. No {y<«0, y«1, yey+w, yey—w, yeysw, ye|y/w]}-
program (with one input variable and two output variables) can compute a pair generator.

Proof. The proof is by contradiction. Suppose that f: N-> N XN is a pair generator
which is computed by a program P. Let u be the input variable of P and x, y be its
output variables. For each program Pr constructed in the proof of Theorem 2, we
define a new program Pr:

P
Pr

We assume that Pr has input variables x and y and these are the only variables that
Pr has in common with P. Now, Pr has one input variable u, and P outputs O for
all nonnegative integer values of u if and only if Pr outputs O for all nonnegative
integer values of x and y. The result now follows from Theorems 1 and 2. a

Theorem 3 does not hold for inverses of pair generators. (The inverses are called
pairing functions [4], [7].) There are pair generators with easily computable inverses.
For example, consider the pair generator f shown below:

0 1 2 3 4 5 X
T
0 0o 2 5 9 14 :
1 1 4 8 13 :
2 3 7 12 :
3 6 11 :
4 10 :
5 |
: |
. |
] Sy Iz
f:N>NxN

z->(x,y).

12 OSCAR H. IBARRA AND BRIAN S. LEININGER

" :NxN-Nis given by
(x+y)2+3x+yJ
— |

fM(x,y)is computable by a {x « 1, x « x+y, x «x *y, x « [x/2] }-program (with two
input variables). The function f is defined by two functions g, and g, (see [2]):
Qa(z)— Ql(Z)J

2 b

i y)=z =l

x=gi()=|

y=g(z)= Ql(z)_l%)_;QﬁJ,

where

Qu2) = [l—sz_—“;—lﬂ |-

Q1(2) =2z —(Q:(2))*.

Hence, there are pair generators that are computable by {y <0, y«<1, yecy+w,

yey—w,y<y*w, y< |y/wl, y< |Vy|}-programs, and from Theorem 2 we have
COROLLARY 3. The zero-equivalence problem for{y « 0, y« 1, yey+w,yey—

w,yeysw, ye ly/wl, ye [«/;J }-programs with one input variable is undecidable.

4. Extension. We can use “forward” if statements in our straight-line programs
and the results of §§ 2 and 3 still apply. Specifically, we can add the following constructs:
skip /, if p(y) then skip / (where / is a nonnegative integer), and halt. p(y) is a predicate
of the form y >0, y =0, or y =0, and skip / causes the (/ + 1)st instruction following
the current instruction to be executed next. A program can terminate a computation
in three ways: by executing a halt instruction, by executing a transfer to a nonexistent
instruction, or by executing the last statement of the program.*

The following proposition shows that the if constructs are not independent. (The
proof is given in the Appendix.)

PROPOSITION 6. The instructions if y >0 then skip / and if y =0 then skip / can
be expressed in terms of the instruction if y =0 then skip /.

Notation. Let L be the instructionset{y < 0,y« 1, yey+w,yecy—w,y<y*w,
y < |y/w], skip [, if p(y) then skip /, halt}.

Referring now to the proof of Lemma 2, we see that in order to extend the proof
to L-programs, we need only consider (by Proposition 6) two other cases.

Case 4. The (r+1)st instruction is skip /. Let S(r+ 1+, w)=S(r, w) for each
variable w. Then continue the construction with instruction r+17+2.

Case 5. The (r+1)st instruction is if y=0 then skip /. Let xo be an input such
that xo=2%"""", Suppose that on input xo, y is defined at the end of r instructions
and its value is uniquely defined by (s(x), T) in S(r, y). If s (x) is not the zero polynomial,
then let S(r+1, w)=S(r, w) for each variable w and continue the construction with
instruction r+2. If s(x) is the zero polynomial, then let S(r+1+1/, w)=S(r, w) for
each variable w and continue the construction with instruction r + [+ 2. The construc-
tion is completed when a halt instruction is encountered, or when a transfer to a
nonexistent instruction is executed, or when the last instruction of the program has
been considered.

4 By convention, the program goes into an infinite loop when a division by 0 occurs.

STRAIGHT-LINE PROGRAMS WITH ONE INPUT VARIABLE 13

Thus, Lemma 2 holds for the extended language, and all the results of §§ 2 and
3 apply. In particular, we have

THEOREM 4. Let P, and P, be two L-programs with one input variable. Then Py
and P, are equivalent if and only if they are equivalent on all inputs x such that
|x|= 22? (r is the maximum of the lengths of Py and P, and A is a fixed positive constant).

THEOREM 5. No L-program can compute a pair generator.

Appendix. Proofs of Propositions 1, 2, and 6.

Proof of Proposition 1. The following program which can easily be translated to
a program over the instruction set {y <0, y«1, yey+w, yey—w, y<y*w, y«
ly/w]} computes (x/y):

0 ifxy=0
«|1/(4xy+2 = >
we L1/ (xy +2)] Tl-1 ifay<o
0 ify#0and w=0,
0 if y#0, w=-1, and
i Itiple of y
2, 20 1.27.2) _ x isamu
velettmly =Ly mwv=g if y #0, w=—1, and
x is not a multiple of y
undefined if y=0

x< [x/y]
xex+v o
Proof of Proposition 2. Programs P, and P, below (which can easily be transformed

to programs over the instruction set {y<0, y«1, yey+w, yey—w, yeys*w,
y «(y/w)}) compute |x/y] and [x/y], respectively.

Program P,
_{0 if xy =0,
w < (3xy/(3xy +1)) w = 1 ifxy<0
(0 ify#0and w=0,
0 ify#0,w=1, and x
2 2 2, 2 is a multiple of y,
— —_— + =
ve{ET=w)/y) =Tyt w =14 if y#0, w=1, and x
is not a multiple of y,
undefined if y =0.
x < {x/y)
Xex—v
Program P,
0 ifx=0
Sx/(4x +1 ={ ’
W e (5x/(4x +1) =11 itx 0.

v (2 =w)/y) (/Y +w
x < |x/y]

xex+o 1]

14 OSCAR H. IBARRA AND BRIAN S. LEININGER

Proof of Proposition 6. The constructions are straightforward. For example, if
y >0 then skip / can be coded as

uel

vel

vevtu v=2

z<0

zez+y z=y

zez®p z=2y

zez—uU z=2y-1

w<0

wewtz w=2y—-1

w<{(w/v)

Wew*o

ez —w z={ 1 ify>0,
-1 ify=0

Jer—u z={ 0 ify>0,
-2 ify=0

if z = 0 then skip /

where u, v, w, and z are new variables. O

Acknowledgment. We would like to thank the referees for their suggestions and
detailed comments which improved the presentation of our results.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. DAvis, Computability and Unsolvability, McGraw-Hill, New York, 1958.

[3] M. DAviIs, Y. MATIJASEVIC, AND J. ROBINSON, Hilbert’s tenth problem. Diophantine equations:
Positive aspects of a negative solution, Proc. Symp. Pure Mathematics, 28 (1976), pp. 323-378.

[4] F. HENNIE, Introduction to Computability, Addison-Wesley, Reading, MA, 1977.

[5] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[6] O. H. IBARRA AND B. S. LEININGER, The complexity of the equivalence problem for straight-line
programs, Proc. 12th Annual ACM Symposium on Theory of Computing, 1980, pp. 273-280.

[7] H. ROGERS, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0002 $01.00/0

THE COMPLEXITY OF THE EQUIVALENCE
PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS*

OSCAR H. IBARRAt AND BRIAN S. LEININGERT

Abstract. We consider a simple class of loop-free programs whose instruction repertoire consists of
x<0,xec, xecx, xex/c, x<x+y, x<x—y,skip [, if p(x, y) then skip /, and halt. (x and y are integer
variables, ¢ is a positive integer, x/c is integer division, / is a nonnegative integer, and p(x, y) is a predicate
of the form x>y, x=y, x=y, x#y, x=y, or x<y; skip/ causes the (/+ 1)st instruction following the
current instruction to be executed next.) We show that the equivalence problem for this class is decidable
in 2*V time (N =sum of the sizes of the programs and A is a fixed positive constant). The bound cannot
be reduced to a polynomial in N unless P=NP. In fact, we have the following rather surprising result:
The equivalence problem for programs with one input variable (which also serves as the output variable)
and one auxiliary variable using only instructions x < 2x, x « x/2, and x « x +y is NP-hard.

Key words. Complexity, equivalence, zero-equivalence, loop-free programs, NP-hard

1. Introduction. In an earlier paper [6], we showed that the equivalence problem’
for several classes of straight-line programs (over positive, negative, or zero integer
inputs) using only arithmetic operations is undecidable. In particular, we showed the
following:

(a) The one-equivalence problem2 is undecidable for {x « 1, x «2x, x < x+y,
x < x/y}-programs>.

(b) The one-equivalence problem is undecidable for {x « 1, x « x/2, x«x—y,
x < x*y}-programs.

In this paper, we study a simple class of straight-line programs with a decidable
equivalence problem. Specifically, we consider the class of loop-free programs whose
instruction repertoire is R ={x « 0, x « ¢, x <« cx, x « x/c, x « x +y, x « x — y, skip [, if
p(x, y) then skip /, halt}. x and y are distinct integer variables, ¢ is any positive integer,
I is any nonnegative integer, and p(x, y) is a predicate of the form x>y, x=Zy, x =y,
x#y, x=y, or x<<y. skip/ causes the (/+1)st instruction following the current
instruction to be executed next. A program (which need not contain a halt instruction)
can terminate its computation in three ways: by executing a halt instruction, by
executing a transfer to a nonexistent instruction (via skip / or if p(x, y) then skip /),
or by executing the last statement of the program. Two distinguished (not necessarily
disjoint) sets of variables are designated input variables and output variables, respec-
tively. We assume that all noninput variables are initialized to 0.

The main results of this paper are the following:

(1) The equivalence problem for R-programs is decidable in 2*" * time (A is a
fixed positive constant and N is the sum of the sizes of the programs). For programs
with a fixed number of input variables, the bound is 2.

(2) The inequivalence problem for R-programs is in NP (= the class of languages
accepted by nondeterministic polynomial-time bounded Turing machines [3]).

* Received by the editors December 19, 1979. This research was supported by the National Science
Foundation under grant MCS-78-01736.

+ Computer Science Department, Institute of Technology, University of Minnesota, Minneapolis,
Minnesota 55455.

! Given two programs, are they defined at the same points and equal wherever they are defined?

2Given a program, does it output 1 for all inputs?

3 {i1, + +, ix}-programs denotes the class of programs using only instructions of the form iy, -, i.
x/y is integer division. (Thus, 4/3 is 1 and —4/3 is —1.)

15

16 O. H. IBARRA AND E. S. LEININGER

(3) The equivalence problem for {x < 2x, x < x/2, x « x + y}-programs with one
input/output variable (i.e., the input variable is also the output variable) and one
auxiliary variable is NP-hard. (The result also holds when x < x +y is replaced by
Xex—y.)

(4) The zero-equivalence problem (=does a program output O for all inputs?)
for each of the following classes is NP-hard:

(i) {x <0, x«2x, x«x/2, x < x+y, x « x —y}-programs with one input/output
variable and one auxiliary variable.

(i) {x «2x, x «x/2, x <« x—y, x < y}-programs with one input/output variable

and one auxiliary variable.

(iii) {x <0, x « x/2, x « x — y}-programs with one input/output variable and two

auxiliary variables.

(5) The zero-equivalence problem for each of the following classes is decidable
in polynomial time.

() {x<0,xcc, xe—c,xecx, x<x/c, x<x+c, x < x—c, x < x—y}-programs
with at most two variables. (This shows that (4) (ii)-(iii) may be the best
possible results.)

(ii) {x«0, x«c, x«—c, x<cx, x<x/c, x<x+c, xex—c, xex+y, xey}-

programs (with no restriction on the number of input and auxiliary variables).
This contrasts (3) and (4) (ii)-(iii).

2. An upper bound on the complexity of the equivalence problem for R-
programs. In this section we show that the equivalence problem for R-programs is
decidable in 2*V* time (N = sum of the sizes of the programs and A is a fixed positive
constant). For programs with a fixed number of input variables (but no restriction on
the number of output and auxiliary variables), the bound is 2*". We begin with the
following lemma.

LEMMA 1. Let P be an R-program. Assume that P has m input variables x4, - - - , X,
and one output variable x,. Let the other variables be x,u+1, * * * , Xn. Let r be the number
of instructions in P and K = product of all positive integer constants (i.e., ¢’s) appearing
in instructions of P. Then we can construct a collection D of systems of linear Diophantine
equations* with the following properties:

(1) D has at most 2" - 6" systems of equations.

(2) Let S be any system in D. Then

(1) S has at most 2n + 5r equations in at most 3n +5r +1 variables.
(ii) Each equation in S has at most 3 variables.
(iil) The maximum of the absolute values of all subdeterminants of the augmented
matrix® of S is K*4*"*%",
(iv) S has 2m distinguished variables x3, e x%sY 5%, where the pair
(x?, s7) is associated with the input variable x; of P. s? will always have value
0 or 1. s{ =1 is interpreted as x; being actually negative.

(3) P computes a nonzero function (i.e., a function which is not zero on all inputs)
if and only if one of the systems in D has a nonnegative integer solution. Moreover, if
a system S in D has a nonnegative integer solution, then the values of x$ e, x with
appropriate signs attached (as given by the values of 53, - -, s%) when input to P will
make P output a nonzero value.

* A linear Diophantine equation is an equation of the form ajv;+- ' - +agv, = b, where ay, -+, ay, b
are (positive, negative, or zero) integer constants and vy, * * - , v are integer variables.
> The augmented matrix of a system of equations Ay = b is A augmented by column vector b.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 17

Proof. We describe the construction of a system S in D. In the construction, we
will be introducing new variables: For each 1 =i =n, x? x} x2, -+ and sY sty st e
are distinct variables associated with P’s input variable x;. For £, =0, s denotes the
sign of the value of variable xj, where si=0(1) denotes nonnegative (negative).
Similarly, new variables u°, u', u?, -+ will be used. The construction of S involves
defining for each instruction in P one or more equations describing the change that
occurs in the variable that is modified by the instruction. The algorithm below forms
the system S as a set of equations. The algorithm is nondeterministic with each choice
giving rise to a new system.

ALGorITHM CONSTRUCT
S«
q<0
Add (spi1=0,x%,1=0,---, Add to S the equations which initialize
s9=0,x2=0) the noninput variables to 0 and
their signs to O (i.e., nonnegative)
Add (s? = 0)or [Add (s} =1, Nondeterministically choose the

x=u'+1);qeq+1] signs of xJ, -+, x%. If s¥ is
. chosen to be 1, check that x? >0

Add (s% =0) or [Add (s% =1,
Xm=u?+1); q<q+1]

fori<1ton do
ti<—'0

end
p<l

while p =r do
case if pth instruction is
X <0: Add (si =0, xf" =0); et +1; pep+1
et Add i =0, xi =) e+ pep+1
xiecxi Add 58 =5 xiT = ex) e i+ 1, pep+1
2x; < x; +x;:do (1) or (2) or (3) or (4) or (5)

3 . ’ +1 .
(1) Add (sf =s},s¢" =si,xi =xi+x])tieti+1;pep+1
() Add (5] —si=1,5/"" =0, x{ =x +u?, xi = x§ —xj); et +1;
q<q+l;pep+1

() Add (5] —si=1,s8" =1, x{ +u"+1=x},x{" =xi—xb);
hetitliqeqtlipeptl

’ t t.+1 t t,
@) Add (si—sy=1,si"" =0, xi +u=x/, xi =x]—x)tiet;+1;

qeq+l;pep+1
(S)Add (si—sj=1,si"" =1, xi=xi+u'+1,xi"" =xii—xi);tit;+1;
q<q+l;pep+1

18 O. H. IBARRA AND E. S. LEININGER

:x; < x; —x;: Same as for x; < x; +x; except that in (1), (2), (3), (4), (5) the
first equations are replaced, respectively, by:

si+syp=1
si+sj=0
si+si=0

si=1,s7=1
si=1,s7=1
:x; < x;/c:do (6) or (7) or (8)
(6) Add (s =0, si™ =0, cxi™ +ut=xfu'+u"=c-1); < t;+1,
q<q+2;pep+1
(MDAdd si=1,s" =1, exi +ut=xbu+u M =c—1,xi" =
w1 e ti+1,qeq+3, pep+l
(8)Add (si=1,si"" =0, xf+u'=c—1,xi"" =0); e t;+1; geq+1;
pep+1
skipl:pep+i1+1
:if x; > x; then skip /: do (9) or (10) or (11) or (12) or (13) or (14)
(9)Add (s¢ =0, s;=0,xi=x/+u+1);qeq+1;pep+i+1
(10) Add (s =0, sy =0, x{ +u’=x); q<q+1;p<p+1
(11) Add (s¥=0,si=1);pep+I+1
(12)Add (s =1,sj=0); pep+1
(13)Add (si=1,sj=1,xi+u+1=x));qeq+1;pep+i+1
(14)Add (st =1,s)=1,xi=xj+u’);qeq+1;pep+1
:if x; = x; then skip /:
:if x; <x; then skip /:
:if x; = x; then skip /:
:if x; = x; then skip /:
:if x; # x; then skip [:

Handled in a similar way as in
if X; > X;j then skip [

chalt: p<r+1
end
end
Add (x# =u?+1) Insures that the final value of x; # 0
end

The algorithm above is nondeterministic. Every choice gives rise to a different
system S. Clearly, there are at most 2™ - 6" =2" - 6" systems S. This proves property
(1). That properties (2) and (3) hold is easily verified. [

Next, we state a lemma concerning ‘‘small”” nonnegative integer solutions to linear
Diophantine equations. The proof of the lemma can be found in [5] (see also [1]).

LEMMA 2. Let S: Ay =b be a system of linear Diophantine equations, where A
is an mXn integer matrix, y =(y1,***,yn) is a column vector of variables, and
b=(b1, ", bm) is a column vector of integer constants. If S has a nonnegative integer
solution then it has a nonnegative integer solution §1, - -, §. such that each §; <3nA?
where A is the maximum of the absolute values of all subdeterminants of the augmented
matrix Ab.

LEMMA 3. Let P, n, r and K be as in Lemma 1. Then P computes a nonzero
function if and only if it outputs a nonzero value for some input (xq, -+, X) in which

each |x;| =2, where N is the size of the program and A is a fixed positive constant.®

6 |x;| = absolute value of x;. The size of a program is the length of its representation.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 19

Proof. From Lemmas 1 and 2, P computes a nonzero function if and only if it
outputs a nonzero value for some input (xi,‘--,X,) in which each |x]|=
3(3n +5r+1)(K*4*"*>")?>. Now if N is the size of P then N =r, N = n log n, N Zlog K.
It follows that |x;|=2"", where A is a fixed positive constant. O

COROLLARY 1. 2*V™ time is sufficient to decide if an arbitrary R-program computes
a nonzero function.

COROLLARY 2. Deciding if an arbitrary R-program computes a nonzero function
can be done in nondeterministic polynomial time (NP).

We are now ready to prove the main result of this section.

THEOREM 1. The equivalence problem for R-programs with m input variables is
decidable in 2*"™ time (N = sum of the sizes of the 2 programs under consideration
and A is a fixed positive constant).

Proof. Let P; and P, be two R-programs. Assume that they have disjoint sets

of variables. Let their input variables be x;, - * *, x,, and y1, * * -, ym, respectively, and
their output variables be z;, - -,z and wy, -+ -, wy, respectively. Define a new
program P with input variables x1, - - -, x,, and output variable x; as follows:

y1<0

yi<yitx; yi< X1

ym <0

Ym € YmtXm VYm €< Xm

Jri
fr:

if z1 # w, then skip k + 1
if z; # w, then skip &

if z; # w; then skip 2
x1<0

halt

x1<1

halt

For i =1, 2, P; is P; with each halt instruction replaced by skip /, where [is the number
of instructions after the halt to the end of P. Then P computes a nonzero function
if and only if P; is not equivalent to P,. The result follows from Corollary 1. 0O

COROLLARY 3. Equivalence of R-programs is decidable in 2" time. For programs
with a fixed number of input variables, the bound is 2*".

From Corollary 2, we also have

COROLLARY 4. The inequivalence problem for R-programs is in NP,

In § 3 we will see that (in)equivalence of R-programs is NP-hard. In fact, the
NP-hardness result holds for a very simple subset of R-programs.

For completeness, we mention the following result in [6] which contrasts with
Corollary 3. (The input variables can assume positive, negative, or zero integer values.
However, the result also applies to the case when the inputs are restricted to nonnega-
tive integers.)

20 O. H. IBARRA AND E. S. LEININGER

THEOREM 2.

(i) The zero-equivalence problem for {x « 1, x « 2x, x « x +y, x « x/ y}-programs
is undecidable. The result holds even if we consider only programs that compute total
functions with range {0, 1}.

(ii) The zero-equivalence problem for {x « 1, x « x/2, x « x — y, x « x * y}-programs
is undecidable.

Remark. The proof of Theorem 2 in [6] was for the one-equivalence problem
(deciding if a program outputs 1 for all inputs). However, the proof can trivially be
modified to apply to the zero-equivalence problem.

When there is no division, we have the following proposition.

PrOPOSITION 1. The equivalence problem for {x <0, x«c, x«cx, x<x+y, x <«
x—y, x < x*xy}-programs (with no restriction on the number of input, output, and
auxiliary variables) is decidable.

Proof. Let P be a program with input variables x;, - - -, x,. Without loss of
generality assume that the input variables do not appear on the left-hand sides of the
instructions in P. Then the value of each output variable y at the end of the program
can be represented by a polynomial p(xi,---,x,) in standard form (i.e., sum of
products). Moreover, p(xy, - - ', x,) can be found effectively. Thus, to decide if two
programs are equivalent, we find the polynomials representing their outputs. Then
the programs are equivalent if and only if the polynomials representing their respective
outputs are identical. (Note that this process will, in general, take exponential time
since the sizes of the polynomials may grow exponentially with respect to the lengths
of the programs.) 0

Remark. One can easily check that all the results and proofs in this section remain
valid when the inputs are restricted to nonnegative integers.

3. Two-variable {x< 2x, x< x/2, x< x+y}-programs. It is very unlikely that
equivalence of R-programs can be decided in polynomial time since we can show that
the problem is NP-hard (see [3], [4], [7] for definitions and motivations of the terms
NP-hard, NP-complete, etc.). In fact, we can show something quite surprising: The
equivalence problem for {x « 2x, x « x/2, x « x + y}-programs with one input variable
(which is also the output variable) and one auxiliary variable is NP-hard. This result
is interesting (and counterintuitive) for the following reasons:

(1) The proofs of most NP-hard results concerning equivalence of programs (see,
e.g., [2]) actually show the NP-hardness of the zero-equivalence problem. Thus, for
such proofs only one program is constructed. In the case of {x «2x, x « x/2, x « x +
y}-programs, zero-equivalence is clearly decidable in polynomial time. Hence, the
proof that equivalence is NP-hard involves the construction of two programs.

(2) There is no instruction that can set a variable to 0 or 1. Hence, there is no
way to take complements, and a reduction to the satisfiability problem for Boolean
formulas cannot be done directly.

(3) Only two variables (one of which is used for input/output) are needed to
show NP-hardness.

(4) The variables can assume positive, negative, or zero integer values. This
makes the proof harder. Note that there are some number-theoretic problems that
are NP-hard when the variables are restricted to be nonnegative but become poly-
nomial-time solvable when there is no such restriction. For example, deciding if a
system of linear Diophantine equations has a nonnegative integer solution is NP-hard
[9]. However, if we are interested only in any integer solution, the problem is solvable
in polynomial time [8].

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 21

THEOREM 3. The equivalence problem for {x «2x, x « x/2, x « x + y}-programs
with one input variable (which is also the output variable) and one auxiliary variable
is NP-hard.

Proof. The proof uses a well-known result that the satisfiability problem for
Boolean formulas in conjunctive normal form (CNF) with at most three literals per
clause is NP-hard [3]. Let F=C,C, - C,, be a Boolean formula over variables
X1, '+, X, Where each C; is a disjunction (i.e., sum) of at most 3 literals. (A literal
is a variable or a negation of a variable.) We shall construct two programs Pr and Pr
such that they are equivalent if and only if F is not satisfiable. Pr has input/output
variable x and auxiliary variable y, and it has the following form:

Initialization
P,

P,
Adjustment
Q:

Qm

Finalization

The input x, which can be positive, negative, or zero, is viewed as a binary number
x=#x, " xb,whereb,xq, -, x, are binary digits and # issome (possibly negative)
finite string of binary digits. (Convention: in this proof, # represents any (possibly
negative) finite string of binary digits whose exact composition is not important.) The
construction is such that Pr and P agree on all inputs with » = 0. They disagree on
some input with b =1 if and only if F is satisfiable. Thus, programs Pr and Py will
not be equivalent if and only if F is satisfiable.

Before we write the codes for the different parts of Pr, we describe a routine
Z(k, 1) which will be used many times. The parameters k and / are positive integers.

Code for Z(k,1). Let x = %5141 * * Sk415¢ * * * §1, where sq,+ -, 5,4, are binary
digits. The code Z(k,[) sets si+1,* * *, Sk+; to 0’s without changing s, -« -, si.. We
assume that y = 0 or it has the same sign as x at the beginning of Z (k, [).

y <2ty coded: y «2y; -+, y<«2y (k+1) times
k+1
~
y=%#0---0
ye<ytx y= #F Skttt Sk+1Sk 0 St
y<y/2k coded: y « y/2; - -; y <« y/2 (k times)
k
k
y<2ly y =4Sk k4100000

-1

f__/_—
XxXex+y Xx=H#Sp1-1° " Sk+1 08 -0 0 81

22 O. H. IBARRA AND E. S. LEININGER

-1 k+1
—_— A~
y <2y y=#Skri-1" " Sk+10 -+ 0
-2
——t
xex+ty X = Skr1—2 " Sk+1 008, -+ + 51
k+i-1
—~N
y <2y y=#585+10---0
!
~N—
x<—x+y y=#0"'05k"'51

We are now ready to write the codes for the different parts of Pr.
Code for Initialization.

3
x<2Mx

At the end of Initialization,

3m
—A—
X=X, Xibddindy -+ - didid] = # x4 -+ X150+ - 0.

It will always be the case that at the beginning of code P,(1 =k =n), x has the
form x = #x,_341 - x1bd>d>d), - - did3d} and y is either 0 or a number with the
same sign as x. (Note that by convention, y is O at the beginning of the program since
y is not an input variable.)

Code for P, 1=k =n.

3m+n—k+2

~N— 3 1
ZBm+n—k+2,3m+n—-k+2) x=3%0""0xp_gs1° " x1bd;, * - d1

6m+2n+2

~N—
y<—26m+2"+2y y=#0...0
y<ytx

3m+n—k+2
3m+n—k+1
y<y/2 y=#0"0x,_ps1
(Let Cy,, - - -, Cy, be the clauses in which x,,_, .1 appears, and assume k1 <- - - <k,.)
3m+n—k+2 3(ky—1)

—A— ~—
y<—23(k‘_1)y y=4%0:0x,—+10---0
xex+ty dr, d}q(—d,zc1 di, + Xp—i+1 With

Xn—k+1s " " "5 X1, b’ d:r;m drzm drlm S,

3 3 2 1 3 2
dkp dkl—l, de—l, dk1—1, T, dl, dl’

di unchanged.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 23

3(ky~k,)

y<2 y
Xex+y
;}(_ 23(k,—k,_l)y
xex+ty
y (_23(m—k,)+4y
yeytx y = #bdd%dl, - - - didid]
y «y/2>" y=*#b
3m+n—k+1
y < 23mnkr1 y=#b60---0
xex+y X =% Xnogr1+b)Xni - x1bdi - - di
l
Xn—rsr1ifb=1
Z@Bm+n—k+2,3m+n—k+2)
y (_26m+2n+2y
yey+x 3m+n—k+2
y < y/23mnTi y=#0- - 0fssnn
(Let Cg,, - - -, C, bethe clauses in which %, appears, and assume k; < - - <Kk,.)
y (_23(E,—1)y
Xex+y
y (_23(E2—El)y
Xex+y
);(_23(155—@_1))’
Xex+y

Clearly, at the end of P, x = #bd>d>d - ddidl where di=0for 1=k=m.
Moreover, if b = 1 then d di >0 if and only if Cy is satisfied.

Code for Adjustment.
3m
Ny 43 1
Z(3m+1,3m) x=#0---0bd3 - di
y(_26m+1y
y(_y+x 3m

y<y/2" y=#0---0b

24 O. H. IBARRA AND E. S. LEININGER

Xex+y
y <2y dididl «dididi+bb
X<x+y
y <2’y
Xex+ty
y<2y d> d3dy < d3 d3 d; +bb
Xe<x+y

y 2%

;«x+y
y <2y dom i do < dnnddp +bb
xex+y
x«2"x

At the end of Adjustment,

m

—
x=4#%dndod, - dididi0---0

Moreover,ds =d3=-+-=d>, =1ifand onlyif p=1and F = C,C; - - - C,, is satisfied.
Code for Q, 1 =k =m. When Q is entered, x always has the form
m—k+1
x=#dm i1 do i1 dy i1 dididi dydi g+ d::’n—k*-Zm

m+3(m—k+1)

—~N— 3
#0"'0dm—k+1"'

Il

Zm+3m—k+1),m+3(m—k+1)) X
m—k+1

—~—

d}di;"'d%—k+20"'0

9 2m+6(m—k+1)
y<e y m+3(m—k+1)

3
#0 - 0dmpsr-

y=
m—k+1
yey+x 1,3 3 { \
did, - dyki20---0
m+3(m—k+1)
—~"
y(__y/2m+3(m—k)+2 y= #0- - 0d?n~k+1
x(_2m—ky
m—k
_ 3 1,3 3 "
Xexty x~#dm_k"'dldm"'dm_k+10"'0
At the end of Q,, x=#d, dn_1 --di and di =d3=---=d}, =1 if and only if

b =1 and F is satisfied.

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 25

Code for Finalization.

" 3 3 3
Z(m,m) x=#0---0dmdm_1-~°d1

y<2®™y

yey+x m
——

y<ey/2m ! y=#0---0d,,

xex+ty
x<x/2™ x=7%h

At the end of Finalization, x = # h, where # =0or 1. h = 1 if and only if di=di=---=
d> =1, i.e., if and only if b =1 and F is satisfied. It follows that Pr outputs an odd
number for some input if and only if F is satisfiable.

Now let Pf be the program obtained from Pr by adding the following instructions
at the end of Pg:

x<x/2
x<2x

Then Py is equivalent to Pr if and only if F is not satisfiable. One can easily check
that the sum of the sizes (total number of instructions) of Pr and PF is some fixed
polynomial in m and »n (and, therefore, in the size of F). Hence, the construction of
Pr and Pf takes polynomial time in the size of F. Since the satisfiability problem for
Boolean formulas in CNF with at most 3 literals per clause is NP-hard, the result
follows. 0O

In Theorem 3, the instruction x « x +y can be replaced by x « x —y:

COROLLARY 5. The equivalence problem for {x < 2x, x < x/2, x « x — y}-programs
with one input variable (which is also the output variable) and one auxiliary variable
is NP-hard.

Proof. Replace the occurrences of instructions x < x+y and y <y +x in Pr by
x<x—yand y<y—x, respectively. 0

When x < 0, x « x +y, and x « x —y are in the instruction set, we have

THEOREM 4. The zero-equivalence problem for {x « 0, x «2x,x « x/2, x < x +y,
X « x — y}-programs with one input variable and one auxiliary variable is NP-hard. The
result holds even if the instructions x <0 and x <« x —y are used exactly once in the
programs.)

Proof. Let Pr be the program obtained from Pr (of Theorem 3) by adding the
following instructions at the end:

y<O0
yey+x y

I
=

y<y/2
y<2y

Xex—y

Then Py outputs 0 for all inputs if and only if F is not satisfiable. [

26 O. H. IBARRA AND E. S. LEININGER

COROLLARY 6. The zero-equivalence problem for {x «2x, x «x/2, x<x—y,
X < y}-programs with one input variable and one auxiliary variable is NP-hard. The
result holds even if the instruction x <y is used exactly once in the programs.

Proof. Replace the instructions y «0; y < y+x in the proof of Theorem 4 by
y < x. Then the results follows from Corollary 5. 0

COROLLARY 7. The zero-equivalence problem for {x «0, x < x/2, x «x—y}-
programs with one input variable and two auxiliary variables is NP-hard.

Proof. This follows from Theorem 4 and the observation that x « 2x and x « x +y
canbecodedas z«0; z«<z—x;x«<x—zand z < 0; z <« z —y; x « x — z, respectively,
z a new variable. 0

Corollaries 6 and 7 may be the best possible results since we can prove the
following theorem.

THEOREM 5. The zero-equivalence problem for {x « 0, x < c, x « —c, x < cx, x «
x/c, x«x+c, x «x—c, x < x—y}-programs with at most two variables (both may be
input variables) is decidable in polynomial time (c is any positive integer constant).

Proof. Let P be a program with r instructions, and let d = max {c’s appearing in
P}+1. Let x and y be the variables of P. We consider two cases.

Case 1. P has one input variable. Let d*" be the input. Let 0=k =r. Then it is
easy to show (by induction on k) that the following are true at the end of k instructions:

(1) Exactly one of (a) or (b) below holds for variable z (z is either x or y):

(a) |value (z)|=d* and value (z) is independent of the input.

(b) |value (z)|=d> .

(2) If [value (x)|=d*> " and |value (y)|=d* ¥, then value (x) and value (y) have
opposite signs.

It follows from (1) and (2) that P computes the zero-function if and only if P
outputs 0 on input d°".

Case 2. P has two input variables. As in Case 1, P computes the zero-function
if and only if P outputs 0 on inputs (0, d*") and (d*,0). O

If the instruction x < x —y is replaced by x « x +y in Theorem 5, we can prove
a stronger result.

THEOREM 6. The zero-equivalence problem for {x « 0, x «c, x « —c, x < cx, x «
x/c, xex+c, xex—c, x<x+y, x < y}-programs (with no restriction on the number
of input and auxiliary variables) is decidable in polynomial time.

Proof. Let P be a program with r instructions, and let d =max {c’s appearing in
P}+1. Then P computes the zero-function if and only if P outputs 0 when all the
input variables are setto d”. O

For one-variable programs containing only instructions of the form x « 0, x « 1,
x < 2x and x < x/2, equivalence is decidable in polynomial time:

PROPOSITION 2. The equivalence problem for one-variable {x « 0, x « 1, x « 2x,
x < x/2}-programs is decidable in polynomial time.

Proof. This is obvious since any program P can be reduced (in polynomial time)
to one of the following forms (a, k and m are some nonnegative integer constants):

(1) x<a

(2) x <2k

3) xe—)c/2k

@) xex/2% x<2™ O

When x is restricted to nonnegative integer inputs, we can prove a stronger result:

EQUIVALENCE PROBLEM FOR SIMPLE LOOP-FREE PROGRAMS 27

THEOREM 7. The equivalence problem for one-variable {x <« 0, x « x +1, x « 2x,
x « x/2}-programs over nonnegative integer inputs is decidable in polynomial time.

Proof. Any program P containing only instructions x « 0, x « x + 1,x « 2x, x « x/2
can be reduced (in polynomial time) to one of the following forms (a, b, k, and m are
nonnegative integers):

(1) x<a

() x<2*x+a

(3) x «x/2*

(4) x<x+a;x<x/2"

(5) xex/2% x<2"x+b

(6) xex+a;xex/2 x<2™x+b

The reduction can be accomplished using the following transformations:

(@) x <2"c+a;x<2™x +b reduces to x « 2°""x +(2™a + b)

(b) x < x/2"; x « x/2™ reduces to x « x/2*™

() x<2x+a;x<x/2™ reduces to x « 2 "x +a/2™ if k=m

(d) x<2*x+a;x «x/2™ reduces to x « x +a/2"; x « x/2™ F if k <m

(e) x < x/2%; x «x+a reduces to x « x +2a; x «x/2% O

Remark. Again, all the results in this section remain valid when the inputs are
restricted to nonnegative integers.

REFERENCES

[1] 1. BorOSH AND L. B. TREYBIG, Bounds on positive integral solutions of linear Diophantine equations,
Proc. Amer. Math. Soc., 55 (1976), pp. 299-304.

[2] R.L. CONSTABLE, H. B. HUNT AND S. SAHNI, On the computational complexity of scheme equivalence,
Proc. 8th Annual Princeton Conference on Information Sciences and Systems, 1974, pp. 15-20.

[3] S. A. COOK, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symposium on
the Theory of Computing, 1971, pp. 151-158.

[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability—A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[5] E. M. GURARI AND O. H. IBARRA, An NP-complete number-theoretic problem, J. Assoc. Comput.
Mach. 26 (1979), pp. 567-581.

[6] O. H. IBARRA AND B. S. LEININGER, On the simplification and equivalence problems for straight-line
programs, submitted to J. Assoc. Comput. Mach. (Available as Univ. of Minnesota, Dept. of
Computer Science Technical Report 79-21, September, 1979.)

[7] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum, New York, pp. 85-104.

[8] D. E.KNUTH, The Art of Computer Programming. Vol. 2—Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 1969.

[9] S. SAHNI, Computationally related problems, this Journal, 3 (1974), pp. 262-279.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0003 $01.00/0

A FAST ALGORITHM FOR THE EUCLIDEAN TRAVELING
SALESMAN PROBLEM, OPTIMAL WITH PROBABILITY ONE*

J. H. HALTONT AND R. TERADAZ

Abstract. This paper presents an algorithm for the traveling salesman problem in k-dimensional
Euclidean space. For n points independently uniformly distributed in a set E, we show that, for any choice
of a function o of n increasing to infinity with » more slowly than n, we can adjust the algorithm so that,
in probability, the time taken by the algorithm will be of order less than that of no(n) as n->o00. The
algorithm puts the n points in a cyclic order, and we also show that, with probability one, the length of the
corresponding four (that is, the sum of the n distances between adjacent points in the order given) will be
asymptotic to the minimal tour length as n > . The latter is known (also with probability one) to be
asymptotic to B,v(E)’n?, where B is a constant depending only on the dimension k, v(E) is the volume of
the set E, p=1/k, and q =1 —p. Our result is stronger, and the algorithm is faster, than any other we have
been able to find in the literature.

Key words. traveling salesman, probabilistic algorithm, operations research, optimization

1. Introduction. Consider a set A of n points in the k-dimensional Euclidean
space R* (with the usual topology). A tour of A is defined to be a cyclically ordered
set containing A (that is, a set T such that Ac T < R*, with an ordering relation T such
that for any finite subset of T, e.g., {A, B, C, D, E, F}, a unique, complete cyclic order
exists, e.g., {A7C, CtB, B7F, FrD, DtE, EtA}, which we shall abbreviate to
A7CrBrFrD7ETA, or just to the string of point-symbols ACBFDE). Note that a
path, which may be intuitively viewed as a tour which crosses itself, can always be
described as a cyclically ordered set by removing the single point of intersection from
one of the branches. Similarly, a path which is traced more than once may be cyclically
ordered by suitably interlacing the points of each passage. If a metric d is defined in
R* (not necessarily consistent with the topology of R), such a tour will have a (possibly
infinite) length I(T, 7) (defined as the supremum of the sum of the metric distances
between successive points in any finite subcycle in the tour, e.g., d(A, C)+d(C, B)+
d(B,F)+d(F,D)+d(D, E)+d(E, A)). Since all tour-lengths are nonnegative, they
are bounded below by zero; so that there will be an infimum for the lengths of all
tours of a given set A. We denote this by /(A).

Given a tour (T, 7) of A, it will uniquely determine a cyclic ordering of A (since
A is a finite subset of T), so that (A, 7) is itself a tour of A. If we label the points of
A in such a manner that the tour (T, 7) imposes the cyclicorder AgtA17A, 7 TA, =
Ao, then the triangle inequality for the metric d ensures that the length /(A, 7)=
Yi1d(A;_1, A), and it is clear that this cannot exceed the length (T, 7). It follows
that the infimum of the lengths of all tours of A is the same as the infimum of the
lengths of all tours (A, 7): this is the infimum of /(A, 7) over all (n —1)! cyclic orderings
of A. Since this last infimum is taken over a finite collection of lengths, it is certainly
attained. We thus see that there will always exist at least one cyclic ordering of A,
which we may denote by , such that /(A, 7) =inf, [(A, 7) = I(A). Such a tour will be
termed a minimal tour of A. The search for minimal tour-lengths and for minimal
tours in R is called the traveling salesman problem (k-TSP).

* Received by the editors January 23, 1979, and in revised form December 12, 1980.
T Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.
I Instituto de Matematica e Estatistica, Universidade de Sao Paulo, CEP 05508, Sdo Paulo, Brazil.

28

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 29

In this paper, we shall limit ourselves to the problems in which the metric d is
the Euclidean (or Pythagorean or [°) metric, for which d(x,y)=|x—yl.=
(Zf;l (x; —y:)>)"/. This is called the Euclidean traveling salesman problem (k-ETSP).

The 2-TSP has been shown to be NP-hard (see Garey, Graham, and Johnson
[1976], Papadimitriou [1977], Garey and Johnson [1979], and this strongly suggests
that there is no polynomial-time algorithm for obtaining the exact solution of this
problem. By natural extension, we believe that the same is true for the k-TSP with
k =3. Certainly, no such algorithm has been found so far.

On the other hand, there has been some research on fast heuristic methods for
the solution of the 2-TSP: for example, computer programs to find near-optimal
solutions for sets of up to 300 points in an acceptable amount of time have been
described by Krolak, Felts, and Marble [1970], and by Lin and Kernighan [1973].
Their programs seem to give satisfactory results; but no rigorous analyses of the
algorithms are available.

Bellman [1962] and Held and Karp [1962] describe a dynamic programming
algorithm for the k-TSP, which determines an exactly minimal tour of a set of s points
in a time

(1.1) t,=2A(s—1D[2° (s —=2)+1] fors=1,

where A is a computer-dependent constant (roughly, half the time needed for an
addition). We subsume the use of this algorithm, which we shall refer to as Algorithm
C, in constructing our own, and the estimate (1.1) yields our timing estimate in
Theorem 2. (Should a faster algorithm than the above become available, it will lead
to an increase in the speed of ours also.)

Since many important computational problems are known to be soluble only by
exponential-time algorithms, interest has recently shifted to probabilistic algorithms,
which (with a high degree of probability) will yield accurate answers in acceptably
short times, but for which (with very low probability) either (i) accurate answers may
take very long times to obtain, or (ii) answers obtained may not be accurate.

Beardwood, Halton, and Hammersley [1959] studied the statistical properties of
the solutions of k-ETSP. In particular, they showed that, if E is a bounded, Lebesgue-
measurable subset of R¥, with k-dimensional Lebesgue measure (or volume) v(E) >0,
and if P is an infinite sequence of points independently uniformly distributed in E,
with P" denoting the set consisting of the first n points of P, then there exists a
constant B, not dependent on E or P, such that, with probability one,

(1.2) I(P")~Biv(E)’n? as n->o0,

where p=1/k and q=1-p. They also showed that, if the points of P are instead
independently distributed in E with any fixed probability distribution and if the
absolutely continuous component of this distribution is represented by a probability-
density function p (whatever the discrete and singular components of the distribution
may be), then, again with probability one,

1.3) I(P")~Bkn"j pdv as n-oo,
E

When the density is constant, p = 1/v(E), and (1.3) reverts to (1.2). We take our point
of departure in the above paper, which we shall refer to as BHH. In the course of
reviewing the proofs of various results in BHH, we found that the proof of their
Lemma 7 had to be modified somewhat (the statement of the lemma remains correct).

30 J. H. HALTON AND R. TERADA

This is discussed in Appendix II of Halton and Terada [1978], hereinafter referred
to as HT. The present paper is a revised version of HT.

Karp [1977] has described a probabilistic algorithm for the 2-TSP: it is a recursive
algorithm, for which he claims an expected running-time of the order of n(log n)* and
an expected resulting tour-length asymptotic to /(A) as n » 0. It will be seen below
that the algorithm presented here is proved in probability to run in a time which is
o[no(n)] for an arbitrarily chosen function o satisfying

o(n)

1.4) o(n)»© and —=->0 asn->o©
n

(see Theorem 2), and it is also proved that the resulting tour-length is asymptotic to
I(A) with probability one (see Theorem 3). Some questions and discussion of Karp’s
paper are given in Appendix III of HT; in any case, our results are stronger. We are
not aware of the existence of any other algorithm comparable to ours.

2. The main algorithm. Given a set A of n points in R, our algorithm covers it
with a cubic lattice of cells, solves the k-ETSP in each cell by Algorithm C, and
prescribes how these partial tours should be connected cell-to-cell to form a tour of
A. The all-important lattice is defined in such a way that the tour generated has the
desirable properties of speed and accuracy claimed in Theorems 2 and 3 below. These
are both statistical and asymptotic properties, derived by embedding the given problem
in a large class of similar problems in two ways. First, the set A is viewed as the first
n points of an infinite sequence of points. Secondly, the points of the sequence are
assumed to be independently uniformly distributed at random in a set E having the
properties:

(a) Eis a Lebesgue-measurable set in R*, with positive volume v (E).

(b) E is bounded in R*: we can find a semi-open hypercube (more briefly, a cube)

2.1) C={x=(x1, %2, " ", xx)eR : b;=x;<b;+Afori=1,2, -, k},

such that E = C and C has sides of length A.

(c) If the cube C defined in (b) is divided into a cubic lattice of M = m* similarly
semi-open hypercubic cells C; (j=1,2,- -, M), each with sides of length A/m, and
if N of these cells contain points both of E and of its complement E°, then the boundary
of E is such that, as M »00, N,=O0O(M?), where q=1-1/k; thus, in particular,
N,/M -0. (We see that this property holds whenever the (k —1)-dimensional
Lebesgue measure of the boundary of E is finite.)

It is clear that the given set A =E = C; but, beyond this, the choice of E and C is
free and will depend on our knowledge (or hunch) of the class of problems of which
A is considered to be a sample. In the absence of more precise information, we may
take E=C and C to be the smallest cube (2.1) containing A. The determination of C
requires time of the order of kn, which is negligible, in view of Theorem 2.

Underlying the specification of the algorithm is the choice of a function o of n,
satisfying (1.4) but otherwise at our disposal. Because of Theorem 2 and Karp’s claim
of an expected running time of O[n(log n)*], we will focus our attention on o(n)
increasing with n no faster than (logn)>. If p=1/k and [-] denotes the ‘“roof”
function (the least upper bound among the integers), we can define the even integer

2.2) m =2Pz'(ﬁ%)p]‘

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 31

From this, we can derive that, by (1.4),

(2.3) M—m"~i§k— as n > o0
' v(E) log o(n) '
We also observe that
M
2.4) m->00, M -0, ;—)O as n - 0,

ALGORITHM A. [A1] Given a set A of n points in R, choose the semi-open
hypercube C defined as in (2.1), the set E contained in C and containing A, having
properties (a), (b), and (c) above, and a function o satisfying (1.4). Hence, determine
the even integer m, by (2.2), and M = m*,

[A2] Divide each side of C into m equal parts, thus creating a cubic lattice of
M semi-open hypercubic cells C;, with j=1,2,--- M.

[A3] In each cell C, find by Algorithm C a minimal tour of AC; (the intersection
of A and C, i.e., the set of points of A falling in C;). The result is a cyclic ordering
of the points of AC; which may be written as a string of point-symbols

2.5) Fi=APVAY - AL, where AC;={AY, AY, - A},
and n; is the number of points of A in C;. We note that

M
(2.6) Y ni=n.

j=1

Of course, if AC; = & for some j the corresponding string &; will be null.
[A4] Using Algorithm B (defined below), determine a cyclic ordering of the M
cells, which may, by suitable renumbering, be written as

[AS5] Applying the ordering (2.7) to the strings &, form a string
(2.8) F=%F P

This represents a cyclic ordering of all the points of A (see Theorem 1 below), to
which corresponds a tour, (A, w), say, of length

2.9) WA= Y Y dAP, AD),
1

i=1i=

‘ -~ o o
where A’ =AU"D and AL = A0,

nj—1

3. The cell-tour algorithm. The following algorithm obtains the ordering (2.7)
of the cells C; in a time of the order of M. Denote the set {0,1,2, -+, m—1} by L
and define a lattice of vectors a=(ai, a,, * * *, a;) with each a; €. Then it is easily
seen that there is a one-to-one correspondence between the M vectors a and the M
cells C;, defined by

(3.1 C(a)= {xele: bi+%ai =x;<b +%(a,-+l) fori=1,2,---, k}.

Thus, an ordering of the cells will correspond uniquely to an ordering of the lattice
vectors a. We write e; for the unit vector in the ith coordinate direction, and we

32 J. H. HALTON AND R. TERADA

associate with each a the numbers
(32) = ri(a) — (_1)1+.«11+a2+‘..+ai_1

for i=2,3, -, k. We note that the r; take the values +1 only, and that, for any a,
a; +r; €L, unless either a; =0 and r;, = —1 or a; = m — 1 and r; = +1. Therefore, for any
a, there is at most one value of ¢ such that

a;+rgl fori=kk—-1,---,t+1,

3.3)
a,+rel, and r=3.

AvLcorrTHM B. [B1] If there exists an index ¢ satisfying (3.3), then the algorithm
identifies the successor of a as the vector

3.4) a'=a+re,

that is, the vector with a; = a; for all i # t and with a, = a,+7..
[B2] If (3.3) does not hold for any ¢, then the successor of a is determined as
follows:

(i) If a,=1and a,=0, orif a;>1 and a, is even, a'=a—e;.
(ii)) fa;=0and a;=m—1,orif 0<a;<m—1 and a, is odd, a'=a+te;.
(iii) If a; =1, a>#0, and a; is even, or if a; =m —1 and a, is odd, a'=a—e;.
@iv) fai;=0and a,<m -1, a =a+te,.

In order to apply Algorithms A and B, we need to show that (1) the algorithms
do indeed generate a uniquely-defined tour of A, (2) the algorithms are fast, and (3)
the tour produced is minimal, or nearly so. These assertions are the burden of Theorems
1, 2, and 3, respectively.

4. The algorithms yield a tour.

THEOREM 1. Algorithms A and B define a tour of the set A. The length of this
tour is less than Y-, I(AC;) +AM 'k +3.

Proof. (i) Itis clear from (2.1) and (3.1) that

M
4.1) C=U C; and all C; are disjoint.
i=1
Since A = C, it follows that each point of A occurs in one and only one of the C;, and
so is mentioned in exactly one of the strings %; generated by Algorithm C, in step
[A3]. Therefore, if Algorithm B does indeed yield a cyclic ordering of all M cells C;,
as is asserted in step [A4], and if the corresponding strings ¥, are combined, as in
step [AS] and (2.8), into a final string &; then this string will mention each point of
A exactly once, and so will define a tour of A.

(ii) In Algorithm B, either step [B1] or step [B2] will be executed in finding the
successor of any vector in the lattice L*, and the choice is always well defined. If step
[B2] is executed, then it is easily verified that every possible combination of a; and
a in L? occurs in exactly one of the cases (i)—(iv) of [B2]. It is also clear that, in every
case,

4.2) if ael, thena' el and a' =a+e, for some ¢,

and the corresponding cells C(a) and C(a') meet in a face (the face defined by
xe=b,+(A/2m)(a,+a; +1): see (3.1)); that is, they are adjacent. Thus, any point of
C(a) may be joined to any point of C(a’) by a chord of length less than (A/ m&Vk +3
(since two adjacent cubes form a rectangular brick with (k —1) sides of length A/m
and one of length 2A/m, whose diameter is (A/m) [(k —1)(1)*+1(2)*]"/%). We have

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 33

demonstrated that every cell has a well-defined successor cell to which it is adjacent.
It remains to be shown that this relationship defines a single cyclic ordering of the
lattice L*. We proceed inductively.

(iii) First, let k =2. Then (3.3) is impossible, and [B2] is always executed. The
rules of succession embodied in cases (i)-(iv) of [B2] generate a tour, which can be
described as follows: Begin at (0, 0); by case (iv), move in the +e, direction until
(0, m—1) is reached; by case (ii), move in the +e; direction until (m —1,m—1) is
reached; thereafter, if a, is even, we move in the direction of —e; from (m —1, a,) to
(1, a,) (or to (0,0), when a,=0) (this is case (i)), and if a, is odd, we move in the
direction of +e; from (1, a,) to (m — 1, a,) (this is case (ii)); whenever the end of a seg-
ment parallel to the first axis is reached, the tour descends to the next one by moving
in the —e, direction from (1, a,) to (1, a,—1) or from (m —1, a,) to (m—1, a,—1).
Because m is even, what we have described is indeed a tour of L2 (If m were to
be odd, the point (1, m —1) would be the successor of both (0, m —1) and (2, m — 1),
while (m —1, m — 1) would have no predecessor, and the algorithm would not yield a
tour.) Figs. 1 and 2 illustrate these concepts for the cases of m =8 and 5, respectively.

Now, consider the application of Algorithm B to L¥, and suppose that the algorithm
has already been shown to generate a tour & of L*"!. Denote the vector, whose first
(k —1) coordinates are the same as those of a, by a=(ai, a,, - * *, ax—1). Then we see
that, if a, +r, €L, by (3.3) the successor of a is a+ ri e, ; that is, the path generated by
Algorithm B moves parallel to the kth axis, in the r.e, direction. Indeed, since 7
depends only on the coordinates of a (which do not change when the path moves
parallel to e,), we deduce that, when r, = +1, the path crosses the cube L* from (a, 0)
to (a, m—1) and, when r, =—1, the path crosses L* from (@, m—1) to (a, 0). On
reaching the end of such a segment parallel to the kth axis, we find that a, +r. 1L, so
that (3.3) cannot hold for ¢t = k. On perusal of [B1] for ¢t <k and of [B2], we see that
the rules of succession in L* are identical with those in the tour & of L', Observing
further that, if a'—a is perpendicular to e,, then r,. changes sign (since just one of
ai, as, - -, dr-1 changes by 1), we can infer that the new a, +r, €L and the path
forthwith proceeds to cross L* again in the reversed direction rex.

Summing up, we see that, if a tour congruent to & is drawn on each of the faces
ar =0 and a; = m —1 of L* perpendicular to e, then the path generated by Algorithm
B in L* zig-zags alternately between the two face tours, passing from a “‘zig” whose

az a

O {>
70 T 4 0>— <0
6 O—
s 3 ~O>——
2
3 e
2 |
1
' 1
P fJ a; & =>a
0 1 2 3 4 5 6 7 0 1 2 3 4 1
FIG. 1. Tour of L* by [B2] for the case FIG. 2. Path generated by [B2] for the

when m =8 (even). (forbidden) case when m =5 (odd).

34 J. H. HALTON AND R. TERADA

first (k —1) coordinates are given by a to a ‘‘zag” whose first (k —1) coordinates are
given by the successor of @ in the tour &. Since & passes through every point of L,
the path passes through every point of L*; and since the number of segments parallel
to e, equals the number of points in [Lk_l, namely m*~!, which is even (because m is
even), it follows that the number of *‘zigs”’ equals the number of ‘“‘zags”, and the path
defined by Algorithm B in k dimensions is closed, and therefore is also a tour.

The form of the inductive step is illustrated in Fig. 3 for the case of k =3 and
m = 6. The two extreme tours in two dimensions, congruent to &, are seen as alternating

FIG. 3. Tour of > generated by Algorithm B. Follow the arrows on single and double line-segments.
This illustrates the inductive process described in part (iii) of the proof of Theorem 1.

double and dotted line-segments. The “zigs” and ‘zags” parallel to the third axis are
single lines (most of the interior points of L* are omitted to make the path easier to see).

(iv) Having shown that Algorithm B does generate a tour of L* (in (ii) and (iii)
above), and that therefore Algorithm A does generate a tour of A (in (i)), we are left
with the bound on the length /;(A) of this tour. The tour generated is described by
the string (2.8). Each “piece” ¥; of & is shorter by d (Afl’}), A{) than [(AC;) because,
by the definition of the tour-length and (2.5),

|
4.3) HAC) = 3 d(AIL, AY) +d(A), AY),

On the other hand (see (2.9)) the “pieces” of & are joined by segments AP AP or
more properly A(,[;})A(l"), joining a point of C;_; to a point of C; (for each of
j=1,2,---, M), and we have shown (in (ii) above) that any such segment cannot be
longer than (A/m)vk +3. Thus, since M = m*, if g =1—1/k,

lo(A) < § 1(/5\@)+M%«/ET3’
44 -

M —
=Y I(AC,)+AM*Vk +3.
j=1

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 35

|

E
¢ o, e, 6 Tl

CS C]6 j/;ﬁ C|4 @

CIK CIZ

o WA

20

Cx ““"Qg ;
C Ca C. 182 /e,
C. Cy / %

30 CJI

C, CLL/Cas Cs Csx Cs,

36

\pLT

F1G. 4. Example of a tour of 53 points in R generated by Algorithm A with E as shown and m =6,
M = 36. Follow single and double segments; omit dotted ones.

Note that the inequality in (4.4) is strict, both because AP # Aﬁ,’? (and d is a metric)
and because the cubes C; are semi-open. Q.E.D.

S. The algorithms are fast.

THEOREM 2. In probability, the time taken to execute Algorithms A and B will
be asymptotic to An\/a(n) log \/o-(n) as n - 00; that is, the time will be o[no(n)].

Proof. The execution time of our algorithm may be divided into several parts.
Ty is the time required to determine E, C, A, m, and M; T is the time required to
determine which points of A are in each of the cells C; (j=1,2,---, M); T; is the
time required to determine the succession of cells (by Algorithm B); T, is the time
required to obtain the cyclic order of the points in each individual cell (by Algorithm
C); Ts is the time required to compute the tour-length /o(A). We must prove that
each of these five times is of the order of nVo(n) log V o(n) or less.

(i) We have already mentioned that E and C will either be known a priori, or
will be determined in time of the order of n. Now, A and v(E) will be obtained in
time independent of n, and generally we would say that o(n), and hence m and M,
will also be computed (by (2.2) and (2.3)) in constant time. However, if n is really
large, it will run to multiple precision, and o (n) may take a time O(log n) to compute.
Nevertheless, we see that, at worst,

(5.1) T, =O0(n)=o[nVo(n)logVo(n)].

It is clear, also, that, given the tour (A, w) generated by our algorithm, its length
lo(A) can be computed in time of the order of n (see (2.9), with (2.6)). Thus,

(5.2) Ts=0(n)=o[nVo(n)logVo(n)).

(ii) Let us suppose that the coordinates of the n points of A are each directly
addressable in an array J, occupying some kn locations. Define lists &1, %>, - * - , L,
corresponding to the M cells: for instance, the M vectors acl” may be lexically
ordered to identify the corresponding cells C(a) and lists £(a). In a time of the order
of n, one may make a single pass through 5, determining for each point the cell C(a)

36 J. H. HALTON AND R. TERADA

in which it lies and entering its address in the corresponding list £(a). For each a, the
list #(a) of points in AC(a) will have a length 2n(a) (where n(a) is the number of
points in AC(a)): each entry in the list will consist of an address in ¢ and a pointer
to the next entry in the list. By (2.6), this will add up to some 2n locations in all.
Thus, with moderate storage capacity, we get

(5.3) T, =O(n)=o[nVo(n) log Vo(n)).

The procedure is thus to begin with one cell, say C(0), compute a minimal tour
of the points of AC(0) using the list £(0) and Algorithm C, and begin a new list ./,
giving the ordering of the tour (A, w) as a string of addresses in J, by entering the
string ((0) of addresses generated by Algorithm C. We now use Algorithm B to
determine the successor cell C(0') to C(0), and use £(0') and Algorithm C to generate
the next piece #(0') of #. We repeat, from cell to cell, until all pieces ./ (0“”) have
been constructed and entered in . The total time needed to compute the cell
succession is then T3, while the time needed to determine all the individual cell-tours
is T4.

It is clear that Algorithm B is independent of n (except through (2.2) and (2.3)),
and that its execution for each cell does not depend on the number of cells. Thus,

(5.4) T;=O0OM)= 0[] =o[nVo(n)log Vo (n)].

n
log o(n)

(iii) All that now remains to be estimated is the time T4, and this will be shown
to constitute the major part of the total time, in probability. We know that, if n; points
of A lie in C;, then, by (1.1), the time needed by Algorithm C to construct a minimal
tour of AC; will be

2A(n;—1)[2" 3(n;—2)+1] if n;>0,
(5.5) t(AC)) =t,, = .
0 if n; =0,
and
M
(5.6) T.= ‘zl t(AC)).
P

At this stage, we introduce the probabilistic structure of our problem. Since the
points of A are supposed to be independently uniformly distributed at random in the
set E, it follows that the probability that exactly s points of A fall into the cell C; will
be

67 (%)t -,
where
(5.8) _v(EC) _v(C) _ Ak

YTL® Co® T MoE)

with equality if and only if v(E°C;) =0. Similarly, the probability that exactly » points
of A will fall into C; and exactly s points into C;, with i # j, will be

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 37

+ —r—s
(5.9) (")(’ s)a?a?(l—ai—aj)" .
r+s s
Now partition the index set {1, 2, - - - , M} of the cells into
Ho={j: C;<E},
(5.10) H,={j:C,cE},

H,={j: C;E# & & C,E°# J}.
Denote the cardinality of any set F by N(F); and let
(5.11) N(Ho) =No, N(H;)=Ni, N(H)=No.

Then property (c) postulated for the set E tells us that N, = O(M?) as n - 0. Thus,
if we write

8(n)=logVa(n) or o(n)=e>",
whence, by (1.4),

28(n)

e 8(n

-0 and —L—l—)O as n >0,
n

(5.12)

n

then by (2.3), M = O[n/8(n)] as n >0, and so
(5.13) N. —o{[i]q} and 250 asn-o0
‘ e | FYH) M ’

We also observe that, by (2.2) and (2.3),

m=A[] rom=a[L {1+ o[2]

M=m" =%[3€5]{1+O[5—;@]p} as n - 00,

Further, it is clear from (5.10) that

(5.14)

(5.15) U Cickce U G,
jeHy jeH UH,
whence
NiA_ (N +Np)A”
(5.16) % sv(E)= v .

It now follows from (5.13) that, since g =1—p,

(5.17) N1=8(’;){1+0[5f1”)]p] as n - oo,

38 J. H. HALTON AND R. TERADA

(iv) We now seek to obtain asymptotic forms for the expected value E[T,] and
variance var [T,4] of the time T,. By (5.6),

(5.18) E[T.]- 1 E[/(AC)]

and

M 2
var [T:]= [£ (r(ac)-Elac)D) |
(5.19) o
= ¥ 3 E[{(AC) ~E[AC)HH(AC,) ~ E[(AC,)

i=1j=1

Thus E[T,] consists of terms E[¢(AC;)], and var [T] consists of products of such terms,
together with E[{#(AC ,~)}2] and E[¢+(AC;)t(AC;)]withi # j. If we adopt the usual notation,
for integers n and positive integers ¢, that

(5.20) (n)o=1, (We=nn-1)n-2)---(n—¢+1) (=0for¢p >n=0),
we readily verify that, by (1.1), for s=1,
t,=A[2°72(s)2—2° 71 (5)1 +2(s)1 + 3 X 2°(s)0— 2()o],
(5.21) 12 =AM16 X4 (5)4 +8X 2 3(5)3+2 X 4° 2(5), — 4 X 2°2(5), +4(s),
— 47 (5) +4X 25 (5)1 —4(s)1 +3X 4°(5)o— 2 X 2°(5)0 + 4(s)0];
so that we may write

2 2 4 4
(5.22) =AY Y Pub (), and t:=A>Y ¥ Qub* *(s)y,

¢Y=06=1 Y=006=1

where Py, =1, Py,=-1, P11 =2, Py, =%, Po1=-2, Q4s=16, Q32=8, Q24=2, Q2=
—4, 021 = 4, 014 = _1’ 012 = 4, 011 = —4, 004 = 2;1', 002 = -2, 001 = 4, and all other
coefficients vanish. It follows from (5.7), (5.8), and (5.9) that

2 2
E[t(AC])] =A Z z P,/,g.’(n, 03 ¢" CY]'),
¢=06=1

4 4
(523) E[HAC)F]=A" X ¥ QuJ(n. 6,4,),
2 2 2 2
E[t(ACi)t(ACj)]=A2 Y X X X Pyo,PueK(n; 64,02 0,¢;a;a),

é=0¢=06,=16,=1

where we write
(5.24) T, 0,9,0= % (M) a-0" 00
s=1
K(n, 0,,0,;,¢,¢4;x,y)

=3 T ()T)y e 05 0

r=1s=1 \r'+s N

(5.25)

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 39

(The sums are over indices from 1 to n because the time for index O is zero, not ¢:
compare (5.5).) We may evaluate these sums as follows:

T, 6,05 = max (77)y~ (10
(5.26) . -]
= () x"{1+x(6 —1)}" " —8y0(1=x)",

where §;; is the Kronecker delta (=1 if i =j, =0 if i #j), and similarly,

K(n;el’ 02;¢’ ‘!’.x’ Y)

—é-
(5.27) o
— (n)grex®y z ((‘Z j)(l—x yyr

X {(x01+ y02)“ "7 = 8,0(x01)" % — 8s0(y02)" "}
= ()praxy {1 +x(61— 1)+ y(0— DI 7 = 840[1+x(61-1)~y]"™*
—54,0[1—x+y(02—1)]" '”—6¢06.p0(1—x—y) }

(We note that (Z) =0 whenever b<0or b>a.)

Now, by a simple inductive argument on m, we observe that, for all nonnegative
integers m, n, and ¢, with n =/,

(5.28) 0=n"—(n—m=mn" [+3(m—-1)].
Thus, since
(5.29) —(1+2)" = Z —[n -(n=mlz",

we have, for all z =0, that

1

{ 2
-1 (m-2)!

0se™-(142)" = OZO‘, { }nm 12" =({z +3nz%) e’

whence
(5.30) e(1-fz-3nzY)=(1+2z2)"*=e™.
Thus, for all those J-terms and K -terms in the sums (5.23) for which¢ =1 and ¢y =1,

(5.31) ('l).//awena(o 1){1 Yo (6—1)— 27161 (9 1) }<] (n, 6, ([/,a),(n)waw na;(6—1)

40 J. H. HALTON AND R. TERADA

and

(n)gryafal e" @G0 — (b + Y)ai(01— 1)+ (82— 1)]
(5.32) —3nlai(6:—1)+a;(6,— DI}

b Y (0 1)+ (6,—1)
=K (n; 01,02, ¢, ¥; @,) =(n)gsyaia) e R

By (5.8) and (5.14),
(5.33) a0=M{1+O[6—(H—)]p} asn->0 and a;=ao,
n n

(n)y=n"[1+01/n)), «a;=0[8(n)/n], and na}=0{8n)]/n},

whence, by (5.31),
(5.34) J(n, 6, ¥, a;) = (na;)? e~ 1>(1+o{[‘5(”)] })
and similarly, by (5.32),

2
(5.35) K(n; 61, 02; ¢, ¥; @i, @) = (ne;)® (ney;)* e"“"“"_m"""“’f”(l + O{@ZA}).

We note, further, that the correction terms for ¢ =0 and =0 in (5.26) and (5.27)
are never of higher asymptotic order than the main terms, found in (5.34) and (5.35).

In calculating E[T,4], we may distribute the sum over the cells C; among the
several J-terms of the corresponding expression of (5.23). For jeHo, there is no
contribution; for j € H;, each term equals J(n, 0, , ao) and there are N; such terms;
and for j € H,, when # is sufficiently large, we see by (5.34) that the contributions are
somewhat smaller, since the J-terms are monotonically increasing with «;, and «; = a,
by (5.33). Thus, by (5.13), (5.17), (5.33), and (5.34),

Z"(naedfaa]) NlJ(n 0!//,010)-*- Z J(n 0'1/,%)

jeHz

(5.36) [5(n)]"*
= n[s(n)]*"! e(e—1)8(n>(1+0{ r:;” }>’

since e(O—l)naO — e(O—l)S(n) eO{[S(n)]D“"/nD} = e(O—l)G(n)(l + O{[S(n)]p-O'l/np}’ [6(”)]2/}1 —
o{[8(m)FP*/n"}, g=1-p, and [8(n)/n] = o{[8(n)"""/n"}. It follows at once from
(5.18), (5.23), and (5.36) that

E[T,]=AP,, jg J(n,2,2, a,-){ 1+ O[Ezln_)]}

=Anén) e‘s("){1+0[8()]}

since the terms in P,, dominate the result, and the terms of next highest order arise from
Pi, and are of the order of ne®™ (a factor 1/8(n) lower), and since [8(n)]"*"/n” =

(5.37)

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 41

0[1/8(n)] (because [8(n))*/n” ={{8(n)1**""/n} =o0{[e**"™/n)’}>0 as n->o0, by
(5.12)).

Similarly, by breaking up (5.19) into a single sum }.;and adouble sum ¥, ', and
calculating the asymptotic form of each term, we can obtain the corresponding form of
var [T,]. By (5.23), we get that

M

var (7] = £ (EHHAC)P]-{ELAC))Y)

j=1

M-1 M
+2 5 3 (E[ACHAC)-E[HAC)IELAC)])

i=1 j=i+1
2

5.38) =3 A2(S 3 Qulin, 6,0, a) {) z Paod (n, 6,0,)})

¢=06=1

— 2 2 2 2
+2 Z Z A2 Z Z Z 21P¢01P¢02(K(n;01, 02;¢, (,[/;ai, a])

i=1 j=i+1 d=0¢=06,=160,=

_](n, 01, ¢9 ai)J(n, 02, l!’) al))'

By (5.36), we see that the contribution of the terms arising from the E[{t(AC; W] is
dominated by the terms with coefficient Qu4: these yield 16A2n[6(n)]3 38(m)
(1+O{[86(n))*"/n"}), with the terms of next highest order coming from Q-4 and being
of the orderof n § (n) ¢>*™ The terms arising from {E[#(AC;)]}* are dominated by those
with coefficient P3,, and (by an argument analogous to that from (5.34) to (5.36)) these
yield a contribution of the order of n[8(n)]> ¢*", which is therefore asymptotically
negligible. Thus, as in going from (5.36) to (5.37), the single sumin (5.38) is asymptoticto
16A2n[5(n)T 2™ (1 +O{1/[8(n)).
Turning to the double sum, we observe by (5.26) and (5.27) that

K(n; 61, 02; &, ¥; ai, ;) —J (n, 61, ¢, @:)J (n, 62, ¢, ;)
= () psvatal{{1+a(0:- D)+ 8- DI =8 [l +ai— =]
(5.39) —8pol1—a;+a;(82— 1)]" ™Y = 840 8yoll — i —;]"}
—(n)g(n)yafal{{1+a;(6:— 11" —840[1— a]"}
){[1+a;(8,—1)]" ¥ = 8,01 —;]"}.

Note by (5.20), (5.30), and (5.33) that (n),=n‘[1+0O(1/n)], {1+0[8(n)/n]f* =
1+0[6(n)/n], (1+2)" “=e"(1+0{6(mn)/n}) if z=0[6(n)/n], for any ¢
independent of n, and that the residue of greatest order is O{[8(n)T*/n}, while, if
x=0[8(n)/n]and y = O[8(n)/n], then

1 " 8(n)]*
txty)] =[l—xy+xy(x+y)—'--]"=l—nxy+0{[;nz)] }

R ey

42 J. H. HALTON AND R. TERADA
Thus, solongas¢=1and ¢y =1,

K(n; 01, 02; ¢, l//; ajy aj)_J(n, ela ¢, ai)](n, 02, d” a]')

n

(5.41) x[o(l)Jr(l(j:)f;{l)::)‘f_w
= o{[5(n)]4>+¢e<91+92—2)s<n)}(1+O{[a(,:l)p]”l})o{[s(n)]z}'

n

- 1] (where x = na;(6,—1), y = na;(0,— 1))

The dominant contribution to the double sum thus arises from terms with the coefficient
P2,: these are less than M? in number, so that the contribution will be
0O{n[8(n)]* **™}, which is again asymptotically negligible in comparison with the
order of magnitude of the single sum in (5.38). Therefore,

(5.42) var [T,]=16A%n[6(n)T 38(n)(1+0{[5(P })

(v) We may now complete the proof of Theorem 2. First, we note that, for any
€ >0 and all sufficiently large n (say, n Zno(e)), by (5.37)

(5.43) |E[T4]- And(n) ™) §§An6(n) ™.

Next, we use Chebyshev’s inequality with (5.12), (5.42), and (5.43) to obtain that

T,
P b(————— =)
ro And(n) e®™ l|=e
T4 - E[T4] £ E[T4] ' £
=P b(—— o3| == ————1 é—)
ro And(n) e®™ 2an And(n)e®™ 2
_ T,—E[T,) <£> -
—PrOb(A—nS(n)es‘") =5 for all n = ne(e)
(5.44) (T.]
var (14
[(A/2)n5(n) & F (Chebyshev)
5(n)
~1—(i—2)m——>1 as n >0,

Thus, T4/An8(n) e®™ -1 in probability as n - 0, or
(5.45) T.~And(n)e®™ in probability as n - .
Now, we have already shown that Ty, T,, T3, and T are all o[n\/a-(n)log ~/a(n)]

with certainty as n->o0 (see (5.1)-(5.4)). Therefore, since &§(n)=Ilogvo(n) and
e’ = ~/a-(n), by (5. 12), it follows that the total time taken by the algorithms to

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 43

compute a tour of A will be
5
(5.46) Y T,~AnvVo(n)logvo(n),
r=1

in probability, as n > 0. Q.E.D.

6. The algorithms are accurate.

THEOREM 3. With probability one (that is, almost surely, a.s.), the length ly(A) of
the tour of the n points of A generated by Algorithms A and B is asymptotic to the
minimal tour length [(A) ~ Bv(E)’n’.

Proof. (i) Since I(A) is defined to be minimal, and since (by Theorem 1) the
algorithms define a tour of the set A, we have that its length

6.1) l(A)Z(A).

(ii) By (5.14),

0 AK n 17 4
(6.2) AM ~/k+3~v—(-ig);[6—(—n—)] vk+3=0(n asn->o0,

so that, by (4.4),

6.3) h(A)< AZJ I(ACj)+0(n?) asn->00,
i=1

j=

Now consider a minimal tour (A, 7) of A and let P denote the polygonal path
AjA, - A, (thatis,let XePiff (3je{l,2,---,n}) (Ax)0=x=1land X =xA; +
(1—x)A;), where the points of A are so numbered that Agmr Ay mA 7 - - TA, = Ao.
Let P; be the union of the closures of all connected pieces of PC; containing at least
one point of A. Then the number of such pieces will be

(64) hi = n; = N(AC,),

and the sum, /;, of the lengths of these pieces will satisfy
M

(6.5) Y L=IA).
j=1

The end-points of the pieces of P; all lie in the boundary of C;, which consists of 2k
faces Fir (f=0,1,---,2k—1; with F;2, =Fjo); let E; be the set of end-points in Fj.
We shall form a tour (U, v;) of all the end-points, consisting of a tour (Vj, vy) of Ej,
for each f, each connected to the next tour V;.1, by a chord whose length cannot
exceed the diameter of C,,

(6.6) AC;) =AM "k,

It is proved in BHH, by a nontrivial combinatorial argument, that a tour (T}, ;) of
AC; may be constructed by alternately traversing parts of U; and pieces of P; in such
a way that [P; is traversed just once and U; not more than twice. This means that

(6.7) HAC)=UT),) =5+21(U; v)).

44 J. H. HALTON AND R. TERADA

(The interested reader may find the above-mentioned proof under Lemma 2 in the
appendix of BHH.) We note that

2k
(68) I(IU,', v")éf‘él l(\/,‘f, ij)+2kA(Cj).

(iii) To construct (Vs v), we proceed as follows. First, we dissect the face [of
C; whichlis a (k —1)-dimensional hypercube of side AM %, into L equal cells of side
AM™PL™", where p'=1/(k —1), just as in applying our algorithms, taking L” to be
an even integer; thus we may construct a tour of the cell-centers of length LAM ~°L™" R
using Algorithm B. Then for each cell we insert any point of Ej therein into the tour,
by connecting it to-and-fro to the nearest point of the tour, thereby increasing the
length of the path by no more than AM "L ™"Vk —1 for each point of E;. Then

(6.9) I(Vy, i) SAM P[LY P + byl "V — 1],
where

2k
(610) hif = N('Ejf), f;l h,' = 2hl

We now observe that

3 <0 if L<L,,
(6.11) 5Z[L,l'""+h,.f1:"\/k—1]=0 if L=L,,
>0 if L>Lo,
where
V-1
(6.12) LF[W]””-

Choose L to be that integer multiple of 2%1 satisfying

(6.13) Lo=L<Lo+21

hence, by (6.9),

_Nk=1\"" _[(k-1)>*? _
(6.14) IV, vig) =AM p(—lzjz—) hi® [ﬁ his + 2k 1] ,
or, more simply,
(6.15) I(Vys, i) SAM P (Rih§ + Sehi”),

where q¢'=1—p’ and R, and S, are constants depending only on k.
(iv) We may now combine the foregoing results to yield the following (the
subscripts attached to = and < signs refer to the justifying assertion; e.g., the first

FAST EUCLIDEAN TRAVELING SALESMAN ALGORITHM 45

=, refers to (6.1) and the first <j refers to (6.3)):

0=1lo(A)—I(A)<3 Z I(AC))+o(n")—1(A)

j=1

M M
= Y L+2 Y (U, v)+o(n*)—1(A)
j=1 j=1

M
=52 ¥ (U, v))+o(n?
i=1
(6.16) v ok
=52 Z Z (Vg vie) +2k Z A(C))+o(n?)

M 2k
2% Y WV, vy)+2k>*AM +0(n)
ji=1f=1

M 2k M 2k
=<—_152)¢M""(Rk L L AY+S L T Ay)+2k3/2)\M"+o(n").
i=1f=1 i=1f=1

We must remark that the bound (6.15) becomes infinite if h; = 0; but if there are no
end-points in Fj, then there i is no need to tour that face, and /(V, vjr) becomes zero.
Thus not only Aj but also h;” should be interpreted as 0 in (6.15) and (6.16), when
hj=0. Therefore since h; must be a nonnegative integer, we may replace h;" in
(6.16) by 1 without decreasing the bound. Further, when 0<q' <1, we may apply
Holder’s inequality to the sum of h}‘,c' to yield that, because p'+q' = 1,

M 2k M 2k M 2k M 2k a
Z Z h?fzz Zl é(z Z 1/P> (Z Z (hq 1/‘1>
j=1f=1 j=1f=1 i=1f=1 i=1f=1

6.17) o 2k o
=@M (L % y) Sroe kMY Q0.

(When k=2, and so p'=1 and q' =0, the sum on the left of (6.17) becomes 2kM,
and the bound on the right becomes 2kM also; so that (6.17) still holds.) Applying
these results to (6.16), we obtain that

(6.18) 0=Io(A)—I(A)<2AM [2R, (kM)” n® + S, 2kM)]+2k>*AM* + 0(n?),

and since, by (5.14), M = O[n/8(n)]= o(n), we have that M®=0(n") and M" Pn% =
0(n”"n")=0(n"). Thus, finally,

(6.19) 0=1(A)-I(A)<o(n?) asn->00.

(v) To complete the proof of our theorem, we observe that BHH have proved
that (1.2) holds with probability one, when the set A is taken to be P", the first n points
of the infinite sequence P, distributed independently and uniformly in the set E. Since,
under these circumstances,

(6.20) I(A)=0(n? asn->o,

46 J. H. HALTON AND R. TERADA

we may conclude that
(6.21) lo(A)~I(A) as n->o0. Q.E.D.

Acknowledgment. We are grateful to referees for some helpful suggestions which
have been incorporated in the present version of HT. Our main results are the same;
but we have rearranged the material, made a few changes in the presentation, and,
in reviewing the paper, have taken the opportunity to refine and simplify both the
algorithm and the proofs of its speed and accuracy.

REFERENCES

J. BEARDWOOD, J. H. HALTON, AND J. M. HAMMERSLEY (1959), The shortest path through many
points, Proc. Cambridge Philos. Soc., 55, pp. 299-327.

R. E. BELLMAN (1962), Dynamic programming treatment of the traveling salesman problem, J. Assoc.
Comput. Mach., 9, pp. 61-63.

M. R. GAREY, R. L. GRAHAM, AND D. S. JOHNSON (1976), Some NP-complete geometric problems,
Proc. 8th ACM Symposium on Theory of Computing, pp. 10-22.

M. R. GAREY AND D. S. JOHNSON (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco.

J. H. HALTON AND R. TERADA (1978), An Almost Surely Optimal Algorithm for the Euclidean Traveling
Salesman Problem, Tech. Rep. no. 335, Computer Sciences Dept., University of Wisconsin.

M. HELD AND R. M. KARP (1962), A dynamic programming approach to sequencing problems, SIAM J.
Appl. Math., 10, pp. 196-210.

R. M. KARP (1977), Probabilistic analysis of partitioning algorithms for the traveling salesman problem in
the plane, Math. Oper. Res., 2, pp. 209-244.

P. D. KROLAK, W. FELTS, AND G. MARBLE (1970), Efficient heuristics for solving large traveling salesman
problems, Proc. 7th Internat. Symposium on Mathematical Programming.

S. LIN AND B. W. KERNIGHAN (1973), An effective heuristic algorithm for the traveling salesman problem,
J. Oper. Res., 21, pp. 498-516.

C. H. PAPADIMITRIOU (1977), The Euclidean traveling salesman problem is NP-complete, Theoret.
Comput. Sci., 4, pp. 237-244.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0004 $01.00/0

DYNAMIC PROGRAMMING IS OPTIMAL FOR
NONSERIAL OPTIMIZATION PROBLEMS*

ARNON ROSENTHAL*

Abstract. We consider discrete optimization problems in which the only exploitable feature of the
objective function is a limited form of decomposability. ‘“‘Nonoverlapping comparison algorithms” are
defined as a model of procedures which decompose the problem and apply Bellman’s principle of optimality.
Nonserial dynamic programming (DP), a simple elimination procedure, is shown to be optimal among all
nonoverlapping comparison algorithms, including nondeterministic algorithms. These results can give an
exponential lower bound on the shortest admissible proof that a solution is optimal. Furthermore, if part
of the search space is ruled out, a subset of the comparisons made by DP optimally searches the remainder.
We suggest that the running time of DP is a useful measure of the “interaction complexity’ of a problem,
and that because of its simplicity DP is of practical as well as theoretical interest.

Key words. nonserial dynamic programming, optimal algorithms, lower bound, exponential time,
comparision algorithms, perfect elimination graph, decomposition, complexity, dynamic programming.

1. Introduction. An interesting, very general optimization problem is defined
and extensively explored in [2]. An objective function is defined as a sum of terms,
where each term is a (tabulated) function of only a few of the variables. In the restricted
case where each term shares one variable with its predecessor and one with its
successor, the problem has a serial structure and may be solved by ordinary serial
dynamic programming. The unrestricted case is much harder (in fact, NP-hard), but
problems with a favorable pattern of term interactions may be solved efficiently by
the nonserial dynamic programming algorithm of [2]. Our major result is that nonserial
dynamic programming is, within its class, an optimal algorithm for this problem. [2]
does not define a formal model of computation, and obtains much weaker optimality
results.

Let xi,x2,* '+, x, be variables, each of which has a finite domain D; The
optimization problem is to assign values to x;, x5,°*:,x, SO as to minimize
flxy, x2, 0+, x,) =Y fi(X;), where X; = {x1, - -, x,} and f; is a function over the vari-
ables of X;. An example function is f(x1, X2, X3, X4, X5) = f1(x1, X2, X4) + f2(x3, x4) + f3(x3,
xs). The functions f; are called terms. Our theorems assume that domain sizes may
differ, but when giving explicit operation counts, we assume that all variable domains
have the same size, denoted |D|.

2. Instances of the optimization problem. Many important problems are express-
ible as special cases of the optimization problem. Thus, a single optimization technique
and program may be used for all such problems. The optimization problem is a
particularly good model for problems with no apparent exploitable features except
for decomposability. Some possible applications are listed below.

(1) Complex versions of some familiar problems. Set cover, satisfiability, vertex
or edge cover and vertex coloring are classical problems for which sophisticated but
exponential algorithms have been developed. In practice, it is frequently necessary
to solve the problem with special local constraints and extra weights. In these cases
the special purpose techniques may not apply. The optimization model which will be
presented can handle the additional complications.

* Receivedbytheeditors April 19,1979, and infinalform March 3, 1981. Thiswork was partially supported
by a Rackham grant from the University of Michigan and by the National Science Foundation under grant

MCS77-01753.
+ Sperry Research Center, Sudbury, Massachusetts 01776.

47

48 ARNON ROSENTHAL

(2) Routing traffic in communications networks [4].

(3) Many problems can be formulated as: Given a network, assign numbers (e.g.,
potentials) to the vertices so as to minimize the sum of the edges’ costs. The cost of
an edge is an arbitrary function of the potentials of incident vertices. A few examples
are:

(a) The network represents the pattern of city streets, and the vertex numbers
represent the (relative) timing of traffic lights. The cost of an edge is a complex
(queuing-related) function of the difference in timing at the edge’s incident vertices [1].

(b) The vertex labels represent voltages in a circuit, and the edge costs are the
amount of power dissipated as a function of voltage drop.

(c) In a fluid-flow network vertex labels represent pressures, while flow rate and
pumping cost depend on the pressure drops [12].

(d) For task scheduling, the vertices represent tasks to be assigned time slots,
and the edges represent the cost of collisions between tasks, delay between related
tasks, etc. The restriction to only two-way interactions is unnecessary—the optimiz-
ation model can allow multiway interactions.

(4) Multi-dimensional smoothing for pattern recognition can be formulated as a
discrete optimization problem, even if the loss function which measures the merit of
an approximation is quite complicated [2].

(5) Some algorithms for analyzing probabilistic networks and combinational
circuits are very similar to the nonserial dynamic programming algorithm considered
here [9], [10].

The optimization problem is NP-hard, even if each term is required to be a 0-1
function of two 0-1 variables. (The reduction from max 2-satisfiability is immediate.)

3. Nonserial dynamic programming. In this section we present the nonserial
dynamic programming algorithm (denoted DP) for the optimization problem. Let f
be the objective function. Suppose f(-)=Y fi(+); the dot represents the arguments
which we prefer not to list explicitly. Renumber the terms so that the terms involving
x1 are numbered f,, f,+1, * '+, fo Let y1, * -+, y, denote the variables appearing
in terms {fli=p}, not including x,. Now consider ;. ,fi(+) to be a single
term h(x1, y1, ¥ =Luzpfo 50 f()=Xipnfil-)+h(x1, y1,7°+,yq). In this
expression, x; appears only in 4. Given any assignment of values for y;, - - -, y,, it is
optimal to use the value of x; which will minimize A. (This is Bellman’s principle of
optimality.) To eliminate x; from the objective function, we replace A (i.e., all the
terms involving x,) by

h*(yla T Yq):= min h(xl, Y1, RS yq)-

{valuesof x1}

DP now eliminates the remaining variables one at a time in an analogous manner.
We shall always assume that the variables have been renumbered so that the order
of elimination is xi, - - +, x,,. The elimination of x; will henceforth be called “‘stage j”’,
and the terms (tables) computed at that stage will be denoted 4;(+) and A} (-). The
computational cost is the time to compute 4 *, namely (|D|— 1) comparisons for each
of |D|**q entries in h*. There may be some fill (i.e., variables together in A* which
were not previously together in any term).

The ordering of the variable elimination will affect the running time of the
nonserial dynamic programming algorithm, because fill is order dependent. DP (Q)
shall refer to the nonserial dynamic programming algorithm with the variables num-
bered according to Q.

NONSERIAL DYNAMIC PROGRAMMING 49

The process may be summarized as:

ALGORITHM DP (Q)
1. Renumber the variables according to ordering Q.
2. For i =1 until n eliminate x;.

The appendix explores the properties of DP.

4. Graph-theoretic definitions. Considerable development is needed before we
define our class of algorithms. We adopt the interaction graph of [2] as a natural way
to exhibit the interaction pattern of variables in the objective function. Figure 1 will
illustrate the definitions. The graph is denoted G =(V, E). It has a vertex for each
variable; vertices x and y are adjacent (denoted x ~y) if and only if they appear
together in a term of f (see Fig. 1). G, Dy, -+, D, and Q determine the number of
comparisons performed by DP(Q). The actual values of f; are irrelevant.

Henceforth, ‘““sets” will refer to sets of variables, and the words ‘“‘vertex’ and
‘“variable” will be used interchangeably. Let S;, S and S be sets of vertices, and let
v be a vertex.

S1~S, (read ‘S is adjacent to S,”) if there exists a vertex v; in Sy, and a vertex
v3 in S, such that v; ~ v,. v ~ S means {v} ~ S. By convention, v ~ v.

Nb (S) (read “the neighbors of §*°) ={v& S|v ~S}. (In Fig. 1, Nb ({x1, x2}) = {x4}
and Nb({x2, x3}) = {x1, x4, xs}.)

Int (S) (read “the interior of S”’) = {v € S| all vertices adjacent to v are in S}.

Bo (S) (read ‘“‘the boundary of §*’) =S —Int (S).

S’ ={v|v ~ 8§} =S UND(S). Sets created by the prime operator are called ‘“‘primed”’
(e.g., S").

S and S, are nested if and only if one is a subset of the other.

Consider the subgraph of the interaction graph induced by the vertices
{x1, x2, - - -, x;}. The subgraph’s connected component which contains x; is denoted
“C;.” InFig. 1, C, ={x1, x,} and Cs = {x3}. The variables in 1} are exactly the variables
in Nb (C;). (This result appears in [2, p. 33], in a different notation.)

X2

X4 X3 Xs

F1G. 1. Interaction graph of f = f1(x1, x2, x4)+ f2(x3, x4) + f3(x3, x5).
Int ({xy, x2, xa}) = {x1, x2};
Bo ({x1, x2, x4}) ={x4};
Nb ({x1, x2, x4}) ={xa};
{x1, x2, xa} ={x1, X2, X3, xa};
Ci={x1}, C2={x1, x2}, C3={x3}, C4={x1, x2, x3, x4};
Cs={xy, x2, X3, x4, Xs}.

5. Comparison algorithms. An assignment to a set S assigns a value to each
variable in S, and may be denoted A(S). Two assignments A(S) and A,(S) are
comparable if identical values are assigned to all vertices in Bo (S5), i.e., to all variables
which appear in a term containing unassigned variables. A{(S;) extends A,(S>) if
S,<= S; and A, agrees with A, at each variable in S».

Given an assignment A(S), define the objective-value of A(S), [denoted f(A(S))]
as Y, (f;(A(Xj;))), where the sum is over terms satisfying:

50 ARNON ROSENTHAL

(i) X <8 (i.e., every variable in X; is assigned a value).

(ii) X;ZBo (S). (Terms using only boundary variables are omitted because for
comparable assignments, these variables will be assigned identical values, and hence
will not affect the outcome of the comparison.)

Comparisons. Given a set of variables and an objective function f, a comparison
compares the objective-values of two ‘“‘comparable” assignments. The loser of a
comparison is the assignment with the inferior (numerically higher) objective-value.
Ties are broken lexicographically. For comparable assignments, Bellman’s principle
of optimality implies that any extension of the loser will be inferior to the corresponding
extension of the winner. The optimum of each variable assignment cannot extend the
loser of any comparison. A comparison of assignments to S will be denoted
A1(S): Ax(S), or Awin(S): Aiose(S). S is called the carrier of the comparison. Int (S),
the set where comparable assignments may differ, will be called the arena.

The decision tree model will be used to decide ‘‘comparison algorithms.” A
comparison algorithm is designed for a fixed set of variables, with fixed domains, and
a fixed interaction graph. The input consists of the term domains X; (consistent with
the interaction graph) and a term value for each assignment to the variables.

A comparison algorithm is a rule for choosing comparisons to perform. As a
result of each comparison, all extensions of the loser are struck from a (conceptual)
list of {all total assignments}. (Our model ignores the actual bookkeeping for strikeofTs.)
The algorithm halts when only the optimal assignment survives all strikeoffs. For a
fixed objective function, a collection of comparisons which strikes off every suboptimal
total assignment is called a verification ; it verifies the optimality of the survivor.

Henceforth, collection shall mean ‘“‘collection of comparisions.” The cost of any
collection a is the number of comparisons. The cost of an algorithm on a function f
is the cost of the verification produced for f. The appropriateness of this cost measure
is addressed in later sections.

Formally, given an interaction graph G and the domain a comparison algorithm
is a binary decision tree such that:

(i) The two edges descending from each internal node of the tree represent two
assignments which are comparable for functions with graph G. The node itself rep-
resents a comparison whose result determines the choice of downward edge.

(ii) The comparisons along any root-leaf path supply a verification.

DP actually refers to a class of algorithms; to define a specific algorithm it is
necessary to specify the variable ordering, interaction graph and domains of the
variables. DP algorithms may be identified with comparison algorithms as follows:
DP eliminates variables and compensates by altering terms of the objective function.
[2, p. 33] shows that the value for 4} on an assignment to {x;}UNb (C)) is equal to
the original objective f on the best extension of A to Cj. In this sense, the operation
of DP on any problem is isomorphic to a comparison algorithm.

6. Main results.

DErFINITION. The sets S; and S, are said to overlap if (i) S; and S, are not nested,
and (ii) some term f;(X;) is included in the calculations of objective-values for both
S1 and Sz.

LeEMMA 1.1. T} and T5 overlap if and only if they are not nested, and T, ~ T>.

Lemma 1.1 and many other simple results about graphs and overlap will be
needed. Notation like G1 or O2(i), refers to a list of such results at the start of the
appendix. Lemma 1.1 appears there as property O2(i).

We are principally concerned with nonoverlapping algorithms.

NONSERIAL DYNAMIC PROGRAMMING 51

DEFINITION. Two comparisons overlap if their carriers overlap. A collection of
comparisons, (also a comparison algorithm or a verification) is called overlapping if
two of the comparisons overlap. Otherwise the collection, algorithm or verification is
called nonoverlapping.

Consider a family of sets {T, T5, - - '} such that any two sets are nested or disjoint
(see Fig. 2). We define ‘“‘innermost-out” orderings on the variables, as follows:
Reordering if necessary, assume T; < T; only if i <j. Now choose any ordering of
{x1, "+, xn} such that for every i, variables of T, -, T;—; precede variables of T;
not in the previous sets. If the family is {the arenas of a nonoverlapping collection
K}, the ordering will be denoted Q(K).

FIG. 2. Suppose T1={x1}, To={xs}, Ts=1{x1, xa}, Ta={x1, X2, X3, X4, xs}. Two acceptable orderings
are [x1, X2, X3, X4, xs5] and [x1, X3, X2, Xs, X4].

LEMMA 1.2. Suppose C; ~ C;, where i <j. Then C; = C}.

Proof. Recall that C; denotes the connected component of {x;,: -, x;} which
includes x;. If C; ~ C,, then C; U C; is a connected subset of {xi, - - -, x;}. Since C; is a
connected component of {xy, - - -, x;}, C; = C;. By G2 (in appendix), C; = C;. QED

DEFINITION. A carrier S is reduced if every vertex of S is in a term with an
interior vertex, and Int (S) is connected. ([11] shows that there is no benefit to using
nonreduced carriers.)

THEOREM 1 (Nonoverlapping sets theorem).

1(A). DP is nonoverlapping, for every ordering (i.e., no verification produced by
DP has overlapping carriers).

1(B). Let K denote a collection with reduced carriers. K is nonoverlapping if and
only if each carrier of K is a carrier of DP (Q(K)).

Proof. The carriers of DP are the sets C;. Lemma 1.2 and O2(i) imply that C;
does not overlap Cj}, so 1(A) is proved. If a collection has no pair of overlapping
carriers, all subcollections are nonoverlapping. Thus 1(A) implies the (<) direction
of 1(B).

The other direction is proved in the appendix.

Consider any objective function f with graph G and variable domains Dy, - - -, D,.
Let Q* denote the DP elimination ordering which minimizes the number of com-
parisons performed. (Recall that the number of comparisons performed by DP for a
function f depends only on G, |Dy|, - - -, |D,| and Q*.) This leads to the following
result, proved in the appendix.

THEOREM 2 (Optimality theorem). For every such function f, DP (Q*) makes the
fewest comparisons of any nonoverlapping comparison algorithm. (Q* denotes the
optimal elimination ordering.)

52 ARNON ROSENTHAL

DP seems to be the most useful nonoverlapping algorithm for the general optimiz-
ation problem. The bookkeeping overhead for each comparison is reasonable. There
is no known efficient algorithm to find the optimal DP ordering Q%*, but [2] gives
heuristics which seem to find near optimal orderings. For the other algorithms presen-
ted in [2], the variable ordering problem seems even less tractable.

7. Other implications.

(1) Adaptive (i.e., nonoblivious) and nondeterministic nonoverlapping algorithms
have no advantage over DP. A nondeterministic comparison algorithm nondeter-
ministically chooses comparisons to perform until a verification is produced. Each node
of a nondeterministic decision tree has several pairs of downward edges; one of these
pairs is chosen. The cost on f is the length of the best verification obtainable (i.e., the
tree’s shortest root-leaf path which verifies f). Nonadaptive algorithms are “oblivious”
to the exact values of the functions. (See R4 in § 8.)

Such algorithms must still produce a proof of optimality, i.e., a nonoverlapping
verification (denoted VER) and VER must include as many comparisons as
DP (Q(VER)).

(2) The efficiency of DP for a particular problem can measure the complexity of
the problem’s interaction graph. If all variables have the same size domain, a good
measure of structural complexity is logp| (running time), which is nearly independent
of |D|, but depends on the interaction graph and the elimination ordering [2]. Loosely,
if the system consists of local clusters of interacting variables, connected in a skinny,
nearly treelike pattern, then DP will perform very well. A ladder network or star
network is appropriately skinny; a square grid is not.

(3) On some interaction graphs, an exponential lower bound can be obtained for
{all nonoverlapping comparison algorithms}. [5]shows that |D|" operations are required
by DP on any function whose interaction graph is an (n X n) square grid. Such functions
take O(2n’|D|?) space to specify, assuming one location is used for each value of
each term f. Hence any nonoverlapping comparison algorithm must take time
exponential in problem size, for any problem on such a graph. A complete graph
derived from 2-variable terms f; also yields an exponential bound.

(4) Familiar problems. Many of the familiar NP-complete problems (e.g.,
satisfiability or set cover) can be formulated as instances of our optimization problem.
Our theorem then provides a lower bound on nonoverlapping comparison algorithms
for those problems.

8. Overlapping and nonoverlapping algorithms. This section provides a qualita-
tive framework for comparing nonoverlapping algorithms, and compares out results
with the results in [2]. One reason to restrict consideration to nonoverlapping
algorithms is that they are easier to implement. We first consider two typical bookkeep-
ing operations:

(a) Determine whether A(T}) and A,(T%) agree on T} N T.

Assuming the test at (a) was positive, let Aunion denote the natural union of A,
and Az.

(b) Determine f(A ynion(T1 U T2)).

These operations are easy if 77 and T3 do not overlap. For operation (a),
A1(Bo(T})) and A,(Bo (T%)) are sufficient information if and only if T1 and T3 do
not overlap (by O2(iv)). These boundary assignments will generally be available, as
they are also needed to determine comparability. Similarly, to compute the objective

NONSERIAL DYNAMIC PROGRAMMING 53

value of the union, one adds the two constituents’ objective values plus perhaps some
additional terms defined on Bo (S;) UBo (S3).

In contrast, if T and T overlap, (a) requires that variables not on the boundary
be checked. The value assigned a boundary variable is fixed over all assignments in
each equivalence class of the comparability relation; nonboundary variables must be
explicitly checked. Operation (b) requires that terms using these additional variables
be computed, and also that terms duplicated in the objective values on T; and T
be subtracted from the sum. Thus, considerable additional information inust be
retained from ‘solved’ subproblems if later assignments may overlap.

DP verifications constitute a small subset of all nonoverlapping verifications. To
illustrate this, we will consider restrictions RO-R4 obeyed by verifications produced
by DP:

RO. The carriers are exactly the sets C; (where the variables have been numbered
according to some ordering Q).

R1. The carriers are a subcollection of the sets C; for some ordering Q. (For
reduced carriers, Theorem 1B implies that R1 is equivalent to ‘“‘nonoverlapping”.)

A key feature of DP is that it does all possible useful comparisons for Nb (C;)
before moving to the next stage assignments at stage j. It is difficult to express this
restriction for arbitrary comparison algorithms, since stages (and hence the sets Nb (C;))
are not defined. We define a comparison A;(Z):A,(Z) to be local to S if Z = S. Only
comparisons local to $ can strike off assignments to S. Define Fixed (§)={ve S| for
every comparison A;:A, local to S, A;(v) = A(v)}. (Undefined values are taken to
be equal.) An assignment A(S) is called a beatable extension of A(Z) if some other
extension to S has a better objective value.

R2. If VER includes A(S):A,(S), all beatable extensions of A (Fixed (S)) are
struck off. That is, VER finds the optimal extension of A (Fixed (S)) to S.

R3. If S is a carrier in VER, then all beatable extensions of A (Fixed (§)) are
struck off, and this is done for every assignment to Fixed (S).

R4. The algorithm is nonadaptive; i.e., for each fixed interaction graph, it is
oblivious to the numerical values of the terms. Its comparison strategy can be represen-
ted by a circuit with comparator units and fixed interconnections. See [13] for other
information on nonadaptive algorithms.

Verifications produced by DP can be shown to obey restrictions RO-R4. The
optimality theorem implies that DP (Q*) produces a verification which is optimal
among the class of all verifications obeying R1.

[2] defines two generalizations of DP, “elimination in blocks’’, which eliminates
several vertices at once, and a complex scheme called “‘regular multilevel elimination.”
Both generalizations obey R1-R4. (Nonregular elimination violates R1, but [2, Thm.
5.7.4] (or our Lemma A2) implies that nonregular schemes are no better than regular
ones.) Theorems in [2] show that there is a DP ordering which is only slightly higher
in (number of objective function evaluations) than elimination in blocks or multilevel
elimination.

Our optimality results are cleaner and stronger. First, by using (number of
comparisons) as our measure of work, we can show that DP is absolutely optimal
among our class of algorithms. (The difference between the measures is small; it stems
from the fact that finding the best of |D| assignments requires |D| evaluations and
|D|—1 comparisons.) More important, our class of algorithms is far wider: we have
shown DP to be optimal among comparison algorithms obeying just restriction R1
(i.e., nonoverlapping).

54 ARNON ROSENTHAL

9. Overlapping algorithms, DP and perfect elimination graphs. Elimination of
a vertex x; causes fill in the interaction graph if two of the neighbors of x; were
nonadjacent before the elimination. (They will be adjacent after the elimination.) An
ordering Q is called a perfect elimination ordering if DP (Q) causes no fill. (Perfect
elimination orderings were originally defined for elimination in systems of linear
equations.) We will now compare DP with verifications which may include overlap.
Let G denote any interaction graph.

THEOREM 3 (Perfect elimination theorem).

3(A). If Q is a perfect elimination ordering for G, then for every function with
graph G, DP (Q) produces a shortest verification.

3(B). If ordering Q is not perfect elimination for G, then for some function f° with
graph G, there exists an overlapping verification shorter than DP (Q).

The theorem is proved in the appendix. The function f° shown there for 3(B) is
degenerate in a way which can be exploited only if overlap is used. When the graph
is a square grid with n vertices on a side, DP must make O(|D|") comparisons [5],
but there will be an overlapping verification whose length is polynomial, O(n2|D|4).
Hence overlap can make a dramatic difference.

10. Remarks, open questions and future work. We conjecture that for every
interaction graph, there are some hard functions whose best overlapping verifications
are as long as those produced by DP. If this conjecture is true, then on most graphs,
none of our comparison algorithms can run in less than exponential worst-case time.

Many problems have additional structure (e.g., feasibility constraints) which rule
out many possible assignments. A generalization of the optimality theorem provides
some insight. Among nonoverlapping collections which strike off all remaining sub-
optimal assignments, some subcollection of the comparisons made by DP is smallest.
The dominance theorem in the appendix contains more details.

The practical meaning of this optimality result is not clear. DP is fairly easy to
implement, while it may be impractical to determine the appropriate subcollection,
or to bookkeep the strikeoffs. [2] suggests one way of extending DP to handle feasibility
constraints.

A decomposition procedure can be loosely defined as an algorithm which works
by “solving” subsystems containing only a subset of the variables, and replacing these
subsystems by an equivalent but simpler black box. To forbid later computations from
looking inside this box, we require that solved subsystems be nested or effectively
disjoint (here, nonoverlapping) and general properties applicable to other nonoverlap-
ping “‘disjoint decomposition’ algorithms (e.g., [3], [6]).

It would also be interesting to abstract properties of subsystems, boundaries and
overlap. Perhaps our detailed arguments about overlap would be clearer in a setting
more general than graphs (just as greedy arguments are simpler in matroids).

Some technical improvements might be made in the model [15] shows fully solving
is always optimal if we measure (number of comparisons) + (number of concatenations
of partial assignments), a more natural complexity measure than (number of com-
parisons).

We ruled out combining information from several comparisons to strike off
assignments not struck off by any single comparison. Such combinations can give
additional strikeoffs, but it is not known whether such operations can improve on DP.
However, lower bounds for algorithm classes much larger than {comparison algorithms}
will not be exponential. [7] and [8] show that for every objective function there exists
‘“a linear proof” (i.e., a verification in a broader proof system) which uses only O

NONSERIAL DYNAMIC PROGRAMMING 55

(number of term entries) comparisons. These short linear proofs cannot be found in
polynomial time unless P = NP.

Appendix.
Notation.
< —*“is a subset of’; = —‘‘proper subset’’.
S118,—“S1 and S, have nonempty intersection”.
Sl (0] 52—“51 overlaps 52”.
€ —*‘‘is a member of”’.
A slash through I or O will denote negation.
{x1} and {x,} will often be written without set brackets (e.g., x1).

A brief review of definitions follows.

A loser is a partial assignment which loses a comparison in the collection K being
considered. A set is called a carrier or arena (in K) if it is the carrier (arena) of a
comparison in K. Generally, T and T; will be used to denote potential arenas; S, S;,
T' and T; will denote potential carriers. Z will denote any kind of set. C; denotes
the connected component of the induced subgraph on {x, - - -, x;} which includes x;.
The connected components of C;—{x;} will be denoted {Cj;, Cj2, - - -}. Renumbering
if necessary, we assume DP always eliminates variables in the order x4, - * + , x,,.

We hope to clarify our proofs by gathering all the graph-theoretic results here.
G1, etc. refer to simple graph theoretic facts, and O1, etc. refer to facts concerning
overlap. All these facts are proved in [11].

Graph theoretic facts.

G1. For any j, let Cj;, Cj,, - -+, Cj; denote the connected components of C; —{x;}.
Then (Uy; Nb (C)) = Nb () U {x;}.

G2 T cT,> T’] c T'z.

G3. Suppose T11T,, T12T,, and T1 is connected. Then there is a vertex
x € Ty — T, such that x e Nb (7).

Qwerlap rules.

O1. The following are all equivalent: (i) Ty~ T»; (i) T1 I T; (iii) T1 I T3 ; (iv)
Ty NT5¢Bo(T1)NBo(T3); (v) some term is duplicated in objective values com-
puted on T and T5.

DerINITION. T and T3 are said to collide if the above conditions hold:

02. T} overlaps T5 if and only if T} € T5 and T5 & T and T collides with T5.

(““O2(iii)” shall mean O2 with case (iii) from O1.)

03. Let {T4, T5,- -} be a family of (distinct) nonoverlapping sets, such that
every vertex is in some T, and T;=1Int(T;). Then, for each v, there is a unique
smallest T; which contains v.

04. If S$1<S,and S0 Z and S, @ Z then Z < S,.

THEOREM 1 (Nonoverlapping sets theorem).

1(A). DP is nonoverlapping, for every ordering.

1(B). Let K denote a collection with reduced carriers. K is nonoverlapping if and
only if each carrier of K is a carrier of DP (Q(K)).

Proof. 1(A) and the (&) direction of 1(B) were proved in the text. We prove
(=) for 1(B).

Let T denote an arena in K and 7" a carrier. xy will denote the highest numbered
vertex in T. T is a connected subset of {x1, - * + , xi}, and Cy is defined as the connected
component of {xy, : * -, xy} containing xg, s0 T = Cy. To prove the theorem we need
only show Cy = T.

If Cy & T, then let x, be the vertex (existent by G3) which is simultaneously in
Nb (T') and in Cy. Let T; denote the unique (O3) smallest arena of K containing x,.

56 ARNON ROSENTHAL

T' and T are both carriers and thus do not overlap, but are adjacent (at x,); since
xp,2 T, by O2(i), we get T = T;. Hence T; must have followed T in the ordering of
sets which produced the variable ordering. No smaller arena contained x,, so all
vertices of T must have preceded x,. Hence H <p, which contradicts the definition
of H. QED

We now consider the properties of the comparisons associated with DP for some
fixed function f and the elimination ordering 1, 2, - - -, n. We say an assignment A(C7})
is beatable at stage j ift A(C}) is a beatable extension of A(Nb (C;)). This definition
is consistent with the use of ‘‘beatable” in R2 of § 8.

We now assume DP uses ordering x1, - - * x,,, and let j denote an arbitrary stage,
A an arbitrary assignment.

THEOREM A1 (Properties of DP).

DP1 (Strikes off all losers). Stages 1 through j of DP strike off all assignments
beatable at stage |.

DP2 (Acts at first opportunity). If A(C}) is compared at stage j, then it was not
beatable at any earlier stage. Equivalently, if A(C;}) is beatable at stage j, then no
extension of A(C}) is compared at any later stage.

Let A denote the best total assignment extending A osc(C i)

DP3 (Nonredundant). Suppose some comparison Aise(C}): Awin(C}) is omitted
from DP. Then Af. is not struck off by any remaining comparisons.

Proof of DP1 and DP2. Inductive hypothesis: Every assignment A beatable at
stages before j has been struck off at some stage 1,2,-- -, orj—1.

Now atstage j, for each A (Nb (C;)), DP compares the assignments A, (C}) obtained
as follows: For each v € Domain (x;), extend A(Nb (C;)) to {Nb (C;) U {x;}} by assigning
value v to x;. Let Cj;, Cp, * * -, C;, denote the connected components of C;—{x;}. By
G1, all vertices of (U,; Nb (Cj;)) have been assigned values. By the inductive hypothesis,
all beatable assignments to each C;; have been struck off, and only the single optimal
extension to C}, survives. Using the surviving assignment for each Cj, we can assign
values to all the vertices of C;—{x;}. Denote this assignment A,(C}). Clearly, no
assignments so formed could be struck off at an earlier stage, so DP2 holds.

DP compares the assignments A, (v € domain (x;)). To show DP1, consider any
assignment A (C;) which is beatable at stage j, but is not struck off at stages 1, - - -, j—1.
Let z denote A(x;). A must be the assignment A, since by the inductive hypothesis
and the assumption that A was unbeaten at previous stages, A agrees on each C},
with the optimal extension of A(Nb (C;)) to Cj. But then A = A, was compared with
the best extension of A(Nb (C;)) (which must have been A, for some other v). Hence
A(C}) was struck off at stage j. DP1 is proved.

LEMMA Al. Given a set Ty and assignment A(T), let A* denote the best total
assignment which extends A(T1). For a comparison with arena T, to strike off A*, it
is necessary that Ty and T collide.

Proof. Take the assignments A ,;,(T5) which beat A*, and form a total assignment
A° from Ain(T%) and A*({v|ve T5)). If T} and TS do not collide, then T, N T} B
Bo (T3) (by O2 (iv)). But for comparability, A;, and A* must assign the same values
to Bo (T4) so A%(T})=A(T}). Thus A° is an extension of A(T") which is superior
to A*, a contradiction.

Proof of DP3. Suppose Ak were struck off by a remaining comparison on a set
denoted T". It is clear from the definition of DP that T'# C;j. By Lemma Al, T’
collides with C}. Now if C} and T’ were nested and unequal, by DP2, the comparison
on the larger set would not take place. Hence, T" and C} must overlap. This contradicts
the fact that DP is nonoverlapping. QED

NONSERIAL DYNAMIC PROGRAMMING 57

DEFINITION. Given 2 collections Kpew and K, Knew dominates K if |Koew| = K|,
and K. strikes off every assignment which K strikes off. (K| is the number of
comparisons in K.)

DEFINITION. A comparison (or subcollection) k1 is replaceable by k in a collection
K if K U{k,}—{k,} dominates K. k; is uniformly replaceable by k, if it is replaceable
by k» in every collection K.

Dominance, ‘“‘replaceable in K” and ‘‘uniformly replaceable” are transitive.

LEMMA A2. Suppose A(S) extends A(Z), and that ks and kz denote comparisons
lost by A(S) and A(Z) respectively. Then ks is uniformly replaceable by k.

Proof. Every assignment struck off as an extension of the loser A(S) is also an
extension of the new loser A(T).

An assignment A(S) is 1-optimal if either x; is unassigned, or A(x}) is an
unbeatable extension of A(Nb (x;)). DP1 implies that the first stage of DP strikes off
exactly those assignments to x; which are not 1-optimal. A collection is 1-optimal if
every assignment evaluated is 1-optimal.

LeEMMA A3. Any collection such that no comparison overlaps x1 is dominated by
a collection Kpew=K'UK? such that K" includes only comparisons from stage 1 of
DP, and K2 is 1-optimal.

Proof. K,.w is obtained by the following algorithm:

For each comparison Ajese : Awin

If Ay, is not 1-optimal then reassign x; as the best value to extend A(Nb (x,)).

If Ajse is not 1-optimal then replace this comparison by the DP comparison

which strikes off Ajoe.

The replacement of A, makes all winners 1-optimal, but does not change the
identity of losers. The next replacement removes comparisons whose losers are not
1-optimal, and in place leaves comparisons from stage 1 of DP. By Lemma A2, the
new collection dominates the old. QED

1-optimal assignments correspond to assignments for the objective function
(denoted f?) obtained by eliminating x;. The elimination replaces h; by k¥ ; h¥ simply
assumes that the 1-optimal value of x; is used. In this way, K is isomorphic to a
collection (denoted K *(f2)) of comparisons for f>. Similarly, stages 2, 3, - - - n of DP
may be identified with the DP algorithm of f> (denoted DP? (f%)). The following
lemma now follows from the definitions.

LeEMMA A4. (i) If K strikes off all 1-optimal assignments for f then K 2fPisa
verification for f>.

(i) (x1, -+, x, is an admissible ordering for the original collection) = (x2,* - - , X
is an admissible ordering for K?).

THEOREM A2 (Optimality theorem). For every function f, DP (Q*) makes the
fewest comparisons of any nonoverlapping comparison algorithm. (Q* denotes the
optimal elimination ordering.)

Proof. We use induction on the number n of variables. The result clearly holds
for n = 1. For larger n, consider any nonoverlapping verification VER. Assume without
loss of generality that generality that (Q(VER)=xy, - - -, x,, Perform the construction
of Lemma A3. K' will include all stage 1 comparisons. By the inductive hypothesis,
K?(f?) is dominated by DP?*(f%), which corresponds 1—1 with the comparisons of
stages2, - - -, n. Thus [DP (x4, - - -, x,,)| =|K " U K|, which was constructed to dominate
VER. Hence DP can provide a shortest nonoverlapping verification for functions of
n variables, and the induction is completed. QED.

The dominance theorem below is a stronger form of the optimality theorem. We
have not yet found a simple proof; a long proof is given in [11].

58 ARNON ROSENTHAL

THEOREM A2’ (Dominance theorem). For every nonoverlapping collection K, there
is a subcollection of DP (Q(K)) which dominates K.

THEOREM A3. The verification produced by DP (Q*) is a shortest verification
(overlap permitted) if and only if Q¥ is a perfect elimination ordering.

Proof of Theorem 3. (®) Consider the following function and the following
(overlapping) sequence of comparisons. We shall show that the comparisons form a
verification which is shorter than DP.

The function: Suppose each variable’s domain consists of {1, 2, - - -, |D|}, where
|D|=2. Suppose the interaction graph was obtained from functions denoted f;(X;),
j=1,2,---. For each j, define a term of f° to be 7 e X, Xi f° is degenerate in that
for each j, the optimal value of x; is 1, regardless of the assignment to any other
variables.

The verification. As usual, assume the ordering is (xi, X2, * - -). Define Nb" (})
(Nb™ (j)) to be the neighbors of x; which follow (precede) x; in the elimination ordering.
The comparisons at stage j are formed as follows: For each assignment to Nb™ (j),
keeping Nb~ (j) assigned 1, compare all values for x;. x; =1 will always win. Given
an assignment A, let p be the lowest index such that x, is assigned a value other than
1. Then A will be struck off at stage p, when A(C}) loses to the assignment obtained
from A by assigning 1 to x,. Hence the collection is a verification.

Efficiency. For all i, Nb" (i) =Nb ({x;})—Nb~ (i) = Nb (C;). Now suppose Q is not
perfect elimination, so some fill edge (x;, x,,) is added during the elimination. Assume
j<w.Thenby[2, p. 33],x, € Nb (C;)and x,,& Nb" (j),s0|Nb" (j)| <|Nb (C;j)|. The work
at any stage i of the overlapping scheme is (|D|—1)*|D|**|Nb" (/)| comparisons, while
DP performs (|D|—1)*([D|**|Nb (C;)|). Thus at no stage does the overlapping
verification do more comparisons than DP, and at stage j it does less.

Proof of 3(B). First we need a lemma.

LEMMA AS5. Suppose x; can be eliminated with no fill. Then no set S' can overlap
X1.

Proof. If x collides with S’, then by O1 (ii), x; is adjacent to some vertex v& S.
Now since x; may be eliminated with no fill, all vertices of x; must be mutually
adjacent, and hence x1 So'. But v'c S’, so x; €', and there is no overlap. The
lemma is proved.

Now apply the construction and inductive proof from the optimality theorem.
That is, produce K' and K? and invoke the inductive hypothesis to replace K % by
stages 2, - - -, n of DP. We omit the details. QED

Conjecture. For every function, the best overlapping verification requires at least
as many comparisons as the scheme described in 3(A) (which is a verification only
because x; = 1 is always the winner for the degenerate function f°). That is, overlap
will do no better than remove the cost due to fill.

REFERENCES

[1] R. E. ALLSOP, Selection of offsets to minimize delay to traffic in a network controlled by fixed-time
signals, Transportation Sci., 2 (1968), pp. 1-13.

[2] U.BERTELE AND F. BR10SCHI, Nonserial Dynamic Programming, Academic Press, New York, 1972.

[3] R. M. KARP, Functional decomposition and switching circuit design, J. Soc. Ind. Appl. Math, 11 (1963),
pp. 693-718.

[4] A.KORSAK, A proposed algorithm for globally optimal nonlinear-cost multidimensional flows in networks
and some special applications, presented at Fifth International Symposium on Traffic and Trans-
portation, Berkeley, CA, June, 1971.

NONSERIAL DYNAMIC PROGRAMMING 59

[5] A. MARTELLI AND U. MONTANARI, Dynamic programming schemata in Automata, Language and

[6] H.

Programming, 2nd Colloquium, University of Saarbruecken, Lecture Notes on Computer Science,
14, Springer-Verlag, New York, 1974.

MINE, K. OHNO AND M. FUKISHIMA, Multilevel decomposition of nonlinear programming by
dynamic programming, J. Math. Anal. Appl., 53 (1976), pp. 7-32.

[7] J. MORAVEK, A note upon minimal path problem, J. Math. Anal. Appl., 30 (1970), pp. 702-717.

[8] M.
9] A”

[10] A.
[11] A.
[12] B.
[13] A.

[14] A.
[15] P.

RABIN, Proving simultaneous positivity of linear forms, JCCS, 6 (1972), pp. 639-650.
ROSENTHAL, Computing the reliability of complex networks, SIAM J. Appl. Math., 32 (1977)
pp. 384-393.

ROSENTHAL, Decomposition algorithms for probabilistic circuits and fault trees, submitted for
publication.

ROSENTHAL AND V. JECZEN, Additional proofs for dynamic programming is optimal for nonserial
optimization problems, working paper, available from the authors.

ROTHFARB, H. FRANK, D. ROSENBAUM, K. STEIGLITZ AND D. KLEITMAN, Optimal design
of offshore natural-gas pipeline systems, Oper. Res. 6 (1970), pp. 992-1020.

BORODIN, M. J. FISCHER, D. G. KIRKPATRICK, N. A. LYNCH AND M. TOMPA, A time-space
tradeoff for sorting and related non-oblivious computations, Proc. 20th IEEE Symposium on
Foundations of Computer Science, 1979, pp. 312-318.

ROSENTHAL AND P. HELMAN, A general theory of discrete dynamic programming, in preparation.
HELMAN, A new theory of dynamic programming, Ph.D. Thesis, University of Michigan, Ann.
Arbor, 1981.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0005 $01.00/0

ON THE EXPECTED PERFORMANCE OF SCANNING DISKS*
E. G. COFFMAN, Jr.t AND MICHA HOFRI#

Abstract. This paper describes and analyzes the SCAN policy, used to schedule read/write requests
at a moving-arm disk device, when fast response over the entire disk area is at a premium. An analysis is
presented which handles precisely the dependence structure between queues accumulated at different
cylinders. The arrival process of requests to each cylinder is assumed Poisson and homogeneous in time.
A relatively efficient algorithm for evaluating numerically the mean waiting time at each cylinder is presented
and its complexity analyzed. We discuss further extensions intended to capture additional details of realistic
situations. These include distributed record lengths, skipping unreferenced cylinders and letting successive
arrivals’ target cylinders be dependent variables.

Key words. disk system performance evaluation, disk SCAN policy analysis, movable-arm disk system
analysis

1. Introduction. The quality of service provided by a computing system depends
largely, if not critically, on the techniques it uses to handle its secondary memory
requirements. Thus, it is important to obtain a precise account of the performance of
these memory devices, and its dependence on the physical characteristics and methods
of operation. This paper presents such an account for a specific case—a disk-like
device used under the so-called SCAN policy.

The term “‘disk-like device” is intended to aggregate semirandom access devices,
on which the recording/reading mechanism can assume a limited number of positions.
From each position, only a section of the device can be serviced continuously without
further mechanical motion, excluding the rotation of surfaces. The following analysis
is expressed in disk terminology, which we assume is familiar. If further specification
of these devices is desired, references [7]-[8] may be consulted.

A disk is a nonrandom access device in the sense that it must perform a relatively
long operation, called a seek, between accesses to distinct cylinders. Thus the time
to process a batch of requests may depend on the order of service. The purpose of a
scheduling policy is to devise a processing order which optimizes a suitable measure
of performance. It is natural that the waiting time of a request is the variable most
often chosen as the basis of such measures, and thus its calculation is the main objective
of the analyses we present.

The simplest scheduling policy to implement, in terms of the required data
structures and hardware, is a linear first-come-first-served (FCFS) queue. It is easily
shown and intuitively clear that this results in many more, and relatively longer seeks
than alternatives require. Any improvement over FCFS requires keeping track of the
requests according to their target cylinders. Due to the relatively long time required
to perform a seek, most of the improved policies schedule all the requests for the
cylinder currently under the read/write heads before all other pending requests. Under
these conditions the scheduling of requests reduces to selection of cylinders. Scheduling
to reduce rotational delays, in the manner that is done for drums, is outside the scope
of this paper.

* Received by the editors September 29, 1978, and in final revised form February 18, 1981. This
paper is a revision of an earlier paper presented at the International Symposium on Performance Evaluation,
Stresa, Italy, 1977.

T Bell Laboratories, Murray Hill, New Jersey 07974.

i The Technion, Haifa, Israel.

60

EXPECTED PERFORMANCE OF SCANNING DISKS 61

There are two basic policies that have been adopted for the solution of this
decision problem. The first is SSTF, an acronym for shortest-seek-time-first. Under
this policy, after all the requests to the current cylinder are served, the arm performs
a seek to the nearest cylinder that has a waiting request. Under certain conditions
this policy is credited with achieving the shortest overall mean waiting time, although
no successful analysis has yet appeared. At the same time, however, the variance of
this time may be undesirably large when the input of requests is inhomogeneous in
time. These issues are further discussed in [4].

The second is SCAN. Under this policy the motion of the arm is organized so
as to reduce the variance of the waiting time when compared with SSTF. The sacrifice
made for this improvement is an increase in the mean waiting time. More specifically,
at any given time instant the arm is in one of two modes, “in”, or ‘“‘out”. When a
seek is required in the first mode, the arm moves toward the disk spindle until a
cylinder with pending requests is encountered. When no such cylinder exists, the mode
of the arm is changed and its direction of motion reversed. Arm movement in the
out mode is similar; thus the arm performs a shuttle service across the disk.

The SCAN policy and certain of its variants have been studied extensively in the
literature. Analyses based on approximations have been presented in [2], [7], [8] and
exact analyses of idealized models have been attempted in [1], [5]. However, in both
of [1], [5] errors have been found which also render these results approximate at best.

In the sequel we shall provide an exact analysis of the basic SCAN policy which
is based on results of Eisenberg [3]. This paper improves on the analysis in [3] in two
important respects: The derivation of all the major equations is via probabilistic
reasoning, and we propose a computational procedure to evaluate the quantities of
interest which is a major improvement over the one outlined in [3]. The next section
describes the mathematical model along with the necessary background results, and
in § 3 expressions for mean waiting times are derived. In § 4 a procedure for computing
numerical results is presented and its complexity analyzed. In the final section con-
clusions are drawn and a number of open problems outlined. In the Appendix we
collect the notation used in the paper.

2. The mathematical model and preliminary results. The scanning-disk model
developed below is the appropriate specialization of a model [3] in which multiple
queues receive periodic service in fixed but arbitrary cycles. In particular, the disk is
viewed as comprising M service points (cylinders) arranged along a line. At any point
in time the server (arm) is either located at one of these points (possibly performing
an I/O operation) or it is in motion between them (seeking). In this model, seeks are
done to adjacent cylinders only and require a time units. Each I/O operation requires
a constant, fixed amount of time, 7, to complete. Note that we make no distinction
here between reads and writes. Request arrivals for the mth cylinder constitute a
homogeneous Poisson process with rate A,.. The arrival processes to distinct cylinders
are assumed independent of each other and the state of the system. The order of
service at each cylinder is FCFS. Transition times between seek termination and
beginning of service, as well as between services are assumed to be zero.

Elements of the model. We describe arm motion in terms of stages. The arm
moves in cycles of stages numbered 1 to 2M —2; the correspondence between the ith
stage and cylinder m; is given by

(1) m:{i, 1=i<M,

2M —i, M=is=2M-2.

62 E. G. COFFMAN JR. AND M. HOFRI

Note that only one stage corresponds to each of cylinders 1 and M. Otherwise, stages
i and 2M —i correspond to the servicing of requests at cylinder m;, and a cycle through
the 2M —2 stages corresponds to a complete scan of the arm across the disk and back.

The main process we investigate is N(¢), the occupancies of the cylinder queues.
The state of the disk and the collection of queues is observed at instants when a
specification of the value of N(¢) and the position of the arm gives a complete (i.e.,
Markovian) description of the disk facility. A value of N(+) is denoted by an M-vector
n=(ny, ", ns). The specification of the position of the arm is explicit: We observe
the state of the system at stage terminations and define B} as the probability that
immediately after a stage-i termination the queues are in state /. These states describe
an irreducible aperiodic Markov chain.

We state without proof the intuitive claim that the chain is recurrent when
A= Zf:ﬂ Am <1/T, which is the same as requiring me <1, where p,, =A,,T is the
traffic intensity of queue m. Consequently, the states of the system at stage terminations
may be assumed to have the stationary probabilities 8;. Note that the recurrence
condition depends only on A and 7, and not on a. Indeed, the fraction of time the
arm spends seeking vanishes in the limit 2 p,, > 1. At the end of this section we will
be able to comment further on this point, following (16).

In order to calculate the probabilities we find it expedient to consider an additional
set of regeneration points, viz. stage beginnings, and define o ; as the probability that
immediately before a stage-i beginning the system is in state 7. The computational
tools are probability generating functions (pgf’s), e.g.,

0 0 o0
(2) B'(Z)=Y¥ X - ¥ Bazi'zz*:--zy,
n1=0 ny=0 np =0
with (%) similarly defined. Note that in (2) the sum over n,, contributes only when
nm, = 0 by virtue of its being a stage-i termination state, and thus could be suppressed.
The probability distribution function (pdf) of the numbers of arrivals
(n1, na, * * +, npr) to the M cylinders during a period with a pdf F(-) is given by

3) P(F;nl,‘-',nM)=J Gy l...(AMt)vM

t=0 nl! Apg

e MdF(1).

If L(-) is the Laplace-Stieltjes transform (LST) corresponding to F(-) then the pgf
of p(+;) is given by

@) p(F;Z)=LA1=A1z1* +Am — Am2Zm)
L(Z).

Note that L(-) has a vector argument.

Let A(s) and C(s) denote the LSTs of the seek and service periods, respectively,
with A (%) and C‘(z‘) defined in analogy with L(Z). Since these periods are in fact
constants we have

5) A =exp (—a L Anl —zm)), C()=exp (—TgAm(l —z,,,)).

Calculation of B'(%). Since the queues at stage beginnings comprise those requests
that were there at the last stage termination plus those that arrived during the seek,

EXPECTED PERFORMANCE OF SCANNING DISKS 63
and since these two components are independent, we have

s [BTI@AQ), i>1,
®) G R e
relating states “‘across’ a seek.

To obtain an equation satisfied by the B(-) alone we need to relate the states of
the system ‘‘across’’ a complete servicing of a stage. Let stage i of queue m;, start with
k., requests in the queue. If we restrict our view to this queue until it empties, the
analysis of a standard M/G/1 system applies. Denote by G, (+) the pdf of a busy
period in such a queue and by B,,, its LST. Then B,,, () satisfies the equation

(7) By, () = C(s + Am; = A B, (5)).

We use this relation later in § 4.

A “compound” busy period, which begins with k,,, customers present, is the sum
of k, i.i.d. such “‘simple”’ busy periods. Thus it has the pdf Gi",,f‘"‘" (+). Observing queue
occupancies when this stage terminates we find for the number, h;, of requests in
queue m at stage-i termination

®) B {0, m=m,

K +CAp; GE), m#m.

On the right-hand side, for m # m;, k,, is the number of customers at queue m when
stage-i started, and is distributed according to a’: c(A; F)is a variable distributed as
the number of events counted by a homogeneous Poisson process with rate A during
a period with the pdf F(-). Adapting (3) we may write p“)(G =i,) for the joint pgf
of this last variable over M —1 queues, excluding m;; the superscript signifies the
suppression. Thus

9) Bi=Ya k 5:‘). ™A= k),

=~

where the sum is over all k such that A=k componentwise (excepting the m;th
component), and A = k when k,,, = 0. Substituting for pP()

'_J.oo B (Amt)n"'_k"'
t=0

e "t] dGri (1)

m#=m; (nm - km)'
where k = /i should be construed as above. Multiplying by [],m, z,* on both sides we
obtain, summing on all n,

B'(2)=% II z/B:

n r#m;

-k
i k * —(A=A,,)t (Amzmt)"m " xk
=Yal I 25| e ol T 4Gk (e)
k t=0

AzZk m#m; (R —km)!

=Zafg I zfj exp(—(A=Am)t+ X Amzmt)dGﬁ'f"'r(t).
k t=0

m#m;

Performing the integration and noting that A —Ap, =3 mm, Am, ODE gets

B'(®)=Tak I1 2FBl; (T An-z),

r#Em; m#m;

64 E. G. COFFMAN JR. AND M. HOFRI

and summing over k we obtain
(10) B'(Z)=a'(z"),

where the superscript i over Z means that the m;th component is replaced by
B, (X ke sem, Ak — Akzi). Combining (6) with (10) we finally obtain

(11) B'(2)=B ' (zMNA ("),

which is the basis for the numerical calculations we shall develop. This equation could
also be used, as in [3], for the basis of a formal solution for the 8 functions, but as
this solution is of limited utility for us, it will not be presented here.

Refining the chains. The chain embedded at stage terminations gives a description
of the evolution of N(¢) that is too “coarse” to define the waiting times of individual
requests. To evaluate these, we embed in N(¢) a finer chain defined at service beginning
and completion epochs. These epochs are regeneration points for N(¢), and thus its
values there also constitute an ergodic Markov chain. Let 7r; ; be the probability that
a service termination occurs in stage-i, and the value of N just after the termination
is A." Following the relation between B5 and a’, we may relate m;; to the joint
probability w; ;, of observing the system just before a service initiation in stage-i and
at state . A relation similar to (6) between the pgf’s of ;; and w;,; is simple, since
they are related ““across’ a single service duration. Hence

_o(9)CE)

m;

(12) mi(2)

The remainder of this section is devoted to finding a relation between the = ;
and B%. The analytical development in [3] will be replaced here by one that exploits
somewhat more intuitive arguments.

We focus on the ith stage and consider observations made just after completions
of stage-i services and seeks from stage i/ — 1 to stage i, i.e., the union of those epochs
that define transitions of the chains described by m;; and a%. Next, suppose there
have been K requests served by the system. For large K, the number of epochs at
which state 7 occurred is approximately a'(K)ak+ K ,, where a'(K) was the number
of stage-i beginnings.

Now consider the epochs just after the beginnings of stage-i services and seeks
from stage i to stage i + 1. These have a one-to-one correspondence with the set of
epochs defined above, and correspond also to the union of the set of epochs of
transition of the chains described by w;; and B5. But from the point of view of these
latter epochs we have Bi(K)Bi+ Kw,; as the expected number of epochs at which
state i1 occurred, where 8'(K) was the number of stage-i completions. Thus, dividing
by K and taking the limit K - 00, we have by the law of large numbers

(13) YBii+wi,ﬁ=7aiﬁ+7Ti,ﬁ,

where y =limg . B (K)/K =limg o a'(K)/K is the limiting ratio of the number of
stage-i visits to the number of requests served, and must be the same for all i, since
each stage occurs once per cycle. In terms of generating functions

(14) B'(D)+wi(2) =7 (Z)+m(3).
Substituting for w;(Z) from (12) we obtain

! The difference in notation between B and m; ; reflects a difference in definition; in B,’:, i specifies a
conditioning event, but in ;3 i is a part of the state descriptor.

EXPECTED PERFORMANCE OF SCANNING DISKS 65

- . a'(2)-g'(2)

(15) m&)vC&)zm_CG),
which, in conjunction with (6), gives us the desired relation between the 7;(Z) and
B'(2). To evaluate y we may proceed by the following brief expected-value argument.

In equilibrium, the average number served per cycle is given by AD where D is
the average cycle length. Since for each i there is exactly one stage-i visit per cycle,
we have y =1/AD. Since the total seek time per cycle is 2(M —1)a, we have for the
average cycle time D = ADT +2(M —1)a. Hence,
_2M—-1)a d ve 1-AT
TTiaar M Y2 Dax

The linear dependence of the average cycle duration D on the seek time a may
seem strange when the limit a - 0 is considered, as it would predict the vanishing of
D regardless of p. This however merely represents the ability of the arm to make, in
the limit a - 0, an unbounded number of cycles during each “‘idle period” (idle in the
sense that no requests are available); since the time between idle periods has a finite
mean, D would be “biased away”’. The unboundedness of v is then self-evident.

This effect also makes the term ‘‘utilization” a rather inappropriate term for
p = AT. In queueing models, one associates high or low values of with sluggish or
prompt response. Here, AT merely denotes the fraction of the cycle time used for
actual transmission. The responsiveness of the device depends upon the cycle duration
and hence on a. For low values of A the mean response time is essentially determined
by a.

(16) D

3. Calculation of waiting times. Let W,, and W' denote respectively the waiting
times of a request at queue m and one which is served during stage i. Consider for
the moment one queue in isolation. We observe that since the service order is FCFS,
the requests queued at service termination must have arrived during the waiting or
service time of the request just completed. Now let 7;; = Y. ¢ (5js,, - 7i.k be the marginal
queue-length distribution of queue m; at stage-i service completions. Define m; =
2 mii =2 mi=m(1). Then from the above observation we have for the probability
that queue m; holds n,,, =j customers at service completion epochs

Tij _ oo(Am.-t)j “Apt)
(17) - f el i+ Fa(0),

where Fyi * Fr(t) corresponds to the convolution of the distributions for stage-i waiting
times and service times. Fr(-) is the distribution of a constant T'; therefore, calculating
the generating functions of both sides of (17) we obtain for the LST of Fy:

(1"..,1*S/Amn.",1)
7; exp (—Ts)

(18) Lwi(s)="

Denoting the pgf of 7;; by i(z) gives the numerator of (18) as 7;(1—s/A,,,). For the
distribution Fw,, (-) of waiting time at cylinder m, we average over the stages where
m; =m and get
Fw,(t) = Fw(1),
mFwm (2) + —mF waM-m
Fu, (1) = T OF mosmbwzv o) -y g

Tm + T2M-m

(19)

66 E. G. COFFMAN JR. AND M. HOFRI

Next, from (6) and (15) we can express m; = (1) in terms of first derivatives of Bi_l(z‘)
atz=1,

(20) ™=

—— (B +akn),

m;

where B, =0B"(£)/9zm|:-1 and p, = TA,n,. Finally, we differentiate (18) at s = 0 using
(15) and then again (6) to eliminate a'(+). In the resulting expression we substitute
for y and 7' from (16) and (20) and obtain

Biim +2aA Bt +a’As, Tpm,
2 (@A, + B, 2(1=pm,)’
where B, =0°B'(3)/02md2,|:-1. From (19) the desired mean waiting time is
E(W)=EW)),
T E(W™) +Top—m E(W?Y™™)

Tm + T2M-m

(21) E(W)=

(22)

E(W,,) = , l1<m=M.

The lengths, N,,, of queues accumulated at the individual cylinders are of practical
interest as well. From Little’s theorem, the mean value, E(N,,), at request completion
epochs is given by A,.E(W,,). To obtain higher moments one needs only to differentiate
(15) further, and accumulate contributions as in (19). However, the complexity of
these calculations can be expected to increase significantly.

4. Numerical calculations. The expressions we derived for E (W) and higher
moments include the partial derivatives of the functions B'(?) at 7 = 1. We show here
how these can be calculated based on (11). We shall also use the following values and
notation:

' _ T —
(23) ~Bin(0) == —=Tvm,
(24) B (0)= T2,
(i)
25) T £31(2) =~ = BBl | T A(1=2))],
Zm j#m;
(26) {m(D =L = (1= 8mm)OmYm

We get by straightforward calculation

aA(Z—-(i))
0Zpm,

= a(1=8pm) A A + Al mi(2)).

At 7 =1 the right-hand side becomes (1 — 8, m,) AA A .
Proceeding from (11) we get

B’ (2)
0Zm
= (1= 8mm)iBim ENAGEN)+ B GOAG M (E) +aB (2)Am + Amd m ()]}
At 7 = 1 these derivatives yield
(28) Bin=(1=8mm B +Bi DoV, + AAmym,}, 1=i=2M -2, 1=m=M.

Bm(Z)=
27)

EXPECTED PERFORMANCE OF SCANNING DISKS 67
Differentiating 8 !.(Z) with respect to z,, and evaluating at 7 = 1, we find

Binr =(1=8mm)(L = 8nm HBlon + Binml w4 B
(29) F Bl il 7+ B AN Y, + Bl L A Y im,
+ B Lo Yo, + Bo@A Yy + AAml il Yo, -

Higher derivatives are readily formed in this manner.

Equation (28) can be used to calculate all B, These equations, while quite
cumbersome for symbolic manipulation, are very well suited to numerical solution by
computer. Equation (28) is applied 2M —2 times (each time for all values of m) in
order to collect coefficients for a set of M equations, linear in (say) B.. These are
straightforward to solve; re-applying (28) yields us the first derivatives that we need.

A very similar procedure for (29) is used to determine values for the second
order derivatives. We note in passing that although the calculation of the mean waiting
time required the values of only a small fraction of these derivatives, the form of the
only expression we found that was relatively convenient to solve required the evalu-
ation of many more in the process.

The regularity of the system of equations (29) suggests that the corresponding
matrices might be explicitly inverted. This does not seem to be the case; they can be
inverted in terms of suitably defined M X M blocks, but inverting these blocks results
in an overall effort of the same complexity.

Since Bﬁ;l, as required in (21), has the value of the expected queue size at queue
m; when stage i —1 is terminated, the Bi,,i may be determined in the following more
direct way.

Define

g; = expected time between end of stage i and the last time

at which the head departed from queue m;.

d; = expected time between end of stage i — 1 and end of stage i.

We state without proof the following mean-value relationships. They should be obvious
on inspection.

i+1
Bmi =Amdi+1,

di=Ang&T+a=pngi+a,

2M-2

gl=gM=D= '21 d,',
g2=ditd,=(d1+a)/(1-ppu,),

g =gi-1tditdom-—is1, 3=sisM-1,
gi=D"gzM~,', 2=si=M-1,

1 (B)
= —~+al, 1si=2M-2.
g 1_'pm.-(Am,< a i=2 2

The last equation results first from breaking g; down into the time interval beginning
with the departure of the arm from queue m; and ending with the termination of stage
i —1, with mean length Bi;,.l /Am, plus the time interval during which queue m; served.
Next, we observe that if the load at queue m; is A when its processing begins, the
arm’s expected stay there is A/(1—p,,). This is also obtainable by differentiating (9)

68 E. G. COFFMAN JR. AND M. HOFRI

in [3] at 7 = 1. Finally, then
B},.z = Am,d1, l;n_il = Am,(dam-iv1 + 8i-1), 3=i=M-1.

Thus, the B ',,Tl may be obtained recursively, beginning with (16). Unfortunately, no
such procedure was discovered for the second derivatives.

It is remarkable that a very similar, though slightly simpler, queueing model
treated by Konheim and Swartz [5] requires substantially fewer calculations to find
E(W);), precisely because a ‘“direct” approach to the evaluation of the second order
derivatives can be implemented there. Higher moments seem to be equally hard to
calculate in both cases.

The calculations we have outlined were performed for a number of input rates
and distributions (across the disk). The following characterizes the results:

o Total input rate (A) and cylinder number (m) are the main determinants of

E(W,,). It is quite robust under changes in the distribution of A,

o This mean was also only very slightly influenced by relative changes in A and
T, so long as p was not affected.

e “Popular” cylinders require shorter waiting times than those with low A,,..

e When all A, are equal, the graph of E(W,,) versus m is parabolic. This is not
true for any non-uniform distribution.

Complexity of the calculations. Each application of (28) uses O(M?) operations

(the number of substitutions per line of the equations increasing from 3 to M), for a
total of O(M?). This is also the time complexity of the solution of the resultant set
of M —1 equations and the back substitution through (28); the total is then still O(M 3.

Similariy, each application of (29) requires O(M %) operations; here the solution
of the final set of equations dominates, with O(M %) operations required. Thus, the
numerical evaluation of these equations for realistic devices, where M assumes values
in the low hundreds, is too expensive for most purposes. One should use it, however,
to investigate qualitative features, such as:

o Dependence of performance measures on hardware parameters, and on details
of the algorithms used for scheduling, as well as for comparison with other
scheduling methods on the same hardware.

« Evaluation of the quality of various approximations to the above analysis before
their application to a full-fledged system.

It is of interest to note that the above described scheme of calculations is very
much cheaper than the one suggested in [3], since the repeated (chain) differentiations
used there are not required in our method, and the subsequent calculations are fewer
in number (e.g., O(M *) are required in [3] to calculate all the first order derivatives).

5. Elaborations of the model. The model, as presented in § 2, captures a number
of the features and properties of a disk system which are critical to its performance. For
the sake of simplicity, however, it does contain a good many assumptions that would
seem at once to be both arbitrary and at variance with the real state of affairs in such
systems. We discuss here a number of these assumptions and what their removal or
modification entails, mainly in terms of model tractability.

Request service duration. This quantity was assumed constant and equal for all
cylinders simply to keep down the level of detail of the model (and use somewhat
less storage during numerical calculations). Since these properties are not used
explicitly in the procedures we developed, there is absolutely no effect on the analysis
when we assume that the time to service a request has a general distribution function,
which may indeed be cylinder-specific. Let S, be the variable representing the service

EXPECTED PERFORMANCE OF SCANNING DISKS 69

duration at cylinder m, with distribution function and LST, Fs, (-) and ¢ (-), respec-
tively; the LST of the busy period distribution is then the solution of the equation
B (8) = dm(s + Ay — AmBini(5)). dm () itself should also be substituted for exp (—7Ts) in
the various equations in § 2 and § 3. No essential change need be made, and the
calculations proceed in precisely the same manner.

Meaningful seeks. By this rather fanciful name we refer to the incorporation into
the model of the following modification: At stage completion a seek is initiated to
the next nonempty cylinder queue in the cycle, as given in (1). We recognize here
the fact that, due to acceleration effects, the time to traverse k cylinders in a single
seek is appreciably less than k times the duration of a single-cylinder seek. This
certainly represents better the way a disk facility is managed, but it also introduces a
number of complicating factors:

o Instead of a single seek time, we have now a multitude; this may be as high
as M (M —1), but it can be reduced to M —1 by assumptions that are quite
borne out in practice.

o The movements of the arm are not prescribed as before, but rather depend on
the state of the system, a feature that has been the undoing of many queueing-
theoretical models.

e As a consequence, the key relations of § 3 do not hold, and a new approach
must be found.

Nevertheless, the authors believe that this modification still yields a tractable

situation, and are preparing an analysis of its main features.

Dependent arrivals. The model as described in § 2 can be rephrased to postulate
a single Poisson stream of arrivals, at rate A, with each request destined to cylinder
m with fixed probability p,, = A,./A, independently of the state of the system and, in
particular, of the history of the arrival process itself. We propose in this paragraph a
modification which deviates from this last assumption. In particular, we wish to consider
the situation where the destinations of successive arrivals form a first order Markov
chain.

Thus, to the description of the state of the system a further index has to be
added—the identity of the last cylinder addressed by the arrival process. This is a
major departure from the model analyzed above, and the methods used there would
be ineffective in handling it. Still, its analysis would be desirable, inasmuch as it
represents many common situations better than the simpler version, in particular when
one considers systems that employ a large number of disk drives (i.e., there are fewer
tasks active at each drive at any time).

Appendix. Notation. We collect below the notation used in the paper.
a—seek time between adjacent cylinders.
A(s)—LST of the (point) distribution of the seek time, A(s) = exp (—as).
A(Z), C(Z)—cf. (5).
B,.(s)—LST of the distribution G,,.
C(s)—LST of the (point) distribution of the service time = exp (—Ts).
D—duration of a cycle (time to complete 2M —2 stages).
F—generic probability distribution function (pdf).
G,.—the pdf of a busy period in cylinder m. Eq. (7).
i—generic stage index.
L—generic LST.
L(Z)—cf. (4).
m—generic queue index.

70 E. G. COFFMAN JR. AND M. HOFRI

M—number of cylinders (queues).
m;—the cylinder served at stage i (cf. (1)).
n—state of the queues; n,, requests for cylinder m.
(t)——the process of cylinder-queue occupancies.
p(F; k)—the probability of & arrivals during a period with pdf F (cf. (3)).
c(A; F)—a variable, equal to the number of counts of a Poisson process of rate A
during a period with the pdf F(-).
T—duration of I/O request execution.
W'—the waiting time of a request processed at stage i.
W,.—the waiting time of a request addressed to cylinder m.
79 —cf. (10).
a,—the probability that at the beginning of stage i the queues are at state 7.
ai(z‘)—pgf for ak.
},—the probabil_ity that just after stage-i termination the queues are at state 7.
B (—)—'pgf for Bn
Bm (Z)'—'aﬁ (”)/azm
Bm'_B (1)
Binn—9"B(2)/92md2n| 1.
y—cf. (13).
Ym—1/(1=pm), cf. (23).
8m,n—Kronecker’s delta.
{3‘(2)—c§. (25).
{mi—Lm (1)
Am—input rate to cylinder m.
/\——ZMS), Am
m—the probability that a service completion occurs at stage i.
7, -—the probability that just after a service termination the system is at stage i and
the queues are at state 7.
W,(ﬁ)——pgf for i i

Pm—AmT.
w; 7—the probability that a service beginning is at stage i and the state of the queues
is A.

w,(f)-—pgf for Wi, .

Acknowledgments. Comments of the referees helped in organizing the paper.
Dr. Kimming So (IBM Research, Yorktown Heights, NY) performed the numerical
calculations and suggested the direct evaluation of the first order derivatives.

REFERENCES

[1] E. G. COFFMAN, JR,, L. A. KLIMKO AND B. RYAN, Analysis of scanning policies for reducing disk
seek times, this Journal, 1 (1972), pp. 269-279.

[2] P. J. DENNING, Effects of scheduling on file memory operations, Proc. AFIPS SICC, 31 (1967), pp. 9-21.

[3] M. EISENBERG, Queues with periodic service and changeover time, Oper. Res., 20 (1972), pp. 440-451.

[4] M. HOFRI, Disk scheduling: FCFS vs. SSTF revisited, Comm. ACM, 23 (1980), p. 11.

[5] C. W. ONEY, Queueing analysis of the scan policy for moving-head disks, J. Assoc. Comput. Mach.,
22 (1975), pp. 397-412.

[6] A. KONHEIM AND G. B. SWARTZ, Polling in a LOOP system, J. Assoc. Comput. Mach., 27 (1980),
pp. 42-59.

[7] T.J. TEOREY, Properties of disk scheduling policies in multiprogrammed computer systems, Proc. AFIPS
FICC 41 (1972), pp. 1-14.

[8] T. J. TEOREY AND B. T. PINKERTON, A comparative analysis of disk scheduling policies, Comm.
ACM, 15 (1972), pp. 177-184.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0006 $01.00/0

A HIDDEN-LINE ALGORITHM FOR HYPERSPACE*
ROBERT P. BURTONY aND DAVID R. SMITH#

Abstract. An object-space hidden-line algorithm for higher-dimensional scenes has been designed and
implemented. Scenes consist of convex hulls of any dimension, each of which is compared against the edges of
all convex hulls not eliminated by a hyperdimensional clipper, a depth test after sorting and a minimax text.

Hidden and visible elements are determined in accordance with the dimensionality of the selected
viewing hyperspace. When shape alone is the attribute of interest, hidden-line elimination need be performed
only in that hyperspace.

The algorithm is of value in the production of shadows of hyperdimensional models, including but not
limited to four-dimensional space-time models, the hyperdimensional elementary catastrophe models and
multivariate statistical models.

Key words. hyperspace, hidden-line elimination

Introduction. This paper describes an algorithm for solving the hidden-line prob-
lem in hyperspace. The lines are edges of convex hulls approximating the surfaces of
hyperdimensional objects. The algorithm removes edges which would be invisible in a
hyperdimensional scene. The scene may then be projected to lower dimensions. The
development of a hidden-line eliminator for hyperspace is part of an ongoing effort to
display and gain insight into the structures of higher-dimensional space. Of particular
interest are four-dimensional space-time models, the seven elementary catastrophe
models, of which five are hyperdimensional [1] and multivariate statistical models.
While these models are numerically useful to some extent, they are of limited general
utility in the absence of adequate hyperdimensional presentation techniques. Without
an ability to present visible lines only, the four- (and higher-) dimensional analogues of
front, rear and depth become hopelessly garbled in the generalized view.

Previous efforts to display hyperobjects [2], [3] have employed techniques which
either discard one or more variables or hold them constant so as to restrict structures to
three dimensions. Such techniques impose unacceptable constraints. To illustrate by
analogy, consider a cube aligned with x-, y- and z-axes. The cube can be restricted to
two dimensions by either eliminating or holding constant one of the coordinates. The
cube then appears to be nothing more than a square (see Fig. 1a). A generalized
technique, which permits the cube to be viewed from any position, with any orientation
and in stereo, provides substantially more information, especially when hidden ele-
ments of the cube are removed (see Fig. 1b). Similarly, views of hyperobjects are
significantly enriched when a generalized viewing capability is combined with a
hyperdimensional hidden-line eliminator such as the one described in this paper.

(a) (b)
F1G. 1. (a) A restricted view of a cube; (b) A generalized stereo-pair view of the cube with hidden lines
removed.

* Received by the editors November 6, 1979, and in final form March, 1981.
T Computer Science Department, Brigham Young University, Provo, Utah 84602.
1 Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.

71

72 ROBERT P. BURTON AND DAVID R. SMITH

The meanings of visible and hidden. The development of an algorithm for
removing hidden lines is necessarily preceded by a determination of the meanings of
visible and hidden. The definitions offered here accommodate the geometry of space
and are hypothesized to accommodate the geometry of hyperspace.

An object J is defined to be visible in a viewing space of dimension m to the extent
that the points P constituting J or any section(s) of J intersected with the viewing space
collectively extend at least into the m — 1 dimensions of the viewing space orthogonal to
the ray of vision and are not hidden. A point P on an object J is defined to be hidden
from view at V by an object H if and only if a neighborhood of at least dimension m —1
exists about an intersection of the line segment VP and H, completely contained in H
and extending into each of the m — 1 dimensions orthogonal to VP (see Fig. 2). Opacity
of objects is assumed.

4 :

(b)

FI1G. 2. Hidden and visible. (a) An obscuring intervening object; (b) A nonobscuring intervening object.

Each snapshot of the viewing space involves the viewer at V, the object(s) J which
may be partially or completely hidden and the potential hider(s) H. Vision is limited to,
but always includes, the m — 1 dimensions which can be perceived plus depth which can
be inferred, which together span the viewing space. Objects possessing additional
dimensions become part of the scene to the extent that they intersect it or are projected
into it.

Surface approximation. Being piecewise smooth, the surfaces of n-dimensional
forms intended for graphic presentation are topologically equivalent to segments of
(n —1)-space. Thus, the surface of a form in n-space can be approximated by polyhedra
of dimension n —1. This is an extension of the practice of approximating surfaces of
three-dimensional forms with polygonal patches.

Simplification. Both the initial absence of an intuitive feeling and a lack of
experience in four and higher dimensions encouraged conceptual simplicity in the
design of algorithms for producing, transforming and presenting hyperdimensional
scenes. With this in mind, the initial hidden-element algorithms required all surfaces to

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 73

be approximated by simplices." The final algorithm was extended to accommodate
general convex halls. The representation of objects as convex hulls provides both a
disadvantage and an advantage. The advantage is robustness. Consider a patch in
three-dimensional space, supposed to be a quadrilateral, but which actually consists of
four nonplanar points. Its manifests itself as a tetrahedron, but nevertheless hides points
in a predictable manner. The disadvantage is that concave objects must be built from
multiple convex objects. Restriction of the effort to the development of a hidden-line
algorithm was another obvious step. Attributes other than shape, such as color, for
example, were ignored. These restrictions were easily accepted in part because the
graphics equipment on which the algorithm was to be implemented was monochromatic
and vector oriented.

Simplification was also achieved by collapsing successively from n dimensions to
n —1 dimensions, and so on, resulting ultimately, for our inspection, in a stereo pair or a
single two-dimensional image. The several levels of computation implied by these
stages of collapse suggested an object-space algorithm rather than a screen-space
algorithm [4]. Furthermore, the algorithm needed to provide output of the same form as
its input. After some experience with the algorithm, however, we observed and were
able to establish that hidden lines need be eliminated at only one dimensional level prior
to projection into R> or R?, making successive application of the algorithm unneces-
sary. Repeated viewing transformations are still required, nevertheless. Finally, the
hidden-line algorithm was simplified by preprocessing the scene with a viewing trans-
formation which can include perspective. The effect of this transformation is to place
the viewer at infinity looking in the negative direction along the mth axis with the rays of
vision parallel to the mth axis.

The viewing transformation. A generalized viewing transformation in R™ (m =2)
includes:

(1) translation of the scene so that the point to be looked from is at the origin 0, of
object coordinates; and

(2) rotation through the appropriate angles in the planes determined by the axis
pairs (1, m), (2, m), - - -, (m — 1, m). Rotation in the (i, m)-plane directs the gaze so as
to ultimately place the point to be looked at on the viewing axis. Rotation in-planes
where the axis pair does not include m is implicitly restricted. Simply specifying look at
and look from positions without an order for rotations leaves the scene free to tumble
with ("7 ') unrestricted degrees of freedom. While this would not affect spatial relation-
ships or the visibleness of elements of the scene, it would significantly affect the
orientation of the scene relative to the viewer as well as subsequent projections to lower
dimensions.

The rotation scheme based on lexicographic ordering of axis pairs accommodates
the human habit of keeping the eyes parallel to the horizon in three-dimensional space;
if this third degree of rotational freedom were unrestricted the gaze would remain fixed,
but the scene would be free to rotate about the viewing axis. Lexicographic ordering
also facilitates easy calculation of the Euler angles. Corresponding advantages are
experienced in higher dimensions.

Scenes are projected orthogonally to lower dimensions except possibly during the
final projection.

Hidden-line elimination. Hidden-line elimination is carried out by comparing
each convex hull H against each edge E to determine which portion of the edge, if any,

! An n-simplex is a convex hull of n+1 affinely independent points. A set of points {x;} is affinely
independent if and only if for some fixed j the set of points {(x; — x;)|i # j} is linearly independent.

74 ROBERT P. BURTON AND DAVID R. SMITH

eye at
infinity

t/) |
\
\
\\

rays of vision r—:l_

parallel

7

F1G. 3. A partially obscured edge.

is hidden by the convex hull. Requiring the hull H to be convex assures that all points of
E which H hides are contained in a connected interval.

An edge E with endpoints A = (a;, az, " * *, a,,) and B =(by, b, * * +, b,,) may be
hidden at least partially by a convex hull H if H intersects the partial plane of view Q
(see Fig. 3). From the criterion of Carathéodory,

X € convex hull of a finite set A={X;|i=1,2,- -+, m}
if and only if
X=Y apx, wherea;=0, i=1,---,m, Y a;=1.
i=1 =

The definition of a convex hull is less restrictive than the definition of an n-simplex.
The edge E can be expressed parametrically as

1) E={XeR"|X=A+B-A),0=t=1}.
The partial plane of view Q can be expressed as the directed sum

Q=E+e,s, 0=y

2
@ ={XeR"|X=A+(B-A)t+e,s,0=t=1,0=s},

where e,, is the mth vector in the natural basis of R"™. Letting X; = (x1;, X2, * * Xmi) T
be the ith vertex of the convex hull, we have

X1i

(3) H={X€R"‘ X=3|: |e0=a, ¥ a,~=1}.
i=1 Xoni i=1
Intersecting Q and H yields
X11 X1in ay bi—ai 0
(4a) Dlagt+| D |an=A+(B-A)ttens =| [|+ : t+| ¢ s

m1 Xmn CInLJ bnn —am 1

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 75

Rearranging, we get

a;—by X11 X1in 0 ai
(4b) S IR TR TR B A ols=

A — b, Xm1 Xmm -1 Am
Incorporating the restriction Y';_; a; = 1 yields

an —bl X11 X1in 0 a;
(4¢)) t+| |ag+oc+ | |ant] O s=1 " |,

am‘_‘bm Xm1 Xmn _1 am

0 1 1 0 1

which corresponds to

ar—bi xy; coeox1, 0 t a;

. D e

(4d) : : S0
A —bm X1 e -1 a, am
0 1 0 s 1

or, as the adjoint matrix

ai—by, xu -+ xi» 0 a
(4e) }
0.
m—byn Xm1 - Xpm -1 a,
0 1 ... 1 0 1

still restricted by 0=¢t=1,0=s and 0=«

The portion of E hidden by H can be determined by finding the values of ¢ for
which the adjoint matrix has a solution. Since H is convex the solution will be a
connected interval.

A problem arises in the elimination process when all convex hulls are compared
against all edges. If s is allowed to be zero, a convex hull will eliminate its own edges.
One solution might be to avoid testing a convex hull against the edges which bound it.
However, convex hulls may hide some of their own edges. Furthermore, an edge may be
shared by two or more convex hulls; the task of remembering all the convex hulls which
a given edge bounds is cumbersome. A simple solution to the problem requires only
slight modification of the adjoint matrix. By adding a small number ¢ >0 to the mth
coordinates of the endpoints A and B, the edge is moved a distance ¢ closer to the
viewer. The visible or hidden status of the edge is easily determined now because it no
longer lies on the surface of the convex hull from which it arose. The modification

76 ROBERT P. BURTON AND DAVID R. SMITH

appears in the (m, n +3) element of the adjoint matrix:

ar—bi1 xn X an 0 ai
(4f) G —bm Xmi * Xmm O amte
0 1 - 1 -1 1

0

The value of ¢ is suggested by the depth sort information. Experience has indicated
that a value of 10~ times the maximum depth works well.

The adjoint matrix is transformed to permit solution for #,;, and ¢, by the simplex
method of linear programming [5]. The adjoint matrix is modified to yield ¢ as a function
of s and a;. One step of Gauss elimination suffices, using an element of column 1 as the
pivot for partial pivoting. Row independence is assured by completing the forward
Gauss elimination process on the adjoint matrix and ignoring the zero rows remaining
at the bottom. If after elimination the last nonzero row has a nonzero element in the
adjoint (n +3) column only, the system is inconsistent and there is no solution for ¢ in
which case H does not hide any portion of E.

The adjoint matrix is now in tableau form for the simplex method, except that
column 1 is superfluous and can be ignored. The value of ¢ is the element (1, n +3) of the
adjoint matrix. The simplex method transforms the matrix to yield the values of fm;, and
Imax- Although details of the procedure are not presented here, it should be noted that
the initial basic feasible solution is found using artificial variables. A special loop in
effect accomplishes Gauss elimination by pivoting on the artificial variables without
expanding the matrix to contain them explicitly. A value for Big M [6, p. 63], the
arbitrary large number needed for the initial basic feasible solution, can be determined
during the depth sort which is discussed below. Experience indicates that good results
can be obtained with Big M equal to 10° times the maximum depth. Although the
simplex method enforces the restrictions 0 = s and 0 = a,, it does not restrict the range of
t. Therefore, the interval [fmin, tmax) must be intersected with the interval [0, 1]. If ¢ is
unbounded, then E is parallel to e¢,,; the projected image of E is a single point and can
be ignored.

Depth and minimax tests. By performing a depth test and a minimax test, the
situation can often be resolved without employing the adjoint matrix described above.
Edges determined from coordinates of vertices and lists of vertices comprising convex
hulls are entered into a hash table which is heap sorted into a linear table implicitly
eliminating shared or otherwise redundant edges. Edges are sorted according to depth
so that the edge with the greatest depth appears first in the list. The depth of each convex
hull is compared against the depth of each edge. If both endpoints of the edge are closer
than the convex hull to the viewer, the convex hull cannot possibly obscure any part of
the edge. Furthermore, it cannot obscure any of the subsequent edges since edges are
listed in order of decreasing depth. When the depth test fails, a minimax test is applied
to the other m —1 dimensions to identify cases where the convex hull cannot hide the
edge, i.e., cases where the ith coordinate values of the edge entirely exceed or entirely
fall short of the ith coordinate values of the convex hull.

Partially obscured edges. If a convex hull hides a middle portion of an edge, the
edge is divided into two segments. To avoid entering the resultant new endpoints into
the vertex array and to avoid additional edge definitions, the hidden intervals of an edge

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 77

are placed in a singly-linked list. Each node in this list gives the minimum and maximum
values of 1 (0=t =1) in (1) for which part of the edge is obscured. The use of linked lists
saves computer time since all separate, visible segments of an edge can be checked
simultaneously against possible obscuring convex hulls. This would be impossible if new
endpoints were calculated and additional edges generated. Within the list, obscured
portions of an edge which are found to overlap or nearly abut are combined to minimize
the number of linked nodes. If the combined interval is [0, 1], the edge is completely
hidden; the associated node is subsequently returned to the pool of available storage.

Clipping. Clipping in hyperspace is conceptually simple, being an extension of
three-dimensional clipping [7]. Similar to its analogue in three dimensions, the hyper-
pyramid of vision in R*, for example, imposes the following constraints:

—WECX=EW,
—W=cgy=w,
—WE=ECZ=EwW,

where each of the c,, ¢, and c, represents the cotangent of half the angle of vision in the
given direction.

Even though the introduction of new points into the point array should be avoided,
a new endpoint must be generated for an edge which lies partly within the field of vision,
but crosses the zero-depth plane. In other cases it is sufficient to treat a clipped edge as a
partially obscured edge, using the linked list. While this approach saves storage, it
necessitates modification by the perspective routine of the t-parameters in the hidden-
segment linked list [7].

The convex hulls should be processed by an object clipper. However, a convex hull
totally within or outside the field of vision poses no problems. Even if a convex hull lies
partly within the field of vision it need not be clipped in most cases; only the edges, not
the convex hull itself, are ever visible. However, when a partially visible convex hull
crosses the zero-depth hyperplane, division by depth in the perspective transformation
becomes troublesome [7]. In such cases the convex hull must be clipped to a hyperplane
slightly in front of the viewer. The convex hull is clipped by regenerating the edges and
clipping them against this limiting hyperplane. Intersection points are entered into the
hash table. The description of the convex hull now includes the hyperplane intersection
points, but excludes vertices on the viewer’s side of the clipping hyperplane. The hash
table is placed in vacated storage locations in the vertex array, permitting all points to be
treated uniformly.

The key to the hash table can be the sum of the vertex’s first m —1 (for R™)
coordinates, multiplied by a constant [8]. Even though most transformations will cause
a vertex to generate a key which differs from the one by which it was entered into the
table, the objective of avoiding redundant points is realized at each dimensional level of
clipping.

Classification and performance. The hidden-line algorithm presented in this paper
is an object-space algorithm. The algorithm is closely related to Roberts’ algorithm [9],
particularly because it sweeps the area from an edge out to infinity. Basic relationships
are formulated as matrix systems which are solved by standard methods.

As is true for Roberts’ algorithm, computation required is roughly proportional to
the square of the complexity of the scene. Minimization of computation is heavily
dependent upon the ability of the preliminary tests to resolve the situation, thereby
avoiding the need for the matrix solution. Experience with three-dimensional scenes

78 ROBERT P. BURTON AND DAVID R. SMITH

having from 400 to 1400 triangles with 700 to 2150 edges yields execution times
(transformation, clipping, sorting, hidden-line elimination and plot file generation all
divided by the product of the number of edges and triangles) of 83 usec to 130 usec to
test one triangle against one edge, running on a DECsystem-1070. Failures of the depth
test and minimax test result in higher execution times.

Discussion. The algorithm presented in this paper performs hidden-line elimina-
tion in R" (n = 3) and differs from conventional hidden-line elimination algorithms in
its hyperdimensional capabilities. When an image is projected into R> or R after
hyperdimensional hidden-line elimination, information is preserved which would be
lost if hidden-line elimination were performed in R* using conventional algorithms.

N
&\\\ké\\\‘

Y
=

\

\

o
\
N

\;\;

P

(c) (d)

FIG. 4. A generalized view of tesseracts (hypercubes) on each of the eight hyperfaces of a central tesseract.
(a) No hidden-line elimination. (b) Four-dimensional hidden-line elimination. (c) Four-dimensional hidden-
line elimination followed by three-dimensional hidden-line elimination. (d) Three-dimensional hidden-line
elimination only.

HIDDEN-LINE ALGORITHM FOR HYPERSPACE 79

The information which is preserved is that which would be visible from hyperspace in a
three- or two-dimensional projection of hyperspace.” Figure 4a shows a generalized
view of a four-dimensional object with no hidden lines removed, projected into R?; Fig.
4b shows the same object after four-dimensional hidden-line elimination and
subsequent projection into R, Information is preserved in Fig. 4b which would have
been lost had the object first been projected into R>, followed by hidden-line elimina-
tion, followed by projection into R, as in Fig. 4d.

Hidden-line elimination need be performed only once when shape alone is the
attribute of interest. Any subsequent hidden-line elimination would obliterate the
results of all previous hidden-line elimination and alone would yield a shape equivalent
to the aggregate shape that would result from successive applications of the algorithm
from higher dimensions. By way of illustration, consider Fig. 4c, which shows the results
of four-dimensional hidden-line elimination followed by three-dimensional hidden-
line elimination. Figure 4d shows the results of three-dimensional hidden-line elimina-
tion alone.’ The apparent equivalence of Figs. 4c and 4d can be explained as follows.

Assume that a point P is hidden from a viewer at V by a hypervolume H in
four-dimensional space (see Fig. 5). The line segment VP intersects H in one point R
provided only that VP and H are not contained in the same three-dimensional

FIG. 5. A point hidden in R* is hidden in R>.

hyperplane. Since the collapse from four to three dimensions takes place along the axis
which contains V, R and P, the points R and P coincide after projection into R>. P is
simply absorbed into H. The shape of H is unchanged. In the case under consideration
here, three-dimensional hidden-element elimination leaves no clue that four-dimen-
sional hidden-element elimination took place previously. Attributes such as color
would persist, however, unless hidden-element elimination took place in each suc-
cessive dimension. When shape is the only attribute of interest, a significant savings is
realized because the costly process of removing hidden lines need be performed only
once. Computation is also minimized because the space in which hidden-line elimina-
tion is performed is dimensionally the least of all the spaces in which hidden-line
elimination would be performed if successive application of the algorithm were
necessary.

Acknowledgments. The authors gratefully acknowledge the consultation and
contributions of other members of the Hyperspace Research Group. Appreciation for
their support is extended to Brigham Young University and Eyring Research Institute.

%In the same sense, a photograph represents hidden-element elimination performed in R® and
subsequent projection to R 2 to be viewed from R>.

3 The algorithm would never be used in R 3.a variety of superior algorithms could be summoned for that
purpose. An illustration involving R? is chosen to simplify the presentation of the concept.

80 ROBERT P. BURTON AND DAVID R. SMITH

REFERENCES

[1] E. ZEEMAN, Catastrophe theory, Scientific American, 234 (April, 1976), pp. 65-83.

[2] C. PANATI, Catastrophe theory, Newsweek, 83 (January 19, 1976), p. 55.

[3] J. GORMAN, The shape of change, The Sciences, (September/October 1976), p. 21.

[4] 1. SUTHERLAND, R. SPROULL AND R. SCHUMACKER, A characterization of ten hidden-surface
algorithms, ACM Computing Surveys, 6 (1974), pp. 1-55.

[5] D. STEINBERG, Computational Matrix Algebra, McGraw-Hill, New York, 1974.

[6] F. HILLIER AND G. LIEBERMAN, Operations Research, Holden-Day, San Francisco, 1974.

[7] W. NEWMAN AND R. SPROULL, Principles of Interactive Computer Graphics, 2nd ed., McGraw-Hill,
New York, 1979.

[8] M. STEPHENSON AND H. CHRISTIANSEN, A polyhedron clipping and capping algorithm and a display
system for three-dimensional finite element models, Computer Graphics, 9 (Fall 1975), pp. 1-16.

[9] L. ROBERTS, Machine perception of three dimensional solids, MIT Lincoln Laboratory TR 315, 1963.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1981 0097-5397/82/1101-0007 $01.00/0

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME*
JOHN H. REIFt AND ROBERT E. TARJANi

Abstract. This paper describes an algorithm to construct, for each expression in a given program text, a
symbolic expression whose value is equal to the value of the text expression for all executions of the program.
We call such a mapping from text expressions to symbolic expressions a cover. Covers are useful in such
program optimization techniques as constant propagation and code motion. The particular cover constructed
by our methods is in general weaker than the covers obtainable by the methods of [Ki], [FKU], [RL], [R2] but
our method has the advantage of being very efficient. It requires O(ma(m, n)+[) operations if extended bit
vector operations have unit cost, where 7 is the number of vertices in the control flow graph of the program, m
is the number of edges, ! is the length of the program text, and « is related to a functional inverse of
Ackermann’s function [T2]. Our method does not require that the program be well-structured nor that the
flow graph be reducible.

Key words. code movement, code optimization, constant propagation, data flow analysis, symbolic
evaluation.

1. Introduction. Let & be an expression which appears somewhere in a computer
program. If & evaluates to a constant independent of the particular execution of the
program, then the program can be improved by substituting the appropriate constant
for & in the program text. The systematic application of this technique is called constant
propagation. Another kind of improvement is possible if € occurs within a loop but has
the same value for every execution of the loop; in this case the program may be
improved by moving the computation of & outside the loop. (Note that this is not an
improvement if the loop is executed less than twice.) Constant propagation and code
motion require for their application a mapping from text expressions to symbolic
expressions such that in any program execution every symbolic expression has the same
value as its corresponding text expression. We call such a mapping a cover. We desire a
cover which is as simple as possible in some appropriately defined sense, but even
determining whether a given text expression always evaluates to a constant is an
undecidable problem. In this paper we describe an algorithm for efficiently computing a
reasonably good cover.

In order to address this problem, we need some definitions. We represent the flow
of control through a program = by a flow graph' G = (V, E, r) where each vertex v
represents a consecutive block of assignment statements and each edge (u,v)€e E
specifies a possible flow of control caused by a branch from a test statement. An
execution of 7 induces a path in G beginning at the start vertex r. We shall denote the
number of vertices in G by n and the number of edges in G by m.

Let 2={X,Y,Z, -} be the set of program variables occurring within 7. A
program variable X € X is defined at ve V if X occurs on the left-hand side of an
assignment statment of v. For each program variable X € X and vertex v € V, we let the
entry variable X* denote the value of X on entry to v.

* Received by the editors June 5, 1979, and in final form March 2, 1981.

t Aiken Computer Laboratory, Harvard University, Cambridge, Massachusetts 02138. The work of this
author was supported by Naval Electronics System Command contract N00039-76-C-0168 and Rome Air
Development Center contract F30602-76-C-0032.

1 Department of Computer Science, Stanford University, Stanford, California 94305. Present address:
Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974. The work of this author was
supported by National Science Foundation grant MCS-75-22870 A02, by Office of Naval Research contract
N00014-76-C-0330, by a Guggenheim fellowship, and by Bell Laboratories.

! The appendix contains the graph-theoretic terminology we employ.

81

82 J. H. REIF AND R. E. TARJAN

Let 6 be the set of function signs occurring in the program. For simplicity, we
assume a domain D such that every k-ary function represented by a sign in 6 has the
same domain D", Let C be a set of constant signs containing a unique sign for every
element in D. Let EXP be the set of expressions built from entry variables, constant
signs in C, and function signs in 6. To each expression & € EXP corresponds a unique
reduced expression €r formed by repeatedly substituting the appropriate constant sign
for each subexpression of & consisting of a function sign applied to constant signs.

For any expression &€ € EXP and any execution of the program 4, the value of & on
exit from a vertex v is defined as follows: If & contains an entry variable X “ such that
control has never entered u, then the value of & is undefined. Otherwise the value of & is
computed by substituting for each entry variable X*“ the value of X when control last
entered u, and evaluating the resulting expression.

For each vertex v € V and program variable X € X defined at v, the exit expression
Z(X, v) e EXP is formed as follows. Begin by letting the expression & be X. Process
each assignment statement of v, starting from the last assignment defining X and
working backwards to the first assignment in v. To process an assignment Y:=%&’,
replace each occurrence of Y in & by &'. After all assignments are processed, reduce &
and replace each occurrence of a variable Y by the corresponding entry variable Y.
The resulting exit expression & (X, v) represents the value of X on exit from v in terms
of constants and values of variables on entry to v. For example, €(Z, v,)=
Z"+ (X" % Y"2) represents the value of Z on exit from vertex v, in the flow graph of
Fig. 1.

A text expression is any subexpression of an exit expression & (X, v) (including the
expression itself); we say the text expression occurs at v. An expression & € EXP covers
a text expression ¢ occurring at v if for any execution of program =, € and ¢ have the

F1G. 1. A program flow graph.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 83

same value on any exit from v. See Fig. 1. This definition implies that if X appearsin &
then u dominates v. Thus there is a unique vertex v which is minimal (i.e., closest to the
start vertex) with respect to the dominator relation and such that for all entry variables
X" in &, u dominates v. We call such a vertex the origin of € it is the earliest pointin the
program at which & can be computed.

A cover of 7 is a mapping ¥ from all text expressions to reduced expressions in
EXP, such that, for each text expression ¢, ¥(¢) covers t. We would like to construct a
cover whose origins are minimal with respect to the dominator relation. We can use
such a cover for constant propagation: if a constant sign ¢ covers a text expression ¢, we
may substitute c in line in the program text for the computation associated with c.

We can also use a cover in code motion. If we define the birthpoint of a text
expression ¢ to be the minimal vertex to which the computation of may be moved, then
the birthpoint of ¢ is precisely the origin of a minimal cover of ¢. For example, in Fig. 1
the birthpoint of text expression t=X"2% Y2 is v1; X * (X + Y") covers . Code

Text expression Covering expressions
X2 X"

Y*2 X' +y"

VA VAL

E(Z,v)=Z7+ (X% Y™) | Z"+ (X" *(X"+Y™)
FIG. 2. Symbolic analysis of the program in Fig. 1.

motion requires approximations to-birthpoints (i.e., vertices which are dominated by
the true birthpoints) and other knowledge including knowledge of the cycle structure of
the flow graph of 7. (We may not wish to move code as far as the birthpoint since the
birthpoint may be contained in control cycles avoiding the original location of the code.)
[R1] presents efficient algorithms which utilize approximate birthpoints for code
motion optimization. See [AU], [CA], [E], [G] for further discussion of code motion
optimizations. Other practical uses of covers have been made by [FK] in their
optimizing Pascal compiler.

Unfortunately, for programs which manipulate the natural numbers using ordinary
arithmetic the problem of computing a minimal cover is recursively unsolvable [R2].
The usual approach in program optimization is to trade accuracy for speed; [FKU], [Ki],
[RL], [R2] present fast algorithms which compute reasonably good covers whose
origins yield approximate birthpoints. The fastest of these [RL], [R2] has a time bound
almost linear in m - ||+, where [is the length of the program text.

In this paper we describe a very fast algorithm for computing a rather weak cover.
This simple cover can be used directly for code optimization, or it can serve as input to a
more powerful method for symbolic evaluation presented in [RL], [R2]. From a data
structure called a global value graph (which is related to the use-definition chains of
[AU], [Sc] used to represent the flow of values through a program), the algorithm
of [RL], [R2] constructs a cover which yields better approximate birthpoints than does
the simple cover. This algorithm runs in time almost linear in the size of the input global
value graph, which is very compact when constructed from the simple cover [RL], [R2].

In order to define the simple cover we need one more concept. A variable X is
definition-free between distinct vertices u and v if no u-avoiding path from a successor
of u to a predecessor of v contains a definition of X. By convention any program
variable X is definition-free between v and v for any vertex v. For any entry variable X°
which is a text expression, the simple origin of X" is the minimal vertex u (with respect

84 J. H. REIF AND R. E. TARJAN

to the dominator relation) such that X is definition-free between # and v. In the
example of Fig. 1, X2 has a simple origin r, and Y *> and Z > have simple origin v,. If X*
has simple origin u # v, then on any execution of 7 the program variable X has the same
value on entry to v as it did after the most recent execution of u; we take the simple
origin as an approximation to the birthpoint of X°.

We recursively define the simple cover W using simple origins. If # contains no entry
variables then W(¢f) =t Otherwise we form ¥(¢) from ¢ by applying the following
transformation.

(i) Repeat the following step for all entry variables X° occurring in ¢: Let u be the

simple origin of X*. If u=v do nothing. Otherwise replace X” in t by
W(&(X, u)) if X is defined at u or by X* if X is not defined at u.

(ii) Reduce the resulting expression.

Our algorithm for computing the simple cover consists of three parts, described in
§§ 2-4 of this paper. First, we determine for each vertex v the set of program variables
defined between the immediate dominator of v and v itself. We call this set of variables
idef (v). The idef computation can be regarded as a path problem of the kind studied in
[GW], [T3], but another approach is more fruitful: a straightforward modification of the
dominator-finding algorithm of [LT] computes idef in O(ma(m, n)+[) time, assum-
ing that logical bit vector operations on vectors of length |E| have unit cost, where
[is the length of the program text and « is related to an inverse of Ackermann’s
function [T2].

Second, we use idef to compute the simple origins of all entry variables appearing
as text expressions. This computation requires a variable-length shift operation on bit
vectors (shift left to the first nonzero bit) and requires O(n + /) time. Third, we construct
a directed acyclic graph representing the simple cover (we save space by combining
common subexpressions). This algorithm also requires O(n + /) time but uses no bit
vector operations. The total running time of our algorithm is thus O(ma(m, n)+1) if
extended bit vector operations require constant time.

2. An algorithm for computing idef based on finding dominators. In this section
we shall describe an algorithm for computing idef (v) for all vertices v € V' in the flow
graph G=(V,E,r) of a computer program. We obtain the algorithm by adding
appropriate extra steps to the dominators algorithm of [LT], and we shall assume that
the reader is familiar with [LT]. Our algorithm requires def (w) = {X|X is defined at w}
for each vertex w € V as input and uses set union as a basic operation. If each subset of X
is represented as a bit vector of length |2, then a set union is equivalent to an “or”
operation on bit vectors; we shall assume each set union requires constant time.
Construction of def (w) for all vertices w is easy and requires time proportional to the
length of the program text.

Properties of idef. For any vertex w # r, letidom (w) be the immediate dominator of
w in G. For w # r, we define idef(w) = U {def (v)| there is a nonempty path from v to w
which avoids idom (w)}. Note that def (w) is a term in the union defining idef (w) if and
only if there is a cycle containing w but avoiding idom(w). To compute idom and idef,
we first perform a depth-first search on G, starting from vertex r and numbering the
vertices from 1 to n as they are reached during the search. The search generates a
spanning tree T rooted at r, with vertices numbered in preorder [T1]. For convenience
in stating our results, we shall assume in this subsection that all vertices are identified by
number, and we shall use -, -’-';, 5 to denote ancestor-descendant relationships in T
(see the appendix).

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 85

F1G. 3. Depth-first search of the flow graph given in Fig. 1. Solid edges denote tree edges and dotted edges denote
nontree edges. The depth-first search number is given to the right of each vertex.

vertex number idom sdom def idef sdef
r 1 —_ — %] —— —
vy 2 r r {r} {y, z} {y, Z}
%) 3 U1 U1 {Z }] %)
v3 4 r r 1%} {Y, Z} 1%}
Vg 3 r U1 {x} {y, z} 1]
Us 6 U1 U1 @ %) @

F1G. 4. Tabulation of information calculated for the program flow graph given in Fig. 1.

The following paths lemma is an important property of depth-first search and is
crucial to the correctness of our algorithm.

LeEmMA 2.1[T1]. Ifvandw are vertices of G such thatv = w, then any path from v to
w must contain a common ancestor of v and w in T.

As an intermediate step, the dominators algorithm computes a value for each
vertex w # r called its semi-dominator, denoted sdom (w) and defined by

sdom (w) = min {v|there is a path v = v, vy, * *, Ve =W

W such that v; >w for 1 =i <k}.
We shall in addition compute a value sdef (w) for each vertex w # r defined by
sdef (w) = U {def (v)| there is a nonempty path v = v, v1,* **, Ve =W
(2) such that v; = w for 0=i =k}.

The following properties of semi-dominators and dominators justify the domina-
tors algorithm.

LEMMA 2.2 [LT]. Let w #r. Then idom (w)>sdom (w)> w.

THEOREM 2.1 [LT]. For any vertex w #r,

sdom (w)=min ({v|(v, w) € E and v <w}

3) U{sdom (u)|u > w and there is an edge (v, w) such thatu 3 v}).

86 J. H. REIF AND R. E. TARJAN

THEOREM 2.2 [LT]. Letw # rand let u be a vertex for which sdom (u) is minimum
among vertices u satisfying sdom (w)> u > w. Then

sdom (w) if sdom (w)=sdom (u),

(4) idom (w) = {idom (u) otherwise.

The dominators algorithm uses Theorem 2.1 to efficiently compute semi-domina-
tors and Theorem 2.2 to efficiently compute immediate dominators. We shall use two
analogous results to efficiently compute sdef and idef.

THEOREM 2.3. Let w # r and let

adef (w) = {def (u) Usdef (u)|u>w .
and there is an edge (v, w) such that ->v}.

Then

) sdef (w) = {def (w)U adef (w) ifthere.is an edge (v, w) such thatw 5 v,
adef (w) otherwise.

Proof. First we show that the right side of (5) contains sdef (w). Let v =
Vo, U1, * * *, Ux = w be a nonempty path such that v;=w for 0=i = k. We can assume
without loss of generality that the path v, vy, , vr_; is simple and v;#w for
1=i=k-1. Let j be minimum such that v;% v, ;. By Lemma 2.1, v; > v, for 0=/ =
j—1. We consider three cases. If j # 0, then v; # w, and def (v) < sdef (v;) < adef (w). If
j=0and v # w, then def (v) c adef (w). If j =0 and v = w, then the edge (vi-1, w) must
satisfy w 5 v,._1, and the right side of (5) explicitly contains def (v). Thus in any case the
right side of (5) contains def (v). Since this is true for any appropriate v, the right side of
(5) contains sdef (w).

Now we show that sdef (w) contains the right side of (5). Suppose there is an edge
(v, w) such that w 3 v. Then the path consisting of the tree path from w to v followed by
the edge (v, w) contains no vertices smaller than w, and def (w) = sdef (w). Let u be a
vertex such that u > w and there is an edge (v, w) such that u % v. Let x be any vertex for
which there is a nonempty path x =vg, v1,**, vx = u such that v;=u for 0=i=k.
Then this path, followed by the tree path from u to v, followed by the edge (v, w),
contains no vertices smaller than w. Thus def (x) < sdef (w). Since this is true for any
such x, sdef (u) = sdef (w). Furthermore def (u) = sdef (w). It follows that adef (w) <
sdef (w), and the theorem is true. 0O

THEOREM 2.4. Let w#r. Let u be a vertex for which sdom (u) is minimum
among vertices u satisfying sdom (w)>uSw. Let tdef(w)= U{def (x)U
sdef (x)|sdom (w) > x > w}. Then

tdef (w) U sdef (w) if sdom (w) =sdom (u),
idef (u) Utdef (w)Usdef (w) otherwise.

Proof. First we show that the right side of (6) contains idef (w). Let v =
Vo, U1, * * * , Ux = w be a nonempty path which avoids idom (w). Let v; be the minimum
vertex on this path such that i = k — 1. If v; = w, then def (v) = sdef (w) by the definition
of sdef.

Suppose on the other hand that v; <w. By Lemma 2.1, there is some j in the range
i =j =k such that v; is an ancestor of both v; and w. This means v; = v;. But by the
definition of v;, v; = v;. Thus, v; = v; and v; 5 w. We must consider three cases.

(i) Suppose sdom (w)= v; and i = 0. Then def (v) = def (v;) < tdef.
(ii) Suppose sdom (w)=>v; and i # 0. Then def (v) < sdef (v;) < tdef.

6) idef (w)= {

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 87

(iii) Suppose v; >sdom (w). The path from r to w consisting of the tree path from r
to v; followed by the path v;, v;,1, * * *, w must contain idom (w); thus idom (w) > v;. By
Theorem 2.2, sdom (w) # sdom (u) (which means the second half of (6) applies) and
idom (w) =1idom (). The path from v to u consisting of v = vy, v1, * * +, v; followed by
the tree path from v; to u avoids idom (u), which means def (v) < idef (u).

In all cases def (v) is contained in the right side of (6); since this is true for any
appropriate v, idef (w) is contained in the right side of (6) by the definition of idef.

It remains to show that idef (w) contains the right side of (6). Let x be any vertex
such that sdom (w) > x 3> w, and let v = vy, v, * * * , Ux = x be any path such that v; = x
for 0=i =k. Since idom (w) 3 sdom (w), the path from v to w consisting of the path
v =y, U1, " * *, U = x followed by the tree path from x to w avoids idom (w). It follows
that tdef < idef (w). Since idom (w)<w, it is immediate that sdef (w)<idef (w). If
sdom (w) # sdom (u), then idom (w) =idom (u) > u, and any idom (u)-avoiding path to
u can be extended to an idom (w)-avoiding path to w by adding the tree path from u to
w. Thus in this case idef (1) cidef (w) 0O

Details of the algorithm. The algorithm for computing immediate dominators and
idef consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph. Number the vertices
from 1 to n as they are reached during the search. Initialize the variables used in
succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem 2.1 and
the sdef values by applying Theorem 2.3. Carry out the computation vertex-by-vertex
in decreasing order by number.

Step 3. Implicitly define the immediate dominator of each vertex by applying
Theorem 2.2 and partially compute idef values by applying Theorem 2.4.

Step 4. Explicitly define the immediate dominator of each vertex and finish
computing idef. Carry out the computation vertex-by-vertex in increasing order by
number.

The dominators algorithm used the following arrays.

Input

succ (v): The set of vertices w such that (v, w) is an edge of the graph.
Computed
parent (w): The vertex which is the parent of vertex w in the spanning tree
generated by the search.
pred (w): The set of vertices v such that (v, w) is an edge of the graph.
semi (w): A number defined as follows:
(1) Before vertex w is numbered, semi (v) = 0.
(ii) After w is numbered but before its semi-dominator is
computed, semi (w) is the number of w.
(iii) After the semi-dominator of w is computed, semi (w) is the
number of the semi-dominator of w.
vertex (i): The vertex whose number is i.
bucket (w): A set of vertices whose semi-dominator is w.
dom (w): A vertex defined as follows:
(i) After Step 3, if the semi-dominator of w is its immediate
dominator, then dom (w) is the immediate dominator of w.
Otherwise dom (w) is a vertex v whose number is smaller
than that of w and whose immediate dominator is also the
immediate dominator of w.
(ii) After Step 4, dom (w) is the immediate dominator of w.

88 J. H. REIF AND R. E. TARJAN

In addition, our algorithm uses def (w) as input and computes sdef (w) and
idef (w).

Rather than converting vertex names to numbers during Step 1 and converting
numbers back to names at the end of the computation, the dominators algorithm refers
to vertices as much as possible by name. Arrays semi and vertex include all necessary
information about vertex numbers. Array semi serves a dual purpose, representing
(though not simultaneously) both the number of a vertex and its semi-dominator.

During Step 1, our algorithm initializes parent, pred, semi, vertex, and sdef. When
a vertex w receives a number i, the algorithm assigns semi (w) =i and vertex (i) = w.
Step 1 also initializes sdef (w) = & and updates sdef (w) = def (w) if it finds an edge
(v, w) such that w 5. Implementation of Step 1 is straightforward, and we omit the
details.

The algorithm carries out Steps 2 and 3 simultaneously, processing the vertices
w # r in decreasing order by number. During this computation the algorithm maintains
an auxiliary data structure that represents a forest contained in the depth-first spanning
tree. More precisely, the forest consists of vertex set V and edge set
{(parent (w), w)|vertex w has been processed}. The algorithm uses one procedure to
construct the forest and two procedures to extract information from it.

LINK (v, w): Add edge (v, w) to the forest.
EVAL (v): If v is the root of a tree in the forest, return v. Otherwise, let r
be the root of the tree in the forest which contains v. Return
any vertex u # r of minimum semi (#) on the path r 3 v.
EVALDEEF (v): If v is a tree root, return . Otherwise, let r = vg=> v > 02>
- >y, =0 be the tree path from the root of the tree
containing v to v. Return U{def (v;) Usdef (v)|1 =i=k}.

Reference [LT] explains how to use EVAL to compute semi-dominators and
dominators; we shall describe how to use EVALDEEF analogously to compute sdef and
idef. When a vertex w is processed, the algorithm examines each edge (v, w) € E and
updates sdef by assigning sdef (w) = sdef (w) UEVALDEF (v). After w is processed,
sdef (w) has the proper value by Theorem 2.3. To verify this claim, consider any edge
(v, w)e E. If v is numbered no greater than w, then v is unprocessed when (v, w) is
examined, which means v is the root of a tree in the forest and EVALDEF (v) returns
&. If v is numbered greater than w, then EVALDEF returns U{def (u)U
sdef (u)ju>w and u > *v}. Thus the algorithm computes sdef exactly as specified in
Theorem 2.3.

After processing w to compute semi (w) and sdef (w), the algorithm adds w to
bucket (vertex (semi(w))) and adds a new edge to the forest using LINK
(parent (w), w). This completes Step 2 for w. The algorithm then empties bucket
(parent (w)), carrying out Step 3 for each vertex v in the bucket. By applying EVAL (v),
the algorithm obtains a vertex u satisfying the condition in Theorem 2.2 and 2.4. Using
this u, the algorithm implicitly computes the immediate dominator of v. The-algorithm
also partially computes idef (v) by assigning idef (v):=sdef (v)UEVALDEF
(parent (v)). (EVALDEEF (parent (v)) = tdef (v) as defined in Theorem 2.4.) In Step 4,
the algorithm examines vertices in increasing order by number, filling in the immediate
dominators not explicitly computed by Step 3 and completing the computation of idef.
Here is an Algol-like version of Steps 2—4. The bracketed statements are those added to
the original dominators algorithm to compute sdef and idef.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 89

comment initialize variables;
fori = n by —1 until 2 do
w = vertex (i);
Step 2: for each v € pred (w) do
u = EVAL (v);
if semi (1) <semi (w) then semi (w):=semi (u) fi;
[sdef (w) := sdef (w) UEVALDEF (v)] od;
add w to bucket (vertex (semi (w)));
LINK (parent (w), w);
Step 3: for each v € bucket (parent (w)) do
delete v from bucket (parent (w));
u = EVAL (v);
dom (v) := if semi (1) <semi (v) then u
else parent (w) fi;
[idef (v) := sdef (v) UEVALDEEF (parent (v))] od od;
Step 4. for i := 2 until n do
w = vertex (i);
if dom (w) # vertex (semi (w)) then
[idef (w) = idef (dom) (w)) U idef (w);]
dom (w) = dom (dom (w)) fi od;

Reference [T2] offers two ways to implement LINK, EVAL, and EVALDEF. The
simpler method has an O(m log n) time bound and the more complicated one has an
O(ma(m, n)) time bound. Farrow [F] provides another O(ma (m, n)) method. If we
include the O(J) time required to construct def from the program text, then the entire
algorithm for computing idef requires O(ma(m, n)+[) time, assuming that each set
union requires constant time.

3. Computing simple origins. Once we know def and idef, we can employ the
following theorem to compute simple origins. It is convenient for us to assume that
idef (r)=X.

THEOREM 3.1. Let X° be an entry variable which is a text expression. Then

v if X eidef (v),
7 simple origin (X”) = u if X¢&idef (v) and u is the maximal proper dominator of
v such that X e def (u)Uidef (u).

Proof. Recall that X occurs at v. The theorem is immediate from the definitions of
simple origin, def, and idef, using the fact that idef (r)=3. O

In order to use Theorem 3.1 efficiently, we need to compute two additional subsets
of variables for each vertex. For any vertex v € V, text (v) is the set of variables X such
that X" is a text expression. We can compute text in O(/) time by scanning the program
text. For any vertex v € V, relevant (v) is the set of variables X such that, for some
vertex w properly dominated by v, X" is a text expression and X is definition-free
between v and w.

THEOREM 3.2. For any vertex v,

relevant (v) = U{(text (w) Urelevant (w))—idef (w)|w € V and idom (w) = v}.

Proof. Immediate. O
We can compute relevant in O(n) time by carrying out a depth-first traversal of the
dominator tree and processing the vertices in postorder. Note that, for any vertex v, the

90 J. H. REIF AND R. E. TARJAN

setrelevant (v) (N (def (v) Uidef (v)) contains exactly the variables X such that, for some
vertex w, v is the simple origin of the text expression X",

Given text and relevant, we compute simple origins in another depth-first traversal
of the dominator tree. During the traversal, we maintain a stack for each variable X.
When the traversal reaches a vertex v # r, stack (X) contains (in dominator order) all
proper dominators u of v such that X erelevant (u)N (def (u)Uidef (1)). These
vertices are all the candidates (other than v) for the simple origin of X°. If X € idef (v),
then the simple origin of X* is v; otherwise the simple origin of X is the top vertex on
stack (X)) when v is reached during the traversal. The following algorithm computes
simple origins using this method.

procedure TRAVERSE (v);
begin
for each X etest(v) do
simple origin (X°) := if X eidef (v) then v
else top of stack (X) fi od;
for each X crelevant (v) N (def (v) U (idef.(v)) do
push v on stack (X) od,;
for each w in {w|idom (w) = v} do TRAVERSE (w) od;
for each X erelevant (v) N (def (v) Uidef (v)) do
pop v from stack (X) od
end TRAVERSE;
for each X € X do stack (X)= & od;
TRAVERSE (r);

The correctness of the algorithm is immediate. To get the algorithm to run fast, we
need a method to convert a bit vector representing a set into a list of elements of the set.
We can do this in time proportional to the size of the set if we have a variable-length
shift operation which shifts a bit vector left to the first nonzero bit and returns the length
of the shift. Since such an operation is required to normalize floating-point numbers, it
is a machine-language instruction on many computers. Assuming that a variable-length
shift requires constant time, the time required to compute simple origins is

O(n + Y (text (v)|+|relevant (v) N (def (v) Uidef (v))[)) =0(n+1)

veV

since each variable X € text (v) corresponds to an appearance of X in the program text
at vertex v, and each variable X e relevant (v) N (def (v) Uidef (v)) corresponds to a text
expression X" for which v is the simple origin.

4. Computing the simple cover and approximate birthpoints. From the simple
origins, it is easy to construct the simple cover ¥ and an approximate birthpoint for each
text expression. We begin by constructing a directed acyclic graph (dag) to represent all
text expressions in the program. We shall call the vertices in this dag nodes to distinguish
them from the vertices of the control flow graph. The dag has one node representing
each text expression. An expression which is a constant sign or an entry variable X ° is
represented by a sink labeled by the appropriate constant sign or entry variable; an
expression of the form 6(E,, E», - -+, Ex) is represented by a node labeled with 6
having k (ordered) successors representing the expressions E1, E,, * - - , Ex. An exam-
ple appears in Fig. 5. See [AU], [FKU] for further discussion of this representation. It is
easy to construct a dag representing the text expressions in O(/) time.

We convert the dag representing the text expressions into a dag representing the
simple cover as follows. We process the sinks of the dag labeled by entry variables X in

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 91

t]

F1G. 5. Dags representing the text expression of the program in Fig. 1.

an order consistent with the dominator order; i.e., if v dominates w, we process sinks
labeled X before sinks labeled X . We process sinks labeled X as follows. Let u be
the simple origin of X°. If u = v we do nothing. If u # v and X is defined at u, we replace
all edges leading to sinks labeled X* by edges leading to the node corresponding to exit
expression & (X, u). (This node now represents V(Z(S, u)).) If u#v and X is not
defined at u, we replace the labels X by labels X“. This method requires O(/) time.

We apply two more steps to simplify the resulting dag. First we replace each node
all of whose successors represent constants by a sink representing an appropriate
constant. We repeat this transformation until it is no longer applicable. This requires
O(J) time and produces a dag representing a set of reduced expressions. Next, we merge

N

FI1G. 6. Dag representing the simple cover of the program in Fig. 1.

92 J. H. REIF AND R. E. TARJAN

all nodes representing common subexpressions. This can be done in O(/) time using the
acyclic congruence closure algorithm described in [DST]. The result is a dag represent-
ing the simple cover. See Fig. 6.

We can compute an approximate birthpoint for each text expression by processing
the nodes of the dag representing the simple cover in reverse topological order. Each
sink labeled by a constant has approximate birthpoint ». Each sink labeled X’ has
approximate birthpoint v. Each node with successors has an approximate birthpoint
which is the maximal vertex (with respect to the dominator relation) of the approximate
birthpoints of its successors. The approximate birthpoint of a text expression is the
approximate birthpoint of the corresponding node in the simple cover dag. (Thus our
birthpoints are approximated in part by the simple origins which we computed in § 3.)
This computation also requires O(/) time, giving a total of O(/) time to compute both a
simple cover and approximate birthpoints.

By combining the algorithms of §§ 2, 3, and 4, we obtain a symbolic evaluation
method which requires O(ma(m, n)+ 1) time if extended bit vector operations require
constant time.

Appendix. Graph-theoretic terminology. A directed graph G = (V, E) consists of
a finite set V of vertices and a set E of ordered pairs (v, w) of vertices, called edges. If
(v, w) is an edge, w is a successor of v and v is a predecessor of w. A sink is a vertex with
no successors. A graph G, = (V, E;) is a subgraph of G if Vi< V and E; < E. A path p
of length k from v to w in G is a sequence of vertices p = (v = vo, v1,* * * , Ux = W) such
that (v;, vi+1)€ E for 0=i <k. The path is simple if vo, - -, v, are distinct (except
possibly vo = v,) and the path is a cycle if vo = vy. By convention there is a path of no
edges from every vertex to itself but a cycle must contain at least one edge. If

p1=U=uo, U1, ,u=v)isapathfromu tov and p.=(v =09, 01, * *,vy=w)is a
path from v to w, the path p; followed by p, is p=(u=uo, U1, "+, Ux =0 = vy,
vy, , 0y =w). A directed graph is acyclic if it contains no cycles. A topological order

on an acyclic graph is a total ordering of the vertices such that, for each edge (v, w), v is
ordered before w.

A flow graph G =(V, E, r) is a directed graph (V, E) with a distinguished start
vertex r such that for any vertex v € V there is a path from r to v. A (directed, rooted) tree
T =(V, E, r) is a flow graph such that |E|=|V|— 1. The start vertex r is the root of the
tree. Any tree is acyclic, and if v is any vertex in a tree T, there is a unique path from r to
v. If v and w are vertices in a tree T and there is a tree path from v to w, then v is an
ancestor of w and w is a descendant of v (denoted by v 5 w). If in addition v # w, then v
is a proper ancestor of w and w is a proper descendant of v (denoted by v 5 w). If v 5 w
and (v, w) is an edge of T (denoted by v » w), then v is the parent of w and w is a child of
v. In a tree each vertex has a unique parent (except the root, which has no parent). If
G=(V,E)isagraphand T =(V’, E', r) is a tree such that (V', E’) is a subgraph of G
and V'=V, then T is a spanning tree of G.

<IN,
/N

F1G. 7. Dominator tree of the flow graph given in Fig. 1. The symbol = leads from idom (v) to vertex v.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 93

If G =(V, E, r)is aflow graph and u, v € V, then u dominates v if all paths from r to
v contain u. The dominator relation is a partial ordering with minimal element . If u
dominates v and u # v, then u properly dominates v. It can be shown that, for each vertex
v # r, there is a unique vertex u called the immediate dominator of v which properly
dominates v and is dominated by all other dominators of v. We denote the immediate
dominator of v by idom (v). The tree T = (V, E’, r) with E' = {(idom (v), v)|v # r} is the
dominator tree of G.

[AU]
[CA]
[DST]

[E]
[F]

[FK]

[FKU]

[G]
[GW]

[HU]
[Ki]

[LT]

[R1]
[R2]

[RL]
[Sc]

[T1]
[T2]

[T3]

REFERENCES

A.V.AHO AND J. D. ULLMAN, Introduction to Compiler Design, Addison-Wesley, Reading, MA,
1977, pp. 441-477.

J. CockE AND F. E. ALLEN, A catalogue of optimization transformations, Design and Optimiza-
tion of Computers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1971, pp. 1-31.

P.J. DOWNEY, R. SETHI AND R. E. TARJAN, Variations on the common subexpression problem,J.
Assoc. Comput. Mach., 27 (1980), pp. 758-771.

C. EARNEST, Some topics in code optimization, J. Assoc. Comput. Mach., 21 (1974), pp. 76-102.

R. FARROW, Efficient variants of path compression in unbalanced trees, unpublished manuscript
(1978).

R. N. FAIMAN AND A. A. KORTESOJA, An optimizing Pascal compiler, IEEE Trans. Software
Engineering, SE-6 (1980), pp. 512-519.

E. A. FONG, J. B. KaAM AND J. D. ULLMAN, Application of lattice algebra to loop optimization,
Conf. Record Second ACM Symposium on Principles of Programming Languages,
January, 1975, pp. 1-9.

C. M. GESCHKE, Global program optimizations, Ph.D. thesis, Computer Science Dept., Carnegie-
Mellon University, Pittsburgh, PA, 1972.

S. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analysis, J.
Assoc. Comput. Mach., 23 (1976), pp. 172-202.

M. S. HECHT AND J. D. ULLMAN, Flow graph reducibility, this Journal, 2 (1972), pp. 188-202.

G. A. KILDALL, A unified approach to global program optimization, Proc. ACM Symposium on
Principles of Programming Languages, Boston, 1973, pp. 194-206.

R.LENGAUER AND R. E. TARJAN, A fast algorithm for finding dominators in a flow graph, ACM
Trans. Programming Languages and Systems, 1 (1979), pp. 121-141.

J. H. REIF, Code motion, this Journal, 9 (1980), pp. 375-395.

, Combinatorial aspects of symbolic program analysis, Ph.D. thesis, Division of Engineering

and Applied Physics, Harvard University, Cambridge, MA, 1977.

J. H. REIF AND H. R. LEWIS, Symbolic evaluation and the global value graph, Proc. 4th ACM
Symposium on Principles of Programming Languages, 1977.

J. T. SCHWARTZ, Optimization of very high level languages—uvalue transmission and its corollaries,
Computer Languages, 1 (1975), pp. 161-194.

R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, 1 (1972), pp. 146-160.

, Applications of path compression on balanced trees, J. Assoc. Comput. Mach., 26 (1979),

pp. 690-715.
————, A unified approach to path problems, J. Assoc. Comput. Mach., 22 (1981), to appear.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0008 $01.00/0

ANALYSIS OF A GENERAL MASS STORAGE SYSTEM*
D. COPPERSMITH,t D. S. PARKER,; AND C. K. WONG+

Abstract. A model of a general mass storage system is presented and its performance analyzed. The
system is composed of a square two-dimensional grid of storage cells over which a single read/write head
moves freely. The head can contain at most some fixed number b of cell contents. Algorithms for realizing
an arbitrary permutation of the memory contents are presented for all ranges of b, particularly the important
case b = 1; in each case the algorithms’ performances are explicitly characterized. Open problems, especially
regarding the development of good heuristics, are then discussed.

Key words. memory systems, mass storage systems, permutations, L,-metrics

1. Introduction. With the explosive development of new technologies in the past
few years, the design and analysis of memory systems has become more and more
complicated. As the shapes of cost-benefit curves have changed and more alternatives
have become available in all ranges of memory performance, the task of producing
a design for a mass storage system has expanded to require many complex decisions
on the nature of the system (whether a homogeneous or hierarchical structure is to
be used, which technologies provide the cheapest solution within a given performance
range of each part of the system, etc.). Since there are so many possible memory
structures, little has been written about the analysis of memory systems in general;
this situation has no doubt been exacerbated by the rapidity with which technological
advances are being made and the state of flux of the spectrum of design tradeoffs,
which can only have intimidated researchers from making general analyses.

This paper is concerned with the analysis of the general mass storage system
shown in Fig. 1. The system is composed of a square n Xn grid of memory “cells”,
on which a single read/write head is permitted to move to and fro. Each cell contains,
uniformly, some memory subsystem with a given capacity; and it is assumed that the
read/write head, or its controller, has a fixed number b of ‘“‘registers” which are each
large enough to contain a cell’s contents. (Hence we are concerned with the range of
values 1 =b =n?, and the limits 5 = 1 and b = n? are of particular interest.) In addition
to this, the movement of the read/write head is restricted in ways so that the distance
between points on the grid (i.e., the amount of time required by the head to move
from one point to another) is reflected by the L;, L, or L.-metric on the grid. That
is, the head can either move:

(a) horizontally or vertically, but not both simultaneously, at uniform speed (in

which case distance between two points is given by the L,-metric);

(b) horizontally or vertically or both at uniform speed (L«-metric);

(c) in any direction at uniform speed (L,-metric).

Note that with b =1 and the L;-metric the memory system can be made to model
an elaborate bubble memory of the type discussed in [1], and with b =1 and the
L..-metric a tape mass storage system like the IBM 3850 can be modelled. (See, for
example, [2], [11], [15].) For most applications a small value of b, like one, seems
reasonable.

In addition to the grid and read/write head, we assume the existence of a control
unit, and some control memory, connected to the head and to the channel making

* Received by the editors November 6, 1979, and in revised form February 9, 1981.
+ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
1 Department of Computer Science, University of California, Los Angeles, California 90024.

94

A GENERAL MASS STORAGE SYSTEM 95

I 2 3 4 5 eeoe n-l n
| HEDDD HH
2 OO0 0
3 M0 soe Bl
4E:] eeoe
. MOVABLE
. READ/WRITE

HEAD
'\\;JD
-8
n-2 [eee JOMO m
- [0 OO ee e a O C
n BBH8H B

F1G. 1. General mass storage system on n X n grid.

requests on the memory. In the ‘“‘online’” mode, requests on the memory are accepted
by the control unit and serviced by scheduling a tour for the head (which might be
dynamically modified as new requests come in). One problem that might be addressed
here is therefore the development of good online scheduling algorithms; if requests
are scattered randomly about the grid then possible solutions might resemble the
algorithms already developed for disk-like units (see, e.g., [3], [13]). In fact the memory
system here can be regarded as a ‘“four-dimensional drum”—a drum with two seek
dimensions (each cell containing a track of information).

We will be concerned here with what we call the “‘offline”, or stand-alone use
of this memory, however. Note that, if requests are not randomly distributed on the
grid but instead favor given cells over others with a definite probability distribution,
then memory performance will be enhanced when all the “popular” cells are located
close to one another. With a given access probability distribution, in fact, the best
arrangement of the cells for the minimization of average access time is a sort of spiral,
with the most popular cells in the center and least popular on the fringes. (This has
been discussed in [4] and [2], [5]; the exact nature of the spiral depends on the metric
being used, i.e., the restrictions on head movement.) The idea here is that statistics
on access frequency might be collected for all the cells while the system is run in
online mode; subsequently the memory system could then be switched offline and the
cell contents permuted to realize the spiral organization. In this way average access
time in online operation can be reduced, even without a sophisticated scheduling
algorithm.

The problem we are addressing is therefore: What is a good way to realize a
permutation of the cell contents in the offline mode? A solution will permit us to operate
the storage system efficiently in the online/offline manner just described, and has
independent interest as well (it is the two-dimensional generalization of the elevator

96 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

scheduling problem solved by Karp [6, pp. 358-361]). Due to some symmetry consider-
ations the solution of the problem is somewhat more difficult than might be expected.
Below, after suitable definitions and machinery are set up, the average and worst case
costs (i.e., time required to realize a permutation offline, average implying that all
permutations are assumed equally likely) are derived for b = 1, then b = n* and finally
for intermediate values of 5. The “cycle algorithm’ analyzed for the b =1 case is
asymptotically optimal, so this case may be viewed as resolved (asymptotically at
least). For larger b, unfortunately, currently only good algorithms are provided, but
these algorithms are shown to give performance within a small constant factor of
optimal.

2. Definitions and general considerations. As just indicated, we are given a
square grid G, of size n X n, and are concerned with realizing a permutation u selected
from P, the set of all permutations of grid points. Thus P is the symmetric group on
? objects. The permutation w indicates how the memory’s contents are to be moved:
if (i) =j, then the contents of cell i are to be moved to cell j. (Cells in the grid may
be indexed in any convenient way.) Thus our problem is to produce an optimal, or
near-optimal, schedule of head movements and reads or writes (or exchanges) which
realize a given permutation . The number of head movements is assumed to be the
dominating cost factor, and we will concentrate all of our efforts below on analyzing
the movements required by different schedules. Since each head movement takes, as
assumed above, a fixed amount of time determined by an L, metric, we will therefore
also be studying time requirements of schedules. Below we will use the terms ‘‘head
movements’’ and “time”’ interchangeably.

Because of the symmetries of the square grid, certain permutations may be
effectively realized using fewer head movements than might initially seem necessary.
Consider the realization of the 180° rotation permutation pictured in Fig. 2. When
b =1, if we naively go ahead and move the grid contents around as indicated then it
turns out that we require time of at least cn®+ O(n?), where ¢ is the metric-determined
constant

1 _ _ inLl,
¢=4.76519572---=1/3 [ln(1+\/2)+\/2] in L,,
2/3 in Leo.

(The time required is reflected directly by distance under a metric. Although the L,
read/write head may seem more powerful than the L head since it can move in any
direction, it really is not, since the L, head moves simultaneously at uniform speed
horizontally and vertically. Thus to move from (0, 0) to (1, 1) the L, head takes time
1, while the L, head takes time \FZ.) In all three cases this is a great deal of time
when one considers that one can get away with zero time: if the controller simply
remembers that the memory is in the —180° rotated ‘‘state”, it can translate all future
requests on the memory with negligible overhead—and the offline rearrangement
never need be made.
We generalize the above idea as follows. Suppose that

Cost ()

denotes the least possible cost in time required to (naively) realize the permutation
7 € P. Suppose further that a user requests the memory be permuted according to
wu € P. Instead of just taking Cost (u) time, we employ the following more clever
approach.

A GENERAL MASS STORAGE SYSTEM 97

I 2 3 4 - n
(n+1) (n+2) cee 2n
ORIGINAL CONFIGURATION
(GRID INDEXING)
p2n+) - - - (n%]) n?
ne (n&l) c oo (n2-ntl
DESIRED CONFIGURATION (x)
(180° ROTATION OF GRID)
2n - - - (n+2) (n+)
n --- 4 3 2 |
I 2 3 4 ... n
(n+1) (n+2) c e+ 2n
RESULTING CONFIGURATION
(SAME AS ORIGINAL)
(n2nt) - - - (n%-) n?

F1G. 2. Taking advantage of grid symmetry.

The group S of symmetry operations on the square consists of 8 elements
S={1,p,p%0° 7,07,0’1,p°1} =P,

where p represents a 90° clockwise rotation and 7 a flip about the square’s horizontal
axis of symmetry, so p* =1, 7>=1, pr = 7p°, etc. When we say that the grid is in state
o we mean the user must apply o to his conception of the grid’s contents to get the
actual grid’s contents. The grid/state pair (G, o) is equivalent to the pair (o'(G),
o'oo) for all o' € S, o denoting composition of permutations; the user always thinks
of (¢ '(G), 1). Note that before Fig. 2 the memory’s state o is 1, since the user’s
conception of the memory is correct, whereas after Fig. 2 the state becomes o =~ ' =
—180° rotation =p 2.

We may solve the problem posed in § 1 in three steps. Assume that the grid is
in state o and that the user requests a permutation u be realized (relative to his
perception of the grid’s contents), then

(1) Determine which state o' € § minimizes Cost (oo oo).

98 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

(2) Realize 7 =co'ouoo " directly on the grid.

(3) Mark the grid’s state to be ¢'.

Note that when the user is kind enough to choose u as an element of S, this
process is trivial, since then one can always find '€ S such that o'opoo ' =1,
and with any reasonable permuting algorithm, we have

Cost (1) =0.

In other words when w € S there is no work to be done except change the grid’s state,
as was shown in Fig. 2. The point is, however, that even when u is not in S significant
savings in time can result by using this approach of choosing the cheapest grid state.
We will quantify this statement in the following section.

Now, the only remaining difficulty is to exhibit an optimal algorithm which
produces head movement schedules for realizing a given permutation 7 (for example,
m=0'omweo ') directly/naively on the grid. Unfortunately this is not so simple, if
one wants the algorithm to terminate quickly. Here we want the time to produce a
schedule for realizing 7 to be significantly less than the time actually needed to execute
the schedule by the read/write head. We are assuming that algorithms of moderate
time complexity (say, between O(n?) and O(n*) steps, where again there are n” grid
elements) will have this property. Much of the rest of this paper concerns itself with
finding algorithms of moderate complexity for various values of » which produce
near-optimal schedules.

It can be shown that the problem of producing an optimal schedule of head
operations is NP-hard, no matter how large b is (i.e., no matter how many registers
the head has), by reducing the following path travelling salesman problem (PTSP)
[7], [8] to it: given a set of m city coordinates {c; = (x; y;)li=1, - - -, m}, where x,, y;
are integers between 1 and m, find an optimal path through all the cities, i.e., the
travelling salesman is not constrained to return to his starting city, he merely is required
to visit each city once. Note that, except for the L,-metric, we can easily show that
the problem is in NP [8]. The reduction is as follows: we construct a set of 2m points
{piqli=1, -+, m}on asuitably large grid, namely,

pi=4x;,4y), q=4x;+1,4y)

so n, the grid size, is actually 4m.
Note that if we can produce an optimal read/write head tour for the permutation

p = (p191)(P2q2) * * * (PmGm)

expressed in cycle notation—so w (p;) = qi, u(q;) = p; for all i and u(x) = x otherwise—
then an optimal tour for the original PTSP can be easily extracted. This reduction
works no matter how large b is (since the optimal head tour will always just exchange
p: and ¢q; before moving on to another pair, so » = 1 will always suffice) and no matter
which L, metric is used (the reduction of the L, PTSP to the planar Hamiltonian path
problem given in [7] generalizes for L; and L as well; see also [8].)

It is therefore clear that the best we can probably do here is produce a heuristic
polynomial algorithm that finds near-optimal tours. Fortunately this is not hard for
most permutations, as we shall see. The permutation u produced in the above reduction
is very sparse as a permutation, since it leaves most of the grid undisturbed. We shall
see that “good” tours for nonsparse permutations can always be found quickly.
Interestingly, it is a very rare occurrence for a randomly selected permutation to be

A GENERAL MASS STORAGE SYSTEM 99
sparse; for example, [14] shows

1
lim Pr[random w € P does not satisfy u(x) = x for any x € G] = .

n—-»>oo0

3. The case b=1. The case b =1, that is, the case that the read/write head
contains only one register, is probably the most important for practical applications
and will correspondingly be given most of the attention of this paper. In this case the
contention for the use of the head is extreme, in fact, so extreme that as we will see
the cost of realizing a permutation is determined almost wholly by the contention and
not very much by the precise form of the scheduling algorithm. This simplification
permits a thorough analysis of this case, a task which becomes more difficult as b
grows large.

We present first a simple but effective algorithm for generating a read/write head
schedule in realizing a permutation 7€ P. (Here 7 is viewed as an “absolute”
permutation—symmetry operations on the grid are not taken into consideration.)

Cycle algorithm. Given b = 1, permutation 7 to be realized, head initially in any
location x on grid.

Step 1. Determine cycles (orbits) of permutation 7.

Step 2. Repeatedly:

(a) schedule the head to permute all the elements in the cycle of its
current grid location, in the obvious way (i.e., move x to 7w (x), 7 (x)
to o (w(x)), etc., until the head returns to point x).

(b) schedule the head to go to the nearest location whose contents have
yet to be moved.

Although this algorithm is extremely simple-minded, it is clear that the only
possible waste in time it might make would come from Step 2(b), since all the moves
made in Step 2(a) are necessary when b =1. Let CACost (7) denote the cost of
realizing 7 with the cycle algorithm,;

CACost ()= Y. d(i, w(i))+ (Cost of Step 2(b) for),
ieG

where d is the L,-metric under consideration. The contribution to the total cost from
Step 2(a) is directly related to the intrinsic difficulty of the permutation, while that
from Step 2(b) is directly dependent on the algorithm. Fortunately, as will be derived
below, for most permutations '

Y d(, (i) =6(n),
ieG

whereas we can show

ProprosITION 1. (Cost of Step (2b) for) = o(n?).

Proof. This is easy to show; in fact, the coefficient of n”> will be less than one.
The only observation that need be made is that, in moving from cycle to nearest cycle,
the head will traverse the entire grid less than once. And traversing the entire n X n
grid takes time n”>+O(n). O

Thus the cycle algorithm is asymptotically optimal for most permutations, although
it could conceivably perform badly for ‘“‘sparse” permutations. As an example of how

! 6(n 3) means exactly order n3.

100 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

bad it can get, consider the permutation 7 of 4 cycles illustrated in Fig. 3, given that
the head starts at point a and the L;-metric is being used. The cycle algorithm
processes m as (abc); (de); (fg); (hi) requiring 8n + O(1) head motions. (From a to
b to ¢ and back to a, we need 4n; from a to d, we need n; from d to f, another n;
and finally from f to h, we need 2n.) However the optimal method is to process the
small cycles while working on the large one, i.e.,

(a b (hi)(de) (fg) c),

which takes 4n + O(1) head motions. It therefore may be worthwhile to consider
refinements of the cycle algorithm, particularly if head movements are much slower
than the computation speed of the control unit (which is devising the head’s schedule),
as we assume here. One good alternative is the following:

Minimal spanning tree/ Euler circuit/ cycle algorithm.

Step 1. Determine cycles of permutation 7r.

Step 2. Derive distances between cycles of 7 (i.e., for each pair of cycles Ci, C,
in 7 derive min,cc,yec, d(x, y) and record this in a matrix as the distance between
C1 and Cz)

Step 3. Form a minimal spanning tree for the cycles. This tree corresponds very
closely to a “Euler circuit” for 7.

Step 4. Traverse the minimal spanning tree (Euler circuit) in the obvious way.
Effectively this changes 7 to look like one enormous cycle, but a cycle which touches
itself.

Note that this algorithm is fairly effective in reducing obvious waste: for the
permutation in Fig. 3 it produces the schedule

(ab (hi) c (fg)) (de)

with a cost of Sn + O(1) steps if cycles are joined in one way, and

(a (hi) b (fg) ¢ (de))

with the same cost if they are joined in another (note that this latter schedule is better
under the L, and L, metrics than the former). However, Step 2 can be extremely
expensive, requiring as much as O(n*) time or O(n?) words of memory depending
on 7’s cycle structure. If the cost of Step 2 is not felt to be exorbitant, however, the
user may consider enlarging it to capitalize on the fact that the distance between two
cycles is often less than the minimum distance between their elements; this was shown
in Fig. 3 with the cycles (abc) and (de).

For the rest of this section we will assume that the read/write head control unit
uses something like the cycle algorithm so that the dominant term in the cost of
realizing a permutation depends solely on the permutation. In fact we define

Cost ()= Y, d(i, m(i)),
ieG
d being again the metric under consideration, since then CACost asymptotically
approaches Cost as n grows large, and since this simplification permits us to ignore
algorithm structure in the following analyses of costs.

Ignoring for the moment the symmetry operations S mentioned in § 2, we ask
the average and worst-case values of Cost (), where average means that all permuta-
tions 7 are considered equally likely. Essentially then we are asking how much time
we would require to realize permutations offline if we did not worry about “grid

A GENERAL MASS STORAGE SYSTEM 101

F1G. 3. Permutation for which cycle algorithm is poor.

states’’; this will serve as a basis for comparison when the analysis with grid states is
made below.
THEOREM 1.

2/3n+0(n), L, metric,
Average [Cost (7)] = (.5214)n> + O(n?), L, metric,
meP 7/151° + O (n), Lo metric.

Proof. For all three metrics we have

Average [Cost (7)]= Y ¥ di, =)

meP () wePieG

— L L d,7(i)

() ieG meP

Y X NG HdG)),

(n)' ieG jeG

where
N (i, j) = [number of permutations 7 € P such that 7 (i) =]
=(n>-1),
S0
Average [Cost (7)] = lz Z Z d(i, j).

This sum must now be analyzed independently for each of the three metrics. In all
three cases we represent grid points with the matrix-like indexing i & (iy, i), where
i1 and i, have values between 1 and n.

102 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

In the L, case we have

Ly s aip-

N ieGjeG

S Y (i—jl+li—al)

1j1=1j2=1

M:

I

i2

by
((i i n2|i1“i1|)+(§. Zn: n2|i2‘i2|>>

i1=1j1=1 i2=1j=1

31

Z |k —1].

k1=

Let A denote the multiset {|{k —1I|, k=1,---,n, =1, -+, n}. Then it is easy to verify
that A contains (n) zeros, 2(n — 1) ones, 2(n —2) twos, - - -, and 2(1) n — 1’s. Concisely,
if § is a positive integer less than », there are 2(n — §) copies of § in A. Thus, continuing,

=236

deA

_2'Y 2(n—8)s

8=1

=2/3(n*-n)=2/3n*+0(n) asstated.

In the L case we find

L2 Y X dij)= i Y, max (ji1—ji|, lia—j2l)

1
-2
N ieGjeG R iiz=1 j1,j2=1
1
—2

Y Y max (8, 8,).

N 51eA dveA

By carefully manipulating this sum we can show this is

1
=157 (Tn°—=5n*-2n)

= —7— n®+0(n) asstated.
15
The constant 15 has been independently verified in [10], where it was shown the
average Lo distance in a square with edge 2 is 15 (implying the average distance in a
square of edge 1 is 15).
The L, derivation is, not surprisingly, more complicated. By appealing to the
Euler-Maclaurin summation theorem we have

1 1 n n)
S Y Ydip== ¥ Y Via-jpl+li-pl

N ieG jeG R iyiz=1 j1,j2=1
=3 Z z \/61+82
n 51€A 82eA
1 » _
== Y Y 20n—81)2(n—58)V61+85+0(n)
N §,=18=1
4 " \/2—2 2
=;2- A (n=x)(n—yWx“+y“dxdy+O(n”).

A GENERAL MASS STORAGE SYSTEM 103
The double integral can be evaluated as (4/n°) [g (n —x)F(x, n) dx, where

F(x,n)= Ln (n—y)Vx*+y> dy

3
—gx arcsmh()+—~/n +x ——(n +x)3/2+%—

(fudging at the boundary x =0 is harmless), and by taking the asymptotic behavior
of this integral we find that, since arcsinh (z)=1In (z + V22 + 1), we have in closed form

+\/2

Ly di - [In (14+2)+2]n3+0(n2)
n ijeG
—[.52140 54331 64720 67833 - 1>+ O(n?)

as claimed. This asymptotic form of the average cost agrees well with the exact values
or moderate n. For several values the n*> coefficient

(2, £ == V5TH5]
is tabulated in Table 1, and a polynomial regression on the table shows

Average L, cost = (.52140)n°> - (.66319)n>—(2.98662)n +(476.07),
with small residuals and enormous F-statistics. []

TABLE 1
Asymptotic behavior of average L, cost.

n Average L, cost/n>
100 0.51471 44257
200 0.51806 59602
300 0.51918 04742
400 0.52007 11123
500 0.52073 85192
1000 0.52096 08787
1500 0.52107 20379

Frequently the evaluation of average complexity is of limited use, since the
standard deviation can be large, suggesting that behavior much less and much greater
than the average will occur reasonably often. It is interesting to note that this is not
the case here.

TuEOREM 2. Standard Deviation [Cost (7)]= O(n?) in all 3 metrics.

Proof. Recall that standard deviation= VVariance, and if we let A=
Average,. [Cost ()] then

Variance [Cost (77)]—() Z(Y. d(, ‘IT(I)))

m

~(3 2 2 007

wieG (wiE]f

L (i) d(j, w(m)

= (;zatir)+ (ﬁ ¥ dli.k)d(, D) -

k#l

104 D. COPPERSMITH, D. S. PARKER AND C. K. WONG
It can be shown that the second term in this expression is

I S
n*(n*-1)

2
[n“A2—2 » (z d(i, k)) +Y dG, k)z],
K \7 ik
and since we can put
A’=cin®+0(n"),
Y d(i, j)>=cn’+o0(n®),
i
2
£(2d60) =esn*+oln®)
k i
in all 3 metrics, we find

1
Variance [Cost ()] = P (c2n®+0(n®)

+—2—12— (n*A%=2(csn®+0(n®) +(can®+0(n®))— A2
n“(n°—1)

1
=n*(ca—2c3)+A* (1 — 1/n2_ 1) +o(n*

=n*(c2—2c3)+(cin®+o(n®)(1/n*+1/n*+- -) +o(n*
=n*(c1+cr—2c3)+o(n®).
Thus, by taking the square root, we find that the standard deviation of the average
cost_is Ognz) in all three metrics. Actually evaluating the leading coefficient
N, c1+c2—2c3 is tedious, but, for example, in the L, case (in which case the coefficient

is larger than in L, or L since L, costs vary more than do the others) we can determine
that

Standard Deviation [Cost (7)] = N 4—'5 n*+0n%

weP
I
=(F5) n*+ow
=(.29814)n>+ O0(1). 0

It is thus apparent that the average cost figures given by Theorem 1 are very good
predictors of the running time of a read/write head schedule for a random permutation,
especially as n gets large. We can also get precise bounds on the worst-case running
time for any permutation.

THEOREM 3.
n*—n, nodd, L, metric,
n’, n even, L, metric,
Worst C Cost = - —
or:ep ase [Cost ()] 1In(1 +V2)+V2]n* + O (n?), L, metric,

2/3(n>—n), L metric.

A GENERAL MASS STORAGE SYSTEM 105

Proof. Letting 7 be any permutation and p be any point on the grid G, we apply
the triangle inequality for the metric d to get the upper bound

Cost (m)= Y. d(i, (i)
leG

= .ZG (d(@i, p)+d(p, m(i)) =2 ‘ZGd(i, p).

This right-hand expression is maximized when p is the center of the grid (when
n is even p is not actually a cell location). This gives us the upper bounds stated in
the theorem, because we can actually find a permutation which attains this upper
bound: Note that the 180°-rotation permutation 7 shown in Fig. 2 is a worst-case
permutation since it satisfies

d(i, m(i))=d(i, p) +d(p, m(i))

for all i € G. Any permutation satisfying this equality for all / must necessarily be a
worst-case permutation; also a simple symmetry argument shows that the only way
a permutation 7 can satisfy this equality is for p to be the grid center. The values
stated in the theorem reflect the cost of this permutation in each of the metrics. 0

Up to this point we have ignored the possible savings that are made by taking
advantage of the symmetry of the grid, as discussed in § 2. For the rest of this section
we examine how the symmetry operations affect the average and worst-case cost
statistics derived above.

We begin first by studying the relative costs of the symmetry permutations
themselves. All the necessary information is listed in Fig. 4 and Table 2, derived in
the same manner as in Theorems 1 and 2, using the matrix notation

p((i1, 2)) = (iz, n +1—11),
T((il’ i2)) = (n + 1 _il’ i2)’

and so forth for the other members of the group S. The only expressions that present

P
“©

(3}
1
o

(3}

-]
)

©
ol

~®
~

o
oo ®

colQ|OT

oO|Q|T|0

ojlajojla|o|d

ojlajojajlo|la

olo|o|alelale R

o|lo(T|(ajo|(ajlo|la

COST (oo o))
MATRIX IS SYMMETRIC

FIG. 4. Distance matrix for grid symmetry operations.

106 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

TABLE 2
Values of distances in Fig. 4

a b c d
3 13
_ i 203 (n”—n), nodd 2(n”—n), n odd 2,3
d = L, distance $(n°—n) (n*), n even 11, n even f(n°—n)
o (.54107)n° in (1+v2)+v2]n? 3(n®~n), n odd -
d =L, distance FoMm?) +0(n?) 1043, n even (vV2)/3(n”—n)

3(n*~n), n odd
%(ns), n even

%(ns—n), n odd

1, 3
1 3(n’—n
3(n%), n even 5()

d = Lo, distance Z(n3-n)

any difficulty are the values of a and b under the L,-metric, for which we have

a=73 dip@)= 3 k=IFrin+1-(k+D,
ieG k,l=1

b=Y di,pX @)=Y Vin+t1-2kP+]n+1=21F;
k=1

ieG

in the latter case, the techniques of Theorem 1 can be applied directly, but a closed
form has not yet been derived for a.

We now examine the effect on cost of the symmetry group S. It turns out that
symmetry operations do not significantly reduce the average running time, but they
reduce the worst-case running time significantly. We formalize this as follows: given
a permutation 7 € P, define the symmetrized cost SCost by

SCost () = min Cost (oo 7).
ogeSs

It follows obviously that SCost (7) = Cost () for all permutations 7. Nevertheless we
have the surprising result of Theorem 4.
THEOREM 4.

Average [SCost ()] = Average [Cost (7)]— O (n?).

Proof. Let f(x)=[Number of permutations 7 such that Cost (7)=x]/(n>)! for
any integer x be the “‘probability density”” for Cost (7r), with corresponding distribution
F(y)=X,=,f(x). The point is that f looks very much like a “‘spike”. If A denotes the
average cost as in Theorem 2, then

and the variance B is given by

A GENERAL MASS STORAGE SYSTEM 107
Using a Chebyshev inequality process we have for each positive integer C <A

B> §0 (x — AYf(x)

C
z(A-C) gof(x)=(A—C)2F(C).

Thus (A —C)=B/YF(C) for 0<C<A. Now note that, for every permutation ,
SCost (7r) is the minimum Cost of the eight translates o o7, with o € S, and of course
all of these translates are again permutations. Thus the distribution function F, giving
this distribution of costs with S, is at best the left-hand § of F (renormalized by a
factor of 8). That is, if A = max {x|F(x) =3} then Fs(x) = G(x), where

_[8F(x), x <A,
Glx)= { 1, X ZA.
Correspondingly, if
8f(x), x <A,
gx)=<1-8F(x), x=A,
0, x> A,

then we have the bound

A'= Y xg(x)=Average [SCost (7)]< ¥ xf(x)=A.
x>0 T x>0

Now it is clear that A'=Y__, xg(x)=F '(7s), since we are finding the average (or

midpoint) of the left-hand g of F. Then applying the Chebyshev bound derived above

for C = A’ we find

B
-A'=S————=4B
V(1/16)

so A' is within 4 standard deviations of A; however from Theorem 2 we know that
B is only of order O(n?). Thus

A-0(n?H= Average [SCost (7)] <A,

which is what was to be proved. [

Theorem 4 suggests that using the symmetry operations S will not significantly
reduce execution time, on the average. However, we now show that using S does
reduce considerably the worst-case time. To do this, we establish first the following
lemma.

LEMMA. Given m € P, we can construct ' € P such that

SCost (') = Average [Cost (o 7)]+ O (n?).
oeS

Proof. This statement can be proved, but instead we show the simpler result that
we can construct a permutation 7' of the 4n X4n grid having the corresponding
property

1
@r SCost (7') = Average [Cost (g o)]+ O (n?).
ogeS

108 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

Since we are not really concerned about the size of n, only the form of the worst case
permutation, this shift of grid size is not important.

We construct 7' from 7 by “interleaving” 2 copies of each of the 8 translates
oom of . We do this by dividing the 4n x4n grid G’ into 16 n X n subgrids G,,,
with p and g being integers between 1 and 4, defined by

qu ={(4k1 +p, 4k2+€])|0§k1, ko=n-— 1}

7' is then constructed as being a permutation mapping each G,, into G,, for all p, q.
For each point (i1, i) = (4k1+p, 4ko+q) in G', if o,4(1 =p, q=4) constitutes an
enumeration of S such that each element of S appears twice, and if opq° 7 (k1, k2) =
(11, 1), then we define

' ((i1, 12)) = 411+ p, 41+ q).

In other words, ' is o,q° 7 when restricted to G,,. From this it follows immediately
that

Cost (') =Y, 4 Cost (gpq°7)
p.q
=2 Y 4 Cost(ogom)
ogeSs

= 64 Average [Cost (go)],

ogeS§

where the factor 4 comes from the fact that the grids G,, have a distance of 4 between
cells. Moreover, since oS =S for all o €S, we know

Cost (gon')=Cost () + O(n?) foralloceS

(where it is understood now that by o we mean the symmetry operations on the
4n x4n grid G'), the O(n?) term resulting from the minor rotations of each of the
4 x4 chunks {(4k1+p, 4k2+q)|1 =p, q =4} of G’ under . From this we get

SCost (7') = Cost (7') — O(n?)

and the lemma follows. 0
COROLLARY.

Worst Case [SCost ()] = Worst Case [Average [Cost (oo m)]]+ O(n?).

weP weP ogeS§

Proof. Suppose 7 is the worst case, i.e., # maximizes SCost (7). Then by the
above lemma there exists 7' such that

SCost (') = Average [Cost (oo)]+ O(n?)

ogeS
=SCost () + O(n?).
Thus 7' is essentially a worst-case too. However,
SCost (') = Average [Cost (go7')]+ O(n?);
geSs
so the corollary is proved. U
THEOREM 5.

Worst Case [SCost ()] = an>+o0(n?),

weP

A GENERAL MASS STORAGE SYSTEM 109

where o = 0.72096 for the L-metric, « = 4387826 for the L-metric and 0.53956 = a =
0.6202 for L,-metric.
Proof. By the above corollary it suffices to consider
A = Worst Case [Average [Cost (oo m)]].
weP oeS
We study the L;-metric first.

For convenience of later discussion, we identify the n X n grid G with the square
with vertices (1, 1), (1, —1), (-1, —1), (=1, 1). Since

d(x, oom(x)),

1
Average [Cost (gom)]==
es 8 xcGoes

clearly, we can assume without loss of generality that x and = (x) are in the same
quadrant, i.e., = maps a quadrant into itself. Let x =(a, b) be a point in the first
quadrant G; and let 7 (x) = (u, v) be its image. Then, a, b, u, v =0;

Y dx,o0m(x))=2(u—a|+|v—>b|+|u—b|
oeS
+ly—al+w+a)+w+b)+w+b)+(v+a))
=2(d(x, w(x))+d(x,nem(x))+4(u+v+a+b),

where n(u, v) = (v, u). Thus

Y Y dx,oomx)=4 Y (u+tv+a+b)+2 Y dx, w(x))+d(x, nm(x)).

xeGy oS xe Gy xeGy

Note that ¥, g (u+v+a+b) is the same for all 7. Hence if we can construct a
permutation 7 from G, onto G, such that ¥, 5 d(x, 7(x))+d(x, nom(x)) is maxim-
ized, then we can extend it to G by reflection to obtain the worst-case permutation.

Since we are interested in the coefficient of the n> term in A only, we need only
consider continuous transformations from G; onto G; with Jacobians equal to +1.
(An area-preserving continuous map is roughly the limit of one-one permutations.)

Divide G; into 10 regions as in Fig. 5, where e=G2, t=((3—\/6)/2, 1-
(3—\/6)/2) such that area B;=area Bj, area B, =area By, area A =area C, area
D, =area D3, area D, =area D,.

Next we define a real-valued function f on G, as follows, where d is again the
L metric:

2d(x,e) forxeA, C,
d(x,e)+d(x,t) forxeB,, Bs, By,

d(x,e)+d(x,t) forxeD,, Ds, Dy,
de, t) for x €e By, D;.

flx)=

By direct verification, we have for the L;-metric

(1) d(xy)+dx, n(y)=f(x)+f(y)
forxeA,yeC;xeBy,yeBs;x€By,yeBy; x€D1,yeDs; x €Dy, y€ Dy,
(i) d(x,y)+d(x,n(y)=f(x)+f(y) forx,yeG.

110 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

,) (1,0

(0,0 (1,0)

es(y 4) -8 1135

2,2

F1G. 5. Worst-case permutation for the L,-metric.

Inequality (ii) implies that, for any transformation 7,
d(x, m(x))+d(x, nm(x)) = f(x) + f(m(x)).

On the other hand, for any transformation 7, such that it maps A onto C, B,
onto B3, B; onto By, D; onto D3 and D, onto Dy, by (i)

d(x, mo(x)) +d(x, nmo(x)) = f(x) + f(mo(x)).

It follows that 7o maximizes }., ., d(x, w(x)) +d(x, nm(x)).

Direct calculation of Average,.s [Cost (o°mo)] yields the result stated in the
theorem.

To achieve the worst case for the Lo-metric, we note that the mapping g(x, y) =
((y +x)/2, (y—x)/2) is an isometry between the plane with L.-metric and that with
the L, metric. Thus, instead of working with G, (with the L.-metric), it suffices to
consider the triangle T; with vertices (0, 0), (\/2, 0), (0, v 2) (with the L;-metric).
In other words, we have to construct a transformation form T; onto T; such that
Yrer, d(x, w(x))+d(x, nm(x)) is maximized, where d corresponds to the L;-metric.

For convenience, we normalize T to a triangle with vertices (0, 0), (1, 0), (0, 1).
As before, we divide T into 10 regions, such that area B, =area B3, area B, =area
B,, area A =area C, area D, =area D3, area D, =area D,. (See Fig. 6.) To do this,
X, Y, Z must satisfy the equations:

2X*-2XY -2XZ-Y*-3Z*+4Z =0,
X2-2X+2XY -2XZ-Z*+2Z =0,
2X%2—4X +2XY -2XZ-Y*+Z*+1=0.

which means X =0.27677, Y =0.531439 and Z = 0.139882. Again, any transforma-
tion mapping A onto C, B; onto Bs, B, onto B,, D; onto D3 and D, onto D, will

A GENERAL MASS STORAGE SYSTEM 111

pA c

Ds D\

0,0 z X Y (1,0

F1G. 6. Worst-case permutation for the Lo-metric.

maximize the desired sum and will be our solution. We compute, as before, that the
mean distance is

X +3X2-4X3 4+ + 722123 - X?Y +3XY?
—2XY +2X2Z-5XZ*-2Y*Z +2YZ*+2XYZ =0.43878265158.

The case of the L,-metric seems to be much more difficult, and we are unable
to obtain the coefficient of n> exactly. Only some simple bounds are presented here.

Consider the triangle T with vertices (0, 0), (1, 0), (1,1). Let w be an arbitrary
but fixed point in T. Then, assuming that 7 maps all triangles in the grid onto
themselves,

Lx dx, com(x) ==

gL Lldx, aw)+d(o(w), oom(x))]

1
8.

—

—IvYd, a(w>)+§zz d(w, 7(x))

- 00

=§Z'Zd(x, a(w))+X d(w, x).

Let T'=0'(T) denote the translate of T by o' S and w'=0c'(w). Then we have
exactly the same inequality:

s 5y dwoenty=iy L [l o(w)+do(w), aom(x)]

8 ses xeT 8z xeT
~5% L dtn o)+ T don),
Thus,
% Py xeGd(x,0'°7T(x))<m1n{agsx§_rd(x, (W) +8 T diw, x)}

112 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

For the L;-metric, the minimization point turns out to be wo= G, 5-+ 17)/4).
While we are unable to determine the minimization point for either the Lo or
L,-metric, we can use wg to obtain an upper bound:

! Y Y dx,oom(x))=0.6202n".

8 ogeSxeG

To obtain a lower bound, let Gy, G,, G3, G4 be the four quadrants of G and define
a permutation 7o mapping G; onto itself, for i = 1,2, 3, 4:

p37' in G,
pr in Gy,
p31' in Gs,
pr in Gy,

Moo=

where by p, we mean the symmetry operations on the appropriate quadrants. Direct
computation shows that

SCost (1) = 0.53956n°.

Therefore « is between 0.53956 and 0.6202. [

To summarize, when a user gives us a permutation u while the memory is in
state o, we form uoo-"l, determine SCost (woo ') =Cost (¢'omoo ") and realize
the permutation o'ou oo~ ' using ““cycle algorithm” or some other similar algorithm.
Theorems 4 and 1 give the average cost, and Theorem 5 gives the worst-case cost.

The case b = n>. In the case b = n?, the read/write head contains enough memory
to save the entire contents of the mass storage device. The possibility could arise, for
example, if some large random-access devicé were available during the offline permut-
ing period. The value b = n? is perhaps exorbitant, but it serves a useful limiting value
with which performance for smaller values of » may be compared.

Below we produce a straightforward algorithm for generating any permutation
m € P, always taking time 2n>. Although this algorithm is very suboptimal for some
permutations, it is not bad in the general case. As before, 7 is viewed here as an
“absolute” permutation, and symmetry operations of the grid are ignored. In fact, no
benefit whatsoever is gained by considering symmetry translates of a permutation if
the final permutation is to be realized with the following algorithm.

Two-pass algorithm.

Given b = n’, permutation 7 to be realized, head initially in any location x on
the grid.

Step 1. Read in entire contents of grid in a single pass across all n> cells.

Step 2. Write out the cell contents in their target locations in a second pass across

the grid.

It is obvious that this algorithm always takes 2n° steps, which is suboptimal for
most permutations. However we claim the algorithm is within a factor of optimal for
almost all permutations.

Note first of all that any algorithm for realizing permutations with b = n” will
usually take at least n” steps. To see this, note that

2,
Pr[random 7 has at least k unit cycles]= (r;()(n2 —k)!/(n*)!

=1/k!.

A GENERAL MASS STORAGE SYSTEM 113

(This probability may be evaluated precisely using the principle of inclusion and
exclusion; see Liu [9].) Now the algorithm must visit every point x on the grid for
which 7 (x) # x, i.e., for which 7 is not a unit cycle. However, as the above inequality
shows, the number of permutations having many unit cycles is a very small percentage
of the total set (asymptotically negligible). So n” steps are necessary almost all the
time, and the two-pass algorithm is at worst a factor of two away from optimal.

The two-pass algorithm can be improved upon somewhat. Observe that if we
can devise a schedule for the read/write head which reads in many cells’ contents
before the head moves to the permutation targets for these contents during the initial
read-in pass, then these contents can be dropped off when the target contents are
read in. If enough contents can be dropped off in this manner, then the second
write-out pass will only require the read/write head to visit some fraction p(0<p <1)
of the grid locations. The whole process might only take time (1+p)n>.

In fact we can guarantee p =3. Consider any pass over the grid. Then either (1)
at least half the points x in the pass are visited before = (x) is visited in the pass, or
else (2) this statement is true if the pass is reversed (done backwards). This observation
leads to the following algorithm:

More intelligent two-pass algorithm.

Step 1. Make a read-in pass over the grid, which has the property that at least
half of the points x on the grid are passed over before 7 (x) is passed
over. For each such point x, drop off its contents when 7 (x) is passed
over and the 7 (x) contents are read in.

Step 2. Make a write-out pass over the grid which visits those points where
contents must still be dropped off, and as few other points as possible.

This algorithm requires at most as much time as its predecessor, and has the additional
benefit that it only uses n”/2 registers at any given time. Hence: b = n>/2 is the most
registers we could ever need, and b = n’ is wasteful.

We leave the precise analysis of this latter algorithm as an interesting open
question. Is it possible to always choose a read-in pass schedule that guarantees p
smaller than 3, thereby improving Step 1? What algorithms may be used to generate
efficient schedules for Step 2? etc.

5. The case 1<b <n> We have now established that, when b =1, O(n>) time
is necessary to realize the average permutation, while when 5 = n> only O(n?) time
is necessary. It is interesting to ask what sort of behavior we get if we choose some
intermediate value of b. It is obvious that

(Time required (b = 1)) = k (Time required (b = k))

for any k between 1 and n°, but it is not obvious whether the inequality can be
replaced by equality. We show that, modulo constant factors, it can. That is, for
1<b=n only O(n>/b) time is necessary. This suggests that having a large number
of registers may not be cost effective.

We give an algorithm for b = n which uses time 6x> (in any metric) to realize
any permutation. The algorithm is based on the operation of the three-stage rearrange-
able switching network studied by Benes [12] and others. It comprises three passes,
each taking time 2n> and modelling one stage of the three-stage network.

Permutation Algorithm for b = n.

Step 1. For each of the n rows of the grid;

(a) read the row in,
(b) write the row back out such that, at the end of Step 1, each column
contains n items whose destinations are all in different rows.

114 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

Step 2. For each of the n columns of the grid;
(a) read the column in,
(b) write the column back out so that, at the end of Step 2, every item
in the grid is in the same row as its destination.
Step 3. For each of the n rows of the grid;
(a) read the row in,
(b) write the row back out in permuted order.
It is obvious that the algorithm works if Step 1 can be made to do what it says it does.
That it can is a consequence of the Slepian-Duguid theorem ([12], p. 86), the details
of which are omitted here. An example is given in Fig. 7. The algorithm makes

(3 steps) X (n rows/cols per step) X (2n head movements per row/col)

=612 head movements

as claimed.

I 7 19 23 24 I 7 19 23 24

6 1 10 12 25 6 | 25 12 10
6 4 18 15 17 I8 15 4 17 16

22 2 5 9 2 22 21 9 2 5
14 13 20 3 8 320 14 8 13

(a) INITIAL CONFIGURATION (b) AFTER FIRST STEP: EACH

(NUMBERS INDICATE ROW- COLUMN NOW CONTAINS 5
MAJOR ORDERED ITEMS WHOSE DESTINATIONS
DESTINATIONS) ARE IN DIFFERENT ROWS.
31 4 2 5 I 2 3 4 5

6 7 9 8 10 6 7 8 9 10
nis 1K 12 13 ni12 13 14 15

8 20 B 17 16 6 17 18 19 20

22 21 25 23 20 21 22 23 24 25

(c) AFTER SECOND STEP: (d) AFTER THIRD STEP:

COLUMNS HAVE BEEN GRID IS IN SORTED
PERMUTED SO EACH ORDER.
ITEM IS N CORRECT
ROW.

F1G. 7. Examples of b = n permutation algorithm execution (for case n =5).

This algorithm may be used recursively to derive interesting algorithms for » <n.
Note that to permute a row (or column) of n cells using b =vn registers using the
same basic algorithm can be done by breaking the row (column) into Vn pieces of
length Vn. These pieces are then thought of as forming a nxvn grid, except
here moving from one piece to the next takes time Vn instead of 1. Permuting one
row of the grid using the algorithm then requires essentially.

QVn+vn)xvn + 2(n—Vn)xn + @Vn+Vn)xvn
Step 1 (subrows) Step 2 (“‘cols”) Step 3 (subrows)

=2n%?+4n head movements.

A GENERAL MASS STORAGE SYSTEM 115

Therefore to permute the entire grid with b = Vn we make

(3 steps) X (n rows/cols per step) X (2n 32 1 4n head movements /row or col)

=6n°"?+ O(n?) head movements.

1/2i

In general, recursive application of this algorithm with b =n for integral j

produces an algorithm requiring on the order of
6n>/b head movements,

so, for at least the values k = n'/?, the inequality at the beginning of this section can
be replaced by equality (within a constant factor near 6).

For really small values of b this approach will be inefficient. It would seem better
in this situation to develop heuristics extending the basic cycle algorithm of § 3. One
possible extension is a “‘greedy” heuristic which reads in the contents of b cells and
then proceeds to drop off the item whose destination is closest. A new item is read
in when the old item is dropped off, again the head moves to drop off the item whose
destination is closest, and so forth. However we do not elaborate any further on this
subject, leaving the development of algorithms for very small b as an interesting open
problem.

One final comment should be made on the » = n algorithm. Namely, it may be
generalized immediately to an algorithm for a system with n read/write heads, which
only takes O(n) time. Assuming each head has b = n registers, each pass over a row
or column in each of the three steps may be handled by a single head. Obviously the
heads can be coordinated so that they do not conflict with one another’s movement.
This approach may be used when the grid may be read both horizontally and vertically
(a mild generalization of the scheme in [1]): in effect the grid becomes a “torus” with
a set of 2n read/write heads permanently fixed on the torus axes.

6. Conclusions. A model of a general mass storage system was assumed, in which
a single read/write head moves freely across a two-dimensional n X n grid of storage
cells. Head motions were assumed to take time proportional to one of the L;, L, or
L »-metrics, and the head was capable of holding some fixed number b of cell values.
The problem of finding efficient algorithms for rearranging the grid’s contents according
to some permutation u was addressed.

For the important case b =1, a near-optimal algorithm (the “‘cycle algorithm”)
was presented and analyzed at length. Average and worst-case performance were
determined for all three metrics, even under the complicating assumption that sym-
metry operations of the grid be used to reduce permuting cost. The performance
figures given are excellent estimates of behavior since the corresponding standard
deviations are asymptotically negligible.

For the cases b=n” and 1<b <n? good permuting algorithms were presented
and shown to be within a constant factor of optimal, but not analyzed in detail. The
general behavior of algorithms for b in these ranges was_determined, but it remains
open to develop the optimal such algorithms, or good heuristics, especially for the
case where b is very small but greater than one.

Acknowledgment. The authors are grateful to the referee, whose comments have
made the presentation of this paper much clearer.

116 D. COPPERSMITH, D. S. PARKER AND C. K. WONG

REFERENCES

[1] A. K. CHANDRA, Hsu CHANG AND C. K. WONG, Two-dimensional bubble domain memory, U.S.
Patent No. 4,174,538, Nov. 13, 1979.
[2] P. C. YUE AND C. K. WONG, Near-optimal heuristics for an assignment problem in mass storage,
Internat. J. Comp. Inform. Sci., 4 (1975), pp. 281-294.
[3] S. H. FULLER, Analysis of drum and disk storage units, Lecture Notes in Computer Science, 31,
Springer-Verlag, N.Y. 1975.
[4] P. P. BERGMANS, Minimizing expected travel time on geometrical patterns by optimal probability
rearrangements, Inf. Cont., 20 (1972), pp. 331-350.
[5] R. M. KArpP, A. C. MCKELLAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional
placement problem, this Journal, 4 (1975), pp. 271-286.
[6] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Addison-Wesley Publishing Co., Reading,
MA, 1973.
[7] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Some complexity results for the traveling salesman problem,
Proc. 8th ACM Symposium on Theory of Computing, Hershey, PA, May 3-5, 1976, pp. 1-9.
[8] M. R. GAREY, R. L. GRAHAM AND D. S. JOHNSON, Some NP-complete geometric problems, Proc.
8th ACM Symposium on Theory of Computing, Hershey, PA, May 3-5, 1976, pp. 10-22.
[9] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968, pp. 106-7.
[10] C. K. WONG AND K. C. CHU, Average distances in L, disks, SIAM Rev., 19 (1977), pp. 320-324.
[11] D. T. LEe anND C. K. WONG, Voronoi diagrams in L\(L.) metrics with 2-dimensional storage
applications, this Journal, 9 (1980), pp. 200-211.

[12] V. BENES, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press,
New York, 1965.

[13] C. K. WONG, C. L. L1u AND J. APTER, A drum scheduling algorithm, Lecture Notes in Computer
Science, 2, Springer-Verlag, New York, 1973, pp. 267-275.

[14] J. RIORDAN, An Introduction to Combinatorial Analysis, John Wiley, New York, 1958.

[15] C. K. WONG, Minimizing expected head movement in one-dimensional and two-dimensional mass
storage systems, Comp. Surv., 12 (1980), pp. 167-178.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0009 $01.00/0

ALGORITHMS FOR EDGE COLORING BIPARTITE GRAPHS
AND MULTIGRAPHS*

HAROLD N. GABOWt AND ODED KARIV#

Abstract. A minimum edge coloring of a bipartite graph is a partition of the edges into A matchings,
where A is the maximum degree in the graph. Coloring algorithms that run in time
O(min (m(log n)z, n? log n)) are presented. The algorithms rely on an efficient procedure for the special
case of A an exact power of two. The coloring algorithms can be used to find maximum cardinality matchings
on regular bipartite graphs in the above time bound. An algorithm for coloring multigraphs with large
multiplicities is also presented.

Key words. edge coloring, matching, bipartite graph, multigraph, open shop scheduling, euler partition

1. Introduction. Given a bipartite graph or multigraph, we seek a minimum edge
coloring. An (edge) coloring is an assignment of a color to each edge of the graph so
the edges incident to any vertex have distinct colors; equivalently, each color forms
a matching. A minimum coloring uses as few colors as possible.

This problem arises in a number of settings. Examples are routing in a permutation
network [LPV], preemptive scheduling of an open shop [GS], preemptive scheduling
of unrelated parallel processors [LL], and the class-teacher timetable problem [Got].
For instance, in the last of these we are given a collection of classes and teachers.
Certain meetings must take place between classes and teachers; each meeting is
specified by the class, the teacher and the number of periods the meeting lasts. A
teacher can meet only one class at a time; a class can be taught by only one teacher
at a time. A meeting that lasts more than one period can be scheduled as a number
of one-period meetings, not necessarily consecutive in time. The problem is to schedule
all meetings in as few periods as possible.

In the corresponding coloring problem, the bipartite multigraph has a vertex for
each class and for each teacher. There is an edge joining a class and a teacher if they
meet; the edge’s multiplicity is the length of the meeting. A matching corresponds to
meetings that can be scheduled in the same period. A coloring is a schedule (the
colors, i.e., periods, can be ordered arbitrarily); a minimum coloring is a schedule
using the fewest periods.

In practice, the timetable problem has additional constraints that make it difficult.
For instance, if some teachers are available only during a restricted set of periods, it
is NP-complete [E].

In contrast, the basic problem of finding a minimum edge coloring can be solved
efficiently. Section 3 presents two algorithms that color graphs. The time bounds are
O(m(log n)*) and O(n> log n), where n and m are the number of vertices and edges,
respectively. The first algorithm is superior to the second for nondense graphs
(m = 0(n*/log n)); it is also superior to previous coloring algorithms [Ga] [GK], the
best of which is O(m+vn log n). A preliminary version of the second algorithm appears
in [GK]. Both algorithms are based on the fact that graphs with maximum degree a
power of two can be colored rapidly.

* Received by the editors August 16, 1979, and in final form January 13, 1981.

+ Computer Science Department, University of Colorado, Boulder, Colorado 80309. The work of this
author was supported in part by the National Science Foundation under grant NSF78-18909.

+ Computer Science Department, Technion, Haifa, Israel. This work was done while O. Kariv was
with the Department of Computer Science of State University of New York, Albany, and his work was
supported in part by that department.

117

118 HAROLD N. GABOW AND ODED KARIV

Section 3 includes an application to matching. “High-low” bipartite graphs are
defined; this class includes the regular graphs. A maximum cardinality matching on
a high-low graph can be found in time O(min (m (log n)?, n*log n)). This improves
on the bound of O(m+n) for general bipartite graphs [HK].

The algorithms of § 3 also work on multigraphs. However they become less
efficient as edge multiplicities increase. Section 4 discusses coloring multigraphs with
large multiplicities. An algorithm using time O(nm, log K) is presented. Here m, is
the number of edges (not counting multiplicities) and K is the maximum edge
multiplicity. The algorithm uses augmenting paths for colorings. A previous algorithm,
based on matching theory, uses time O(mﬁ) [GS]. For a large class of graphs (i.e.,
n log K = 0(m,)), our algorithm is faster.

2. Preliminaries. This section introduces terminology and reviews previous color-
ing algorithms as a basis for the algorithms of §§ 3 and 4.

Throughout the paper, G denotes a given bipartite graph. »n is the number of
vertices, m the number of edges, and A the maximum degree. In § 4, G is a bipartite
multigraph containing duplicate edges but no self-loops. We make a convention to
distinguish between a multigraph and its underlying graph, in which edge multiplicities
are ignored: The prefix “multi” indicates a reference to the multigraph; its absence
indicates a reference to the underlying graph. For example, m,, denotes the number
of multiedges (i.e., edges are counted according to their multiplicity), and m, denotes
the number of edges (in the underlying graph). So, m,,, = m,.

A coloring that uses exactly k-colors is a k-coloring. It is well known that a
minimum coloring (in a bipartite graph) is a A-coloring. (This follows from the fact
that, by the Konig-Hall theorem, a graph has a matching that covers all vertices of
degree A [B].) So, our problem is to find a A-coloring. We denote the colors as
1, -+, A. A partial coloring is a coloring of a subset of the edges. Figures 1 and 2
illustrate these terms (edge labels specify colors).

F1G. 1 A 4-colored graph. FI1G. 2. A partial coloring.

A well-known approach to coloring [O] uses the method of augmenting paths.
As such it resembles algorithms for network flows and matchings [L]. We begin with
some definitions. Consider a partial A-coloring. Vertex v misses color a if no edge
colored « is incident to v. Uncolored edge vw misses color pair af if v misses a and
w misses B. If vw misses a8, an afB path (from vw) is a path P that starts at v or w,
has edges that are colored alternately « and B, and has maximal length. P is also
called an alternating path. Note an alternating path can have no edges, if « =8, or
more generally, if v (or w) misses both « and B.

An alternating path can be used to color an uncolored edge. The following
algorithm does this in linear space; the more direct approach of [GK] does not.

procedure augment (vw) comment vw is an uncolored edge in a partial A-coloring.
vw gets colored;
begin
1. let vw miss color pair af3;

EDGE COLORING BIPARTITE GRAPHS 119

2. let S be the subgraph of edges colored a or 8 comment the connected
components of S are paths and cycles;

3. let P be a connected component of S incident to v or w (P can be & if no
edge of S meets v, or w) comment P is an a8 path from vw;

4, interchange colors a and B on the edges of P comment now a color y, y =«
or B3, is missing at both v and w;

5. color edge vw comment use y;

end augment;

As an example, consider the uncolored edge 12 in Fig. 2. For a8 =13, subgraph
S contains two paths; augmenting on 254 gives Fig. 1.

LEMMA 1. “Augment’ colors an uncolored edge in time O(n). A graph can thus
be colored in time O(nm); the space is O(n +m).

Proof. First note augment works correctly. In line 1, colors @ and B exist (there
are A colors, and since vw is uncolored, both v and w miss a color). In line 2, the
comment is true since @ and B are matchings. Thus in line 3, P is in fact an a8 path
from vw. The comment in line 4 relies on the fact that P, if nonnull, does not end at
v or w. (If it did, there would be an odd cycle in the graph). So in line 5, vw is colored
correctly.

An appropriate data structure allows the time and space bounds to be achieved.
One possibility is to represent the graph by adjacency lists; each edge in an adjacency
list indicates its color; also, each color has a list of all edges with that color. Note line
1 is O(n), if we bucket sort the colors occurring at v and at w. Further details are
left to the reader. 0

Another approach to edge coloring [Ga] uses divide-and-conquer. An euler
partition is a partition of the edges of G into open and closed paths, so that each
vertex of odd (even) degree is the end of exactly one (zero) open path. Any graph
has an euler partition, which can be found in time O(n + m) [B], [Ga]. The partition
can be used to divide G into two edge-disjoint subgraphs G, and G,. Traverse each
path of the partition, placing edges alternately in G; and G,. Then G, and G, both
have maximum degree |A/2] or [A/2]. (Since if uv and vw are consecutive edges in
the partition, one is placed in G; and the other in G,; thus v’s degree gets halved.)
This suggests the following recursive algorithm:

procedure euler-color (G) comment G is a bipartite graph with all edges uncolored.
A 2"#41 _coloring of G is found;
begin
let A be the maximum degree in G;
if A=1 then color all edges in G, using a new color else begin
divide G into edge-disjoint subgraphs G1, G,, each with maximum degree at
most [A/2] (use an euler partition);
euler-color (Gy);
euler-color (G,);
end end euler-color;

W

A

For example, consider Fig. 1. Using three open paths, 12, 3254365 and 768, we
get G; and G, of Fig. 3. The final coloring obtained is Fig. 1."

Euler-color does not necessarily find a A-coloring. Suppose A is odd and both G,
and G, have maximum degree [A/2]. Even if the recursive calls of lines 4-5 find

! In all examples of this paper the algorithms make choices. For convenience we do not point out that
different results are possible if different choices are made.

120 HAROLD N. GABOW AND ODED KARIV

R

F1G. 3. Dividing the graph by an euler partition.

minimum colorings, these colorings combine to give a (A+ 1)-coloring of G, i.e., an
extra color is used. However, the coloring uses at most twice the minimum number
of colors.

LEMMA 2. “Euler-color’ finds a 2"®*-coloring.> The time is O(m log n) and the
space is O(n+m).

Proof. Correctness follows from a simple induction: G; and G, have maximum
degree [A/2]. So euler-color finds (2" ")-colorings of these graphs, which combine
to give the desired coloring. A similar induction shows the time is O(m log A). The
space bound follows from careful programming of the recursion. Further details are
in[Ga]. O

Note if A is an exact power of two, euler-color finds a minimum coloring. This is
the basis of our algorithms.

3. Algorithms for graphs. This section presents two edge coloring algorithms,
with time bounds O(m(logn)’) and O(n’logn). On nondense graphs (m =
O(n’/log n)) the first algorithm is faster. Both algorithms are based on the fact that
graphs with A an exact power of two can be colored fast.

The first algorithm works by repeatedly enlarging a partial A-coloring. Each
iteration constructs a subgraph S of maximum degree 2 lgal containing a large number
of uncolored edges (and possibly some colored edges). S is colored, by erasing all its
colors and using euler-color. This gives G more colored edges. The process is repeated
until all edges are colored.

S is constructed by assigning color pairs to the uncolored edges. If edge vw is
assigned the pair a8, we say a(B) occurs at v(w). Color pairs are assigned in such a
way that a color a occurs at most once at a vertex v—in an edge colored « or in an
edge assigned a pair with a at v. The exact role of the pairs in forming § will become
clearer as the discussion proceeds.

procedure color-by-pairs; comment given is a bipartite graph G with maximum
degree A, and all edges uncolored. A minimum coloring (using colors
1,--+,A)is found;

begin

1. while G has uncolored edges do
begin

2. assign a color pair af3 to each uncolored edge, so any color occurs at most
once at any vertex;

3. find a set of 24! colors C, such that >4 the uncolored edges are assigned
a color pair a8 with both a, B C;

4, let S contain all edges whose colors are in C, i.e., edges colored a with a € C
and edges assigned a8 with both «, B € C;

S. color the edges of S, using the colors C comment erase all colors in S and

use euler-color;
end end color-by-pairs

2 Throughout this paper “lg” denotes logarithm base 2.

EDGE COLORING BIPARTITE GRAPHS 121

Consider the graph of Fig. 4. Figure 5 gives an assignment of color pairs. Choosing
C ={1,2,3,4}, S is the graph of Fig. 1, and it gets the coloring shown (see § 2). The
5-coloring of Fig. 4 results if the next iteration chooses C ={2, 3, 4, 5}.

Fi1G. 4. A 5-colored graph. FI1G. 5. A color pair assignment.

Now we analyze the algorithm. It is not obvious that line 3 can be done. For
clarity of presentation we assume this; i.e., Lemmas 3 and 4 explicitly assume the
following;:

LEMMA 6. Line 3 of “color-by-pairs” can be done, using time O(m logn) and
space O(m +n).

Of course, the proof of Lemma 6 (see below) is independent of Lemmas 3 and 4.

LeEMMA 3. “Color-by-pairs” finds a minimum coloring (if we assume Lemma 6).

Proof. 1t is easy to see that lines 1-4 can be done, assuming Lemma 6. Note S
has maximum degree =|C|=2""8*!. So Lemma 2 shows euler-color can be used to
color S, as claimed in line 5.

After line 5, G still has a valid partial coloring. This follows because there are
no edges colored « € C that are not in S.

Finally note that the while loop of line 1 eventually halts. In fact, the algorithm
loops O(log m) times. For by line 3, after i iterations of the loop there are <@)'m
uncolored edges. So there are = [log,,3 m] iterations.

Now it is clear that color-by-pairs halts with a valid A-coloring. (This is true even
if G is a multigraph). [

To analyze the timing, we start with a detailed implementation of line 2.

comment this code implements line 2 of color-by-pairs;
2.1 sort the adjacency lists of G in order of increasing color, using the order
“uncolored” <1<2::-<A;

2.2 for each uncolored edge vw do
begin let «(8) be the next largest color missing at v(w) comment « is
missing at v if no edge incident to « is colored a or assigned a pair with «
at v;
assign af3 to vw;
end;

Lines 2.1-2 use time O(m +r). Line 2.1 is a bucket sort: The edges of G are
placed into buckets, one for each color; then the edges of each bucket are placed on
the appropriate adjacency list. Line 2.2 uses pointers that scan down every adjacency
list. To find the next color missing at v, advance v’s pointer until it reaches the next
gap in the color sequence.

LEMMA 4. “Color-by-pairs” uses time O(m(log n)?) and space O(m +n) (if we
assume Lemma 6).

Proof. The proof of Lemma 3 shows the while loop does O(log n) iterations. So
it suffices to show each of lines 2-5 is O(m log n). Line 2 is O(m +n), as indicated
above. Line 4 is clearly linear. Lines 3 and 5 are O(m log n) by Lemmas 6 and 2,
respectively. 0

122 HAROLD N. GABOW AND ODED KARIV

Now we discuss line 3. It is convenient to restate line 3 in terms of a multigraph
M derived from the color pair assignment. M has a vertex for each color a, 1 = a =A.
It has an edge aB of multiplicity k£ if G has k >0 uncolored edges assigned the pair
ap. Fig. 6 shows M for the assignment of Fig. 5 (edge labels give multiplicities). The
task of line 3 is this: Given a multigraph M, with n vertices, m, edges, and m,,
multiedges (recall m,, counts each edge according to its multiplicity), find p vertices
whose induced subgraph P has a large number of multiedges. (In line 3, p =plieal
and >m,,/4 multiedges are required. Also, n (of M)=A.)

F1G. 6. The multigraph derived from the assignment.

A natural approach is to build P up in a greedy way: repeatedly add the vertex
that in some sense has the highest degree. Variations of this method work (see below).
However, better results come by reducing M down to P in a greedy way.

procedure dense-graph ; comment given is M, a multigraph, and p, an integer =n.
The algorithm finds P, a subgraph induced on p vertices, containing a
large number of multiedges;

begin
1. P=M;
2. for i :=n step—1top+1do
begin
3. let v be the vertex of least multidegree in P;
4. P=P—v;

end end dense-graph;;

In Fig. 6, for p =4 the vertices of P are 1, 2, 3, 4 (as desired in Fig. 5). For p =2,
P contains 1 and 3.

LEMMA 5. “Dense-graph> halts with P a subgraph of M having p vertices and
=m,, (p(p—1)/n(n—1)) multiedges. The time is O((mg+n)logn) and the space is
O(mg+n).

Proof. First we discuss correctness. Let v be the vertex with least multidegree in
M. Since the sum of all multidegrees in M is 2m,,, v has multidegree =2m,,/n. Thus
M —v has =m,,(1—(2/n)) multiedges. This reasoning shows that when dense-graph
halts, the number of multiedges in P is at least

my, * H <1_2.)=mm * H ('l'—’%>=mm 'IM,
i=p+1 i i=p+1 \ 1 nn-1)
as desired.

To achieve the time bound, use a priority queue containing the multidegree of
each vertex of P. Line 3 finds the vertex v of least multidegree and removes it from
the queue. Line 4 removes the vertices adjacent to v from the queue, and reinserts
them with multidegree appropriately reduced. Charging these queue operations to
the corresponding vertex or edge shows the total time is O((m,+n)logn). U

EDGE COLORING BIPARTITE GRAPHS 123

Lemma 6 follows easily:

LEMMA 6. Line 3 of “color-by-pairs” can be done, using time O(m logn) and
space O(m +n).

Proof. To do line 3 execute dense-graph, with M constructed as described above,
and p = 2!"24] The desired colors C correspond to the vertices of P.

Note p=2llgAJ =(A+1)/2,n=A, and m,, is the number of uncolored edges.
Lemma 5 implies P contains >m,,/4 multiedges. So C is as desired in line 3.

As for time and space, M can be constructed in linear time, using a bucket sort.
Lemma 5 shows dense-graph runs in the desired time. 0

Several remarks about dense-graph are in order. First, note that we may view
dense-graph as an approximation algorithm for the clique problem. This problem is,
given a graph G and an integer p, find a complete subgraph on p vertices, i.e., a
subgraph with p vertices and p(p —1)/2 edges. The clique problem is NP-complete
and so, probably intractable [K]. Dense-graph does not solve this problem but a
related one: Find a subgraph with a guaranteed number of edges. For this related
problem, dense-graph’s bound of m,, - (p(p —1)/n(n —1)) multiedges is the best pos-
sible. This can been seen by taking M as the complete graph on n vertices.

As expected, decreasing the bound on the number of multiedges allows faster
algorithms. For example, consider this alternative algorithm: First, from M, delete
the (n —p)/2 vertices with smallest multidegree; then, from the resultant graph, delete
the (n —p)/2 vertices with smallest multidegree. This algorithm is faster than dense-
graph—the time is O(m, +n), using linear median finding. It is straightforward to
calculate the bound on the number of edges. For instance, when p=(n +1)/2 (the
region of interest for color-by-pairs), the bound is =Zm,,/6 multiedges.

Other variations and generalizations of dense-graph are possible. For example,
the above linear algorithm works if we build P up rather than reduce M. A similar
but simpler linear algorithm is given in [LPV]. Any method that, when p=(n +1)/2,
achieves a bound of c¢m,, multiedges (for some constant ¢ >0) in time O((m, +n) log n)
suffices for color-by-pairs.

Lemmas 3, 4, and 6 complete the analysis.

THEOREM 1. “Color-by-pairs” finds a minimum coloring, in time O(m(log n)?)
and space O(m+n).

An interesting variant of color-by-pairs that runs efliciently on a parallel machine
(the Parallel Random Access Computer) is given in [LPV]. The time is O((log n)?>).

Now we present the second coloring algorithm. It also repeatedly colors subgraphs
with maximum degree a power of two. However, it proceeds recursively. The graph
is divided in two, using an euler partition. The first subgraph is colored recursively.
This coloring is used to enlarge the second subgraph, so its maximum degree is a
power of two; it is colored by euler-color.

procedure color-by-partition (G); comment G is a bipartite graph, all of whose
edges are uncolored. A minimum coloring of G is found;

begin
1. let A be the maximum degree in G;
2. if A=1 then color all edges in G, using a new color
else begin
3. divide G into edge-disjoint subgraphs G; and G, having maximum degree

A; and A,, where A, A,=[A/2] and G, has no more edges than G, (use
an euler-partition);
4. color-by-partition (G);

124 HAROLD N. GABOW AND ODED KARIV

5. remove the edges of r colors from G; and add them to G,, where r=
PALLCIIN

6. euler-color (G,); comment now the colorings of G; and G, (as modified in
line 5) give a A- or (A+1)-coloring of G;

7. if G is not A-colored then

begin
8. make all edges of some color « uncolored;
9. for all uncolored edges ¢ do augment (e);

end end end color-by-partition ,

For Fig. 4, an euler partition gives the subgraphs of Fig. 7; the recursive call of
line 4 colors the left subgraph G; as shown. Line 5 enlarges G, to Fig. 1, which gets
colored as shown. Adding the edge of color 5 from G; gives the desired 5-coloring.

Figure 8 gives the call tree for this example. The root represents the original call
to color-by-partition, on a graph of maximum degree 5 (Fig. 4). The left son of the

5

I . 2

F1G. 7. G, and G,. F1G. 8. The call tree.

root represents the recursive call, on a graph of maximum degree 3 (Fig. 7); the right
son represents the call to euler-color, on a graph of maximum degree 4 (Fig. 1). Other
nodes are interpreted similarly.

LeEMMA 7. “Color-by-partition” finds a minimum coloring.

Proof. The argument is by induction on A. If A=1, line 2 colors the graph
correctly. Now assume A> 1. By induction, the recursive call of line 4 correctly colors
Gi.

In line 5, note the transfer of edges can be done, i.e., A;=r=0. For A, =, note
A= A—A;and A>2"4?; for r 20, note 24?1 = [A/2] Z A,.

After the transfer of line 5, G, has maximum degree =A,+r=2"88/21 So, in
line 6, euler-color finds a (A, + r)-coloring of G,. G is colored with A, —r additional
colors. Thus, after line 6, G is (A1 + Az)-colored. A;+ A, is A or A+1, by the euler
partition of line 3. So there is at most one extra color. It is eliminated by the augments
of lines 7-9.

Now by induction, color-by-partition finds a minimum coloring (this is true even
if G is a multigraph). 0

LeEMMA 8. “Color-by-partition” uses time O(n>log n) and space O(m +n).

Proof. For the time bound, consider the call tree illustrated in Fig. 8. In general
this tree has nodes representing calls to color-by-partition and euler-color. The root
represents the original call, color-by-partition (G). A color-by-partition node can have
two sons; the left son represents the call color-by-partition (G1) (line 4), and the right
son represents euler-color (G,) (line 6). Euler-color nodes are leaves. Suppose the
levels of the tree are numbered, with 0 at the root. So each level except 0 has two nodes.

We note two facts about this tree. First, it has at most [lg A] +1 levels. For the
color-by-partition son of a color-by-partition node satisfies A;=[A/2] (see line 3).
Hence a color-by-partition node on level i has degree at most [A/2'], and the conclusion
follows.

EDGE COLORING BIPARTITE GRAPHS 125

Second, let m; be the number of edges in the graph of a node on level i. For a
color-by-partition node, m; = m/?2’, by the euler partition of line 3. So for an euler-color
node, m; =m/2"! (recall that line 5 enlarges G,).

Now we estimate the time. We first consider the total time spent in color-by-
partition nodes, and then the time in euler-color nodes.

For color-by-partition nodes, we estimate the time in a typical node, excluding
the calls in lines 4 and 6. Lines 7-9 do =n augments. Each of these is O(n), giving
O(n?) time. The other lines are O(m +n). So the time in a typical node is O(n?), and
the total time for color-by-partition nodes is O(n>log n).

Next consider the euler-color nodes. For a node on level i, the time is O(m; log n)
(by Lemma 2). Summing over all levels and noting m; =m/2""! shows the total time
is O(m log n).

Thus the total time for color-by-partition is o(n? log n), as desired.

The linear space bound follows from careful programming, making sure that an
edge is represented only once in all levels of the recursion. See also Lemmas 1-2. [

Lemmas 7 and 8 give the desired result:

THEOREM 2. “Color-by-partition” finds a minimum coloring, in time O(n>log n)
and space O(m +n).

We close this section by noting how coloring algorithms can be used to find
matchings for a large class of graphs.

DEFINITION. A bipartite graph is high-low if for some integer k, one vertex set
contains only vertices of degree =k, and the other contains only vertices of degree =k.

High-low graphs include both regular graphs and semiregular graphs. (A bipartite
graph is semiregular if one vertex set (or both) contains only vertices of degree A.)

A coloring algorithm can be used to find a maximum cardinality matching on a
high-low graph H. First prune H to a semiregular graph § (with A=k). Any color
of a minimum coloring covers all degree A vertices. So a coloring of S gives a maximum
matching of H.

THEOREM 3. A maximum cardinality matching can be found in a high-low graph
in time O(min (m(log n)*, n>log n)) and space O(m +n).

The general bipartite matching algorithm of [HK] uses time O(m\/r_z). Theorem
3 improves this for high-low graphs. Other improvements, based on euler-color, are
given in [Ga], [GK]. For example, in a semiregular graph with A a power of two, a
maximum matching can be found in time O(m +n). (Use euler-color, only recurring
on Gy).

4. Large multiplicities. This section discusses coloring multigraphs with large
multiplicities. An algorithm using O(nm, log K) time is presented. This is faster than
previous algorithms on a large class of graphs (more precisely, if n log K = 0(m,)).

The difference between coloring graphs and multigraphs is that in a multigraph
a matching can be used for more than one color, if each of its edges has multiplicity
greater than one. Hence the term multicolor denotes a set of colors, each of which
uses the same matching; the multiplicity (of a multicolor) is the number of colors in
the set. (When the meaning is clear from context, we use “‘color” instead of “multi-
color,” and speak of the “multiplicity of a color,” etc.) Thus a minimum edge coloring
can be viewed as a collection of § multicolors of multiplicity k;, i =1, - -, §, where
A=Y? ki

Figure 9 shows a multigraph (edge labels give multiplicites). Figure 10 shows a
coloring that uses multicolors 1,---,5 (edge labels give multicolors). Note that
multicolors 1 and 5 can be combined to give a coloring with four multicolors.

126 HAROLD N. GABOW AND ODED KARIV

—_
[
w
»
w

multicolor

multiplicity [2]1]2|1]1

4
FI1G. 9. A multigraph. FI1G. 10. A 7-coloring with 5 multicolors.

Our problem is to find a minimum coloring of a bipartite multigraph. It is also
desirable to economize on the number of multicolors. For instance, in scheduling
applications, the colors of a multicolor can be scheduled in consecutive time periods.
In the class-teacher timetable problem, this reduces the number of interrupted meet-
ings; in open shop scheduling it reduces the number of preemptions [GS], [LL]. (The
number of preemptions is less than n times the number of multicolors.)

The algorithms of § 3 color multigraphs. However, they do not take advantage
of large multiplicities of multiedges and multicolors. Here we give an algorithm that
does. If K is the largest edge multiplicity, the time and space are both O(nm, log K);
the number of multicolors is O(m,log K). (The algorithms of §3 use time
O(m,(log m,,)*) and O((n*+ m,,) log m,,), and O(m,,) multicolors.)

Gonzalez and Sahni [GS] give an algorithm for this problem based on augmenting
paths for matchings. Their algorithm uses time O(mi).3 The space is O(nmy) (or if
colors can be output as they are found, O(m, + n)). The number multicolors is O (m,).

Our algorithm runs faster than [GS] if

(1) nlog K = o(my).

For example, suppose K = O(n“) for some constant a >0. (This is not unreasonable,
since otherwise the time for doing arithmetic on multiplicities cannot be ignored, as
it is in the time bounds.) Then (1) becomes n logn =o0(m,). So, for instance, if
mg=Q(n 1*¢) for some & >0, (1) holds and our algorithm is faster. Thus, our algorithm
is faster on a large collection of graphs. However, it is clear that our algorithm uses
a factor O(log K') more space and more multicolors.

Our algorithm is based on augmenting paths for colorings. In a multigraph an
augment works as follows. Let e be an uncolored edge of multiplicity k.. Suppose e
misses color pair af3, where colors «, 8 have multiplicity k,, kg, respectively. Qne a8
path P can be used to augment k copies of e, where k =min (k,, kg, k.). (Imagine
doing a series of standard augments along P, each time using copies of «, 8, and e.)
The result is a new coloring where « and 8 have multiplicities k, —k and kg —k,
respectively; new colors @’ and 8’ have multiplicities k; and an uncolored copy of e
has multiplicity k. —k. (Note a color or edge of multiplicity 0 can be discarded, so
either «, B, or the uncolored edge e disappears).

For example, consider edge 24 in Fig. 11. By choosing a8 =22, P=(J, and
augmenting, multicolors 2 and 4 of Fig. 10 are formed.

Ideally we would like to augment just once for each multiedge. This will be the
case if

2) k. =min (k, ks)

® This time bound is for the simpler of two algorithms in [GS]. The other algorithm has a lower bound
when n?< m, (here n; is the number of vertices in the smaller of the two vertex sets of the bipartite graph).
In our algorithm’s time bound, n can be replaced by n,, allowing a comparison with the second algorithm.
Since the result is similar but more involved, we omit it. Also, see [Gon].

EDGE COLORING BIPARTITE GRAPHS 127

multicolor |[112]3|4

multiplicity [2]2 (2|1

F1G. 11. A partial coloring.

(for if (2) holds, k = k., whence all copies of e get colored). However, (2) is difficult
to achieve, since an augment introduces color multiplicities k, —k and kg —k, and
these quantities can be small. This may cause (2) to fail in a later augment.

A special case where (2) always holds is when the edge multiplicities, say
ki, *+, km, satisfy k; =2k; 1. In this case, we can augment edges in order of decreasing
multiplicity. Then before any augment k,, kg =2k, (since if this holds before an
augment, the new color multiplicities (ko — k., kg — k., k.) are Zk,, whence it holds for
the next augment.) Hence we do only one augment per multiedge.

The general case can be transformed to the special one, at a slight price: An edge
of multiplicity k> 1 is split into =[lg k] copies, each with multiplicity a power of
two, using the binary expansion of k. Then all multiplicities are a power of two, and
essentially the above strategy works.

The algorithm below uses this approach. We assume the multigraph is given as
a collection of adjacency lists, where each edge specifies its (integer) multiplicity.
Similarly, the output coloring is specified as a list of colors (i.e., matchings) each with
its multiplicity.

The algorithm starts with only one multicolor, A, corresponding to the null
matching, having multiplicity A. New multicolors are formed by splitting off from old
ones in augments. However, the number of colors is always A.

procedure color-by-multiplicity comment given is M, a multigraph with large
multiplicities. A coloring with large multiplicities is found,
begin
1. let A be (the only) multicolor, with a matching that is empty, and multiplicity
A (where A is the largest multidegree of a vertex);
let K be the largest multiplicity of an edge;
3. forp:=2UeKl glekl=1 " 91 2%4de

»

begin

4. for each uncolored edge e of multiplicity k =p do
begin

5. let ¢ miss @B, where a and B are (existing) multicolors, of multiplicities
k. and kg, and a, B # A if possible comment k., kg =p;

6. split e into uncolored multiedges f, & of multiplicites p, k —p, respectively;
comment discard edges of multiplicity 0;

7. color multiedge f by augmenting along an «B path, forming multicolors

o' and B’ (multiplicity p) and original multicolors «, 8 (multiplicities
ko — D, kg —p) comment discard colors of multiplicity O;
end end end color-by-multiplicity ;

Figure 11 shows the coloring for Fig. 9 after the iteration for p = 2. The coloring
of Fig. 10 can be obtained, if the algorithm chooses pairs a8 so the augmenting path
is always empty.

LEMMA 9. “Color-by-multiplicity” finds a minimum coloring of a multigraph,
using O(mg log K') multicolors.

128 HAROLD N. GABOW AND ODED KARIV

Proof. We first prove that color-by-multiplicity finds a minimum coloring. To start
we show that at all times the partial coloring uses A colors; further, for any multicolor
a # A, plk.. The argument is by induction on the number of augments. Clearly the
inductive hypothesis holds before any augment has been done.

Now consider an augment in lines 5-7. Note in line 5, k,, kg = p. This is true by
induction if a(B)# A. Otherwise if a(8)= A, then by the choice rule in line 5, one
end of e misses only one multicolor, A. Thus A=k +Y, ., k,. Also, by induction,
A=kr+Y .4k, So, kaZk Zp, as desired.

Thus, the augment can always be done as specified in lines 6-7. It is easy to see
the augment conserves the number of colors, and further, p|k, for y # A.

The halving of p in line 3 also preserves the condition p|k,. This completes the
induction.

In the last iteration of line 3, p = 1. So the loop of lines 4-7 colors all remaining
uncolored edges. Hence the algorithm halts with a A-coloring, as desired.

Now consider the number of multicolors. It is easy to see that at most |[lg K| +1
augments are done for each multiedge e. (More precisely, an augment is done for
each one in the binary expansion of e’s multiplicity). Each augment creates at most
two new multicolors &', B'. So there are =2m,(|lg K| + 1) multicolors. 0

We sketch some implementation details. Line 5 requires finding a multicolor
missing at a given vertex. To do this, each vertex has a list of the multicolors it misses.
Line 7 requires finding an (augmenting) a8 path from f. To do this, there is a table
T (v, «) that specifies, for each vertex v and each multicolor «, the edge (if any) of
color « incident to v. (Note this approach to finding the path uses more space than
the approach in § 2.) Finally, each multicolor « specifies its multiplicity. (Some auxiliary
pointers are left to the reader.)

LemMA 10. “Color-by-multiplicity” uses time and space O(nm, log K).

Proof. For the time bound, there are O(m,log K) augments (as noted in the
proof of Lemma 9). An augment takes time O(n), if the above data structure is used.
For the space bound, the lists of missing multicolors and the table T use space
O(nmy log K). Further details are left to the reader. 0

Lemmas 9-10 are summarized as follows.

THEOREM 4. “Color-by-multiplicity” finds a minimum coloring of a bipartite
multigraph. It uses O(nmg log K) time and space, and O(mg log K') multicolors.

Note that in the special case k; =2k;,; mentioned above, the bounds on time,
space and multicolors all decrease by a factor O(log K).

Acknowledgment. We thank Adi Shamir for his stimulating conversations and
for defining “‘high-low”’ graphs.

REFERENCES
[B] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[E] S. EVEN, A. ITAI AND A. SHAMIR, On the complexity of time-table and multicommodity flow
problems, this Journal, 5 (1976), pp. 691-703.
[Ga] H. GABOW, Using euler partitions to edge color bipartite multigraphs, Inter. J. Comp. and Inf.

Sci., 5 (1976), pp. 345-355.

[GK] H. GABOw AND O. KARI1v, Algorithms for edge coloring bipartite graphs, Proc. Tenth Ann.
ACM Symposium on Theory of Comp., San Diego, CA., 1978, pp. 184-192.

[Gon] T. GONZALEZ, A note on open shop preemptive schedules, IEEE Trans. Comput., C-28 (1979),
pp. 782-786.

[GS]
[Got]
[HK]
[X]
[L]
[LL]
[LVP]

[o]

EDGE COLORING BIPARTITE GRAPHS 129

T. GONZALEZ AND S. SAHNI, Open shop scheduling to minimize finish time, J. Assoc. Comput.
Mach., 23 (1976), pp. 665-679.

C. C. GOTLIEB, The construction of class-teacher time-tables, Proc. IFIP Congress 62, Munich,
North-Holland, Amsterdam, 1963, pp. 73-77.

J. E. HOPCROFT AND R. M. KARP, An n’/? algorithm for maximum matchings in bipartite
graphs, this Journal, 2 (1973), pp. 225-231.

R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.

E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

E. L. LAWLER AND J. LABETOULLE, On preemptive scheduling of unrelated parallel processors
by linear programming, J. Assoc. Comput. Mach., 25 (1978), pp. 612-619.

G. LEV, N. PIPPENGER AND L. G. VALIANT, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. Comput., C-30 (1981), pp. 93-110.

O. ORE, Theory of Graphs, AMS Colloquium Publications 38, American Mathematical Society,
Providence, RI, 1962.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0010 $01.00/0

TWO FAMILIAR TRANSITIVE CLOSURE ALGORITHMS
WHICH ADMIT NO POLYNOMIAL TIME,
SUBLINEAR SPACE IMPLEMENTATIONS*

MARTIN TOMPAT

Abstract. Any Boolean straight-line program which computes the transitive closure of an n X n Boolean
matrix by successive squaring requires time exceeding any polynomial in # if the space used is o(n). This
is the first demonstration of a ‘“‘natural” algorithm which (1) has a polynomial time implementation and
(2) has a small (e.g., O(log? n)) space implementation, but (3) has no implementation running in polynomial
time and small space simultaneously. It is also shown that any implementation of Warshall’s transitive
closure algorithm requires Q(n) space, and that many familiar sorting algorithms exhibit similar behavior.

Key words. transitive closure, sorting, time-space tradeoff, pebbling, straight-line program

1. Introduction. The transitive closure of an nXn Boolean matrix can be
computed by a Boolean circuit of polynomial size and O(log” n) depth, by O(log n)
matrix squaring operations. There are two obvious implementations of this algorithm
on a sequential machine, one running in polynomial time (corresponding to a breadth-
first evaluation of the circuit), the other in O(log” n) space (corresponding to depth-first
evaluation). However, a recent conjecture maintains that there is no algorithm which
computes transitive closure and runs in polynomial time and (log n)°®" space simul-
taneously (see, for example, Cook [1979]). This paper provides two pieces of evidence
relevant to the conjecture:

(1) Any implementation of the aforementioned successive squaring algorithm
requires time exceeding any polynomial in n if the space used is o(n)
(independent of the subprocedure chosen for matrix squaring).

(2) Any implementation of Warshall’s transitive closure algorithm (Warshall
[1962]) requires space Q(n).

Most of the recent results concerning time-space tradeofls fall into two categories,
those which demonstrate modest tradeoffs for algorithms which solve ‘“‘natural”
problems (Abelson [1978], Borodin and Cook [1980], Borodin et al. [1979], Grigoryev
[1976], Ja’Ja’ [1980], Munro and Paterson [1978], Savage and Swamy [1978], [1979],
Tompa [1980], and Yao [1979]) and those which introduce algorithms designed
specifically to demonstrate that a decrease in space in their implementation causes
the required time to increase from polynomial to superpolynomial (Carlson and Savage
[1980], Lengauer and Tarjan [1979], Lingas [1978], Paul and Tarjan [1978], and van
Emde Boas and van Leeuwen [1978]). The time-space tradeoff presented in this paper
for transitive closure by successive squaring is the first demonstration of a ‘‘natural”
algorithm which exhibits the time and space behavior of the latter category.

A method for determining the time and space requirements of straight-line
implementations of circuits comes from a well-known ‘‘pebbling game”’ played on the
circuit (for a survey, see Pippenger [1980]). The programmer is given a supply of
pebbles which may be placed on the vertices of the circuit in a sequence of moves.
Each move consists of picking up 0 or more pebbles, and putting down exactly 1.
There is no restriction on which pebbles may be removed, but a pebble may only be

* Received by the editors September 24, 1980, and in revised form February 17, 1981. This material
is based upon work supported by the National Science Foundation under grant MCS77-02474.
+ Department of Computer Science, FR-35, University of Washington, Seattle, Washington 98195.

130

TRANSITIVE CLOSURE ALGORITHMS 131

placed on a vertex v (called pebbling v) if all vertices with edges directed into v were
pebbled at the beginning of the move. The goal of the game is to pebble the circuit,
which means that each output must have been pebbled at some point. Intuitively,
each pebble corresponds to a register, and pebbling a vertex v corresponds to storing
in that register the subexpression computed at v. Each pebbling of a circuit then
corresponds to a single straight-line implementation, using time equal to the number
of moves in the pebbling and space equal to the maximum number of pebbles
simultaneously on the circuit.

2. A time-space tradeoff for successive squaring. The transitive closure of
an n xn Boolean matrix A is simply (I vA)"~', and hence can be computed by
[log, (n —1)] matrix squaring operations. This section applies a method of Grigoryev
[1976] to demonstrate a modest time-space tradeoff for any Boolean straight-line
program which squares matrices. Using a technique of Paul and Tarjan [1978], this
modest tradeoff for a single squaring operation is compounded into a dramatic tradeoft
for [log, (n —1)] successive squaring operations. Notice that the result is independent
of the particular subprocedure chosen for matrix squaring.

The following independence notion is central in Grigoryev’s work: A function
f:10, 1}’ > {0, 1}* is m-independent if and only if:

(a) forall k =m,

(b) for all sets of k inputs x;,, x,, - * -, x;,, and

(c) for all sets of m —k outputs y;, y;,, =", ¥ .
there is an assignment of values to x;, x;,, - -+, x;, such that y;, y;,, - -, yj.._, assume
at least 2™ *"'+1 of their possible 2™ values when only the other p — k inputs are

allowed to vary.

The following lemma establishes the relationship between independence of a
function and the time and space requirements to compute it:

LEMMA 1 (Grigoryev [1976]). Let G be any Boolean circuit which computes an
m-independent function. Then in the course of pebbling any S + 1 outputs, starting from
any configuration of S pebbles on G, at least m — S inputs must be pebbled.

Proof. Assume only k =m —S —1inputs x;,, x;,, * * *, x;, are pebbled in the course
of pebbling outputs y;, vy, ", Vis.,- Consider the Boolean straight-line program
which corresponds to this pebbling. The values of its §+1 outputs are determined
solely by the values of the k inputs read and the initial values of the S Boolean
registers corresponding to pebbles. By the definition of m-independence, there is
some fixed assignment of values to the inputs x;,, x;,, - * *, x;, such that y;, y,,* -,
Vis., assume at least 2°+1 combinations of values. But these S+1 outputs are
determined completely by the initial contents of the § Boolean registers once the
input values read are fixed, and these registers can assume only 2° distinct combinations
of values. 0

CoRrROLLARY (Grigoryev [1976]). The time T and space S required to compute an
m-independent function f:{0, 1}* » {0, 1}? satisfies (S+1)T=(q—S)(m —S).

Proof. For every set of S$+1 outputs pebbled, m —S inputs must be pebbled.
Hence,

T=q/(S+1)](m-8)=(q—-S)(m~-8)/(S+1). a

Grigoryev applied this result to prove a time-space tradeoff for matrix multiplica-
tion. An examination of the technique used to prove n-independence for matrix
multiplication will shed some light on how a similar independence result may be
proved for matrix squaring:

132 MARTIN TOMPA

LEMMA 2 (Grigoryev [1976]). Ler mult: {0, 1}*"* {0, 1}"* be the function which
multiplies two n X n Boolean matrices A and B. Then mult is n-independent.

Proof. Let k = n, and suppose k inputs and n —k outputs are specified. By fixing
B to be a permutation matrix, the columns of AB can be made an arbitrary permutation
of the columns of A. Since the specified inputs occupy at most £ columns of A and
the specified outputs at most n —k columns of AB, B can be fixed in such a way that
the n — k specified outputs are identically n — k unspecified inputs. Thus, these outputs
assume all 2" 7% possible combinations of values when only unspecified inputs are
allowed to vary. 0O

Let sq: {0, 17" > {0, 1}"* ™" be the function which maps the off-diagonal entries
of an n X n Boolean matrix A into the off-diagonal entries of (I v A)’. There are two
minor obstacles to proving a result about sq similar to Lemma 2: there is no “‘extra”
matrix B to manipulate, and some care must be taken in choosing the column
permutation in order to avoid the 1s on the main diagonal of I v A. To overcome the
first obstacle, the roles of A and B in the proof of lemma 2 will be combined into
one matrix, and we will be satisfied with (approximately) n/2-independence. The
following lemma will be useful in overcoming the second obstacle:

LEMMA 3. Let K, Cy, Cy, - - -, C, be nonempty sets. If |K|>Y i~ |Ci|, then there
are distinct elements k1, ko, * * + , k, in K such that k; ¢ C..

Proof. For each C; there must be at least r elements in K — C;, since the other
C; are nonempty. The lemma then follows by an easy application of P. Hall’s theorem
on systems of distinct representatives. (Consult any of several combinatorics texts,
e.g., Liu[1968, Thm. 11-1].) O

LEMMA 4. sq is | (n —1)/2] -independent.

Proof. Let m =|(n—1)/2]. Let 0=k =m, and suppose k inputs and m —k out-
puts are specified. Let K be the set of column numbers which contain neither specified
inputs nor specified outputs, so |[K|=n—m >m. Let C;={iloutput position (i,) is
specified}. By Lemma 3, there is an injection f:{j|C;# &}~ K such that f(j) & C;. For
each j such that C; # O, fix

1 ifi=jori=f£()),

A= { .
10 otherwise.

and fix all others of the k specified inputs arbitrarily. Then if (i, j) is a specified output
position, (A v I),%,» =A;;v A ButA;;isalready fixed at O (i # j since (i, j) is specified,
and i # f(j) since i€ C; and f(j) € C}) so (A v I);, is identically A,). Note that by the
choice of K, column f(j) of A has no entries fixed other than the diagonal entry, and
A, f(j)is not the diagonal entry since, as already observed, i # f(j). Finally, the mapping
from specified outputs (i, j) to (i, f(j)) is injective, so the m —k specified outputs
assume all 2™ % possible combinations of values when only unspecified inputs are
allowed to vary. 0O

CoROLLARY. Any Boolean straight-line program which computes sq using S
Boolean registers and T steps requires (S +1)T =n>/4—0O(n?).

Proof.

Case 1 (S=n/4). Since Tzn’—n, (S+1)T=n’/4+3n’/4—n.

Case 2 (S=n/4). By Lemma 4 and the corollary to Lemma 1,

S+D)T=(n*>—n-8)m—-8)=n/4-21n*/16+5n/4. 0

The main result of this section follows easily from Lemma 4:
THEOREM 1. Let G be any Boolean circuit which computes the transitive closure
log, (n—1
of an n Xn matrix A by computing (AvI), (A v (AvD?*, -, (A vI)2r 2

TRANSITIVE CLOSURE ALGORITHMS 133

iteratively using any subcircuit which computes the function sq. Then pebbling G with
S pebbles requires time

T =[(n—48 -3)/(28 +2)]°=".

Proof. The argument is similar to one used by Paul and Tarjan [1978, Lemma
4]. Let m=|(n—1)/2] and k=log;(n—1)]. G is composed of subcircuits
Ci, Cy, - - -, Cy, each of which computes sq, and the inputs of C;.; are the outputs of
C.. Using induction on i, it is straightforward to show that pebbling any S +1 outputs
of Ci:1, beginning with any configuration of the § pebbles on G, requires
[(m—58)/(S+1)|'(m —S) moves in which pebbles are placed on inputs of G:

Basis (i =0): follows directly from Lemmas 1 and 4.

Induction: In the course of pebbling any S+ 1 outputs of C;;;, Lemmas 1 and
4 show that m — S outputs of C; must be pebbled. Applying the induction hypothesis
to sets of S+ 1 of these as they are pebbled yields the claimed result.

Thus, the total number of times inputs of G are pebbled is

T=|(m—S$)/(S+1)I* " '(m~$)(n*~n)/(S+ 1)
= [([(n —1)/2] = 8)/(S+1)] Mo~ DI+
= [(n—2-25)/(25 +2)] ="
=[(n—45-3)/(28 +2)]"=". .

COROLLARY. For any circuit satisfying the statement of Theorem 1, if S =o0(n)

then T exceeds any polynomial in n. In fact, if S =O(n'"°) for any fixed & >0, then
T — 20(10g2n).

3. Warshall’s algorithm requires linear space. The result of § 2 prompts the
investigation of other transitive closure algorithms. Warshall’s algorithm (Warshall
[1962]) suggests itself because of its familiarity and its contrast to the successive
squaring algorithm. Warshall’s algorithm computes the transitive closure A* of an
n X n Boolean matrix A as follows:

Che(IVvA)foralll=ij=n;
for k from 1 to n do
CZ«—C:;_] v(CET& Cﬁj_l)foralll§i,j§n;

A% is then given by C7, for all 1 =i, j = n. The circuit corresponding to this algorithm
has size O(n>) and depth n, and each internal vertex has indegree 3.

The main result of this section is to show that n —1 pebbles are necessary to
pebble this circuit. (Notice that, unlike the discussion in § 2, this section deals with
pebblings of a single circuit, rather than any of a family of circuits.) The method is
due to Cook [1974], who showed a lower bound on the number of pebbles required
to pebble a certain “pyramid” graph. The circuit corresponding to Warshall’s algorithm
contains a similar subcircuit, which will be called a Warshall pyramid and is defined
recursively:

(a) Warshall pyramid P} consists of a single vertex labelled C?.

(b) Warshall pyramid Pﬁ‘j consists of pyramids Pﬁ‘k_1 and P’,Zf_ ! whose identically

labelled vertices have been identified, together with new edges from ck!
and C',ﬁfl to a new vertex labelled ij
Warshall pyramid P%, is shown in Fig. 1.
LEMMA 5. If k <iand k <j, then k + 1 pebbles are required to pebble P,’j

134 MARTIN TOMPA

/ >< \,
/. CZ

Csz o

A\,

3 C34 C37

0 0
Cs1 C4

0 0 0 0 0 0
C31 Ca1 12 C13 Cl4 C17

FiG. 1. Warshall pyramid P%,.

Proof. The argument is similar to one given by Cook [1974, Thm. 5]. The pebbling
begins with all paths from inputs to C* i pebble-free, and ends with no paths from
inputs to C,, pebble-free. Consider the first step after which this latter condition is
attained; some input v must have been pebbled in this step, closing an otherwise
pebble-free path p from v to Cf‘i, and every other path from any input to C fj contains
a pebble. The path D contams one of Cl " or CF ki > Ssay Ci'. Notice that the (unique)
path from Ck, to CY 1; contains at least one pebble, and is disjoint from P& since
j > k. Continuing inductively, P% ' contains k additional pebbles. 0

THEOREM 2. Any straight-line program which implements Warshall’s algorithm
for n X n transitive closure requires space n — 1.

Proof. The circuit corresponding to Warshall’s algorithm contains P},>; whose
pebbling, by Lemma 5, requires n — 1 pebbles. [

Notice that Theorem 2 is optimal to within a constant factor, since Warshall’s
circuit can be pebbled using 2n + 1 pebbles.

It should be remarked that Theorem 2 applies as well to Floyd’s shortest-paths
algorithm and Kleene’s algorithm for converting finite automata to regular expressions.
(See Aho, Hopcroft, and Ullman [1974, § 5.6] for the appropriate generalization of
Warshall’s algorithm.)

4. Ramifications of the generalization of these results. Sections 2 and 3 analyzed
the time and space requirements of two common transitive closure algorithms, and
found that neither admits a polynomial time, sublinear space implementation. The
obvious direction for further research is to attempt to generalize these results to
broader classes of algorithms. However, demonstrating that no Boolean straight-line
program computes transitive closure in polynomial time and small space simultaneously
will prove to be as difficult as some of the more “‘classical’” open problems of complexity.
For instance, if no circuit which computes a function f can be pebbled with O(log n)
pebbles in polynomial time, then no circuit which computes f has O(log n) depth. In
the case of transitive closure, f would be a function computable in polynomial time
but provably not in logarithmic Boolean depth. Such a result would be a breakthrough
in complexity theory.

Cook [personal communication] and Pippenger [1979] made a more important
observation about the ramifications of demonstrating that no Boolean straight-line
program computes transitive closure in polynomial time and small space simul-
taneously: namely, if no Boolean straight-line program computes a function f in
polynomial time and (log n)°" space simultaneously, then neither does any Turing

TRANSITIVE CLOSURE ALGORITHMS 135

machine. In particular, if f can be computed in polynomial time, as in the case of
transitive closure, then polynomial time would have been proved more powerful than
logarithmic space. Their result is obtained by simulating Turing machines by straight-
line programs as follows: Let a semioblivious Turing machine be one with two tapes,
one of which is a read-only, oblivious input tape and the other a read-write non-
oblivious work tape. For simplicity, assume in what follows that S is a function of »
which is (log n) and O(n). Then a multitape Turing machine using time 7 and space
S can be simulated by a semioblivious Turing machine using time O(nT) and space
O(S), by recording the original input head position on a work tape track. This machine
can be simulated in turn by a Boolean circuit of depth O(nT) and ‘“width” O(S),
using a well-known construction (see, for example, Ladner [1975]). Such a circuit can
be pebbled in O(nST) steps using O(S) pebbles.

Lipton [personal communication] has observed that this simulation can be carried
out even if the Turing machine is probabilistic, by generalizing a result of Adleman
[1978]. (Consult that reference for a discussion of probabilistic Turing machines and
their simulation by circuits.) The simulating Boolean circuits are deterministic but
nonuniform (i.e., there is no efficient algorithm which, given n, constructs the nth
circuit), have width O(S), and depth O(n>T'). As a relevant application, Lipton pointed
out that symmetric transitive closure can be computed by (nonuniform) Boolean
straight-line programs which use only O(log n) space and polynomial time, by the
main result of Aleliunas et al. [1979].

5. Sorting algorithms which exhibit similar behavior. This section shows that the
behaviors of transitive closure algorithms described in §§ 2 and 3 are also exhibited
by certain familiar sorting algorithms. The main result is that any straight-line program
which executes a recursive merge-sort using only the binary operators max and min
requires time 270°%°" if the space is restricted to n' ", independent of the merging
subprocedure chosen. Examples of such sorting algorithms include Batcher’s odd-even
merge-sort, Batcher’s bitonic merge-sort, and Stone’s perfect-shuffle sort (see Knuth
[1973] for descriptions). The proof of this result is similar to that of Theorem 1, but
Lemmas 1 and 4 are replaced by

LEMMA 6. Let G be any max-min circuit which merges two sorted lists of length
m. Then in the course of pebbling any 28 outputs in the middle third of the outputs of
G, starting from any configuration of S pebbles on G, at least (m —6S —1)/6 inputs in
the middle thirds of each of the input lists must be pebbled.

Proof. The argument is similar to one given in Tompa [1980, Thm. 2]. Let Y be
any set of 25 outputs in the middle third of the outputs of G, and consider a partition
of the middle third of either input list into blocks X; each consisting of 2§ consecutive
inputs. Since there is an assignment of distinct values to the 2m inputs which causes
the 25 inputs in X; to end at the output positions in Y, there must be 2§ vertex-disjoint
paths from each X; to Y, of which at least S must be pebble-free initially. Hence to
pebble the 28 outputs in Y, at least

[Im/3]/28]S=|[(m—-2)/6S]S=(m—-65—-1)/6

of the middle third inputs must be pebbled. O

THEOREM 3. Let G be any max-min circuit which sorts n inputs by recursively
sorting the first and second halves, and merging the resulting sorted lists. Then pebbling
G with S pebbles requires time

T > 2 (log, n—log, $-6)2/2

136 MARTIN TOMPA

Proof. Let k = |logan —log, S —6]. As in Theorem 1, repeated application of
Lemma 6 reveals that the number of pebble placements at level k of G is at least

l[n/3JJ ' l(n/2—6S—1)/6J) l(n/4—6S—1)/6

J o (n)25 68 —1)/6

28 28 28
_n—185 n/2—18S n/4-18S n/2“-18S
- o128 128 128 128
= (n/24s)k+1/2k(k+1)/2
22(k+1)2/2. 0

COROLLARY. For the circuit of Theorem 3, if §=0(n'"°) for any fixed € >0,
then T =208,

It should be noted that Theorem 3 applies to a generalization of max-min circuits
called “ordering networks” by Pippenger and Valiant [1976].

Other max-min sorting algorithms mentioned in Knuth [1973], namely straight
insertion, bubble sort, and the odd-even transposition sort, are readily seen to require
Q(n) space, using the same technique as in § 3.

Acknowledgments. I am grateful to Allan Borodin, Mike Fischer, Richard
Ladner, and Larry Ruzzo for enjoyable and fruitful discussions concerning this
material.

REFERENCES

H. ABELSON [1979], A note on time-space tradeoffs for computing continuous functions, Inform. Process.
Lett., 8, pp. 215-217.

L. ADLEMAN [1978], Two theorems on random polynomial time, Proc. 19th IEEE Symposium on Founda-
tions of Computer Science, October 1978, pp 75-83.

A.V.AHO,J. E. HOPCROFT AND J. D. ULLMAN [1974], The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA.

R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LOovAsz AND C. RACKOFF [1979], Random walks,
universal traversal sequences, and the complexity of maze problems, Proc. 20th IEEE Symposium
on Foundations of Computer Science, October 1979, pp. 218-223.

A. BORODIN AND S. A. COOK [1980], A time-space tradeoff for sorting on a general sequential model of
computation, Proc. 12th ACM Symposium on Theory of Computing, April 1980, pp. 294-301.

A. BORODIN, M. J. FISCHER, D. G. KIRKPATRICK, N. A. LYNCH AND M. TOMPA [1979], A time-space
tradeoff for sorting on non-oblivious machines, Proc. 20th IEEE Symposium on Foundations of
Computer Science, October 1979, pp. 319-327.

D. A. CARLSON AND J. E. SAVAGE [1980), Graph pebbling with many free pebbles can be difficult, Proc.
12th ACM Symposium on Theory of Computing, April 1980, pp. 326-332.

S. A. COOK [1974], An observation on time-storage trade off, J. Comput. System Sci., 9, pp. 308-316.

[1979), Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space,

Proc. 11th ACM Symposium on Theory of Computing, April-May 1979, pp. 338-345.

D. Yu. GRIGORYEV [1976], An application of separability and independence notions for proving lower
bounds of circuit complexity, Notes of Scientific Seminars, 60, Steklov Mathematical Institute,
Leningrad Department, pp. 38-48 (in Russian).

J. JA’ JA’ [1980], Time-space tradeoffs for some algebraic problems, Proc. 12th Annual ACM Symposium
on Theory of Computing, April 1980, pp. 339-350.

D. E. KNUTH [1973), The Art of Computer Programming: Sorting and Searching, vol. 3, Addison-Wesley,
Reading, MA.

R. E. LADNER [1975], The circuit value problem is log space complete for P, SIGACT News, 7, pp. 18-20.

T. LENGAUER AND R. E. TARIAN [1979], Upper and lower bounds on time-space tradeoffs, Proc. 11th
ACM Symposium on Theory of Computing, April-May 1979, pp. 262-277.

A. LINGAS [1978], A PSPACE-complete problem related to a pebble game, in Automata, Languages and
Programming, Lecture Notes in Computer Science 62, Springer-Verlag, Berlin, pp. 300-321.

TRANSITIVE CLOSURE ALGORITHMS 137

C. L. L1u [1968), Introduction to Combinatorial Mathematics, McGraw-Hill, New York.
J. I. MUNRO AND M. S. PATERSON [1978)], Selection and sorting with limited storage, Proc. 19th IEEE
Symposium on Foundations of Computer Science, October 1978, pp. 253-258.
W. J. PAUL AND R. E. TARJAN [1978], Time-space trade-offs in a pebble game, Acta Informat., 10,
pp. 111-115.
N. PIPPENGER [1979], On simultaneous resource bounds, Proc. 20th IEEE Symposium on Foundations of
Computer Science, October 1979, pp. 307-311.
[1980], Pebbling, preprint, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.
N. PIPPENGER AND L. G. VALIANT [1976], Shifting graphs and their applications, J. Assoc. Comput.
Mach., 23, pp. 423-432.
J. E. SAVAGE AND S. SwAMY [1978], Space-time tradeoffs on the FFT algorithm, IEEE Trans. Inform.
Theory, IT-24, pp. 563-568.
[1979], Space-time tradeoffs for oblivious integer multiplication, in Automata, Languages and
Programming, Lecture Notes in Computer Science 71, Springer-Verlag, Berlin, pp. 498-504.
M. ToMPA [1980), Time-space tradeoffs for computing functions, using connectivity properties of their circuits,
J. Comput. System Sci., 20, pp. 118-132.
P. vAN EMDE BOAS AND J. VAN LEEUWEN [1978], Move rules and trade-offs in the pebble game,
University of Utrecht Technical Report RUU-CS-78-4.
S. WARSHALL [1962], A theorem on Boolean matrices, J. Assoc. Comput. Mach., 9, pp. 11-12.
A. C.-C. YAO[1979], On the time-space tradeoff for sorting with linear queries, preprint, Stanford University.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0011 $01.00/0

MINIMUM VARIANCE HUFFMAN CODES*
LAWRENCE T. KOU#

Abstract. Huffman’s well-known coding method constructs a minimum redundancy code which minim-
izes the expected value of the word length. In this paper, we characterize the minimum redundancy code
with the minimum variance of the word length. An algorithm is given to construct such a code. It is shown
that the code is in a certain sense unique. Furthermore, the code is also shown to have a strong property
in that it minimizes a general class of functions of the minimum redundancy codes as long as the functions
are nondecreasing with respect to the path lengths from the root to the internal nodes of the corresponding
decoding trees.

Key words. Huffman code, redundancy, mean, variance, decoding tree, weights at leaves, weights at
internal nodes

1. Introduction. Let & ={s1, 52, ' * *, 54} be the set of g =1 source symbols com-
posed in the messages to be sent, € ={cy, cs," -+, ¢,} be the set of r =2 code letters
used in sending the enclosed messages and £: ¥ - R be the discrete probability density
function on &, where % is the set of real numbers and for each s; € &, 4(s;) gives the
probability that the source symbol s; appears in the messages. For every coding scheme,
we have the set W ={w;|w; is the string of letters in € encoded for the source symbol
si}. We shall call w; a word and %" the code for & in terms of €. %" is an instantaneous
code if and only if for every pair of distinct words in %, neither is a prefix of the
other. We shall be interested only in the instantaneous codes in this paper. Given &%,
% and £, each encoding scheme defines the word length, or more precisely, the random
point I: ¥ > £, where s is the set of nonnegative integers and, for every s; € &, I(s;) is
the length of w;, i.e., the number of letters in w;. We shall adopt the notion of the
null word, A, as the word of no letter and define the length of A to be zero. The
induced discrete probability density function for [, £,: # - R, is defined such that, for
everyk € %, (k) =X g £(s:), where # ={s;|s; € ¥ and I(s;) = k}. With respect to the
given ¥, € and g, the instantaneous code with the minimum expected value of / is
not necessarily unique as can be illustrated by the following example.

Example 1. Let ¥={s1, 52, ', 80}, €={c1, 2,3}, ls1)= (s2)= sis3) = 36,
£(84) = fi(85) = pi(86) = po(s7) = &, #(s8) = £ and £(89) = 2. Consider the following two
instantaneous codes.

W ={w1=cic1c1, W2 = €1€1C2, W3 = C1C1C3, Wa = C1C2C1, Ws = C1C2C2,
We = C1€C2C3, W7 = C1C3, Wg = C2, Wg = 6‘3},
' __ ' ' _ ' r_ "
w _{Wl =C1€1C1, W2 = C1€1C2, W3 = C1C1C3, W4 = C1C2, W5 = C1C3,
' ' r_ 1
W6 = C2C1, W7 = C2C2, Wg = C2C3, Wo = C3}.

Both codes have expected word length equal to 3, which, in fact, is the minimum
value for the given inputs.

It is convenient to introduce the construction of the decoding tree for a coding
scheme. The following example is used to demonstrate several terminologies in
connection with the decoding tree for an instantaneous code.

Example 2. Let %, €, %, W and W be the same as in Example 1. The correspond-
ing decoding trees are shown in Fig. 1. Every decoding tree consists of two types of

* Received by the editors June 30, 1980, and in revised form April 15, 1981.
+ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

138

MINIMUM VARIANCE HUFFMAN CODES 139

(i) DECODING TREE T 5 %{3)_
Sg Sg
30
$7
SLINNS L O - I O I
30 30 30 30 30 30
Sl 52 53 54 s5 56

(ii) DECODING TREE T'

FiG. 1

nodes, the leaves (the square-shaped nodes) and the internal nodes (circular nodes).
Written next to each leaf is the corresponding source symbol. Each node, leaf or
internal node, is labeled with a weight. The weight at the leaf associated with source
symbol s; is the probability 4(s;). The weight at an internal node is the sum of the
weights of its sons, or equivalently, the sum of the weights labeled at the leaves of
the subtree rooted at that particular internal node. Edges of the tree are systematically
labelled with the letters in €. The path from the root to the leaf associated with the
source symbol s; specifies the encoded word w; and the number of edges on the path
equals /(s;). The weighted path length [2] of a decoding tree, Y. ;.co £(s:)I(s;), equals
to Y .4 /1(k)k which, by definition, is the mean of the corresponding random point
1. For both decoding trees in this example, each of the weighted path lengths is equal
to 3. However, the corresponding variances differ. For the decoding tree T, the
corsresponding variance is 135 while for the decoding tree T', the corresponding variance
is 13s.

Let T be a decoding tree for the code %" with respect to &, € and 4. The
following terminologies associated with T are used in this paper.

DEFINITION 1.
MEAN(T) 4 mean of the random point / associated with T,

VAR(T) 2 variance of the random point / associated with T';

140 LAWRENCE T. KOU

WL(T)2 ((s(sa), 1(s), (f(si,)s 1(5)), - = =5 (4(s3), 1(s;,))), where Uy, {s;}=
andforallk=1,2,---,(q—1), (4(s), I(s;)) is lexicographically equal
to or smaller than (4(s;,,,), [(si,,)).

WL(T)" £ ((#(si), 1(si), (#(si), 1(sp),+ -+, (4lsy,), [(sy,)), where g=gq=-
|, US_ {s;.} ={si|si € Pand 4(s;) # 0} andforallk =1,2, - -, (g— 1),
(# (s;.), I(s;)) is lexicographically equal to or smaller than (4(s;.,),
l(sik+1))'

For any tree T with weighted nodes, we define the following.
DEFINITION 2.

L(T) 2 the set of the leaves of T;

I(T)4 the set of the internal nodes of T;

Wi (T) 2 sum of weights labeled at the leaves of T

W, (T) 4 sum of weights labeled at the internal nodes of T';
WPL(T) 4 weighted path length of T.

We shall often use the following convention in this paper for naming the nodes
and subtrees of a decoding tree T. Node i in T is the ith node counting, level by
level, from the top level to the bottom level and, for each level, from the leftmost
node to the rightmost node. The notation T'(i) is used for the subtree of T" with node
i as its root. Thus, for the decoding tree T' in Fig. 1, node 5 has weight 3 and T'(5)
is the subtree of T' that has node 5 as its root which has node 11, node 12, and node
13 as the three sons labeled with source symbols s;, s> and s; respectively.

Since there is a one-to-one correspondence between the set of instantaneous
codes and the set of their decoding trees, the outputs of the coding algorithms discussed
in this paper are chosen, for convenience, to be the decoding trees instead of the
actual codes they decode. With respect to &#, € and 4, Huffman’s well-known algorithm
[1] constructs a decoding tree for a minimum redundancy code and in terms of the
word length, [, Huffman code minimizes the mean of /. To describe Huffman’s
algorithm, we start with the family & of q = || weighted trees, U;_, {Ti}, where T;
contains just a single node labeled with the source symbol s; and the weight 4(s;). For
any weighted tree X let us temporarily consider W (X) as the weight of X. Huffman’s
algorithm is, in short, a procedure that repeatedly merges the r =|¥%| trees in & that
have the r smallest weights until the whole family &% reduces to a singleton set which
then contains the decoding tree corresponding to a minimum redundancy code. We
shall show in this paper that if we consider the vector (W (X), W;(X)) as the weight
of the tree X, then repeatedly merging the 7 trees in % that have the r lexicographically
smallest weights will produce a decoding tree that corresponds to the minimum
redundancy code with the minimum variance of the word length.

The main body of this paper is divided into three sections. In § 2, we restate the
Huffman algorithm and show that although there are minimum redundancy codes
that are not producible via Huffman’s algorithm, it is sufficient to consider those codes
produced by Huffman’s algorithm in searching for the minimum redundancy code
with the minimum variance. In § 3, we give a characterization for the minimum
redundancy codes that have the minimum variances. We also show that, with respect
to any given input, &, € and 4, if U and V are the decoding trees for two distinct
minimum variance minimum redundancy codes respectively, then WL(U)" = WL(V)™.

MINIMUM VARIANCE HUFFMAN CODES 141

In other words, the minimum redundancy code with the minimum variance is unique
in the sense that it will produce a unique lexicographically sorted list of weight-length
pairs of those words of the code that have nonzero probabilities. In § 4, we give an
algorithm to produce the minimum variance minimum redundancy code. We also
show a strong property of the code in that it minimizes a general class of functions
of the minimum redundancy codes as long as the functions are nondecreasing with
respect to the path lengths from the roots to the internal nodes of the corresponding
decoding trees.

2. Characterizations of Huffman trees. We now restate Huffman’s algorithm.
Without loss of generality, we shall introduce source symbols each with zero probabil-
ity, to make |¥| mod (]4|—1) =1 so that every internal node in the output decoding
tree will have |%| sons [2].

ALGORITHM H.

INPUT: a set of source symbols, & ={s1, 52, ", 84}; a set of code letters
€ ={c1,ca2, -, c}; the discrete probability density function on
& f >R

OUTPUT: a decoding tree corresponding to an instantaneous code with the
minimum expected value of the word length.

Step 0. Initialize & to be an empty set.

Step 1. Fori=1,2,-:-,q,setF« FU{T;}, where T; is the weighted tree of
a single node associated with the source symbol s; and labeled with

weight 4(s;).

Step 2. Repeat Step 3 and Step 4 until |[F|=1.

Step 3. Choose r elements in %, T,,, T,,," -, T,, such that for any T, € F
other than these r chosen weighted trees, Wy(T,,) = Wy(T}) for all
t=1,2,---,r.

Step 4. Replace T,,, T,,," -+, T,, in #'by a single weighted tree X in which
Ty Tuy -+, Ty, are the r subtrees of the root and the root is labeled
with the weight Z:=1 Wi(T,,). The edges connecting the root to the
r subtrees are systematically labeled with letters ¢y, ¢a, - - *, ¢, respec-
tively.

Step 5. Output the decoding tree in %.

Notice that in Step 3 there would be more than one qualified choice of
Tuys Tup, » -+, Ty, It is understood that one would make a random selection among
all qualified choices. Therefore, strictly speaking, Algorithm H is nondeterministic in
nature.

DEFINITION 3.

H(F, €,) 2 the set of all decoding trees, with respect to the input &, € and #,
each of which is producible by Algorithm H via certain selections
of the r elements, T,,, T,,," - -, T,,, in Step 3.

It is conventional to call the decoding trees in (¥, €, z) the Huffman trees and the
corresponding codes Huffman codes. The following are two fundamental facts about
Huffman trees and/or decoding trees in general.

THEOREM 1. (Knuth[2]). Let T be a decoding tree. Then MEAN(T) = WPL(T) =
Wi (T).

THEOREM 2. (Glassey and Karp [4]). Te #(¥, €, #) if and only if, for every
nondecreasing concave function f: [0, 0)>R and every decoding tree T' corresponding

142 LAWRENCE T. KOU

to an instantaneous code with respect to &, € and s, we have Y, ;) f(WL(T (i) =
Lieray F(WL(T'(j))).

By examining the two decoding trees, T and T, in Example 2, it is obvious that
TeH (PG, 1), T'¢ #(¥, 6,) and MEAN(T) =MEAN(T’). We summarize this fact
in the following lemma.

LEMMA 1. There exist minimum redundancy codes that are not producible via
Huffman’s algorithm.

DEFINITION 4.

A (%, €,)= the set of all decoding trees corresponding to the set of all minimum
redundancy codes with respect to the input &, € and 4.

In view of Lemma 1, we might suspect whether min {VAR(U)|U € #(¥, 4, 4)}
is equal to min {VAR(V)|V € & (¥, €, 1)}. However, we shall show that, as far as the
functions of the weights and lengths of the words are concerned, #(¥, €, /) contains
sufficiently many trees for our consideration.

THEOREM 3. Let T be a decoding tree for an instantaneous code with respect to
&, € and 4. Then T € A(F, €, z) if and only if WL(T)e{WL(V)|V € #(¥, 6, 4)}.

Proof. The “if” part of the theorem is immediate. We shall give an inductive
proof for the “‘only if”’ part of the theorem. Let m be the number of internal nodes
of T. If m=0, both A(%, 6, £) and H(¥, 6, s) contain one and only one element,
T. In this case, the “‘only if”’ part of the theorem is trivially true. Assume then the
statement is true for all m =0,1,2, -+, k where kK =0. For n =k +1, let node i be
one of the internal nodes in T that has the longest path length from the root.
Interchange some of the r sons of node i with other leaves in 7, if necessary, to ensure
that the weights labeled at the » sons of node i are the r smallest weights among all
weights labeled at the leaves in T. Make the necessary changes of the weights at some
of the internal nodes of T which are caused by the foregoing interchanging of leaves.
Call this new tree X. Now construct a decoding tree Y from X by replacing X (i) in
X by a single leaf labeled with source symbol s’ ¢ & and weight Wi (X (i)). Let ¥ and
/' be the corresponding new set of source symbols and new discrete probability density
function respectively. Observe the following.

(1) TeA(S, €,) implies that, in producing X from T, only interchanges of
leaves at the same level can occur and hence WL(T)= WL(X).

(ii) X minimizes the mean of the corresponding random point / with respect to
&, € and z if and only if Y minimizes the corresponding random point !’ with respect
to &', € and 4'.

(ili) WL(X)e{WL(V)|Ve¥d(%, 6,)} if and only if WL(Y)e
{WL(Z)|Z e #(&, €,)}

The decoding tree Y has k internal nodes. By (i), (ii), (iii) and the induction
hypothesis, the proof for the case when T has k +1 internal nodes follows. We thus
complete our proof. 0

Intuitively, one decoding tree in (%, €, £) can be transformed into another in
H (¥, €6, /) by appropriate subtree interchanges. We formalize this notion in the
following.

DEFINITION 5. Let X, Y be two distinct decoding.trees. X ~ Y if and only if Y
can be constructed from X by interchanging two disjoint subtrees,’ X (i) and X (),
of X where either node i and node j have the same father or Wy (X (i)) = Wr(X (})).

! Two subtrees are disjoint if one is not a subtree of the other.

MINIMUM VARIANCE HUFFMAN CODES 143

DEFINITION 6. Let X, Y be two decoding trees. X * Y if and only if there exists
a sequence of decoding trees, Z'.Z% ..., Z" for some t=1, such that X =2",
Y=Z"and,if t>1,Z“~Z" " forallu=1,2, -, t—1.

The following lemma is a direct consequence of Definition 5 and Algorithm H.
We shall leave the details of the proof to the readers.

LEMMA 2. Assume X and Y are two decoding trees such that X ~Y. Then
XeH(F, €, r) ifand only if Y € H(P, 6, £).

It should be clear that * is an equivalence relation over the set of all decoding
trees. We shall show that #(¥, 6, ,) is an equivalence block under *.

THEOREM 4. Let X € #(%, 6, f). Then Y € H (¥, 6, 1) if and only if X * Y.

Proof. The “if” part of the theorem follows immediately from Lemma 2. To
prove the “only if” part of the theorem, we shall consider the sequence of subtrees
brought into the set # during the execution of Algorithm H. For any V € #(¥%, 6, 4),
where V contains n nodes, let V', V2, - -+ V" be the sequence of subtrees, including
V itself, in the order of their joining the membership of % during the execution of
Algorithm H. The first ¢ = |¥| subtrees in the sequence correspond to the g leaves in
V. We may specify the construction of V', ¢ <i=n, by identifying the index set
{ithii=i(h)<iandh=1,2,- -, r}such that VIO yi@ L vi® are the r subtrees
to be selected to form V'. Let s be the largest index such that, forall i=1,2, -+,
X'=Y" Such an index exists since for i=14,2,--+,q, X'=Y’' Let A =n—s. We shall
now proceed with the proof by inductiononA. If A =0,thens=npand X =X"=Y"=Y
which implies X * Y by the definition of *. Now assume the ‘“‘only if”’ part of the
theorem is true for A =0,1,:- -, k. For A =k+1, we have s=n—k—1. Let x®,
X*@ ... X" pe the r subtrees selected in Step 3 of Algorithm H when constructing
X"* and Y*P, Y*?, ... Y*” be the corresponding r subtrees selected when
constructing Y" ¥, Notice the following.

(1) For all h=1,2,---,r, X “M is a member of the subsequence
Xl,XZ, cee, X" % 1and Y*™ is a member of the subsequence Yl, Y2, oo, y"r k1,
Since the two subsequences are identical, both X*" and Y™ are subtrees of X and
subtrees of Y, forallh=1,2,---,r

(i) If there exist subtrees E and F such that E e (U]_, {X*?}-U/_, {Y*"®}) and
Fe(U;_ {Y"?}=U[_ {X*?}), then W,(E)= W.(F).

I (U (XD-U_{Y""D=2, let m(U_{a@}-U_{b()H~
(Ui {b@)}—U;_,{a(i)}) be a bijective mapping. Then (ii) suggests that we can

construct adecoding tree Z € #(¥, 6,) where,fora =1,2,- -+, n—k,Z" is construc-
ted by using the index set {a(h)|]1=a(h)<a and h=1,2, - -, r} which is the same
as the index set used for the construction of X* and,forg=n—-k+1,n—k+2, -, n,

Z"” is constructed by using the index set {B(h)|[1=B(h)<Band h=1,2, -, r} which
is the same as the index set used for the construction of Y* except that if for some
h1=j=rB()e U, {a(i)}—U;_, {b(i)}), we shall replace the index B(j) by 7(B(}))
during the construction. (i) and (ii) discussed above imply that Y *Z. Now applying
the induction hypothesis on Z, we have X *Z. We conclude that X * Y since * is
commutative and transitive. The proof is thus completed. 0

3. Minimal variance Huffman codes. In this section, we shall give a characteriz-
ation for minimum variance Huffman code. We rely on the following lemmas.

LEMMA 3. Let Te #(%, €,), T(i), T(j) be two subtrees of T and a;, a; be the
path lengths of node i and node | respectively from the root of T. Then (1) W (T (i))>
WL(T () implies a; = aj; (1) T(i), T(j) are disjoint and Wr(T (i)) = Wr(T(j)) # 0 imply
0=|a; — ;| =2 where |a;—a;| =2 only if W,T(i)= W,T(j)=0.

144 LAWRENCE T. KOU

Proof. (i) Assume on the contrary that we have Wi (T (i))> Wr(T(j)) and «; > a;.
Let i, i1, i2, - * *, ia, be the sequence of nodes specifying the path from node i to the
root of T and j, ji, j2, ' * - Jo, be the sequence of nodes specifying the path from node
j to the root of T. The assumption that W, (T;) > W, (T;) implies that T (i,) is constructed
after T(j;), during the processing of Algorithm H and W (T (i1)) > W.(T (j1)). The
latter in turn implies that T'(i,) is constructed after T'(j,), during the processing of
Algorithm H and W (T (i2))> Wi(T(j2)). It follows that Wi (T (ia,)) > WL(T (ja,)).
However, this contradicts the fact that W (T (j,,)) = WL(T).

(if) Without loss of generality, let a; = ;. Assume on the contrary that we have
T(i), T(j) being disjoint, W (T (i)) = Wr(T'(j)) # 0 and a; —; = 3. Let node i; be the
father of node i and node i, be the father of node i;. It is clear that Wi(T (i,)) =
Wi (T (i1)) = W.(T(i)) #0. The path length from the root of T to node i, is greater
than «;. Part (i) of this lemma then implies Wi (T (i2)) = Wr(T(j)) = WL(T'(i)). Hence,
WL(T (i)) = Wr(T (i1)) = Wr(T (i,)) # 0. This implies that the node i, has a son k, such
that Wi (T'(k,)) =0. Then, according to Algorithm H, each of the r subtrees of node
i1, namely, T(iy(h)),for h=1,2, - -, r,should have weight zero, i.e., W, (T (i1(h))=0.
This contradicts the fact that Wi (T (i1)) #0. Therefore, T'(i), T(j) are disjoint and
WL(T(i))= Wr(T(j))#0 implies 0=|a; — ;| =2. Now if |o;—a;|=2 then the path
length from the root of T to the node i; is greater than «;. Using arguments similar
to the above, we conclude that W, (T (i)) = W, (T (i1)) # 0. Thus node i; has a son k;
such that W, (T (k1)) = 0. If W;(T'(i)) # 0, i.e., node i is not a leaf, then using arguments
similar to those given above, we would have W, (T (i)) =0, a contradiction. On the
other hand, if W;(T'(j))#0, i.e., node j is not a leaf, then there are two cases. In the
first case, we assume T'(j) is constructed before T'(i;) is. Then W, (T (j)) # 0 implies
that T'(k;)>0, a contradiction. In the second case, we assume T'(i;) is constructed
before T'(j) is. Then W (T (i))= W, (T(j(h))) forall h=1,2, -, r, where T(j(h)) is
asubtree of node j. This contradicts the fact that Wi (T'(i1)) = Wr(T (i)) = WrL(T(j)) # 0.
Therefore |a; — a;| = 2 can take place only if W;(T'(i)) = W;(T'(j)) = 0. We thus complete
our proof. 0

LEMMA 4. Let T(i), T(j) be two disjoint subtrees of T € H (¥, 6,) such that
WL(T (@)= WL(T(j)) and a;, a; be the path lengths from the root of T to node i and
node j respectively. If the decoding tree U is constructed from T by interchanging T (i)
and T(j) in T, then VAR(T)—VAR(U) = 26,;(Wi (T (i))— Wi (T(j))), where

+1 ife;>a;
8,’,’2 0 if o; = oy,
_1 if ai<af.

Proof. A straightforward evaluation of VAR(T') and VAR(U) together with the
application of Theorem 1 will yield VAR(T)—VAR(U)=2(«a; ~a;)(Wi(T(i))—
Wi (T (j))). This lemma then follows immediately from Lemma 3. We leave the details
to the readers. O

LEMMA 5. Let Te #(¥%, 6,) and VAR(T)=min {VAR(U)|U € #(¥, €, s)}.
Then, for all X € #(¥, €,) either WL(X)" = WL(T)" or there exists a sequence of
decoding trees Z',Z*, - - -, Z", for some t>1 such that

() X=Z"and, forallh=1,2,---,t—1,Z"~Z"";
(i) WL(Z")'=WL(T)";
(iii) VAR(ZY)>VAR(Z?»>--->VAR(Z");

MINIMUM VARIANCE HUFFMAN CODES 145

(iv) forallh=1,2,++,t—1, Z""" can be constructed from Z" by interchanging
two subtrees in Z" where one of the two subtrees consists of a single node only.

Proof. We first point out that both X and T are members of #(¥, 4,) and
hence (1) both X and T have the same number of internal nodes and if we list the
weights labeled at the internal nodes of X in nondecreasing order, the list would be
the same as the corresponding list of the weights labeled at the internal nodes of T
(2) in X (or T), if node i and node j are two internal nodes labeled with the same
weights then all the weights labeled at their sons are identical; (3) for each internal
node u in T (or X) there exists an internal node v in X (or T) such that the weight
labeled at node u is the same as the weight labeled at node v and the nondecreasing
order list of the weights labeled at the sons of node u is the same as the nondecreasing
order list of the weights labeled at the sons of node v. Recall the indexing scheme
for the nodes of a decoding tree as defined in the first section of this paper. Let i be
the largest index such that for each node u=1,2,-:-,i in T, there is a one-to-one
correspondence, node v, in X where (i) node v is at the same level in X as node u
is in T'; (ii) node v and node u are labeled with the same weight; (iii) if the weights
labeled at node u and v are not zero then node v is an internal node if and only if
node u is. Such an i exists since the roots of X and T are in the same level, labeled
with the same weight, 1, and one is an internal node if and only if the other is. Let
n be the total number of nodes in T (or X) and let A =n —i. We shall give a proof
for our lemma by induction on A. If A =0, then all nonzero weighted leaves in one
decoding tree have their correspondences in the other decoding tree at the same level.
Therefore, WL(X)" = WL(T)" and the lemma is clearly true. Assume the lemma is
true for A=1,2,--+, k. For A=k+1, we have i=n—A=n—k—1. Let node n—k
in T be in the Lth level and is labeled with weight W. From (2) and (3) discussed
above, we conclude that the only reason that we can not find a node in X corresponding
to the node n —k in T is that, although there are nodes eligible for consideration that
satisfy condition (i) and (ii), they violate condition (iii). We claim that node n —k in
T is an internal node. For otherwise, node n —k is a leaf in T. By (1) mentioned
above, we would have an internal node z in T located at a level lower than the Lth
level and labeled with the same weight W # 0. Interchanging subtrees T(n — k) and
T(z) will result in a tree T'. Theorem 4 and Lemma 4 indicate that T"' € #(¥, €, 7)
and VAR(T)>VAR(T"), a contradiction. Now that node n —k in T is an internal
node, the implication of (2) and (3) is that there is a leaf y in X located at level L
and labeled with the weight W # 0 and furthermore, by (1), there is an internal node
z in X located at a lower level than level L also labeled with weight W # 0. Interchang-
ing subtrees X (y) and X (z) in X will result in a decoding tree Z>. Let Z' = X. Clearly,
Z* is constructed from Z' by interchanging two subtrees where one is a single leaf
and, by Lemma 4, VAR(Z ') > VAR(Z?). Now apply the induction hypothesis on Z>.
It follows immediately that the lemma is true for A =k +1. We thus complete our
proof. U

We now introduce the main theorem for the characterization of the minimal
variance Huffman code.

THEOREM 5. Let T € #(¥, €6, £). Then, the following statements are equivalent.

(i) VAR(T)=min {VAR(U)|U € #(%, 6, 1)}.

(ii)) VAR(T)=min{VAR(V)|V e A(¥, €, s)}.

(iii) For all decoding trees X ~ T, VAR(X)=VAR(T).

(iv) For all pairs of disjoint subtrees T'(i) and T(j) in T, Wr.(T(i)) = Wr(T(j)) and
Wi (T (i) < Wi(T(j)) imply a; = aj, where «;, a; are the path lengths from the root of T
to node i and node | respectively.

146 LAWRENCE T. KOU

Proof. (i) implies (ii). This is an immediate consequence of Theorem 3.

(ii) implies (iii). If X ~ T then X € #(¥, €6, £). The proof follows.

(iii) implies (iv). This is an immediate consequence of Lemma 4.

(iv) implies (i). If (i) is not true then Lemma 5 implies that there exists a decoding
tree Z such that T~ Z and VAR(T) > VAR(Z). This implies, by Lemma 4, that (iv)
is not true. Hence (iv) implies (i). O

Although a minimal variance Huffman code is not unique in the strict sense, the
lexicographically sorted list of weight-length pairs for the leaves with nonzero weights
in the minimal variance Huffman tree is unique. We state this formally in the following
corollary.

CorOLLARY 1. Let XedA(L, 6 1), YeAF 6) and VARX)=
min {VAR(V)|V e (¥, 6, £)}. Then VAR(Y)=VAR(X) if and only if WL(Y)" =
WL(X)".

Proof. If WL(Y)" = WL(X)", then clearly VAR(Y)=VAR(X). On the other
hand, if WL(Y)" # WL(X)", then Lemma 5 and Theorem 5 imply that VAR(Y) # min
{VAR(V)|V e A (¥, €, p)}=VAR(X). O

Notice that, given the fixed value of the mean of the random point /, the variance
of / is minimized if and only if the second moment of / is minimized. For any weighted
tree T, let us call the quantity ¥, ; ﬁ(i)l(i)k the kth moment of T, where k=0,
L(T) is the set of leaves in T, 4(i) is the weight labeled at node i and /(i) is the path
length from the root of T to the node i in T. Algorithm H repeatedly merges the r
subtrees with the smallest 0th moment and finally produces a decoding tree with the
minimum first moment. Algorithm K (below) repeatedly merges the r subtrees with
the smallest Oth moment and breaks ties by choosing the subtrees with the smallest
1st moments and finally produces a decoding tree with the minimum second moment
among all decoding trees with the minimum first moment. Corollary 1 implies that if
T is the decoding tree produced by Algorithm K with respect to input &, € and
then Ve H(%, 6, 1) has the same second moment as T has implies that V has the
same kth moment as T has for all k >2.

4. An algorithm to produce a minimum variance Huffman code. In this section,
we shall give a simple algorithm to produce the minimum variance Huffman code.
ALGORITHM K.

INPUT: a set of source symbols, ¥ ={s1, 52, *, 54}; a set of letters, € =
{c1, ¢2, * +, ¢;}; the discrete probability density function on &, 4: ¥ -
R.

OUTPUT: a decoding tree corresponding to a minimal variance Huffman code.

Step 0. Initialize & to be an empty set.

Step 1. Fori=1,2,---,q set F« FU{T;} where T, is the weighted tree of
a single node associated with the source symbol s; and labeled with
weight z(s;).

Step 2. Repeat Step 3 and Step 4 until |[#|=1.

Step 3. Choose r elements in &, T,,, T,,, ", T,, such that for any T, e ¥
other than these r chosen weighted trees, (Wr(T,,), Wi(T.,,)) is
lexicographically smaller or equal to (W.(Ty), W;(Ty)) for all t=
1,2,---,r

Step 4. Replace T,,, T, * - *, T, in F by a single weighted tree X in which
T., T.,, - -, T, are the r subtrees of the root and the root is labeled
with the weight Wi (X). The edges connecting the root to the r subtrees
are systematically labeled with letters, ¢y, c2, * * -, ¢, respectively.

Step S. Output the decoding tree in %.

MINIMUM VARIANCE HUFFMAN CODES 147

The lemma stated below gives an important characteristic of Algorithm K. Its
proof follows from a similar argument as given for the proof of part (i) of Lemma 3.
We state the lemma here without proof.

LEMMA 6. Let T be a decoding tree produced by Algorithm K with inputs &, €
and s, T(i) and T(j) be two subtrees of T and a;, a; be the path lengths from the root
of T to node i and node j respectively. Then (W (T (i)), Wi(T(i))) is lexicographically
greater than (Wr(T (j)), Wi (T(}))) implies a; = a;.

To conclude this paper, we shall give some final remarks on the correctness of
Algorithm K and the functions of the minimum redundancy codes that the correspond-
ing code produced by Algorithm K minimizes. We need a few more definitions.

DEFINITION 7. For all X € #(¥, €, #), the vector of the sorted internal path
lengths of X, IPL(S), is defined as

(C) if X has no internal node
A ,
IPL(X)= {(al, as,* ' ,a,) if X has m =1 internal nodes,
where, for all i=1,2,- -+, m a; is the ith longest path length from the root of X to

an internal node of X.

DEeFINITION 8. Let X € (%, €6,) and Y € (¥, €,). Then IPL(X)<IPL(Y)
if and only if both X and Y have no internal node or else IPL(X)= (a1, az, """, am),
IPL(Y)=(by, by, ,b,), forsome m=1,and aq;=b; foralli=1,2,-- -, m.

DEFINITION 9. A function, f: {WL(X)"|X e (¥, 6, 4)}> R, is nondecreasing
with respect to < if and only if for all X € (¥, €, #) and Y € A (¥, b, 1), IPL(X) <
IPL(Y) implies f(WL(X)")=f(WL(Y)").

We shall show that if T is a decoding tree produced by Algorithm K with respect
to input &, € and 4, then f(WL(T)")=min{f(WL(X)")|X € (¥, €, £)} for any
nondecreasing function f: {(WL(X)")|X € (¥, €, /)}> R with respect to <. We first
need the following lemma.

LEMMA 7. Let X e A (%, €,) and Y e A(F, 6,). Then WL(X)= WL(Y) if
and only if IPL(X)=IPL(Y).

Proof. X and Y have the same number of internal nodes. If TPL(X)# IPL(Y),
then IPL(X)# ® # IPL(Y). Let s be the smallest index such that the sth component
of IPL(X) and the sth component of IPL(Y) are different. Let & be equal to the
smaller of the two components. It should be clear that 42 >0. Let us count the levels
of the decoding trees from the first level where the root is down to the bottom level.
Thus an internal node with the path length from the root equal to 4 is situated at the
(h +1)th level. It follows that at any level 4', 1 =h'=h, both X and Y have the same
number of nodes and the same number of internal nodes. Therefore, at level h+1,
both X and Y have the same number of nodes but one has at least one more internal
node than the other one does. This implies WL(X)# WL(Y). On the other hand, if
WL(X)# WL(Y), then both X and Y have at least one internal node. Let WL(X) =
((Alsi)s 1si))s (A(si), L)), -+, (Alsi), 1(s:,)), and WL(Y) = (((s), L(s3)), (A(sp),
I(sp), -« 5 (£(s5,), I(s,))). The elements of WL(X') and WL(Y') are sorted lexicographi-
cally. Hence, for all u=1,2,---,q, 4(si,)= 4(s;,). Since Xe A(% 6,) and Ye
A(Z, €, £), we must have [(s;,) = (s,) =" - - =I(s;,) and I(s;,)) = (s,) =" - - = (s;,). Let
k be the largest index such that (4(s;.), [(s.)) # (4(s;.), I(s;.)) and let e equal to the
smaller of /(s;) and [(s;). It is clear that e >0. Thus, at any level ¢’, 1 =¢’'=e¢, both
X and Y have the same number of nodes and the same number of leaves. Therefore,
at level e+ 1, both X and Y have the same number of nodes but one has at least one
more leaf than the other one has. This implies IPL(X)# IPL(Y). The proof is thus
completed. 0

148 LAWRENCE T. KOU

THEOREM 4. Let T be a decoding tree produced by Algorithm K with input &, €
and 4. Then: () forall X e A(¥F, 6,), VAR(T) =VAR(X); (ii) forall X e A (¥, 6, £),
F(WL(T))= f(WL(X)"), where f: {WL(X)"|X € A (%, 6,)} R is any function that
is nondecreasing with respect to <.

Proof. (i) Lemma 4 and Lemma 6 imply that, for all Y ~ T, VAR(T) = VAR(Y).
Part (i) of the theorem then follows immediately from Theorem 5.

(ii) By Theorem 3, for any X € (%, €, #), there exists U € #(¥, €,) such that
WL(U)= WL(X). By Lemma 7 we have IPL(U)=IPL(X). It should be clear that
WL(T)e{WL(V)|V € #(¥, 4, #)}. Lemma § implies that either WL(U)" = WL(T)",
in which case f(WL(T)")=f(WL(U)")=f(WL(X)"), or there exists a sequence of
decoding trees, Z Y z2% ..., Z" for some t>1 such that (i), (ii), (iii), (iv) of Lemma
5 are satisfied. Lemma 5 together with Lemma 4 then imply that, for all & =
1,2,-++,t—1,Z""" is constructed from Z" by interchanging a subtree T'(i) at a
lower level in Z" with a subtree T'(j) at a higher level in Z " where W.(T(i))=
WL(T(j)), Wi (T(@i))#0 and W, (T(j))=0. (T(j) contains a single node only.) This
implies thatforallh =1,2, - - -, t— 1, IPL(Z"*') < IPL(Z"). The definition of f implies
that f(WL(T)")=f(WL(Z)")=f(WL(Z'™")")s-- - =f(WL(Z")")=f(WL(U)") =
fWL(X)"). O

Acknowledgment. The author is in debt to Professor Richard Hamming for his
encouragement and for his inspiring lecture on coding and information theory where
this research work was originated. The author would also like to thank his colleague,
George Markowsky, for many technical discussions. Lastly but not leastly, the author
is grateful to the referees of this paper for their careful reviews and their pointing
out several mistakes in the first draft of this paper.

REFERENCES

[1] D. A. HUFFMAN, A method for the construction of minimum-redundancy codes, Proc. IRE, 40 (1952),
pp- 1098-1101.

[2] D. E. KNUTH, Fundamental Algorithms: The Art of Computer Programming, Vol. 1, Addison-Wesley,
Reading, MA, 1968.

[3] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetical codes,
SIAM J. Appl. Math,, 21 (1971), pp. 514-532.

[4] C. R. GLASSEY AND R. M. KARP, On the optimality of Huffman trees, SIAM J. Appl. Math., 31
(1976), pp. 368-372.

[5] M. R. GAREY, Optimal binary search trees of restricted maximal depth, this Journal, 3 (1974),
pp. 101-110.

[6] J. VAN LEEUWEN, On the construction of Huffman trees, Proc. 3rd International Colloq. on Automata,
Languages, and Programming, Edinburgh, July 1976, pp. 382-410.

[7] A. ITAl, Optimal alphabetic trees, this Journal, 5 (1976), pp. 9-18.

[8] D. S. PARKER, JR., Conditions for optimality of the Huffman algorithm, this Journal, 9 (1980), pp.
470-489.

[9] E. S. SCHWARTZ, An optimal encoding with minimum longest code and total number of digits, Inform.
and Control, 7 (1964), pp. 37-44.

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, February 1982 0097-5397/82/1101-0012 $01.0/0

POLYGON RETRIEVAL*
DAN E. WILLARD*

Abstract. Given a set of N points on the plane and an arbitrary polygon, we consider how to efficiently
find the subset of these points lying inside this polygon. A data structure will be displayed that occupies O(N)
space and enables polygon retrieval to be performed in O(N'°%*) worst-case execution time. This is the best
currently known worst-case complexity.

Key words. Multidimensional retrieval, quad tree, K-d tree, augmented tree, K -fold tree, K-range,
range tree, super-B-tree

1. Introduction. In this paper, S will denote a set of N points, Q a query
requesting some subset of these points, and COUNT(Q) the number of records that are
requested by Q. The locate-and-copy runtime of Q will be defined as the amount of
execution time needed to find and copy those records specified by Q into the user’s
workspace. This concept is not especially useful because the degenerate case where
COUNT(Q) = O(N) forces most queries to have an O(N) worst-case locate-and-copy
runtime. In order to avoid these difficulties, a new criterion for measuring performance
will be employed in this paper, called worst-case locate runtime. A query Q will be
defined to have an O[f(N)] worst-case lo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>